Deformability-Based Microfluidic Microdroplet Screening to Obtain Agarolytic Bacterial Cells
Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These enzymes could be valuable for the effective utilization of global resources. However, since most of the microorganisms on Earth remain uncultured,...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 95; no. 44; pp. 16107 - 16114 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
American Chemical Society
07.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These enzymes could be valuable for the effective utilization of global resources. However, since most of the microorganisms on Earth remain uncultured, there is significant untapped enzymatic potential in nature. Therefore, it is necessary to develop innovative tools and strategies for exploring these enzymatic resources. To address this, we developed a method for screening microbial cells that secrete hydrogel-degrading enzymes using deformability-based microfluidic microdroplet sorting. In this method, microbial cells are encapsulated as single cells in water-in-oil (W/O) microdroplets with a hydrogel whose shape becomes deformable as the hydrogel is progressively degraded into smaller molecules. Screening is achieved using a microfluidic device that passively sorts the deformed W/O microdroplets. Using this method, we successfully sorted agarose-containing microdroplets, encapsulating single bacterial cells that hydrolyzed agarose. This method can be used to screen various hydrogel-degrading microbial cells. |
---|---|
AbstractList | Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These enzymes could be valuable for the effective utilization of global resources. However, since most of the microorganisms on Earth remain uncultured, there is significant untapped enzymatic potential in nature. Therefore, it is necessary to develop innovative tools and strategies for exploring these enzymatic resources. To address this, we developed a method for screening microbial cells that secrete hydrogel-degrading enzymes using deformability-based microfluidic microdroplet sorting. In this method, microbial cells are encapsulated as single cells in water-in-oil (W/O) microdroplets with a hydrogel whose shape becomes deformable as the hydrogel is progressively degraded into smaller molecules. Screening is achieved using a microfluidic device that passively sorts the deformed W/O microdroplets. Using this method, we successfully sorted agarose-containing microdroplets, encapsulating single bacterial cells that hydrolyzed agarose. This method can be used to screen various hydrogel-degrading microbial cells. Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These enzymes could be valuable for the effective utilization of global resources. However, since most of the microorganisms on Earth remain uncultured, there is significant untapped enzymatic potential in nature. Therefore, it is necessary to develop innovative tools and strategies for exploring these enzymatic resources. To address this, we developed a method for screening microbial cells that secrete hydrogel-degrading enzymes using deformability-based microfluidic microdroplet sorting. In this method, microbial cells are encapsulated as single cells in water-in-oil (W/O) microdroplets with a hydrogel whose shape becomes deformable as the hydrogel is progressively degraded into smaller molecules. Screening is achieved using a microfluidic device that passively sorts the deformed W/O microdroplets. Using this method, we successfully sorted agarose-containing microdroplets, encapsulating single bacterial cells that hydrolyzed agarose. This method can be used to screen various hydrogel-degrading microbial cells.Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These enzymes could be valuable for the effective utilization of global resources. However, since most of the microorganisms on Earth remain uncultured, there is significant untapped enzymatic potential in nature. Therefore, it is necessary to develop innovative tools and strategies for exploring these enzymatic resources. To address this, we developed a method for screening microbial cells that secrete hydrogel-degrading enzymes using deformability-based microfluidic microdroplet sorting. In this method, microbial cells are encapsulated as single cells in water-in-oil (W/O) microdroplets with a hydrogel whose shape becomes deformable as the hydrogel is progressively degraded into smaller molecules. Screening is achieved using a microfluidic device that passively sorts the deformed W/O microdroplets. Using this method, we successfully sorted agarose-containing microdroplets, encapsulating single bacterial cells that hydrolyzed agarose. This method can be used to screen various hydrogel-degrading microbial cells. |
Author | Muta, Mikihisa Sekiguchi, Tetsushi Hatada, Yuji Yoon, Dong Hyun Ito, Mei Iizuka, Ryo Tanaka, Daiki Shoji, Shuichi Funatsu, Takashi Kawakubo, Wataru |
AuthorAffiliation | Department of Biological Sciences, Graduate School of Science Waseda University The University of Tokyo Faculty of Science and Engineering Graduate School of Pharmaceutical Sciences Department of Life Science and Green Chemistry, Faculty of Engineering Research Organization for Nano & Life Innovation |
AuthorAffiliation_xml | – name: Waseda University – name: Department of Biological Sciences, Graduate School of Science – name: The University of Tokyo – name: Faculty of Science and Engineering – name: Department of Life Science and Green Chemistry, Faculty of Engineering – name: Graduate School of Pharmaceutical Sciences – name: Research Organization for Nano & Life Innovation |
Author_xml | – sequence: 1 givenname: Mikihisa surname: Muta fullname: Muta, Mikihisa organization: Graduate School of Pharmaceutical Sciences – sequence: 2 givenname: Wataru surname: Kawakubo fullname: Kawakubo, Wataru organization: Faculty of Science and Engineering – sequence: 3 givenname: Dong Hyun orcidid: 0000-0001-7180-4370 surname: Yoon fullname: Yoon, Dong Hyun organization: Waseda University – sequence: 4 givenname: Daiki surname: Tanaka fullname: Tanaka, Daiki organization: Waseda University – sequence: 5 givenname: Tetsushi surname: Sekiguchi fullname: Sekiguchi, Tetsushi organization: Waseda University – sequence: 6 givenname: Shuichi surname: Shoji fullname: Shoji, Shuichi organization: Waseda University – sequence: 7 givenname: Mei surname: Ito fullname: Ito, Mei organization: Department of Life Science and Green Chemistry, Faculty of Engineering – sequence: 8 givenname: Yuji surname: Hatada fullname: Hatada, Yuji organization: Department of Life Science and Green Chemistry, Faculty of Engineering – sequence: 9 givenname: Takashi surname: Funatsu fullname: Funatsu, Takashi email: funatsu@mol.f.u-tokyo.ac.jp organization: Graduate School of Pharmaceutical Sciences – sequence: 10 givenname: Ryo orcidid: 0000-0002-9328-5628 surname: Iizuka fullname: Iizuka, Ryo email: ryo.iizuka@bs.s.u-tokyo.ac.jp organization: The University of Tokyo |
BookMark | eNqFkT1PBCEURYnRxPXjH1hMYmMz64NhGMZO189EY6F2JpMHyyiGHVZgi_33sq5aWGhF4J1DXu7dIZuDHwwhBxTGFBg9Rh3HOKDTr2Y2rnR-avgGGdGaQSmkZJtkBABVyRqAbbIT4xsApUDFiDyfm96HGSrrbFqWZxjNtLizOvjeLezU6vVlGvzcmVQ86GDMYIeXIvniXiW0Q3H6gsG7ZcrsGepkgkVXTIxzcY9s9eii2f86d8nT5cXj5Lq8vb-6mZzelshrlkqlatpTbhrOpJCaVqKlKAA5q3o0UPWSgzK1qBBlqxDaplFsqrRqV5wW1S45Wv87D_59YWLqZjbqvAEOxi9ix1rOclBCNP-jUtKGQs3qjB7-Qt_8IuSYPykpeAWtzBRfUzmlGIPpu3mwMwzLjkK3aqfL7XTf7XRf7WTt5JembcJk_ZACWvefDGt5Nf1Z6k_lA768rA4 |
CitedBy_id | crossref_primary_10_1021_acs_analchem_4c02979 |
Cites_doi | 10.1007/s42995-020-00082-8 10.1016/j.snb.2011.06.043 10.1016/j.biotechadv.2020.107641 10.1038/s41598-021-88974-2 10.1021/acs.analchem.1c02822 10.1089/cmb.2012.0021 10.1039/c003344h 10.1039/C6LC00367B 10.1271/bbb.68.1073 10.1093/nar/gkab1045 10.1128/AEM.71.6.3342-3347.2005 10.1038/ncomms10008 10.1039/C0LC00104J 10.1021/bm5002813 10.1128/mr.59.1.143-169.1995 10.1016/j.copbio.2018.08.004 10.1073/pnas.1606927113 10.1021/ac900811y 10.1371/journal.pone.0214533 10.1093/molbev/msab293 10.1021/acscentsci.7b00625 10.1371/journal.pone.0138733 10.1016/j.coph.2009.08.004 10.1039/C9LC01263J 10.1016/j.bej.2022.108627 10.1038/srep22259 10.1371/journal.pone.0026161 10.1038/nchembio.2007.17 10.1021/acs.analchem.8b04506 10.1039/C7RA05556K 10.1039/C4RA08354G 10.1093/bioinformatics/bty560 10.1021/acs.analchem.1c04108 10.1021/acs.biomac.0c01406 10.1016/j.chembiol.2014.10.020 10.1039/c3sm27400d 10.1007/s00253-020-10412-6 10.1016/j.bpj.2017.06.073 10.1128/mra.00934-22 10.1101/gr.180501 10.1038/s41592-020-0818-8 10.1002/anie.201913203 10.1126/sciadv.abb3521 10.3389/fchem.2021.666867 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society Copyright American Chemical Society Nov 7, 2023 |
Copyright_xml | – notice: 2023 American Chemical Society – notice: Copyright American Chemical Society Nov 7, 2023 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.3c02174 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 16114 |
ExternalDocumentID | 10_1021_acs_analchem_3c02174 b088815704 |
GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI ABFRP ABHFT ABHMW ABMVS ABOCM ABPPZ ABPTK ABQRX ABUCX ACBEA ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L EBS ED~ F5P GGK GNL IH9 IHE JG~ KZ1 LMP P2P PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X6Y XSW YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a452t-bb51f14e742868c13691a60a423fae03f840be563aa89ba0977b2dbcb991a6c63 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 04:23:30 EDT 2025 Fri Jul 11 09:00:25 EDT 2025 Mon Jun 30 08:24:48 EDT 2025 Tue Jul 01 03:28:38 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Wed Nov 08 03:15:20 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a452t-bb51f14e742868c13691a60a423fae03f840be563aa89ba0977b2dbcb991a6c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9328-5628 0000-0001-7180-4370 |
PQID | 2888643098 |
PQPubID | 45400 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2942102667 proquest_miscellaneous_2881710525 proquest_journals_2888643098 crossref_primary_10_1021_acs_analchem_3c02174 crossref_citationtrail_10_1021_acs_analchem_3c02174 acs_journals_10_1021_acs_analchem_3c02174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-07 |
PublicationDateYYYYMMDD | 2023-11-07 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1007/s42995-020-00082-8 – ident: ref22/cit22 doi: 10.1016/j.snb.2011.06.043 – ident: ref2/cit2 doi: 10.1016/j.biotechadv.2020.107641 – ident: ref8/cit8 doi: 10.1038/s41598-021-88974-2 – ident: ref15/cit15 doi: 10.1021/acs.analchem.1c02822 – ident: ref29/cit29 doi: 10.1089/cmb.2012.0021 – ident: ref39/cit39 doi: 10.1039/c003344h – ident: ref5/cit5 doi: 10.1039/C6LC00367B – ident: ref32/cit32 doi: 10.1271/bbb.68.1073 – ident: ref33/cit33 doi: 10.1093/nar/gkab1045 – ident: ref35/cit35 doi: 10.1128/AEM.71.6.3342-3347.2005 – ident: ref12/cit12 doi: 10.1038/ncomms10008 – ident: ref31/cit31 doi: 10.1039/C0LC00104J – ident: ref40/cit40 doi: 10.1021/bm5002813 – ident: ref4/cit4 doi: 10.1128/mr.59.1.143-169.1995 – ident: ref6/cit6 doi: 10.1016/j.copbio.2018.08.004 – ident: ref14/cit14 doi: 10.1073/pnas.1606927113 – ident: ref18/cit18 doi: 10.1021/ac900811y – ident: ref25/cit25 doi: 10.1371/journal.pone.0214533 – ident: ref30/cit30 doi: 10.1093/molbev/msab293 – ident: ref38/cit38 doi: 10.1021/acscentsci.7b00625 – ident: ref10/cit10 doi: 10.1371/journal.pone.0138733 – ident: ref42/cit42 doi: 10.1016/j.coph.2009.08.004 – ident: ref17/cit17 doi: 10.1039/C9LC01263J – ident: ref26/cit26 doi: 10.1016/j.bej.2022.108627 – ident: ref9/cit9 doi: 10.1038/srep22259 – ident: ref27/cit27 doi: 10.1371/journal.pone.0026161 – ident: ref43/cit43 doi: 10.1038/nchembio.2007.17 – ident: ref19/cit19 doi: 10.1021/acs.analchem.8b04506 – ident: ref24/cit24 doi: 10.1039/C7RA05556K – ident: ref23/cit23 doi: 10.1039/C4RA08354G – ident: ref28/cit28 doi: 10.1093/bioinformatics/bty560 – ident: ref11/cit11 doi: 10.1021/acs.analchem.1c04108 – ident: ref1/cit1 doi: 10.1021/acs.biomac.0c01406 – ident: ref13/cit13 doi: 10.1016/j.chembiol.2014.10.020 – ident: ref36/cit36 doi: 10.1039/c3sm27400d – ident: ref3/cit3 doi: 10.1007/s00253-020-10412-6 – ident: ref37/cit37 doi: 10.1016/j.bpj.2017.06.073 – ident: ref21/cit21 doi: 10.1128/mra.00934-22 – ident: ref34/cit34 doi: 10.1101/gr.180501 – ident: ref41/cit41 doi: 10.1038/s41592-020-0818-8 – ident: ref20/cit20 doi: 10.1002/anie.201913203 – ident: ref16/cit16 doi: 10.1126/sciadv.abb3521 – ident: ref44/cit44 doi: 10.3389/fchem.2021.666867 |
SSID | ssj0011016 |
Score | 2.4462082 |
Snippet | Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16107 |
SubjectTerms | agarose analytical chemistry Deformability Deformation Degradation Encapsulation Enzymes Formability Hydrogels Macromolecules Microfluidic devices Microfluidics Microorganisms Screening |
Title | Deformability-Based Microfluidic Microdroplet Screening to Obtain Agarolytic Bacterial Cells |
URI | http://dx.doi.org/10.1021/acs.analchem.3c02174 https://www.proquest.com/docview/2888643098 https://www.proquest.com/docview/2881710525 https://www.proquest.com/docview/2942102667 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5ROFAObYFWpEBlJC49bPB6H14fQ0qEkIBDGikHJGt3vUZRTYIS50B_fWf9CFDU0h5tz9i7s69vPC-AYxYqx4wMSWRyR3DDE0RnlhPHrGSMWptRH5x8eSXPR_xiLMaPiuLvFvyInmi76GoUKvbhrstshaHfwEYkVeyVrV5_uLIaeE20rZDnDaptqNwf3uIPJLt4fiA934-rQ2bwHq7bUJ3at-RHd1marv35MnPjP7b_A7xr8GbQqyfINqy56Q5s9tsybzuw9SQj4S7cfHMViq1cZh_IKZ5xWXDpnfbyYjnJJra-yObe77wMhta77SBnUM6Ca-N_MwS9W-9D8oDfC07rVND4_b4risVHGA3OvvfPSVOAgWguopIYI2hOuUP1WUllKZMJ1TLUCMFy7UKWo3ZonJBMa5UYHSKWNFFmrEk8HQ72J1ifzqZuDwIV5qHhNk-MYFxLrrmThsZGIKNNVNyBryiotFlAi7SyjUc09Tdb6aWN9DrA2hFLbZPJ3BfUKF7hIiuu-zqTxyv0B-1keGxWpJRCDBcmqgNHq8c4Yt7MoqdutqxoKOI2EYm_0CTc69pSxp__o-P78NZXu69CIeMDWC_nS3eImKg0X6qF8AsrDgli |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcigceBQQgQKLBAcODutnvAcOaUqV0qYc2ko9IG1trxdVhAR1N0Lh__BX-F2Mnd2UIkHFoRLH9fo9tucbex4AL3iqPbcqJcyWnuCBJ4kpnCCeO8U5da6gwTh5tK-GR-LdsTxege-tLQx2osKaqviIf-5dgL4OaQbnFofyuctdhNKNLuWun39FSa16s7OFZH3J2Pbbw8GQNMEEiBGS1cRaSUsqPIqCWmlHucqoUalBOFEan_ISJR3rpeLG6MyaFHGRZYV1Ngv5sONY7zW4jviHBRmvPzhYPlYEAbgNzBfecVsLvT_0OvBBV13kgxfZQORt27fhx3JWokrLp-6stl337TeHkf_9tN2BWw26TvqL7XAXVvxkHdYGbVC7dbj5i__Fe_Bhy0fMHhWE52QTOXqRjIKKYjmenRanbvFRnAUt-zo5cEFJCUsm9TR5b8OlStL_GDRm5thesrlwfI3tD_x4XN2HoysZ6gNYnUwn_iEkOi1TK1yZWcmFUcIIryztWYkFXaZ7HXiFhMmb46LKoyYAo3lIbKmVN9TqAG8XSu4av-0hfMj4klJkWerLwm_JJfk32jV43i2mtUbEmma6A8-Xv5Fi4VHJTPx0FvNQRKmSyb_kyUS4WVCq9-gfBv4M1oaHo718b2d_9zHcYIguoxFobwNW67OZf4JosLZP415M4OSqV_FPpXRreg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIvE48CggAgUWCQ4cHNbPeA8c0oSopbQglUo9IC2211tVDUnV3QiFf8Rf4VcxdnYDRYKKQw8c1-vH2GN7vvGMxwDPeKo9tyolzJae4IYniSmcIJ47xTl1rqDhcvLOrtrcF28O5MEKfGvvwiARFdZURSN-WNUnRdlEGKAvQ7rB8cXufO5yF-F040-57edfUFurXm0NkbXPGRu9_jDYJM2DAsQIyWpiraQlFR7VQa20o1xl1KjUIKQojU95idqO9VJxY3RmTYrYyLLCOpuFfEg81nsJLgdLYdDz-oO9pcEiKMHt43zBltve0vsD1UEWuuqsLDwrCqJ8G92E78uRiW4tx91Zbbvu629BI_-LobsFNxqUnfQXy-I2rPjJGlwdtI_brcH1X-Iw3oGPQx-xe3QUnpMNlOxFshNcFcvx7Kg4couP4jR429fJngvOSlgyqafJOxsOV5L-YfCcmWN7ycYiADa2P_DjcXUX9i-kq_dgdTKd-PuQ6LRMrXBlZiUXRgkjvLK0ZyUWdJnudeAFMiZvto0qjx4BjOYhseVW3nCrA7ydLLlr4reHZ0TG55Qiy1Ini_gl5-Rfb-fhT7KY1hqRa5rpDjxd_kaOBeOSmfjpLOahiFYlk3_Jk4lwwqBU78E_dPwJXHk_HOVvt3a3H8I1hiAz3gXtrcNqfTrzjxAU1vZxXI4JfLroSfwDhkNt_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformability-Based+Microfluidic+Microdroplet+Screening+to+Obtain+Agarolytic+Bacterial+Cells&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Muta%2C+Mikihisa&rft.au=Kawakubo%2C+Wataru&rft.au=Yoon%2C+Dong+Hyun&rft.au=Tanaka%2C+Daiki&rft.date=2023-11-07&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=95&rft.issue=44&rft.spage=16107&rft_id=info:doi/10.1021%2Facs.analchem.3c02174&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |