Core–Shell Plasmonic Nanomaterials toward: Dual-Mode Imaging Analysis of Glutathione and Enhanced Chemodynamic Therapy
A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core–shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 93; no. 29; pp. 10317 - 10325 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
American Chemical Society
27.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core–shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core–shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells. |
---|---|
AbstractList | A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core–shell plasmonic nanomaterial (Au@MnO₂-DNA), which consisted of a AuNP core with an outer shell MnO₂ nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO₂, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn²⁺ from the reaction between MnO₂ and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core–shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells. A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core–shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core–shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells. A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core-shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core-shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells.A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core-shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core-shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells. |
Author | Wang, Jin Liu, Ying-Xue Chen, Hong-Yuan Xu, Jing-Juan Li, Xiang-Ling |
AuthorAffiliation | State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing Tech University College of Life Science and Pharmaceutical Engineering |
AuthorAffiliation_xml | – name: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – name: College of Life Science and Pharmaceutical Engineering – name: Nanjing Tech University |
Author_xml | – sequence: 1 givenname: Jin surname: Wang fullname: Wang, Jin organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – sequence: 2 givenname: Ying-Xue surname: Liu fullname: Liu, Ying-Xue organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – sequence: 3 givenname: Xiang-Ling surname: Li fullname: Li, Xiang-Ling email: xlli@njtech.edu.cn organization: Nanjing Tech University – sequence: 4 givenname: Hong-Yuan surname: Chen fullname: Chen, Hong-Yuan organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – sequence: 5 givenname: Jing-Juan orcidid: 0000-0001-9579-9318 surname: Xu fullname: Xu, Jing-Juan email: xujj@nju.edu.cn organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering |
BookMark | eNqFkU1uFDEQhS0UJCaBG7CwxIZND-Vqu3-yi4YQIoUfibBuFW477ajbHuxuwey4Q26Yk-AwgUUWZFULf--56r1DduCDN4y9FLAWgOIN6bQmT6MezLQWGkSjmidsJRRCUTUNHrAVAJQF1gDP2GFK1wBCgKhW7OcmRHP76-bLYMaRfx4pTcE7zT-SDxPNJjoaE5_DD4r9MX-70Fh8CL3h5xNdOX_FT_K3u-QSD5afjctM8-Dycpx8z0_9QF6bnm_yXqHfeZqy8-VgIm13z9lTm63Ni_t5xL6-O73cvC8uPp2db04uCpIK58K2bVtLW1krUUEeZSslQa2IrCpljxZabQ1WVfmNdN1bbIU0pUKEskcQ5RF7vffdxvB9MWnuJpd0Ppa8CUvqsCorKVACPo4qhW2jsKoz-uoBeh2WmLP4Q9Wo2lpUmZJ7SseQUjS220Y3Udx1Arq75rrcXPe3ue6-uSw7fiDTLgebc50jufExMezFd6__lvqv5DePcLah |
CitedBy_id | crossref_primary_10_1002_smll_202207318 crossref_primary_10_3389_fbioe_2023_1101673 crossref_primary_10_1016_j_foodchem_2023_137107 crossref_primary_10_1039_D3SM00822C crossref_primary_10_1016_j_aca_2024_342521 crossref_primary_10_1021_acsanm_4c04389 crossref_primary_10_1039_D3NR06290B crossref_primary_10_1016_j_snb_2023_134390 crossref_primary_10_1039_D4BM00379A crossref_primary_10_1007_s12274_022_4474_4 crossref_primary_10_1021_acs_iecr_4c03274 crossref_primary_10_1016_j_ccr_2022_214861 crossref_primary_10_3390_bios13070693 crossref_primary_10_1002_cjoc_202200134 crossref_primary_10_1021_acsami_4c05152 crossref_primary_10_1002_open_202400017 crossref_primary_10_1039_D2NR03676B crossref_primary_10_1063_5_0204011 crossref_primary_10_1016_j_snb_2024_135459 crossref_primary_10_1016_j_colsurfb_2024_113921 crossref_primary_10_1016_j_snb_2023_134204 crossref_primary_10_1021_acs_analchem_1c04155 |
Cites_doi | 10.1038/onc.2008.271 10.1039/C1JM14040J 10.1039/C7SC02888A 10.1039/C8SC02446D 10.1039/B709883A 10.1093/jnci/djm135 10.1039/C8CC07112H 10.1093/jn/134.3.489 10.1039/C9SC05506A 10.1021/acs.analchem.6b01491 10.7150/thno.31079 10.2147/IJN.S210116 10.1021/acsami.6b05465 10.1002/adma.202008540 10.1021/ja5029364 10.1039/C9SC02804H 10.1016/j.jcis.2017.02.033 10.1039/C5CS00224A 10.1039/C7SC03218H 10.1021/acs.analchem.0c03418 10.1038/bjc.1993.484 10.1039/C8SC00733K 10.1002/anie.201712027 10.1039/D0SC06742C 10.1002/adma.201301890 10.1021/acs.analchem.7b04375 10.1021/ja2100774 10.1002/anie.202014348 10.1089/ars.2014.5864 10.1039/D0SC04664G 10.1039/C8SC03421D 10.1021/acs.analchem.0c02747 10.1038/ijo.2008.229 10.1126/science.2834821 10.1039/C8NR09801H 10.1016/j.jchromb.2014.12.032 10.3390/molecules26030692 10.1007/s12274-016-1205-8 10.1021/ac300545p 10.1021/ac0702084 10.1021/jacs.8b08714 10.1002/smtd.202000566 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society Copyright American Chemical Society Jul 27, 2021 |
Copyright_xml | – notice: 2021 American Chemical Society – notice: Copyright American Chemical Society Jul 27, 2021 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.1c01858 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 10325 |
ExternalDocumentID | 10_1021_acs_analchem_1c01858 b739081989 |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABOCM ABPPZ ABPTK ABUCX ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV CITATION CUPRZ KZ1 LMP XSW ZCA ~02 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a452t-f99974f6ff42506ff3944a075aaf534d2f09cfe2663bac7df2914e352203d2013 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 05:28:59 EDT 2025 Fri Jul 11 02:07:44 EDT 2025 Mon Jun 30 10:24:19 EDT 2025 Thu Apr 24 22:59:02 EDT 2025 Tue Jul 01 01:19:27 EDT 2025 Thu Jul 29 03:24:46 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a452t-f99974f6ff42506ff3944a075aaf534d2f09cfe2663bac7df2914e352203d2013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9579-9318 |
PQID | 2557259716 |
PQPubID | 45400 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2636412402 proquest_miscellaneous_2552985267 proquest_journals_2557259716 crossref_primary_10_1021_acs_analchem_1c01858 crossref_citationtrail_10_1021_acs_analchem_1c01858 acs_journals_10_1021_acs_analchem_1c01858 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-27 |
PublicationDateYYYYMMDD | 2021-07-27 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 Lee F. Y. (ref38/cit38) 1989; 49 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1038/onc.2008.271 – ident: ref22/cit22 doi: 10.1039/C1JM14040J – ident: ref39/cit39 doi: 10.1039/C7SC02888A – ident: ref33/cit33 doi: 10.1039/C8SC02446D – ident: ref28/cit28 doi: 10.1039/B709883A – ident: ref1/cit1 doi: 10.1093/jnci/djm135 – ident: ref21/cit21 doi: 10.1039/C8CC07112H – ident: ref6/cit6 doi: 10.1093/jn/134.3.489 – ident: ref42/cit42 doi: 10.1039/C9SC05506A – ident: ref13/cit13 doi: 10.1021/acs.analchem.6b01491 – ident: ref29/cit29 doi: 10.7150/thno.31079 – ident: ref27/cit27 doi: 10.2147/IJN.S210116 – ident: ref7/cit7 doi: 10.1021/acsami.6b05465 – ident: ref34/cit34 doi: 10.1002/adma.202008540 – ident: ref35/cit35 doi: 10.1021/ja5029364 – ident: ref36/cit36 doi: 10.1039/C9SC02804H – ident: ref4/cit4 doi: 10.1016/j.jcis.2017.02.033 – ident: ref24/cit24 doi: 10.1039/C5CS00224A – ident: ref15/cit15 doi: 10.1039/C7SC03218H – ident: ref11/cit11 doi: 10.1021/acs.analchem.0c03418 – ident: ref23/cit23 doi: 10.1038/bjc.1993.484 – volume: 49 start-page: 5244 issue: 19 year: 1989 ident: ref38/cit38 publication-title: Cancer Res. – ident: ref9/cit9 doi: 10.1039/C8SC00733K – ident: ref25/cit25 doi: 10.1002/anie.201712027 – ident: ref30/cit30 doi: 10.1039/D0SC06742C – ident: ref31/cit31 doi: 10.1002/adma.201301890 – ident: ref10/cit10 doi: 10.1021/acs.analchem.7b04375 – ident: ref19/cit19 doi: 10.1021/ja2100774 – ident: ref17/cit17 doi: 10.1002/anie.202014348 – ident: ref5/cit5 doi: 10.1089/ars.2014.5864 – ident: ref18/cit18 doi: 10.1039/D0SC04664G – ident: ref40/cit40 doi: 10.1039/C8SC03421D – ident: ref14/cit14 doi: 10.1021/acs.analchem.0c02747 – ident: ref3/cit3 doi: 10.1038/ijo.2008.229 – ident: ref43/cit43 doi: 10.1126/science.2834821 – ident: ref8/cit8 doi: 10.1039/C8NR09801H – ident: ref16/cit16 doi: 10.1016/j.jchromb.2014.12.032 – ident: ref12/cit12 doi: 10.3390/molecules26030692 – ident: ref26/cit26 doi: 10.1007/s12274-016-1205-8 – ident: ref20/cit20 doi: 10.1021/ac300545p – ident: ref32/cit32 doi: 10.1021/ac0702084 – ident: ref41/cit41 doi: 10.1021/jacs.8b08714 – ident: ref37/cit37 doi: 10.1002/smtd.202000566 |
SSID | ssj0011016 |
Score | 2.472529 |
Snippet | A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core–shell... A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core-shell... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10317 |
SubjectTerms | adverse effects Analytical chemistry Cancer cancer therapy Chemistry Deoxyribonucleic acid DNA DNA probes Fluorescence fluorescent dyes Glutathione Information processing Intracellular light microscopes Manganese dioxide Medical imaging Nanomaterials Nanoparticles nanosheets Nanotechnology Optical microscopes Optical properties Plasmonics Switching Therapy |
Title | Core–Shell Plasmonic Nanomaterials toward: Dual-Mode Imaging Analysis of Glutathione and Enhanced Chemodynamic Therapy |
URI | http://dx.doi.org/10.1021/acs.analchem.1c01858 https://www.proquest.com/docview/2557259716 https://www.proquest.com/docview/2552985267 https://www.proquest.com/docview/2636412402 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQCHAi2ILS0yEhcO3iZ2bCe9VduWthIPqa3UW-Q4tpDoJqiblaCn_gf-Ib-kM3lsKQgKp0iJ7djjsecbzQvgdaEKZ4tgeJmmJUcOCdxqXfAgQhFEalVsKDj53Xu9f5IcnqrTa0XxVwu-iDetm40tEhXXMB3HLkIBk96Fe0KnhpSt7cnRwmpAmuhQIY8MqkOo3B9GIYHkZjcF0s37uBUye4_gwxCq0_mWfB7Pm2LsLn7P3PiP838Myz3eZNsdgzyBO75agfuToczbCjz8KSPhKnyd1Of-x-X3I_IPZR8RWk8pdy7DS7hGbNuxK2taX9sttjO3Z5yqqbGDaVvtiA05Tlgd2FtkavJtrCvPbFWy3epT627A6O91-a2yUxz5uEtr8BRO9naPJ_u8L87AbaJEwwMiS5MEHQKe-ggfFGFrEYBYG5RMShGizAWP8l8W1pkyiCxOPMG9SJaIOuQzWKpwAs-BCeGD9k5Jh-jM6sgayqAjReYyr5TUI3iDRMz7wzXLW7u5iHN6OVA27yk7AjnsZu76LOdUbOPsll580etLl-XjlvbrA6NcTwuVM4PKJCqgI3i1-Iy7SSYYW_l63rYRWaqENn9po6WmmuCRWPuPhb-AB4LcbSKDrL8OS8353G8gXmqKl-0huQKwuhQl |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6V9lA48FOoWCjUSHDg4CVxEidB4lBtW3bpj5C6lXoLjmOrEt0ENVlBOfEOPAOvwoPwJMx4ky1FgopDJU6REsexPTP5ZuTxNwBP8yjXKrcxL5Kk4Kghlispc26Fza1IVOTHdDh5b18OD8M3R9HRAnzrzsLgIGrsqXab-OfsAv4LuqdwbXEqk76vPcSZpM2l3DFnHzFSq1-NNlGsz4TY3hoPhrwtJsBVGImGW_SE4tBKa1FLPbzQiVCFgKmUjYKwENZLtTWIV0GudFxYkfqhIffECwpEyQD7vQZL6P8IivE2BgfzzQoKgLvCfLSP253Q-8OoCQd1fREHL8KAw7btW_B9vioupeV9f9rkff35N8LI_37ZbsPN1rtmGzNzuAMLplyB5UFX1G4FbvzCv3gXPg2qU_Pjy9cDyoZlbzGQmBBTMEPIqdCTnxkna1xm8Uu2OVUnnGrHsdHE1XZiHaMLqyx7jSZMmZxVaZgqC7ZVHrvkCkZfr4qzUk2w5_GMxOEeHF7JMqzCYokDuA9MCGOl0VGg0RdV0lMx8QUFItWpiaJA9uA5Ci1rfyV15rIEhJ_RzU6SWSvJHgSdEmW65XSn0iInl7zF5299mHGaXNJ-rdPP82FhKBpj6Izhdg-ezB-jNGnDSZWmmro2Ik0iIeO_tJGBpAronnjwDxNfh-XheG832x3t7zyE64ISjbwYrW8NFpvTqXmEnmKTP3Z2yuDdVWv4Tx0DdVM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIvFzoFBALG3BSHDg4CVxEidB4lDtdulSqCq1lXpLHccWEt2karKCcuo78BS8Co_BkzDjTRaKBBWHHjitlHUcxzOTb0Yz_gbgaR7lWuU25kWSFBw1xHIlZc6tsLkViYr8mA4nv9uWm_vhm4PoYAG-dmdhcBE1zlS7JD5Z9XFhW4YB_wVdV7i_-DqTvq89xJqkrafcMqcfMVqrX42HKNpnQow29gabvG0owFUYiYZb9Ibi0EprUVM9_KFToQpBUykbBWEhrJdqaxCzglzpuLAi9UNDLooXFIiUAc57Ba5SppDivPXB7jxhQUFw15yPcrndKb0_rJqwUNfnsfA8FDh8Gy3Bt_nOuLKWD_1pk_f1599II_-LrbsNt1ovm63PzOIOLJhyGa4PuuZ2y3DzFx7Gu_BpUJ2Y72dfdqkqlu1gQDEhxmCG0FOhRz8zUta4CuOXbDhVR5x6yLHxxPV4Yh2zC6sse42mTBWdVWmYKgu2Ub53RRaMnl4Vp6Wa4Mx7MzKHe7B_KdtwHxZLXMADYEIYK42OAo0-qZKeiok3KBCpTk0UBbIHz1FoWftJqTNXLSD8jC52ksxaSfYg6BQp0y23O7UYObrgLj6_63jGbXLB-NVOR38uC0PSGENoDLt78GT-N0qTEk-qNNXUjRFpEgkZ_2WMDCR1QvfEw3948cdwbWc4yt6Ot7dW4IageiMvRgNchcXmZGrW0GFs8kfOVBkcXraC_wBIfHfW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core%E2%80%93Shell+Plasmonic+Nanomaterials+toward%3A+Dual-Mode+Imaging+Analysis+of+Glutathione+and+Enhanced+Chemodynamic+Therapy&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wang%2C+Jin&rft.au=Liu%2C+Ying-Xue&rft.au=Li%2C+Xiang-Ling&rft.au=Chen%2C+Hong-Yuan&rft.date=2021-07-27&rft.issn=1520-6882&rft.volume=93&rft.issue=29+p.10317-10325&rft.spage=10317&rft.epage=10325&rft_id=info:doi/10.1021%2Facs.analchem.1c01858&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |