Toward Fully Controllable Monomers Sequence: Binary Organocatalyzed Polymerization from Epoxide/Aziridine/Cyclic Anhydride Monomer Mixture

The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of two or more monomers, the arrangement of monomers within the resulting polymer is primarily dictated by the intrinsic reactivity of the monome...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 146; no. 36; pp. 25067 - 25077
Main Authors Gao, Tianle, Xia, Xiaochao, Watanabe, Tomohisa, Ke, Chun-Yao, Suzuki, Ryota, Yamamoto, Takuya, Li, Feng, Isono, Takuya, Satoh, Toshifumi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.09.2024
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of two or more monomers, the arrangement of monomers within the resulting polymer is primarily dictated by the intrinsic reactivity of the monomers. Precisely controlling the monomer sequence in copolymerization, particularly through the manipulation of catalysts, is a subject of intense interest and poses significant challenges. In this study, we report the catalyst-controlled copolymerization of epoxides, N-tosyl aziridine (TAz), and cyclic anhydrides. To achieve this, a binary catalyst system comprising a Lewis acid, triethylborane, and Brønsted base, t-BuP1, was utilized. This system was utilized to regulate the selectivity between two catalytic reactions: ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides and ROAC of TAz/cyclic anhydrides. Changing the catalyst ratio made it possible to continuously modulate the resulting poly­(ester–amide ester) from ABA-type real block copolymers to gradient, random-like, reversed gradient, and reversed BAB-type block-like copolymers. A range of epoxides and anhydrides was investigated, demonstrating the versatility of this polymerization system. Additionally, density functional theory calculations were conducted to enhance our mechanistic understanding of the process. This synthetic method not only provides a versatile means for producing copolymers with comparable chemical compositions but also facilitates the exploration of the intricate relationship between monomer sequences and the resultant polymer properties, offering valuable insights for advancements in polymer science.
AbstractList The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of two or more monomers, the arrangement of monomers within the resulting polymer is primarily dictated by the intrinsic reactivity of the monomers. Precisely controlling the monomer sequence in copolymerization, particularly through the manipulation of catalysts, is a subject of intense interest and poses significant challenges. In this study, we report the catalyst-controlled copolymerization of epoxides, N-tosyl aziridine (TAz), and cyclic anhydrides. To achieve this, a binary catalyst system comprising a Lewis acid, triethylborane, and Brønsted base, t-BuP1, was utilized. This system was utilized to regulate the selectivity between two catalytic reactions: ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides and ROAC of TAz/cyclic anhydrides. Changing the catalyst ratio made it possible to continuously modulate the resulting poly­(ester–amide ester) from ABA-type real block copolymers to gradient, random-like, reversed gradient, and reversed BAB-type block-like copolymers. A range of epoxides and anhydrides was investigated, demonstrating the versatility of this polymerization system. Additionally, density functional theory calculations were conducted to enhance our mechanistic understanding of the process. This synthetic method not only provides a versatile means for producing copolymers with comparable chemical compositions but also facilitates the exploration of the intricate relationship between monomer sequences and the resultant polymer properties, offering valuable insights for advancements in polymer science.
The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of two or more monomers, the arrangement of monomers within the resulting polymer is primarily dictated by the intrinsic reactivity of the monomers. Precisely controlling the monomer sequence in copolymerization, particularly through the manipulation of catalysts, is a subject of intense interest and poses significant challenges. In this study, we report the catalyst-controlled copolymerization of epoxides, -tosyl aziridine (TAz), and cyclic anhydrides. To achieve this, a binary catalyst system comprising a Lewis acid, triethylborane, and Brønsted base, -BuP , was utilized. This system was utilized to regulate the selectivity between two catalytic reactions: ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides and ROAC of TAz/cyclic anhydrides. Changing the catalyst ratio made it possible to continuously modulate the resulting poly(ester-amide ester) from ABA-type real block copolymers to gradient, random-like, reversed gradient, and reversed BAB-type block-like copolymers. A range of epoxides and anhydrides was investigated, demonstrating the versatility of this polymerization system. Additionally, density functional theory calculations were conducted to enhance our mechanistic understanding of the process. This synthetic method not only provides a versatile means for producing copolymers with comparable chemical compositions but also facilitates the exploration of the intricate relationship between monomer sequences and the resultant polymer properties, offering valuable insights for advancements in polymer science.
The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of two or more monomers, the arrangement of monomers within the resulting polymer is primarily dictated by the intrinsic reactivity of the monomers. Precisely controlling the monomer sequence in copolymerization, particularly through the manipulation of catalysts, is a subject of intense interest and poses significant challenges. In this study, we report the catalyst-controlled copolymerization of epoxides, N-tosyl aziridine (TAz), and cyclic anhydrides. To achieve this, a binary catalyst system comprising a Lewis acid, triethylborane, and Brønsted base, t-BuP1, was utilized. This system was utilized to regulate the selectivity between two catalytic reactions: ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides and ROAC of TAz/cyclic anhydrides. Changing the catalyst ratio made it possible to continuously modulate the resulting poly(ester-amide ester) from ABA-type real block copolymers to gradient, random-like, reversed gradient, and reversed BAB-type block-like copolymers. A range of epoxides and anhydrides was investigated, demonstrating the versatility of this polymerization system. Additionally, density functional theory calculations were conducted to enhance our mechanistic understanding of the process. This synthetic method not only provides a versatile means for producing copolymers with comparable chemical compositions but also facilitates the exploration of the intricate relationship between monomer sequences and the resultant polymer properties, offering valuable insights for advancements in polymer science.The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of two or more monomers, the arrangement of monomers within the resulting polymer is primarily dictated by the intrinsic reactivity of the monomers. Precisely controlling the monomer sequence in copolymerization, particularly through the manipulation of catalysts, is a subject of intense interest and poses significant challenges. In this study, we report the catalyst-controlled copolymerization of epoxides, N-tosyl aziridine (TAz), and cyclic anhydrides. To achieve this, a binary catalyst system comprising a Lewis acid, triethylborane, and Brønsted base, t-BuP1, was utilized. This system was utilized to regulate the selectivity between two catalytic reactions: ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides and ROAC of TAz/cyclic anhydrides. Changing the catalyst ratio made it possible to continuously modulate the resulting poly(ester-amide ester) from ABA-type real block copolymers to gradient, random-like, reversed gradient, and reversed BAB-type block-like copolymers. A range of epoxides and anhydrides was investigated, demonstrating the versatility of this polymerization system. Additionally, density functional theory calculations were conducted to enhance our mechanistic understanding of the process. This synthetic method not only provides a versatile means for producing copolymers with comparable chemical compositions but also facilitates the exploration of the intricate relationship between monomer sequences and the resultant polymer properties, offering valuable insights for advancements in polymer science.
The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of two or more monomers, the arrangement of monomers within the resulting polymer is primarily dictated by the intrinsic reactivity of the monomers. Precisely controlling the monomer sequence in copolymerization, particularly through the manipulation of catalysts, is a subject of intense interest and poses significant challenges. In this study, we report the catalyst-controlled copolymerization of epoxides, N-tosyl aziridine (TAz), and cyclic anhydrides. To achieve this, a binary catalyst system comprising a Lewis acid, triethylborane, and Brønsted base, t-BuP₁, was utilized. This system was utilized to regulate the selectivity between two catalytic reactions: ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides and ROAC of TAz/cyclic anhydrides. Changing the catalyst ratio made it possible to continuously modulate the resulting poly­(ester–amide ester) from ABA-type real block copolymers to gradient, random-like, reversed gradient, and reversed BAB-type block-like copolymers. A range of epoxides and anhydrides was investigated, demonstrating the versatility of this polymerization system. Additionally, density functional theory calculations were conducted to enhance our mechanistic understanding of the process. This synthetic method not only provides a versatile means for producing copolymers with comparable chemical compositions but also facilitates the exploration of the intricate relationship between monomer sequences and the resultant polymer properties, offering valuable insights for advancements in polymer science.
Author Isono, Takuya
Gao, Tianle
Ke, Chun-Yao
Xia, Xiaochao
Yamamoto, Takuya
Watanabe, Tomohisa
Li, Feng
Satoh, Toshifumi
Suzuki, Ryota
AuthorAffiliation Hokkaido University
Institute of Polymer Science and Engineering
Division of Applied Chemistry, Faculty of Engineering
School of Materials Science and Engineering
List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery
Graduate School of Chemical Sciences and Engineering
Chongqing University of Technology
AuthorAffiliation_xml – name: Chongqing University of Technology
– name: Institute of Polymer Science and Engineering
– name: School of Materials Science and Engineering
– name: Hokkaido University
– name: Division of Applied Chemistry, Faculty of Engineering
– name: List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery
– name: Graduate School of Chemical Sciences and Engineering
Author_xml – sequence: 1
  givenname: Tianle
  surname: Gao
  fullname: Gao, Tianle
  organization: Graduate School of Chemical Sciences and Engineering
– sequence: 2
  givenname: Xiaochao
  orcidid: 0000-0001-5764-0293
  surname: Xia
  fullname: Xia, Xiaochao
  organization: Chongqing University of Technology
– sequence: 3
  givenname: Tomohisa
  orcidid: 0000-0001-5239-2091
  surname: Watanabe
  fullname: Watanabe, Tomohisa
  organization: Graduate School of Chemical Sciences and Engineering
– sequence: 4
  givenname: Chun-Yao
  surname: Ke
  fullname: Ke, Chun-Yao
  organization: Institute of Polymer Science and Engineering
– sequence: 5
  givenname: Ryota
  surname: Suzuki
  fullname: Suzuki, Ryota
  organization: Graduate School of Chemical Sciences and Engineering
– sequence: 6
  givenname: Takuya
  orcidid: 0000-0001-9716-8237
  surname: Yamamoto
  fullname: Yamamoto, Takuya
  organization: Hokkaido University
– sequence: 7
  givenname: Feng
  orcidid: 0000-0002-6522-2523
  surname: Li
  fullname: Li, Feng
  email: feng.li@eng.hokudai.ac.jp
  organization: Hokkaido University
– sequence: 8
  givenname: Takuya
  orcidid: 0000-0003-3746-2084
  surname: Isono
  fullname: Isono, Takuya
  email: isono.t@eng.hokudai.ac.jp
  organization: Hokkaido University
– sequence: 9
  givenname: Toshifumi
  orcidid: 0000-0001-5449-9642
  surname: Satoh
  fullname: Satoh, Toshifumi
  email: satoh@eng.hokudai.ac.jp
  organization: Hokkaido University
BackLink https://cir.nii.ac.jp/crid/1870584741596885760$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/39086123$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFG2fkAwcOpGvHseNwW1ZtQWpVJPYeOfYEvHLsxUlEsz-BX43T3YKEQFxsefTNG783Z-jEBw8IvaTkgpKcLrdK9xeFJpKQ6glaUJ6TjNNcnKAFISTPSinYKTrr-216Frmkz9Apq4gUNGcL9GMTvqto8NXo3ITXwQ8xOKcaB_g2-NBB7PFn-DaC1_AOv7dexQnfxS_KB60G5aY9GPwpuCmRdq8GGzxuY-jw5S7cWwPL1d5Ga6yH5XrSzmq88l8nk0q_BuBbez-MEZ6jp61yPbw43udoc3W5WX_Ibu6uP65XN5kqeD5kVVNowyQz0FSsZIzqVoKmVWuErASHQjdUlMAaw-YSUNXSFAptCyIYZ-wcvTnI7mJIvvqh7myvIZn2EMa-ZpSzshQFof9HU4oVF7wSCX11RMemA1Pvou1SVPVj0gnID4COoe8jtLW2w0NeQ1TW1ZTU8zrreZ31cZ2p6e0fTY-6_8BfH3BvbZKfTypLwmVRFjT9UkpeCvLb1ty7DWP0Ke6_K_4ESJO7Gw
CitedBy_id crossref_primary_10_1038_s41467_025_57208_8
crossref_primary_10_1021_jacs_4c15676
Cites_doi 10.1016/j.progpolymsci.2022.101644
10.1021/ja1070575
10.1126/sciadv.add1980
10.1021/acsmacrolett.9b00789
10.1038/nmat1295
10.1021/acs.macromol.2c00085
10.1021/jacs.6b06679
10.1021/acs.macromol.0c00938
10.1021/jacs.8b08054
10.1021/acs.macromol.5b01631
10.1002/pat.4280
10.1002/adma.202302825
10.1039/C4CC03688C
10.1021/acs.chemrev.5b00426
10.1021/acs.macromol.9b01623
10.1021/acsmacrolett.6b00701
10.1002/anie.202303315
10.1126/science.1238149
10.1021/acs.macromol.2c01680
10.1002/anie.201908904
10.1021/jacs.1c03250
10.1038/s41467-021-27830-3
10.1002/anie.201508983
10.1002/anie.202300187
10.1002/ange.200801415
10.1021/acs.macromol.6b02413
10.1038/s41467-019-13171-9
10.1021/acscatal.1c00382
10.1002/ange.202015339
10.1021/acs.macromol.2c01976
10.1002/anie.201713036
10.1016/j.progpolymsci.2007.09.003
10.1021/acs.macromol.9b01853
10.1021/acs.chemrev.5b00586
10.1021/ma5019654
10.1021/acs.macromol.8b00499
10.1038/s41467-018-05000-2
10.1021/ja9089395
10.1039/C8PY00715B
10.1016/j.eurpolymj.2016.09.029
10.1038/s41467-021-27377-3
10.1002/anie.201406766
10.1021/jacs.2c06860
10.1039/C9GC02429H
10.1021/acs.macromol.3c01305
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID RYH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.4c08009
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 25077
ExternalDocumentID 39086123
10_1021_jacs_4c08009
a321177921
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
ABBLG
ABLBI
RYH
AAYXX
CITATION
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a452t-9b4cd383deb937331cf8ec19fd68965e4cb167e3bd3fd68e1af11521f4063533
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 15:06:19 EDT 2025
Tue Aug 05 10:04:07 EDT 2025
Mon Jul 21 06:03:40 EDT 2025
Tue Jul 01 03:11:03 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Thu Jun 26 23:09:11 EDT 2025
Thu Sep 12 03:10:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a452t-9b4cd383deb937331cf8ec19fd68965e4cb167e3bd3fd68e1af11521f4063533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3746-2084
0000-0001-5239-2091
0000-0001-5449-9642
0000-0001-9716-8237
0000-0002-6522-2523
0000-0001-5764-0293
PMID 39086123
PQID 3086956596
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3153776401
proquest_miscellaneous_3086956596
pubmed_primary_39086123
crossref_citationtrail_10_1021_jacs_4c08009
crossref_primary_10_1021_jacs_4c08009
nii_cinii_1870584741596885760
acs_journals_10_1021_jacs_4c08009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-11
PublicationDateYYYYMMDD 2024-09-11
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2024
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1016/j.progpolymsci.2022.101644
– ident: ref18/cit18
  doi: 10.1021/ja1070575
– ident: ref2/cit2
  doi: 10.1126/sciadv.add1980
– ident: ref42/cit42
  doi: 10.1021/acsmacrolett.9b00789
– ident: ref44/cit44
  doi: 10.1038/nmat1295
– ident: ref8/cit8
  doi: 10.1021/acs.macromol.2c00085
– ident: ref33/cit33
  doi: 10.1021/jacs.6b06679
– ident: ref13/cit13
  doi: 10.1021/acs.macromol.0c00938
– ident: ref31/cit31
  doi: 10.1021/jacs.8b08054
– ident: ref37/cit37
  doi: 10.1021/acs.macromol.5b01631
– ident: ref3/cit3
  doi: 10.1002/pat.4280
– ident: ref43/cit43
  doi: 10.1002/adma.202302825
– ident: ref45/cit45
  doi: 10.1039/C4CC03688C
– ident: ref15/cit15
  doi: 10.1021/acs.chemrev.5b00426
– ident: ref38/cit38
  doi: 10.1021/acs.macromol.9b01623
– ident: ref22/cit22
  doi: 10.1021/acsmacrolett.6b00701
– ident: ref32/cit32
  doi: 10.1002/anie.202303315
– ident: ref5/cit5
  doi: 10.1126/science.1238149
– ident: ref10/cit10
  doi: 10.1021/acs.macromol.2c01680
– ident: ref23/cit23
  doi: 10.1002/anie.201908904
– ident: ref7/cit7
  doi: 10.1021/jacs.1c03250
– ident: ref24/cit24
  doi: 10.1038/s41467-021-27830-3
– ident: ref39/cit39
  doi: 10.1002/anie.201508983
– ident: ref30/cit30
  doi: 10.1002/anie.202300187
– ident: ref6/cit6
  doi: 10.1002/ange.200801415
– ident: ref19/cit19
  doi: 10.1021/acs.macromol.6b02413
– ident: ref21/cit21
  doi: 10.1038/s41467-019-13171-9
– ident: ref27/cit27
  doi: 10.1021/acscatal.1c00382
– ident: ref36/cit36
  doi: 10.1002/ange.202015339
– ident: ref25/cit25
  doi: 10.1021/acs.macromol.2c01976
– ident: ref14/cit14
  doi: 10.1002/anie.201713036
– ident: ref4/cit4
  doi: 10.1016/j.progpolymsci.2007.09.003
– ident: ref12/cit12
  doi: 10.1021/acs.macromol.9b01853
– ident: ref16/cit16
  doi: 10.1021/acs.chemrev.5b00586
– ident: ref20/cit20
  doi: 10.1021/ma5019654
– ident: ref34/cit34
  doi: 10.1021/acs.macromol.8b00499
– ident: ref17/cit17
  doi: 10.1038/s41467-018-05000-2
– ident: ref11/cit11
  doi: 10.1021/ja9089395
– ident: ref40/cit40
  doi: 10.1039/C8PY00715B
– ident: ref9/cit9
  doi: 10.1016/j.eurpolymj.2016.09.029
– ident: ref29/cit29
  doi: 10.1038/s41467-021-27377-3
– ident: ref1/cit1
  doi: 10.1002/anie.201406766
– ident: ref26/cit26
  doi: 10.1021/jacs.2c06860
– ident: ref41/cit41
  doi: 10.1039/C9GC02429H
– ident: ref28/cit28
  doi: 10.1021/acs.macromol.3c01305
SSID ssj0004281
ssib000766107
ssib015764387
ssib033400528
ssib001084269
ssib006541463
ssib026260132
ssib001735944
ssib058575111
ssib017386895
ssib000238149
ssib000238148
ssib002609521
ssib053835741
ssib000863612
ssib001334881
ssib008498413
ssib000102460
ssib002822127
ssib000452044
ssib058493339
ssib000289195
Score 2.4857538
Snippet The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of...
SourceID proquest
pubmed
crossref
nii
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25067
SubjectTerms anhydrides
catalysts
composite polymers
copolymerization
density functional theory
epoxides
ethyleneimine
Lewis acids
Title Toward Fully Controllable Monomers Sequence: Binary Organocatalyzed Polymerization from Epoxide/Aziridine/Cyclic Anhydride Monomer Mixture
URI http://dx.doi.org/10.1021/jacs.4c08009
https://cir.nii.ac.jp/crid/1870584741596885760
https://www.ncbi.nlm.nih.gov/pubmed/39086123
https://www.proquest.com/docview/3086956596
https://www.proquest.com/docview/3153776401
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcCFd2GhRa4EJ5QljhPH7m2J-lClRUhdpN6i-CUiVknV3ZWa_Qn8amby2IqipVxysCaOY48133jmGxPygTPvtE5FoIQvAkDEYaBD4QPpkxQsomPa4IH-9Ks4-x6fXyaXtwmydyP4EdYHMotxjAWxkaf3MBIyRSdrkl3c8h8jyQaYm0rB-wT3u2-jATKLPwzQg6ost2PL1sacPCWnA1OnSy35OV4t9dis_y7ceM_wn5EnPcykk04vnpMdV70gj7LhdreX5NeszZel6II2NOsS1ufIo6JT5DkAKqQXfZr1Ef3SsnZpS9ys2xOfZu0s_VbPG4z4dFROilQVenxV35TWfZ6sy-vSYhWOrDHz0tBJ9aPBu9w3H6DT8gbjF6_I7OR4lp0F_b0MQREn0TJQOjYWPFvrNIAbzpnx0hmmvBVSicTFRjOROq4txybHCs8QJngADxzg5R7ZrerKvSHUWxsWMVOFSsPYSKUTJ7XwImbaR86JETmE6cv7bbXI24h5BB4LtvaTOiKfhvXMTV_XHK_XmG-R_riRvurqeWyROwDVgA7xyUCFMZwMYEcJKcFFC2Fkg9LksHIYZSkqV68WOQcnEZxOkPyHDNiZNBXg247I607jNqPhCjoAPPH2P_79HXkcAcjC_BXG9snu8nrlDgAkLfX7dof8BtkNCz8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMqF92OBgpHghNLGceI43Jao1QLdFVIXqbcofomIVVI1u1KzP4FfzYyT3YpKi3rJwZo4fkw033jmGxPygTNnlUpFkAlXBoCIw0CFwgXSJSlYRMuUxgP96UxMfsbfzpPzgayOXBgYRAs9tT6If11dAMsEQWOMdbGRrncPcEiEvtY4P7umQUaSbdBuKgUf8txvvo12SLf_2KG7dVXthpje1Jw8JLPtIH2Gye_D1VId6vWN-o23nsUj8mAAnXTca8ljcsfWT8h-vrnr7Sn5M_fZsxQd0o7mffr6AllVdIqsB8CI9GxIuv5Mv3gOL_U0zsaf_3Rra-iPZtFh_KcndlIkrtDji-aqMvZovK4uK4M1OfJOLypNx_WvDm92336ATqsrjGY8I_OT43k-CYZbGoIyTqJlkKlYG_BzjVUAdThn2kmrWeaMkJlIbKwVE6nlynBssqx0DEGDAyjBAWw-J3t1U9uXhDpjwjJmWZmlYaxlphIrlXAiZspF1ooReQ_LVww_WVv4-HkE_gu2Dos6Ip8221rooco5Xrax2CH9cSt90Vf32CF3ABoCHeKTgUJjcBmgTyakBIcthJFtdKeAncOYS1nbZtUWHFxGcEFB8j8yYHXSVICnOyIvesXbjoZn0AGgi1e3mPs7sj-ZT0-L06-z76_J_QjgF2a2MPaG7C0vV_YA4NNSvfU_zV8ffBOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkYALb-gCBSPBCaWN83Bibkvoqjy2qugi9RbFLxF1layaXanZn8CvZsZJFlFpEVxycCaOE48133jmGxPyJmTWSJlwT3BbeICIfU_63HqpjROwiIZJhRv60xN-_D36fB6f7xA2cGFgEA301LggPq7qhbZ9hQEsFQQ3IqyNjZS9mxixQ39rnJ39pkIGKRsQb5LysM91v_402iLV_GGLblRluR1mOnMzuUe-bQbqskwuDlZLeaDW12o4_teX3Cd3e_BJx522PCA7pnpIbmfDmW-PyM-Zy6Kl6Ji2NOvS2OfIrqJTZD8AVqRnffL1e_rBcXmpo3PWbh-oXRtNT-t5i3GgjuBJkcBCjxb1VanN4XhdXpYaa3NkrZqXio6rHy2e8L55AZ2WVxjVeExmk6NZduz1pzV4RRQHS0_ISGnwd7WRAHnCkCmbGsWE1TwVPDaRkownJpQ6xCbDCssQPFiAFCGAzidkt6ors0eo1dovIiYKkfiRSoWMTSq55RGTNjCGj8hr-H15v9ia3MXRA_BjsLX_qSPybpjaXPXVzvHQjfkW6bcb6UVX5WOL3D5oCXSIVwaKjUFmgECCpyk4bj6MbNCfHGYOYy9FZepVk4fgOoIrCpJ_kQHrkyQcPN4Redop32Y0oYAOAGU8-4dvf0VunX6c5F8_nXx5Tu4EgMIwwYWxF2R3ebky-4CilvKlWze_AAh5FiM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Fully+Controllable+Monomers+Sequence%3A+Binary+Organocatalyzed+Polymerization+from+Epoxide%2FAziridine%2FCyclic+Anhydride+Monomer+Mixture&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gao%2C+Tianle&rft.au=Xia%2C+Xiaochao&rft.au=Watanabe%2C+Tomohisa&rft.au=Ke%2C+Chun-Yao&rft.date=2024-09-11&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=146&rft.issue=36&rft.spage=25067&rft_id=info:doi/10.1021%2Fjacs.4c08009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon