Biomimetically Inspired Highly Homogeneous Hydrophilization of Graphene with Poly(l‑DOPA): Toward Electroconductive Coatings from Water-Processable Paints

Water-based processing of graphenetypically considered as physicochemically incompatible with water in the macroscaleemerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp2-ca...

Full description

Saved in:
Bibliographic Details
Published inACS sustainable chemistry & engineering Vol. 10; no. 20; pp. 6596 - 6608
Main Authors Kuziel, Anna, Dzido, Grzegorz, Jędrysiak, Rafał G., Kolanowska, Anna, Jóźwiak, Bertrand, Beunat, Juliette, Korczeniewski, Emil, Zięba, Monika, Terzyk, Artur P., Yahya, Noorhana, Thakur, Vijay Kumar, Koziol, Krzysztof K., Boncel, Sławomir
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water-based processing of graphenetypically considered as physicochemically incompatible with water in the macroscaleemerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp2-carbon nanoallotropes. Indeed, nanomaterials hidden under the common “graphene” signboard are very rich in morphological and physicochemical variants. In this work, inspired by the adhesion chemistry of mussel biomaterials, we have synthesized novel, water-processable graphene–polylevodopa (PDOPA) hybrids. Graphene and PDOPA were covalently amalgamated via the “growth-from” polymerization of l-DOPA (l-3,4-dihydroxyphenylalanine) monomer in air, yielding homogeneously PDOPA-coated (23 wt %) (of thickness 10–20 nm) hydrophilic flakes. The hybrids formed >1 year stable and water-processable aqueous dispersions and further conveniently processable paints of viscosity 0.4 Pa·s at 20 s–1 and a low yield stress τ0 up to 0.12 Pa, hence exhibiting long shelf-life stability and lacking sagging after application. Demonstrating their applicability, we have found them as surfactant-like nanoparticles stabilizing the larger, pristine graphene agglomerates in water in the optimized graphene/graphene–PDOPA weight ratio of 9:1. These characteristics enabled the manufacture of conveniently paintable coatings of low surface resistivity of 1.9 kΩ sq–1 (0.21 Ω·m) which, in turn, emerge as potentially applicable in textronics, radar-absorbing materials, or electromagnetic interference shielding.
AbstractList Water-based processing of graphene—typically considered as physicochemically incompatible with water in the macroscale—emerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp 2 -carbon nanoallotropes. Indeed, nanomaterials hidden under the common “graphene” signboard are very rich in morphological and physicochemical variants. In this work, inspired by the adhesion chemistry of mussel biomaterials, we have synthesized novel, water-processable graphene–polylevodopa (PDOPA) hybrids. Graphene and PDOPA were covalently amalgamated via the “growth-from” polymerization of l -DOPA ( l -3,4-dihydroxyphenylalanine) monomer in air, yielding homogeneously PDOPA-coated (23 wt %) (of thickness 10–20 nm) hydrophilic flakes. The hybrids formed >1 year stable and water-processable aqueous dispersions and further conveniently processable paints of viscosity 0.4 Pa·s at 20 s –1 and a low yield stress τ 0 up to 0.12 Pa, hence exhibiting long shelf-life stability and lacking sagging after application. Demonstrating their applicability, we have found them as surfactant-like nanoparticles stabilizing the larger, pristine graphene agglomerates in water in the optimized graphene/graphene–PDOPA weight ratio of 9:1. These characteristics enabled the manufacture of conveniently paintable coatings of low surface resistivity of 1.9 kΩ sq –1 (0.21 Ω·m) which, in turn, emerge as potentially applicable in textronics, radar-absorbing materials, or electromagnetic interference shielding. Water-based processing of graphene by means of a natural polymer polylevodopa toward stable and functional electroconductive coatings for textronics was elaborated and cross-verified.
Water-based processing of graphenetypically considered as physicochemically incompatible with water in the macroscaleemerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp2-carbon nanoallotropes. Indeed, nanomaterials hidden under the common “graphene” signboard are very rich in morphological and physicochemical variants. In this work, inspired by the adhesion chemistry of mussel biomaterials, we have synthesized novel, water-processable graphene–polylevodopa (PDOPA) hybrids. Graphene and PDOPA were covalently amalgamated via the “growth-from” polymerization of l-DOPA (l-3,4-dihydroxyphenylalanine) monomer in air, yielding homogeneously PDOPA-coated (23 wt %) (of thickness 10–20 nm) hydrophilic flakes. The hybrids formed >1 year stable and water-processable aqueous dispersions and further conveniently processable paints of viscosity 0.4 Pa·s at 20 s–1 and a low yield stress τ0 up to 0.12 Pa, hence exhibiting long shelf-life stability and lacking sagging after application. Demonstrating their applicability, we have found them as surfactant-like nanoparticles stabilizing the larger, pristine graphene agglomerates in water in the optimized graphene/graphene–PDOPA weight ratio of 9:1. These characteristics enabled the manufacture of conveniently paintable coatings of low surface resistivity of 1.9 kΩ sq–1 (0.21 Ω·m) which, in turn, emerge as potentially applicable in textronics, radar-absorbing materials, or electromagnetic interference shielding.
Water-based processing of graphene-typically considered as physicochemically incompatible with water in the macroscale-emerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp -carbon nanoallotropes. Indeed, nanomaterials hidden under the common "graphene" signboard are very rich in morphological and physicochemical variants. In this work, inspired by the adhesion chemistry of mussel biomaterials, we have synthesized novel, water-processable graphene-polylevodopa (PDOPA) hybrids. Graphene and PDOPA were covalently amalgamated via the "growth-from" polymerization of l-DOPA (l-3,4-dihydroxyphenylalanine) monomer in air, yielding homogeneously PDOPA-coated (23 wt %) (of thickness 10-20 nm) hydrophilic flakes. The hybrids formed >1 year stable and water-processable aqueous dispersions and further conveniently processable paints of viscosity 0.4 Pa·s at 20 s and a low yield stress τ up to 0.12 Pa, hence exhibiting long shelf-life stability and lacking sagging after application. Demonstrating their applicability, we have found them as surfactant-like nanoparticles stabilizing the larger, pristine graphene agglomerates in water in the optimized graphene/graphene-PDOPA weight ratio of 9:1. These characteristics enabled the manufacture of conveniently paintable coatings of low surface resistivity of 1.9 kΩ sq (0.21 Ω·m) which, in turn, emerge as potentially applicable in textronics, radar-absorbing materials, or electromagnetic interference shielding.
Water-based processing of graphene-typically considered as physicochemically incompatible with water in the macroscale-emerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp2-carbon nanoallotropes. Indeed, nanomaterials hidden under the common "graphene" signboard are very rich in morphological and physicochemical variants. In this work, inspired by the adhesion chemistry of mussel biomaterials, we have synthesized novel, water-processable graphene-polylevodopa (PDOPA) hybrids. Graphene and PDOPA were covalently amalgamated via the "growth-from" polymerization of l-DOPA (l-3,4-dihydroxyphenylalanine) monomer in air, yielding homogeneously PDOPA-coated (23 wt %) (of thickness 10-20 nm) hydrophilic flakes. The hybrids formed >1 year stable and water-processable aqueous dispersions and further conveniently processable paints of viscosity 0.4 Pa·s at 20 s-1 and a low yield stress τ0 up to 0.12 Pa, hence exhibiting long shelf-life stability and lacking sagging after application. Demonstrating their applicability, we have found them as surfactant-like nanoparticles stabilizing the larger, pristine graphene agglomerates in water in the optimized graphene/graphene-PDOPA weight ratio of 9:1. These characteristics enabled the manufacture of conveniently paintable coatings of low surface resistivity of 1.9 kΩ sq-1 (0.21 Ω·m) which, in turn, emerge as potentially applicable in textronics, radar-absorbing materials, or electromagnetic interference shielding.
Author Dzido, Grzegorz
Zięba, Monika
Yahya, Noorhana
Kuziel, Anna
Kolanowska, Anna
Koziol, Krzysztof K.
Jóźwiak, Bertrand
Beunat, Juliette
Thakur, Vijay Kumar
Korczeniewski, Emil
Terzyk, Artur P.
Boncel, Sławomir
Jędrysiak, Rafał G.
AuthorAffiliation Cambridge Graphene Centre, Engineering Department
Spin Eight Nanotechnologies Sdn. Bhd. 28
Cranfield University
Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology
University of Petroleum & Energy Studies (UPES)
Enhanced Composites and Structures Centre, School of Aerospace, Transport and Manufacturing
Nicolaus Copernicus University in Toruń
Department of Fundamental and Applied Sciences
School of Engineering
Department of Chemical Engineering and Process Design
Biorefining and Advanced Materials Research Center, SRUC
Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group
AuthorAffiliation_xml – name: Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group
– name: Department of Fundamental and Applied Sciences
– name: Cranfield University
– name: Nicolaus Copernicus University in Toruń
– name: Spin Eight Nanotechnologies Sdn. Bhd. 28
– name: Biorefining and Advanced Materials Research Center, SRUC
– name: School of Engineering
– name: Enhanced Composites and Structures Centre, School of Aerospace, Transport and Manufacturing
– name: Department of Chemical Engineering and Process Design
– name: Cambridge Graphene Centre, Engineering Department
– name: Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology
– name: University of Petroleum & Energy Studies (UPES)
Author_xml – sequence: 1
  givenname: Anna
  surname: Kuziel
  fullname: Kuziel, Anna
  organization: Cranfield University
– sequence: 2
  givenname: Grzegorz
  surname: Dzido
  fullname: Dzido, Grzegorz
  organization: Department of Chemical Engineering and Process Design
– sequence: 3
  givenname: Rafał G.
  surname: Jędrysiak
  fullname: Jędrysiak, Rafał G.
  organization: Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology
– sequence: 4
  givenname: Anna
  orcidid: 0000-0002-2073-4808
  surname: Kolanowska
  fullname: Kolanowska, Anna
  organization: Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology
– sequence: 5
  givenname: Bertrand
  orcidid: 0000-0003-2977-5670
  surname: Jóźwiak
  fullname: Jóźwiak, Bertrand
  organization: Department of Chemical Engineering and Process Design
– sequence: 6
  givenname: Juliette
  surname: Beunat
  fullname: Beunat, Juliette
  organization: Cambridge Graphene Centre, Engineering Department
– sequence: 7
  givenname: Emil
  orcidid: 0000-0001-6086-4458
  surname: Korczeniewski
  fullname: Korczeniewski, Emil
  organization: Nicolaus Copernicus University in Toruń
– sequence: 8
  givenname: Monika
  surname: Zięba
  fullname: Zięba, Monika
  organization: Nicolaus Copernicus University in Toruń
– sequence: 9
  givenname: Artur P.
  surname: Terzyk
  fullname: Terzyk, Artur P.
  organization: Nicolaus Copernicus University in Toruń
– sequence: 10
  givenname: Noorhana
  surname: Yahya
  fullname: Yahya, Noorhana
  organization: Spin Eight Nanotechnologies Sdn. Bhd. 28
– sequence: 11
  givenname: Vijay Kumar
  orcidid: 0000-0002-0790-2264
  surname: Thakur
  fullname: Thakur, Vijay Kumar
  organization: University of Petroleum & Energy Studies (UPES)
– sequence: 12
  givenname: Krzysztof K.
  surname: Koziol
  fullname: Koziol, Krzysztof K.
  email: K.Koziol@cranfield.ac.uk
  organization: Cranfield University
– sequence: 13
  givenname: Sławomir
  orcidid: 0000-0002-0787-5243
  surname: Boncel
  fullname: Boncel, Sławomir
  email: slawomir.boncel@polsl.pl
  organization: Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35634268$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQxiNUREvpI4B8LIeU2PnncEAqS-lWqtQ9FHG0JvYkceXYi520Wk68AneejifBZZeqPeGLx5rf940138tkzzqLSfKaZic0Y_QdyBDmIAcc0fYnTGYZY9Wz5IDRiqdZwcu9R_V-chTCTRZP0-SM0xfJfl5WecEqfpD8-qjdqEectARjNuTChrX2qMhS90N8L93oerTo5kCWG-XdetBGf4dJO0tcR849rIfYJ3d6GsjKmc2x-f3j56er1enb9-Ta3YFX5MygnLyTzqpZTvoWycJFB9sH0nk3kq8woU9XkcAQoDVIVqDtFF4lzzswAY9292Hy5fPZ9WKZXl6dXyxOL1MoynxKoep4xlspOXLOFLJcqUzltapqKKGjHFusamRdXRdUQayruuAALWSqgbLOD5MPW9_13I6oJNrJgxFrr0fwG-FAi6cdqwfRu1vR0JwWZRkNjncG3n2bMUxi1EGiMfB3c4JVNW0aXtB7tNyi0rsQPHYPY2gm7sMVT8IVu3Cj7s3jPz6o_kUZAboFol7cuNnbuLL_mP4BICi90Q
CitedBy_id crossref_primary_10_1002_admi_202202407
crossref_primary_10_1039_D3NR06413A
Cites_doi 10.1039/c2jm31218b
10.1021/am507416y
10.1088/0953-8984/28/49/495002
10.1016/j.jtice.2011.06.012
10.1021/am4024143
10.1016/j.jaap.2016.08.007
10.1016/j.compscitech.2015.06.019
10.1021/acsanm.0c00835
10.1016/j.ssc.2015.08.011
10.1021/cm503782p
10.1016/j.compositesa.2018.11.015
10.1021/acsearthspacechem.0c00107
10.1021/acsami.6b06145
10.1039/c4nr03275f
10.1016/j.scitotenv.2019.134951
10.1016/j.colsurfa.2017.10.071
10.1021/ie201391e
10.1038/nmat4170
10.1021/acsnano.6b07735
10.1295/polymj.33.374
10.1016/j.carbon.2011.09.008
10.1016/j.jallcom.2010.04.192
10.1021/nn300726r
10.1039/c2py00612j
10.1021/acs.langmuir.5b01084
10.1039/b9nr00364a
10.1021/ja800745y
10.1039/C2JM15665B
10.1016/j.carbon.2011.12.030
10.1021/acs.langmuir.8b03790
10.1016/j.reactfunctpolym.2015.05.009
10.1038/srep06735
10.1039/c8ra05902k
10.3390/ma13030549
10.1016/S0927-7757(00)00630-0
10.1016/j.envpol.2021.116907
10.1016/j.apsusc.2018.02.176
10.1016/j.synthmet.2015.07.014
10.1021/acs.est.6b04235
10.1016/j.carbon.2021.02.089
10.1016/j.cocis.2015.11.004
10.3390/s140916816
10.1021/am400582n
10.1039/c7cs00156h
10.1098/rsta.2010.0213
10.1038/s41598-020-59755-0
10.1002/adma.202000608
10.1021/acsami.1c09733
10.1002/anie.201307459
10.1021/acsomega.8b03026
10.1039/D0QM00803F
10.1039/c3ta11853c
10.1016/j.carbon.2019.04.047
10.1021/acsnano.5b08176
10.1016/j.jcis.2010.08.036
10.1021/nl3004946
10.1016/j.colsurfa.2019.123870
10.1021/nl102824h
10.1016/j.cplett.2012.10.064
10.1088/2053-1583/3/1/014006
10.1016/j.nanoms.2021.05.002
10.5539/jmsr.v1n2p126
10.1021/jp9035887
10.1016/j.ijheatmasstransfer.2021.121161
10.1021/acsami.8b18982
10.1016/j.carres.2014.06.012
10.1021/acsami.5b00910
10.1016/j.porgcoat.2019.01.042
10.1039/c0cc00363h
10.1038/ncomms7628
10.1039/C5TA00252D
10.1038/nature04162
10.1039/c5cp05212b
10.1039/C5AY01996F
10.1039/c3sm00092c
10.1021/nn302784m
10.1016/j.carbon.2013.07.005
10.1119/1.19101
10.1016/j.rechem.2021.100163
10.1088/0031-8949/2012/t146/014003
10.3390/jcs2020025
10.1126/science.1147241
10.1021/am300999g
10.1016/j.bioactmat.2020.06.024
10.1007/s00027-005-0758-5
10.1038/nmat3709
10.1039/c2jm15665b
10.1016/j.carbon.2005.02.018
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society.
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society.
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acssuschemeng.2c00226
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-0485
EndPage 6608
ExternalDocumentID 10_1021_acssuschemeng_2c00226
35634268
a917980013
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 952008
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: 2019/33/B/ST5/01412
– fundername: ;
  grantid: 04/020/BKM21/1023
GroupedDBID 55A
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
GGK
GNL
IH9
JG
ROL
UI2
VF5
VG9
W1F
AAHBH
ABQRX
ADHLV
BAANH
CUPRZ
ED~
JG~
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a453t-a6f808bcc8e882de23dd0d37d67a5af18ebe67e2f7741dae676748aaba0d9a573
IEDL.DBID ACS
ISSN 2168-0485
IngestDate Tue Sep 17 21:22:54 EDT 2024
Sat Aug 17 03:08:02 EDT 2024
Fri Aug 23 03:18:39 EDT 2024
Sun Jun 23 00:32:17 EDT 2024
Wed May 25 03:11:09 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords hydrophilization
covalent functionalization
water-processing
poly(l-DOPA)
electroconductive coatings
graphene
Language English
License 2022 The Authors. Published by American Chemical Society.
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a453t-a6f808bcc8e882de23dd0d37d67a5af18ebe67e2f7741dae676748aaba0d9a573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0790-2264
0000-0001-6086-4458
0000-0002-0787-5243
0000-0002-2073-4808
0000-0003-2977-5670
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9131455
PMID 35634268
PQID 2671998415
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9131455
proquest_miscellaneous_2671998415
crossref_primary_10_1021_acssuschemeng_2c00226
pubmed_primary_35634268
acs_journals_10_1021_acssuschemeng_2c00226
PublicationCentury 2000
PublicationDate 2022-05-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS sustainable chemistry & engineering
PublicationTitleAlternate ACS Sustainable Chem. Eng
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref56/cit56
Dziubiński M. (ref63/cit63) 2009
ref16/cit16
ref92/cit92
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
Crawford N. (ref86/cit86) 2019
ref40/cit40
ref68/cit68
ref91/cit91
ref26/cit26
ref55/cit55
Tadros T. F. (ref88/cit88) 2011
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
Schramm G. (ref87/cit87) 2004
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1039/c2jm31218b
– ident: ref72/cit72
  doi: 10.1021/am507416y
– ident: ref70/cit70
  doi: 10.1088/0953-8984/28/49/495002
– ident: ref29/cit29
  doi: 10.1016/j.jtice.2011.06.012
– ident: ref73/cit73
  doi: 10.1021/am4024143
– ident: ref79/cit79
  doi: 10.1016/j.jaap.2016.08.007
– ident: ref18/cit18
  doi: 10.1016/j.compscitech.2015.06.019
– ident: ref23/cit23
  doi: 10.1021/acsanm.0c00835
– ident: ref90/cit90
  doi: 10.1016/j.ssc.2015.08.011
– ident: ref35/cit35
  doi: 10.1021/cm503782p
– ident: ref71/cit71
  doi: 10.1016/j.compositesa.2018.11.015
– ident: ref67/cit67
  doi: 10.1021/acsearthspacechem.0c00107
– ident: ref6/cit6
  doi: 10.1021/acsami.6b06145
– ident: ref83/cit83
  doi: 10.1039/c4nr03275f
– volume-title: A Practical Approach to Rheology and Rheometry
  year: 2004
  ident: ref87/cit87
  contributor:
    fullname: Schramm G.
– ident: ref52/cit52
  doi: 10.1016/j.scitotenv.2019.134951
– ident: ref28/cit28
  doi: 10.1016/j.colsurfa.2017.10.071
– ident: ref24/cit24
  doi: 10.1021/ie201391e
– ident: ref39/cit39
  doi: 10.1038/nmat4170
– ident: ref47/cit47
  doi: 10.1021/acsnano.6b07735
– ident: ref65/cit65
  doi: 10.1295/polymj.33.374
– ident: ref31/cit31
  doi: 10.1016/j.carbon.2011.09.008
– ident: ref57/cit57
  doi: 10.1016/j.jallcom.2010.04.192
– ident: ref38/cit38
  doi: 10.1021/nn300726r
– ident: ref54/cit54
  doi: 10.1039/c2py00612j
– ident: ref64/cit64
  doi: 10.1021/acs.langmuir.5b01084
– ident: ref84/cit84
  doi: 10.1039/b9nr00364a
– ident: ref33/cit33
  doi: 10.1021/ja800745y
– ident: ref80/cit80
  doi: 10.1039/C2JM15665B
– ident: ref60/cit60
  doi: 10.1016/j.carbon.2011.12.030
– ident: ref14/cit14
  doi: 10.1021/acs.langmuir.8b03790
– ident: ref55/cit55
  doi: 10.1016/j.reactfunctpolym.2015.05.009
– ident: ref43/cit43
  doi: 10.1038/srep06735
– ident: ref91/cit91
  doi: 10.1039/c8ra05902k
– ident: ref9/cit9
  doi: 10.3390/ma13030549
– volume-title: Rheology of Dispersions: Principles and Applications
  year: 2011
  ident: ref88/cit88
  contributor:
    fullname: Tadros T. F.
– ident: ref66/cit66
  doi: 10.1016/S0927-7757(00)00630-0
– ident: ref77/cit77
  doi: 10.1016/j.envpol.2021.116907
– ident: ref10/cit10
  doi: 10.1016/j.apsusc.2018.02.176
– ident: ref37/cit37
  doi: 10.1016/j.synthmet.2015.07.014
– ident: ref75/cit75
  doi: 10.1021/acs.est.6b04235
– ident: ref48/cit48
  doi: 10.1016/j.carbon.2021.02.089
– ident: ref17/cit17
  doi: 10.1016/j.cocis.2015.11.004
– ident: ref19/cit19
  doi: 10.3390/s140916816
– ident: ref40/cit40
  doi: 10.1021/am400582n
– ident: ref68/cit68
  doi: 10.1039/c7cs00156h
– ident: ref82/cit82
  doi: 10.1098/rsta.2010.0213
– ident: ref42/cit42
  doi: 10.1038/s41598-020-59755-0
– ident: ref11/cit11
  doi: 10.1002/adma.202000608
– ident: ref62/cit62
  doi: 10.1021/acsami.1c09733
– ident: ref92/cit92
  doi: 10.1002/anie.201307459
– ident: ref32/cit32
  doi: 10.1021/acsomega.8b03026
– ident: ref46/cit46
  doi: 10.1039/D0QM00803F
– ident: ref50/cit50
  doi: 10.1039/c3ta11853c
– ident: ref89/cit89
  doi: 10.1016/j.carbon.2019.04.047
– ident: ref20/cit20
  doi: 10.1021/acsnano.5b08176
– ident: ref26/cit26
  doi: 10.1016/j.jcis.2010.08.036
– ident: ref4/cit4
  doi: 10.1021/nl3004946
– ident: ref27/cit27
  doi: 10.1016/j.colsurfa.2019.123870
– ident: ref7/cit7
  doi: 10.1021/nl102824h
– ident: ref61/cit61
  doi: 10.1016/j.cplett.2012.10.064
– ident: ref76/cit76
  doi: 10.1088/2053-1583/3/1/014006
– ident: ref1/cit1
  doi: 10.1016/j.nanoms.2021.05.002
– ident: ref21/cit21
  doi: 10.5539/jmsr.v1n2p126
– ident: ref30/cit30
  doi: 10.1021/jp9035887
– ident: ref85/cit85
  doi: 10.1016/j.ijheatmasstransfer.2021.121161
– ident: ref8/cit8
  doi: 10.1021/acsami.8b18982
– ident: ref25/cit25
  doi: 10.1016/j.carres.2014.06.012
– ident: ref49/cit49
  doi: 10.1021/acsami.5b00910
– ident: ref59/cit59
  doi: 10.1016/j.porgcoat.2019.01.042
– ident: ref16/cit16
  doi: 10.1039/c0cc00363h
– ident: ref22/cit22
  doi: 10.1038/ncomms7628
– ident: ref36/cit36
  doi: 10.1039/C5TA00252D
– ident: ref15/cit15
  doi: 10.1038/nature04162
– volume-title: Fundamentals of Fluid Rheology and Rheometry
  year: 2009
  ident: ref63/cit63
  contributor:
    fullname: Dziubiński M.
– ident: ref69/cit69
  doi: 10.1039/c5cp05212b
– ident: ref56/cit56
  doi: 10.1039/C5AY01996F
– ident: ref44/cit44
  doi: 10.1039/c3sm00092c
– ident: ref34/cit34
  doi: 10.1021/nn302784m
– ident: ref41/cit41
  doi: 10.1016/j.carbon.2013.07.005
– ident: ref74/cit74
  doi: 10.1119/1.19101
– ident: ref3/cit3
  doi: 10.1016/j.rechem.2021.100163
– volume-title: Investigating the Shear Flow and Thixotropic Behavior of Paints and Coatings
  year: 2019
  ident: ref86/cit86
  contributor:
    fullname: Crawford N.
– ident: ref2/cit2
  doi: 10.1088/0031-8949/2012/t146/014003
– ident: ref45/cit45
  doi: 10.3390/jcs2020025
– ident: ref53/cit53
  doi: 10.1126/science.1147241
– ident: ref5/cit5
  doi: 10.1021/am300999g
– ident: ref78/cit78
  doi: 10.1016/j.bioactmat.2020.06.024
– ident: ref51/cit51
  doi: 10.1007/s00027-005-0758-5
– ident: ref13/cit13
  doi: 10.1038/nmat3709
– ident: ref58/cit58
  doi: 10.1039/c2jm15665b
– ident: ref81/cit81
  doi: 10.1016/j.carbon.2005.02.018
SSID ssj0000993281
Score 2.332189
Snippet Water-based processing of graphenetypically considered as physicochemically incompatible with water in the macroscaleemerges as the key challenge among the...
Water-based processing of graphene-typically considered as physicochemically incompatible with water in the macroscale-emerges as the key challenge among the...
Water-based processing of graphene—typically considered as physicochemically incompatible with water in the macroscale—emerges as the key challenge among the...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6596
Title Biomimetically Inspired Highly Homogeneous Hydrophilization of Graphene with Poly(l‑DOPA): Toward Electroconductive Coatings from Water-Processable Paints
URI http://dx.doi.org/10.1021/acssuschemeng.2c00226
https://www.ncbi.nlm.nih.gov/pubmed/35634268
https://search.proquest.com/docview/2671998415
https://pubmed.ncbi.nlm.nih.gov/PMC9131455
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLbGuMBh_GZlgIzEAZDcJXbsONxG2ShIQCU2sVvkxA6r1sZTkx66E_8Cd_46_hLeS9JqZZqAY-TESqzPeZ_93veZkOdWFiIoVMSUExmLiihjSSIty2KRB07FoZGoRv74SQ2Pog_H8niD7F6RwefhrsnhBWClh7tl3_o8x6ijrpHrHKsIkQsNvqw2VYDuCN4cTMpDpRmgUy5VO1f1hFEpr9aj0iWq-WfF5IUQdHCLjJZCnrby5LQ_r7N-fn7Z1_Ffv-422eroKN1r8XOHbLjyLrl5waTwHvn5Zuyn42krdpws6PsSk_POUiwRgeuhn3pAofPzig4XdubPcI-mVXdSX9B3aIkN7RS3fOnITxYvJr--_3j7ebT38jU9bMp26X57Gg8sztF_Fv7AdOANVmRXFAUw9CtQ4hnrVA2o9qIjMy7r6j45Otg_HAxZd6YDM5EUNTOq0IHO8lw74PbWcWFtYEVsVWykKUINoFKx4wXQ0tAah35ykTYmM4FNjIzFA7JZ-tJtE5pIiKuRhHCbo0OPNnlsAXXAQLTKIh71yCsY3bSbk1XapNt5mK4NedoNeY_0lwBIz1qfj7898GwJkxRmJKZZTDPUKQeEwyIWmFGPPGxhs-pSSCWAE-keidcAtboB3b7XW8rxSeP6nYQCTeUf_c9X7ZAbHOUagWRcPCab9WzungCJqrOnzcT5DbrLIFY
link.rule.ids 230,315,786,790,891,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVKWQAL3o_haSQWgOQhsWMnYVeGlhTaMhJTtbvIiR0YMRNXk8xiWPEL7Pk6voR7k8zQKUKoy8SJFVvHucf2PceEPDOyEF6hAqasyFhQBBmLY2lYForcsyr0tUQ18v6BSg6D98fyeIOopRYGPqKCmqpmE_-Pu4D_Cu5Vc5jw4aLZ5z7PMfioC-SiDGFOjpRo8Gm1tgKsR_DmfFLuq4gBSOVSvPOvmjA45dV6cPqLcZ5NnDwViXaukaNVG5oElK_9eZ31829n7B3P38jr5GpHTulWi6YbZMOWN8mVU5aFt8jPN2M3HU9b6eNkQXdL3Kq3hmLCCFwnbuoAk9bNK5oszMyd4IpNq_WkrqDv0CAbyikuANOhmyyeT359__H243DrxWs6apJ46XZ7Ng9M1dGNFv7HdOA05mdXFOUw9AgI8ox1GgfUftGhHpd1dZsc7myPBgnrTnhgOpCiZloVkRdleR5ZYPrGcmGMZ0RoVKilLvwIIKZCywsgqb7RFt3lgkjrTHsm1jIUd8hm6Up7j9BYQpQNJATfHP16Ip2HBjAIfCRSWcCDHnkJvZt2I7RKm8137qdrXZ52Xd4j_SUO0pPW9eN_LzxdoiWF8YmbLrrp6pQD3mFKCzypR-626FlVKaQSwJCiHgnXcLV6AL2_10vK8ZfGAzz2BVrM3z9Pq56QS8lofy_d2z348IBc5ijk8CTj4iHZrGdz-wjoVZ09bsbSb9OhKME
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgSAgexjeUTyPxAEguiR07Dm-jW-n4GJXYtEk8RE7sQLU2qZr0oTztL-ydX8cv4d4krdYhhOAxcWLF1nHusX3PMSHPrMyEl6mAKScSFmRBwqJIWpaEIvWcCn0jUY38cU8NDoJ3R_KozapELQx8RAk1lfUmPo7qqc1ahwH_Fdwv5zDpw4Wzr12eYgBSF8kliYd4Iy3qfV6trwDzEbw-o5T7SjMAqlwKeP5UEwaotFwPUL-xzvPJk2eiUf8a-bJqR52EctydV0k3_X7O4vH_GnqdbLYklW41qLpBLrj8Jrl6xrrwFvnxZlRMRpNGAjle0N0ct-ydpZg4AteDYlIANl0xL-lgYWfFFFduGs0nLTL6Fo2yoZziQjAdFuPF8_HPk9PtT8OtF6_pfp3MS3eaM3pgyo6utPBfpr3CYJ52SVEWQw-BKM9Yq3VADRgdmlFelbfJQX9nvzdg7UkPzARSVMyoTHs6SVPtgPFbx4W1nhWhVaGRJvM1QE2FjmdAVn1rHLrMBdqYxHg2MjIUd8hGXuTuHqERgEEHEoJwir492qShBSwCL9EqCXjQIS-hd-N2pJZxvQnP_Xity-O2yzuku8RCPG3cP_72wtMlYmIYp7j5YuqujjngHqa2wJc65G6DoFWVQioBTEl3SLiGrdUD6AG-XpKPvtVe4JEv0Gr-_r-06gm5PNzuxx92994_IFc46jk8ybh4SDaq2dw9ApZVJY_r4fQL7GArOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomimetically+Inspired+Highly+Homogeneous+Hydrophilization+of+Graphene+with+Poly%28l%E2%80%91DOPA%29%3A+Toward+Electroconductive+Coatings+from+Water-Processable+Paints&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Kuziel%2C+Anna&rft.au=Dzido%2C+Grzegorz&rft.au=Je%CC%A8drysiak%2C+Rafa%C5%82+G.&rft.au=Kolanowska%2C+Anna&rft.date=2022-05-23&rft.pub=American+Chemical+Society&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=10&rft.issue=20&rft.spage=6596&rft.epage=6608&rft_id=info:doi/10.1021%2Facssuschemeng.2c00226&rft.externalDocID=a917980013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon