Core–Shell Plasmonic Nanomaterials toward: Dual-Mode Imaging Analysis of Glutathione and Enhanced Chemodynamic Therapy

A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core–shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 93; no. 29; pp. 10317 - 10325
Main Authors Wang, Jin, Liu, Ying-Xue, Li, Xiang-Ling, Chen, Hong-Yuan, Xu, Jing-Juan
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 27.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core–shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core–shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells.
AbstractList A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core–shell plasmonic nanomaterial (Au@MnO₂-DNA), which consisted of a AuNP core with an outer shell MnO₂ nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO₂, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn²⁺ from the reaction between MnO₂ and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core–shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells.
A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core–shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core–shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells.
A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core-shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core-shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells.A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core-shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core-shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells.
Author Wang, Jin
Liu, Ying-Xue
Chen, Hong-Yuan
Xu, Jing-Juan
Li, Xiang-Ling
AuthorAffiliation State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
Nanjing Tech University
College of Life Science and Pharmaceutical Engineering
AuthorAffiliation_xml – name: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– name: College of Life Science and Pharmaceutical Engineering
– name: Nanjing Tech University
Author_xml – sequence: 1
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Ying-Xue
  surname: Liu
  fullname: Liu, Ying-Xue
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– sequence: 3
  givenname: Xiang-Ling
  surname: Li
  fullname: Li, Xiang-Ling
  email: xlli@njtech.edu.cn
  organization: Nanjing Tech University
– sequence: 4
  givenname: Hong-Yuan
  surname: Chen
  fullname: Chen, Hong-Yuan
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– sequence: 5
  givenname: Jing-Juan
  orcidid: 0000-0001-9579-9318
  surname: Xu
  fullname: Xu, Jing-Juan
  email: xujj@nju.edu.cn
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
BookMark eNqFkU1uFDEQhS0UJCaBG7CwxIZND-Vqu3-yi4YQIoUfibBuFW477ajbHuxuwey4Q26Yk-AwgUUWZFULf--56r1DduCDN4y9FLAWgOIN6bQmT6MezLQWGkSjmidsJRRCUTUNHrAVAJQF1gDP2GFK1wBCgKhW7OcmRHP76-bLYMaRfx4pTcE7zT-SDxPNJjoaE5_DD4r9MX-70Fh8CL3h5xNdOX_FT_K3u-QSD5afjctM8-Dycpx8z0_9QF6bnm_yXqHfeZqy8-VgIm13z9lTm63Ni_t5xL6-O73cvC8uPp2db04uCpIK58K2bVtLW1krUUEeZSslQa2IrCpljxZabQ1WVfmNdN1bbIU0pUKEskcQ5RF7vffdxvB9MWnuJpd0Ppa8CUvqsCorKVACPo4qhW2jsKoz-uoBeh2WmLP4Q9Wo2lpUmZJ7SseQUjS220Y3Udx1Arq75rrcXPe3ue6-uSw7fiDTLgebc50jufExMezFd6__lvqv5DePcLah
CitedBy_id crossref_primary_10_1002_smll_202207318
crossref_primary_10_3389_fbioe_2023_1101673
crossref_primary_10_1016_j_foodchem_2023_137107
crossref_primary_10_1039_D3SM00822C
crossref_primary_10_1016_j_aca_2024_342521
crossref_primary_10_1021_acsanm_4c04389
crossref_primary_10_1039_D3NR06290B
crossref_primary_10_1016_j_snb_2023_134390
crossref_primary_10_1039_D4BM00379A
crossref_primary_10_1007_s12274_022_4474_4
crossref_primary_10_1021_acs_iecr_4c03274
crossref_primary_10_1016_j_ccr_2022_214861
crossref_primary_10_3390_bios13070693
crossref_primary_10_1002_cjoc_202200134
crossref_primary_10_1021_acsami_4c05152
crossref_primary_10_1002_open_202400017
crossref_primary_10_1039_D2NR03676B
crossref_primary_10_1063_5_0204011
crossref_primary_10_1016_j_snb_2024_135459
crossref_primary_10_1016_j_colsurfb_2024_113921
crossref_primary_10_1016_j_snb_2023_134204
crossref_primary_10_1021_acs_analchem_1c04155
Cites_doi 10.1038/onc.2008.271
10.1039/C1JM14040J
10.1039/C7SC02888A
10.1039/C8SC02446D
10.1039/B709883A
10.1093/jnci/djm135
10.1039/C8CC07112H
10.1093/jn/134.3.489
10.1039/C9SC05506A
10.1021/acs.analchem.6b01491
10.7150/thno.31079
10.2147/IJN.S210116
10.1021/acsami.6b05465
10.1002/adma.202008540
10.1021/ja5029364
10.1039/C9SC02804H
10.1016/j.jcis.2017.02.033
10.1039/C5CS00224A
10.1039/C7SC03218H
10.1021/acs.analchem.0c03418
10.1038/bjc.1993.484
10.1039/C8SC00733K
10.1002/anie.201712027
10.1039/D0SC06742C
10.1002/adma.201301890
10.1021/acs.analchem.7b04375
10.1021/ja2100774
10.1002/anie.202014348
10.1089/ars.2014.5864
10.1039/D0SC04664G
10.1039/C8SC03421D
10.1021/acs.analchem.0c02747
10.1038/ijo.2008.229
10.1126/science.2834821
10.1039/C8NR09801H
10.1016/j.jchromb.2014.12.032
10.3390/molecules26030692
10.1007/s12274-016-1205-8
10.1021/ac300545p
10.1021/ac0702084
10.1021/jacs.8b08714
10.1002/smtd.202000566
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright American Chemical Society Jul 27, 2021
Copyright_xml – notice: 2021 American Chemical Society
– notice: Copyright American Chemical Society Jul 27, 2021
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.1c01858
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 10325
ExternalDocumentID 10_1021_acs_analchem_1c01858
b739081989
GroupedDBID -
.K2
02
1AW
23M
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
CITATION
CUPRZ
KZ1
LMP
XSW
ZCA
~02
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a452t-f99974f6ff42506ff3944a075aaf534d2f09cfe2663bac7df2914e352203d2013
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 05:28:59 EDT 2025
Fri Jul 11 02:07:44 EDT 2025
Mon Jun 30 10:24:19 EDT 2025
Thu Apr 24 22:59:02 EDT 2025
Tue Jul 01 01:19:27 EDT 2025
Thu Jul 29 03:24:46 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a452t-f99974f6ff42506ff3944a075aaf534d2f09cfe2663bac7df2914e352203d2013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9579-9318
PQID 2557259716
PQPubID 45400
PageCount 9
ParticipantIDs proquest_miscellaneous_2636412402
proquest_miscellaneous_2552985267
proquest_journals_2557259716
crossref_primary_10_1021_acs_analchem_1c01858
crossref_citationtrail_10_1021_acs_analchem_1c01858
acs_journals_10_1021_acs_analchem_1c01858
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-27
PublicationDateYYYYMMDD 2021-07-27
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-27
  day: 27
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
Lee F. Y. (ref38/cit38) 1989; 49
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1038/onc.2008.271
– ident: ref22/cit22
  doi: 10.1039/C1JM14040J
– ident: ref39/cit39
  doi: 10.1039/C7SC02888A
– ident: ref33/cit33
  doi: 10.1039/C8SC02446D
– ident: ref28/cit28
  doi: 10.1039/B709883A
– ident: ref1/cit1
  doi: 10.1093/jnci/djm135
– ident: ref21/cit21
  doi: 10.1039/C8CC07112H
– ident: ref6/cit6
  doi: 10.1093/jn/134.3.489
– ident: ref42/cit42
  doi: 10.1039/C9SC05506A
– ident: ref13/cit13
  doi: 10.1021/acs.analchem.6b01491
– ident: ref29/cit29
  doi: 10.7150/thno.31079
– ident: ref27/cit27
  doi: 10.2147/IJN.S210116
– ident: ref7/cit7
  doi: 10.1021/acsami.6b05465
– ident: ref34/cit34
  doi: 10.1002/adma.202008540
– ident: ref35/cit35
  doi: 10.1021/ja5029364
– ident: ref36/cit36
  doi: 10.1039/C9SC02804H
– ident: ref4/cit4
  doi: 10.1016/j.jcis.2017.02.033
– ident: ref24/cit24
  doi: 10.1039/C5CS00224A
– ident: ref15/cit15
  doi: 10.1039/C7SC03218H
– ident: ref11/cit11
  doi: 10.1021/acs.analchem.0c03418
– ident: ref23/cit23
  doi: 10.1038/bjc.1993.484
– volume: 49
  start-page: 5244
  issue: 19
  year: 1989
  ident: ref38/cit38
  publication-title: Cancer Res.
– ident: ref9/cit9
  doi: 10.1039/C8SC00733K
– ident: ref25/cit25
  doi: 10.1002/anie.201712027
– ident: ref30/cit30
  doi: 10.1039/D0SC06742C
– ident: ref31/cit31
  doi: 10.1002/adma.201301890
– ident: ref10/cit10
  doi: 10.1021/acs.analchem.7b04375
– ident: ref19/cit19
  doi: 10.1021/ja2100774
– ident: ref17/cit17
  doi: 10.1002/anie.202014348
– ident: ref5/cit5
  doi: 10.1089/ars.2014.5864
– ident: ref18/cit18
  doi: 10.1039/D0SC04664G
– ident: ref40/cit40
  doi: 10.1039/C8SC03421D
– ident: ref14/cit14
  doi: 10.1021/acs.analchem.0c02747
– ident: ref3/cit3
  doi: 10.1038/ijo.2008.229
– ident: ref43/cit43
  doi: 10.1126/science.2834821
– ident: ref8/cit8
  doi: 10.1039/C8NR09801H
– ident: ref16/cit16
  doi: 10.1016/j.jchromb.2014.12.032
– ident: ref12/cit12
  doi: 10.3390/molecules26030692
– ident: ref26/cit26
  doi: 10.1007/s12274-016-1205-8
– ident: ref20/cit20
  doi: 10.1021/ac300545p
– ident: ref32/cit32
  doi: 10.1021/ac0702084
– ident: ref41/cit41
  doi: 10.1021/jacs.8b08714
– ident: ref37/cit37
  doi: 10.1002/smtd.202000566
SSID ssj0011016
Score 2.472529
Snippet A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core–shell...
A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core-shell...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10317
SubjectTerms adverse effects
Analytical chemistry
Cancer
cancer therapy
Chemistry
Deoxyribonucleic acid
DNA
DNA probes
Fluorescence
fluorescent dyes
Glutathione
Information processing
Intracellular
light microscopes
Manganese dioxide
Medical imaging
Nanomaterials
Nanoparticles
nanosheets
Nanotechnology
Optical microscopes
Optical properties
Plasmonics
Switching
Therapy
Title Core–Shell Plasmonic Nanomaterials toward: Dual-Mode Imaging Analysis of Glutathione and Enhanced Chemodynamic Therapy
URI http://dx.doi.org/10.1021/acs.analchem.1c01858
https://www.proquest.com/docview/2557259716
https://www.proquest.com/docview/2552985267
https://www.proquest.com/docview/2636412402
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQCHAi2ILS0yEhcO3iZ2bCe9VduWthIPqa3UW-Q4tpDoJqiblaCn_gf-Ib-kM3lsKQgKp0iJ7djjsecbzQvgdaEKZ4tgeJmmJUcOCdxqXfAgQhFEalVsKDj53Xu9f5IcnqrTa0XxVwu-iDetm40tEhXXMB3HLkIBk96Fe0KnhpSt7cnRwmpAmuhQIY8MqkOo3B9GIYHkZjcF0s37uBUye4_gwxCq0_mWfB7Pm2LsLn7P3PiP838Myz3eZNsdgzyBO75agfuToczbCjz8KSPhKnyd1Of-x-X3I_IPZR8RWk8pdy7DS7hGbNuxK2taX9sttjO3Z5yqqbGDaVvtiA05Tlgd2FtkavJtrCvPbFWy3epT627A6O91-a2yUxz5uEtr8BRO9naPJ_u8L87AbaJEwwMiS5MEHQKe-ggfFGFrEYBYG5RMShGizAWP8l8W1pkyiCxOPMG9SJaIOuQzWKpwAs-BCeGD9k5Jh-jM6sgayqAjReYyr5TUI3iDRMz7wzXLW7u5iHN6OVA27yk7AjnsZu76LOdUbOPsll580etLl-XjlvbrA6NcTwuVM4PKJCqgI3i1-Iy7SSYYW_l63rYRWaqENn9po6WmmuCRWPuPhb-AB4LcbSKDrL8OS8353G8gXmqKl-0huQKwuhQl
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6V9lA48FOoWCjUSHDg4CVxEidB4lBtW3bpj5C6lXoLjmOrEt0ENVlBOfEOPAOvwoPwJMx4ky1FgopDJU6REsexPTP5ZuTxNwBP8yjXKrcxL5Kk4Kghlispc26Fza1IVOTHdDh5b18OD8M3R9HRAnzrzsLgIGrsqXab-OfsAv4LuqdwbXEqk76vPcSZpM2l3DFnHzFSq1-NNlGsz4TY3hoPhrwtJsBVGImGW_SE4tBKa1FLPbzQiVCFgKmUjYKwENZLtTWIV0GudFxYkfqhIffECwpEyQD7vQZL6P8IivE2BgfzzQoKgLvCfLSP253Q-8OoCQd1fREHL8KAw7btW_B9vioupeV9f9rkff35N8LI_37ZbsPN1rtmGzNzuAMLplyB5UFX1G4FbvzCv3gXPg2qU_Pjy9cDyoZlbzGQmBBTMEPIqdCTnxkna1xm8Uu2OVUnnGrHsdHE1XZiHaMLqyx7jSZMmZxVaZgqC7ZVHrvkCkZfr4qzUk2w5_GMxOEeHF7JMqzCYokDuA9MCGOl0VGg0RdV0lMx8QUFItWpiaJA9uA5Ci1rfyV15rIEhJ_RzU6SWSvJHgSdEmW65XSn0iInl7zF5299mHGaXNJ-rdPP82FhKBpj6Izhdg-ezB-jNGnDSZWmmro2Ik0iIeO_tJGBpAronnjwDxNfh-XheG832x3t7zyE64ISjbwYrW8NFpvTqXmEnmKTP3Z2yuDdVWv4Tx0DdVM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIvFzoFBALG3BSHDg4CVxEidB4lDtdulSqCq1lXpLHccWEt2karKCcuo78BS8Co_BkzDjTRaKBBWHHjitlHUcxzOTb0Yz_gbgaR7lWuU25kWSFBw1xHIlZc6tsLkViYr8mA4nv9uWm_vhm4PoYAG-dmdhcBE1zlS7JD5Z9XFhW4YB_wVdV7i_-DqTvq89xJqkrafcMqcfMVqrX42HKNpnQow29gabvG0owFUYiYZb9Ibi0EprUVM9_KFToQpBUykbBWEhrJdqaxCzglzpuLAi9UNDLooXFIiUAc57Ba5SppDivPXB7jxhQUFw15yPcrndKb0_rJqwUNfnsfA8FDh8Gy3Bt_nOuLKWD_1pk_f1599II_-LrbsNt1ovm63PzOIOLJhyGa4PuuZ2y3DzFx7Gu_BpUJ2Y72dfdqkqlu1gQDEhxmCG0FOhRz8zUta4CuOXbDhVR5x6yLHxxPV4Yh2zC6sse42mTBWdVWmYKgu2Ub53RRaMnl4Vp6Wa4Mx7MzKHe7B_KdtwHxZLXMADYEIYK42OAo0-qZKeiok3KBCpTk0UBbIHz1FoWftJqTNXLSD8jC52ksxaSfYg6BQp0y23O7UYObrgLj6_63jGbXLB-NVOR38uC0PSGENoDLt78GT-N0qTEk-qNNXUjRFpEgkZ_2WMDCR1QvfEw3948cdwbWc4yt6Ot7dW4IageiMvRgNchcXmZGrW0GFs8kfOVBkcXraC_wBIfHfW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core%E2%80%93Shell+Plasmonic+Nanomaterials+toward%3A+Dual-Mode+Imaging+Analysis+of+Glutathione+and+Enhanced+Chemodynamic+Therapy&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wang%2C+Jin&rft.au=Liu%2C+Ying-Xue&rft.au=Li%2C+Xiang-Ling&rft.au=Chen%2C+Hong-Yuan&rft.date=2021-07-27&rft.issn=1520-6882&rft.volume=93&rft.issue=29+p.10317-10325&rft.spage=10317&rft.epage=10325&rft_id=info:doi/10.1021%2Facs.analchem.1c01858&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon