Deformability-Based Microfluidic Microdroplet Screening to Obtain Agarolytic Bacterial Cells

Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These enzymes could be valuable for the effective utilization of global resources. However, since most of the microorganisms on Earth remain uncultured,...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 95; no. 44; pp. 16107 - 16114
Main Authors Muta, Mikihisa, Kawakubo, Wataru, Yoon, Dong Hyun, Tanaka, Daiki, Sekiguchi, Tetsushi, Shoji, Shuichi, Ito, Mei, Hatada, Yuji, Funatsu, Takashi, Iizuka, Ryo
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 07.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These enzymes could be valuable for the effective utilization of global resources. However, since most of the microorganisms on Earth remain uncultured, there is significant untapped enzymatic potential in nature. Therefore, it is necessary to develop innovative tools and strategies for exploring these enzymatic resources. To address this, we developed a method for screening microbial cells that secrete hydrogel-degrading enzymes using deformability-based microfluidic microdroplet sorting. In this method, microbial cells are encapsulated as single cells in water-in-oil (W/O) microdroplets with a hydrogel whose shape becomes deformable as the hydrogel is progressively degraded into smaller molecules. Screening is achieved using a microfluidic device that passively sorts the deformed W/O microdroplets. Using this method, we successfully sorted agarose-containing microdroplets, encapsulating single bacterial cells that hydrolyzed agarose. This method can be used to screen various hydrogel-degrading microbial cells.
AbstractList Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These enzymes could be valuable for the effective utilization of global resources. However, since most of the microorganisms on Earth remain uncultured, there is significant untapped enzymatic potential in nature. Therefore, it is necessary to develop innovative tools and strategies for exploring these enzymatic resources. To address this, we developed a method for screening microbial cells that secrete hydrogel-degrading enzymes using deformability-based microfluidic microdroplet sorting. In this method, microbial cells are encapsulated as single cells in water-in-oil (W/O) microdroplets with a hydrogel whose shape becomes deformable as the hydrogel is progressively degraded into smaller molecules. Screening is achieved using a microfluidic device that passively sorts the deformed W/O microdroplets. Using this method, we successfully sorted agarose-containing microdroplets, encapsulating single bacterial cells that hydrolyzed agarose. This method can be used to screen various hydrogel-degrading microbial cells.
Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These enzymes could be valuable for the effective utilization of global resources. However, since most of the microorganisms on Earth remain uncultured, there is significant untapped enzymatic potential in nature. Therefore, it is necessary to develop innovative tools and strategies for exploring these enzymatic resources. To address this, we developed a method for screening microbial cells that secrete hydrogel-degrading enzymes using deformability-based microfluidic microdroplet sorting. In this method, microbial cells are encapsulated as single cells in water-in-oil (W/O) microdroplets with a hydrogel whose shape becomes deformable as the hydrogel is progressively degraded into smaller molecules. Screening is achieved using a microfluidic device that passively sorts the deformed W/O microdroplets. Using this method, we successfully sorted agarose-containing microdroplets, encapsulating single bacterial cells that hydrolyzed agarose. This method can be used to screen various hydrogel-degrading microbial cells.Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These enzymes could be valuable for the effective utilization of global resources. However, since most of the microorganisms on Earth remain uncultured, there is significant untapped enzymatic potential in nature. Therefore, it is necessary to develop innovative tools and strategies for exploring these enzymatic resources. To address this, we developed a method for screening microbial cells that secrete hydrogel-degrading enzymes using deformability-based microfluidic microdroplet sorting. In this method, microbial cells are encapsulated as single cells in water-in-oil (W/O) microdroplets with a hydrogel whose shape becomes deformable as the hydrogel is progressively degraded into smaller molecules. Screening is achieved using a microfluidic device that passively sorts the deformed W/O microdroplets. Using this method, we successfully sorted agarose-containing microdroplets, encapsulating single bacterial cells that hydrolyzed agarose. This method can be used to screen various hydrogel-degrading microbial cells.
Author Muta, Mikihisa
Sekiguchi, Tetsushi
Hatada, Yuji
Yoon, Dong Hyun
Ito, Mei
Iizuka, Ryo
Tanaka, Daiki
Shoji, Shuichi
Funatsu, Takashi
Kawakubo, Wataru
AuthorAffiliation Department of Biological Sciences, Graduate School of Science
Waseda University
The University of Tokyo
Faculty of Science and Engineering
Graduate School of Pharmaceutical Sciences
Department of Life Science and Green Chemistry, Faculty of Engineering
Research Organization for Nano & Life Innovation
AuthorAffiliation_xml – name: Waseda University
– name: Department of Biological Sciences, Graduate School of Science
– name: The University of Tokyo
– name: Faculty of Science and Engineering
– name: Department of Life Science and Green Chemistry, Faculty of Engineering
– name: Graduate School of Pharmaceutical Sciences
– name: Research Organization for Nano & Life Innovation
Author_xml – sequence: 1
  givenname: Mikihisa
  surname: Muta
  fullname: Muta, Mikihisa
  organization: Graduate School of Pharmaceutical Sciences
– sequence: 2
  givenname: Wataru
  surname: Kawakubo
  fullname: Kawakubo, Wataru
  organization: Faculty of Science and Engineering
– sequence: 3
  givenname: Dong Hyun
  orcidid: 0000-0001-7180-4370
  surname: Yoon
  fullname: Yoon, Dong Hyun
  organization: Waseda University
– sequence: 4
  givenname: Daiki
  surname: Tanaka
  fullname: Tanaka, Daiki
  organization: Waseda University
– sequence: 5
  givenname: Tetsushi
  surname: Sekiguchi
  fullname: Sekiguchi, Tetsushi
  organization: Waseda University
– sequence: 6
  givenname: Shuichi
  surname: Shoji
  fullname: Shoji, Shuichi
  organization: Waseda University
– sequence: 7
  givenname: Mei
  surname: Ito
  fullname: Ito, Mei
  organization: Department of Life Science and Green Chemistry, Faculty of Engineering
– sequence: 8
  givenname: Yuji
  surname: Hatada
  fullname: Hatada, Yuji
  organization: Department of Life Science and Green Chemistry, Faculty of Engineering
– sequence: 9
  givenname: Takashi
  surname: Funatsu
  fullname: Funatsu, Takashi
  email: funatsu@mol.f.u-tokyo.ac.jp
  organization: Graduate School of Pharmaceutical Sciences
– sequence: 10
  givenname: Ryo
  orcidid: 0000-0002-9328-5628
  surname: Iizuka
  fullname: Iizuka, Ryo
  email: ryo.iizuka@bs.s.u-tokyo.ac.jp
  organization: The University of Tokyo
BookMark eNqFkT1PBCEURYnRxPXjH1hMYmMz64NhGMZO189EY6F2JpMHyyiGHVZgi_33sq5aWGhF4J1DXu7dIZuDHwwhBxTGFBg9Rh3HOKDTr2Y2rnR-avgGGdGaQSmkZJtkBABVyRqAbbIT4xsApUDFiDyfm96HGSrrbFqWZxjNtLizOvjeLezU6vVlGvzcmVQ86GDMYIeXIvniXiW0Q3H6gsG7ZcrsGepkgkVXTIxzcY9s9eii2f86d8nT5cXj5Lq8vb-6mZzelshrlkqlatpTbhrOpJCaVqKlKAA5q3o0UPWSgzK1qBBlqxDaplFsqrRqV5wW1S45Wv87D_59YWLqZjbqvAEOxi9ix1rOclBCNP-jUtKGQs3qjB7-Qt_8IuSYPykpeAWtzBRfUzmlGIPpu3mwMwzLjkK3aqfL7XTf7XRf7WTt5JembcJk_ZACWvefDGt5Nf1Z6k_lA768rA4
CitedBy_id crossref_primary_10_1021_acs_analchem_4c02979
Cites_doi 10.1007/s42995-020-00082-8
10.1016/j.snb.2011.06.043
10.1016/j.biotechadv.2020.107641
10.1038/s41598-021-88974-2
10.1021/acs.analchem.1c02822
10.1089/cmb.2012.0021
10.1039/c003344h
10.1039/C6LC00367B
10.1271/bbb.68.1073
10.1093/nar/gkab1045
10.1128/AEM.71.6.3342-3347.2005
10.1038/ncomms10008
10.1039/C0LC00104J
10.1021/bm5002813
10.1128/mr.59.1.143-169.1995
10.1016/j.copbio.2018.08.004
10.1073/pnas.1606927113
10.1021/ac900811y
10.1371/journal.pone.0214533
10.1093/molbev/msab293
10.1021/acscentsci.7b00625
10.1371/journal.pone.0138733
10.1016/j.coph.2009.08.004
10.1039/C9LC01263J
10.1016/j.bej.2022.108627
10.1038/srep22259
10.1371/journal.pone.0026161
10.1038/nchembio.2007.17
10.1021/acs.analchem.8b04506
10.1039/C7RA05556K
10.1039/C4RA08354G
10.1093/bioinformatics/bty560
10.1021/acs.analchem.1c04108
10.1021/acs.biomac.0c01406
10.1016/j.chembiol.2014.10.020
10.1039/c3sm27400d
10.1007/s00253-020-10412-6
10.1016/j.bpj.2017.06.073
10.1128/mra.00934-22
10.1101/gr.180501
10.1038/s41592-020-0818-8
10.1002/anie.201913203
10.1126/sciadv.abb3521
10.3389/fchem.2021.666867
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright American Chemical Society Nov 7, 2023
Copyright_xml – notice: 2023 American Chemical Society
– notice: Copyright American Chemical Society Nov 7, 2023
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.3c02174
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 16114
ExternalDocumentID 10_1021_acs_analchem_3c02174
b088815704
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
ABFRP
ABHFT
ABHMW
ABMVS
ABOCM
ABPPZ
ABPTK
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
P2P
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a452t-bb51f14e742868c13691a60a423fae03f840be563aa89ba0977b2dbcb991a6c63
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 04:23:30 EDT 2025
Fri Jul 11 09:00:25 EDT 2025
Mon Jun 30 08:24:48 EDT 2025
Tue Jul 01 03:28:38 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Wed Nov 08 03:15:20 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a452t-bb51f14e742868c13691a60a423fae03f840be563aa89ba0977b2dbcb991a6c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9328-5628
0000-0001-7180-4370
PQID 2888643098
PQPubID 45400
PageCount 8
ParticipantIDs proquest_miscellaneous_2942102667
proquest_miscellaneous_2881710525
proquest_journals_2888643098
crossref_primary_10_1021_acs_analchem_3c02174
crossref_citationtrail_10_1021_acs_analchem_3c02174
acs_journals_10_1021_acs_analchem_3c02174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-07
PublicationDateYYYYMMDD 2023-11-07
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-07
  day: 07
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1007/s42995-020-00082-8
– ident: ref22/cit22
  doi: 10.1016/j.snb.2011.06.043
– ident: ref2/cit2
  doi: 10.1016/j.biotechadv.2020.107641
– ident: ref8/cit8
  doi: 10.1038/s41598-021-88974-2
– ident: ref15/cit15
  doi: 10.1021/acs.analchem.1c02822
– ident: ref29/cit29
  doi: 10.1089/cmb.2012.0021
– ident: ref39/cit39
  doi: 10.1039/c003344h
– ident: ref5/cit5
  doi: 10.1039/C6LC00367B
– ident: ref32/cit32
  doi: 10.1271/bbb.68.1073
– ident: ref33/cit33
  doi: 10.1093/nar/gkab1045
– ident: ref35/cit35
  doi: 10.1128/AEM.71.6.3342-3347.2005
– ident: ref12/cit12
  doi: 10.1038/ncomms10008
– ident: ref31/cit31
  doi: 10.1039/C0LC00104J
– ident: ref40/cit40
  doi: 10.1021/bm5002813
– ident: ref4/cit4
  doi: 10.1128/mr.59.1.143-169.1995
– ident: ref6/cit6
  doi: 10.1016/j.copbio.2018.08.004
– ident: ref14/cit14
  doi: 10.1073/pnas.1606927113
– ident: ref18/cit18
  doi: 10.1021/ac900811y
– ident: ref25/cit25
  doi: 10.1371/journal.pone.0214533
– ident: ref30/cit30
  doi: 10.1093/molbev/msab293
– ident: ref38/cit38
  doi: 10.1021/acscentsci.7b00625
– ident: ref10/cit10
  doi: 10.1371/journal.pone.0138733
– ident: ref42/cit42
  doi: 10.1016/j.coph.2009.08.004
– ident: ref17/cit17
  doi: 10.1039/C9LC01263J
– ident: ref26/cit26
  doi: 10.1016/j.bej.2022.108627
– ident: ref9/cit9
  doi: 10.1038/srep22259
– ident: ref27/cit27
  doi: 10.1371/journal.pone.0026161
– ident: ref43/cit43
  doi: 10.1038/nchembio.2007.17
– ident: ref19/cit19
  doi: 10.1021/acs.analchem.8b04506
– ident: ref24/cit24
  doi: 10.1039/C7RA05556K
– ident: ref23/cit23
  doi: 10.1039/C4RA08354G
– ident: ref28/cit28
  doi: 10.1093/bioinformatics/bty560
– ident: ref11/cit11
  doi: 10.1021/acs.analchem.1c04108
– ident: ref1/cit1
  doi: 10.1021/acs.biomac.0c01406
– ident: ref13/cit13
  doi: 10.1016/j.chembiol.2014.10.020
– ident: ref36/cit36
  doi: 10.1039/c3sm27400d
– ident: ref3/cit3
  doi: 10.1007/s00253-020-10412-6
– ident: ref37/cit37
  doi: 10.1016/j.bpj.2017.06.073
– ident: ref21/cit21
  doi: 10.1128/mra.00934-22
– ident: ref34/cit34
  doi: 10.1101/gr.180501
– ident: ref41/cit41
  doi: 10.1038/s41592-020-0818-8
– ident: ref20/cit20
  doi: 10.1002/anie.201913203
– ident: ref16/cit16
  doi: 10.1126/sciadv.abb3521
– ident: ref44/cit44
  doi: 10.3389/fchem.2021.666867
SSID ssj0011016
Score 2.4462082
Snippet Environmental microorganisms possess enzymes that can digest macromolecules such as agarose into smaller molecules that can be utilized for growth. These...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16107
SubjectTerms agarose
analytical chemistry
Deformability
Deformation
Degradation
Encapsulation
Enzymes
Formability
Hydrogels
Macromolecules
Microfluidic devices
Microfluidics
Microorganisms
Screening
Title Deformability-Based Microfluidic Microdroplet Screening to Obtain Agarolytic Bacterial Cells
URI http://dx.doi.org/10.1021/acs.analchem.3c02174
https://www.proquest.com/docview/2888643098
https://www.proquest.com/docview/2881710525
https://www.proquest.com/docview/2942102667
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5ROFAObYFWpEBlJC49bPB6H14fQ0qEkIBDGikHJGt3vUZRTYIS50B_fWf9CFDU0h5tz9i7s69vPC-AYxYqx4wMSWRyR3DDE0RnlhPHrGSMWptRH5x8eSXPR_xiLMaPiuLvFvyInmi76GoUKvbhrstshaHfwEYkVeyVrV5_uLIaeE20rZDnDaptqNwf3uIPJLt4fiA934-rQ2bwHq7bUJ3at-RHd1marv35MnPjP7b_A7xr8GbQqyfINqy56Q5s9tsybzuw9SQj4S7cfHMViq1cZh_IKZ5xWXDpnfbyYjnJJra-yObe77wMhta77SBnUM6Ca-N_MwS9W-9D8oDfC07rVND4_b4risVHGA3OvvfPSVOAgWguopIYI2hOuUP1WUllKZMJ1TLUCMFy7UKWo3ZonJBMa5UYHSKWNFFmrEk8HQ72J1ifzqZuDwIV5qHhNk-MYFxLrrmThsZGIKNNVNyBryiotFlAi7SyjUc09Tdb6aWN9DrA2hFLbZPJ3BfUKF7hIiuu-zqTxyv0B-1keGxWpJRCDBcmqgNHq8c4Yt7MoqdutqxoKOI2EYm_0CTc69pSxp__o-P78NZXu69CIeMDWC_nS3eImKg0X6qF8AsrDgli
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcigceBQQgQKLBAcODutnvAcOaUqV0qYc2ko9IG1trxdVhAR1N0Lh__BX-F2Mnd2UIkHFoRLH9fo9tucbex4AL3iqPbcqJcyWnuCBJ4kpnCCeO8U5da6gwTh5tK-GR-LdsTxege-tLQx2osKaqviIf-5dgL4OaQbnFofyuctdhNKNLuWun39FSa16s7OFZH3J2Pbbw8GQNMEEiBGS1cRaSUsqPIqCWmlHucqoUalBOFEan_ISJR3rpeLG6MyaFHGRZYV1Ngv5sONY7zW4jviHBRmvPzhYPlYEAbgNzBfecVsLvT_0OvBBV13kgxfZQORt27fhx3JWokrLp-6stl337TeHkf_9tN2BWw26TvqL7XAXVvxkHdYGbVC7dbj5i__Fe_Bhy0fMHhWE52QTOXqRjIKKYjmenRanbvFRnAUt-zo5cEFJCUsm9TR5b8OlStL_GDRm5thesrlwfI3tD_x4XN2HoysZ6gNYnUwn_iEkOi1TK1yZWcmFUcIIryztWYkFXaZ7HXiFhMmb46LKoyYAo3lIbKmVN9TqAG8XSu4av-0hfMj4klJkWerLwm_JJfk32jV43i2mtUbEmma6A8-Xv5Fi4VHJTPx0FvNQRKmSyb_kyUS4WVCq9-gfBv4M1oaHo718b2d_9zHcYIguoxFobwNW67OZf4JosLZP415M4OSqV_FPpXRreg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIvE48CggAgUWCQ4cHNbPeA8c0oSopbQglUo9IC2211tVDUnV3QiFf8Rf4VcxdnYDRYKKQw8c1-vH2GN7vvGMxwDPeKo9tyolzJae4IYniSmcIJ47xTl1rqDhcvLOrtrcF28O5MEKfGvvwiARFdZURSN-WNUnRdlEGKAvQ7rB8cXufO5yF-F040-57edfUFurXm0NkbXPGRu9_jDYJM2DAsQIyWpiraQlFR7VQa20o1xl1KjUIKQojU95idqO9VJxY3RmTYrYyLLCOpuFfEg81nsJLgdLYdDz-oO9pcEiKMHt43zBltve0vsD1UEWuuqsLDwrCqJ8G92E78uRiW4tx91Zbbvu629BI_-LobsFNxqUnfQXy-I2rPjJGlwdtI_brcH1X-Iw3oGPQx-xe3QUnpMNlOxFshNcFcvx7Kg4couP4jR429fJngvOSlgyqafJOxsOV5L-YfCcmWN7ycYiADa2P_DjcXUX9i-kq_dgdTKd-PuQ6LRMrXBlZiUXRgkjvLK0ZyUWdJnudeAFMiZvto0qjx4BjOYhseVW3nCrA7ydLLlr4reHZ0TG55Qiy1Ini_gl5-Rfb-fhT7KY1hqRa5rpDjxd_kaOBeOSmfjpLOahiFYlk3_Jk4lwwqBU78E_dPwJXHk_HOVvt3a3H8I1hiAz3gXtrcNqfTrzjxAU1vZxXI4JfLroSfwDhkNt_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformability-Based+Microfluidic+Microdroplet+Screening+to+Obtain+Agarolytic+Bacterial+Cells&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Muta%2C+Mikihisa&rft.au=Kawakubo%2C+Wataru&rft.au=Yoon%2C+Dong+Hyun&rft.au=Tanaka%2C+Daiki&rft.date=2023-11-07&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=95&rft.issue=44&rft.spage=16107&rft_id=info:doi/10.1021%2Facs.analchem.3c02174&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon