A Single Mutation in the Nonamyloidogenic Region of Islet Amyloid Polypeptide Greatly Reduces Toxicity

Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by β-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of β-cells during type 2 diabetes through disruption...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 47; no. 48; pp. 12680 - 12688
Main Authors Brender, Jeffrey R, Hartman, Kevin, Reid, Kendra R, Kennedy, Robert T, Ramamoorthy, Ayyalusamy
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.12.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by β-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of β-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for β-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1−19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP1−19 on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP1−19, indicating disruption of the cellular membrane, while the rat version of the IAPP1−19 peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP1−19 is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP1−19 to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP1−19. At pH 6.0, where H18 is likely to be protonated, hIAPP1−19 resembles rIAPP1−19 in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP1−19 compared to hIAPP1−19. Human IAPP1−19 has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP1−19, however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP.
AbstractList Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by beta-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of beta-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for beta-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1-19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP(1-19) on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP(1-19), indicating disruption of the cellular membrane, while the rat version of the IAPP(1-19) peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP(1-19) is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP(1-19) to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP(1-19). At pH 6.0, where H18 is likely to be protonated, hIAPP(1-19) resembles rIAPP(1-19) in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP(1-19) compared to hIAPP(1-19). Human IAPP(1-19) has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP(1-19), however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP.
Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by beta-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of beta-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for beta-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1-19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP(1-19) on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP(1-19), indicating disruption of the cellular membrane, while the rat version of the IAPP(1-19) peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP(1-19) is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP(1-19) to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP(1-19). At pH 6.0, where H18 is likely to be protonated, hIAPP(1-19) resembles rIAPP(1-19) in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP(1-19) compared to hIAPP(1-19). Human IAPP(1-19) has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP(1-19), however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP.Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by beta-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of beta-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for beta-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1-19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP(1-19) on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP(1-19), indicating disruption of the cellular membrane, while the rat version of the IAPP(1-19) peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP(1-19) is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP(1-19) to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP(1-19). At pH 6.0, where H18 is likely to be protonated, hIAPP(1-19) resembles rIAPP(1-19) in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP(1-19) compared to hIAPP(1-19). Human IAPP(1-19) has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP(1-19), however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP.
Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by β-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of β-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for β-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1−19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP1−19 on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP1−19, indicating disruption of the cellular membrane, while the rat version of the IAPP1−19 peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP1−19 is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP1−19 to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP1−19. At pH 6.0, where H18 is likely to be protonated, hIAPP1−19 resembles rIAPP1−19 in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP1−19 compared to hIAPP1−19. Human IAPP1−19 has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP1−19, however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP.
Author Brender, Jeffrey R
Ramamoorthy, Ayyalusamy
Hartman, Kevin
Reid, Kendra R
Kennedy, Robert T
Author_xml – sequence: 1
  givenname: Jeffrey R
  surname: Brender
  fullname: Brender, Jeffrey R
– sequence: 2
  givenname: Kevin
  surname: Hartman
  fullname: Hartman, Kevin
– sequence: 3
  givenname: Kendra R
  surname: Reid
  fullname: Reid, Kendra R
– sequence: 4
  givenname: Robert T
  surname: Kennedy
  fullname: Kennedy, Robert T
– sequence: 5
  givenname: Ayyalusamy
  surname: Ramamoorthy
  fullname: Ramamoorthy, Ayyalusamy
  email: ramamoor@umich.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18989933$$D View this record in MEDLINE/PubMed
BookMark eNpt0EFPFDEYBuDGQGQBD_4B04smHkbazkw7Pa4EkQQUZPXApem036zF7nRpOwnz7x0cxMRwaprv-d607z7a6UMPCL2m5AMljB61riG0YsK8QAtaM1JUUtY7aEEI4QWTnOyh_ZRup2tFRPUS7dFGNlKW5QJ1S3zt-rUHfDFknV3osetx_gn4S-j1ZvTB2bCG3hn8DdYP49Dhs-Qh4-U8xZfBj1vYZmcBn0bQ2Y-TtYOBhFfh3hmXx0O022mf4NXjeYC-fzpZHX8uzr-enh0vzwtd1SwXQhvBDci2IR2UTDBdtkTQtrRtZTkDY-uKCyLKlhqtLeXGAAOgoq6ZttyWB-jdnLuN4W6AlNXGJQPe6x7CkBTnXBLJxQTfPMKh3YBV2-g2Oo7qbzMTeD8DE0NKEbp_hKiH1tVT65M9-s9Of_5TZo7a-Wc3innDpQz3T9E6_lLT40StVpfX6sfNR86uSKNuJv929tokdRuG2E8tPpP7G0G9oAU
CitedBy_id crossref_primary_10_1016_j_bpj_2009_08_041
crossref_primary_10_1155_2015_849017
crossref_primary_10_1016_j_bbamem_2011_01_010
crossref_primary_10_1016_j_bpj_2010_07_010
crossref_primary_10_1021_jp101811u
crossref_primary_10_1098_rsif_2012_0368
crossref_primary_10_1021_ja9010095
crossref_primary_10_1016_j_jcis_2011_04_053
crossref_primary_10_1155_2015_946037
crossref_primary_10_1021_ja1007867
crossref_primary_10_1016_j_saa_2013_11_033
crossref_primary_10_1021_bi8014357
crossref_primary_10_1039_B9NJ00253G
crossref_primary_10_1021_ja908170s
crossref_primary_10_1002_ange_200901694
crossref_primary_10_1371_journal_pcbi_1003211
crossref_primary_10_1021_jacs_9b04995
crossref_primary_10_1093_protein_gzp029
crossref_primary_10_1039_C6DT00628K
crossref_primary_10_1016_j_bbamem_2010_05_022
crossref_primary_10_1073_pnas_1102971108
crossref_primary_10_1038_s41598_022_24968_y
crossref_primary_10_1016_j_micron_2012_07_001
crossref_primary_10_1016_j_jmb_2009_08_055
crossref_primary_10_1016_j_jmb_2011_12_035
crossref_primary_10_1016_j_ejmech_2020_112197
crossref_primary_10_1021_jp511758w
crossref_primary_10_1002_adfm_202102978
crossref_primary_10_1016_j_ijbiomac_2021_12_127
crossref_primary_10_1021_ja900285z
crossref_primary_10_1021_bi400087n
crossref_primary_10_1021_jp409755y
crossref_primary_10_1021_ja9049299
crossref_primary_10_1073_pnas_1219059110
crossref_primary_10_1371_journal_ppat_1003005
crossref_primary_10_1016_j_bbapap_2020_140378
crossref_primary_10_1039_C8CS00034D
crossref_primary_10_1038_s41598_021_04197_5
crossref_primary_10_1016_j_ab_2011_01_009
crossref_primary_10_1021_bi401164k
crossref_primary_10_1016_j_bpc_2023_107130
crossref_primary_10_3390_molecules28104191
crossref_primary_10_1016_j_bbamem_2018_03_006
crossref_primary_10_1039_C5CP03991F
crossref_primary_10_1021_acsbiomaterials_8b01384
crossref_primary_10_1371_journal_pcbi_1000357
crossref_primary_10_1016_j_chemphyslip_2009_03_008
crossref_primary_10_1021_bi3009888
crossref_primary_10_1039_C1CS15112F
crossref_primary_10_1007_s10822_021_00393_7
crossref_primary_10_1016_j_bbamem_2018_03_014
crossref_primary_10_1039_c3cp44696d
crossref_primary_10_1016_j_febslet_2009_07_044
crossref_primary_10_1039_D0CB00086H
crossref_primary_10_1074_jbc_M111_240762
crossref_primary_10_1016_j_bpc_2020_106507
crossref_primary_10_1016_j_jmb_2011_05_015
crossref_primary_10_1016_j_bpj_2012_11_3811
crossref_primary_10_1016_j_biochi_2010_12_012
crossref_primary_10_1155_2016_1867059
crossref_primary_10_1038_s41598_019_54570_8
crossref_primary_10_1021_acs_jcim_1c00767
crossref_primary_10_1021_ja1069882
crossref_primary_10_1002_pro_2274
crossref_primary_10_3390_molecules29030740
crossref_primary_10_1016_j_febslet_2013_01_046
crossref_primary_10_1021_ja809002a
crossref_primary_10_1007_s12011_018_1444_5
crossref_primary_10_1021_bm401406e
crossref_primary_10_5012_bkcs_2011_32_5_1751
crossref_primary_10_1021_jp5111357
crossref_primary_10_1016_j_bbamem_2009_12_012
crossref_primary_10_1039_C6CP04431J
crossref_primary_10_1096_fj_11_194613
crossref_primary_10_1103_PhysRevE_84_051922
crossref_primary_10_1016_j_bbamem_2018_02_018
crossref_primary_10_1371_journal_pone_0056467
crossref_primary_10_1016_j_jinorgbio_2017_06_008
crossref_primary_10_1515_hsz_2020_0174
crossref_primary_10_1016_j_bpj_2010_09_070
crossref_primary_10_1021_acs_jpcb_7b12083
crossref_primary_10_1021_acs_biochem_5b00052
crossref_primary_10_3389_fmolb_2022_849979
crossref_primary_10_1021_acs_jpcb_9b10349
crossref_primary_10_1016_j_bpc_2021_106702
crossref_primary_10_1111_febs_12807
crossref_primary_10_1016_j_bbagen_2017_06_004
crossref_primary_10_1002_anie_200901694
crossref_primary_10_1016_j_biochi_2017_07_015
crossref_primary_10_1039_C4SM00907J
crossref_primary_10_1039_C5TB00487J
crossref_primary_10_1016_j_bbagen_2016_01_008
crossref_primary_10_1021_bi300542g
crossref_primary_10_3390_cells7080095
crossref_primary_10_1021_la902980d
crossref_primary_10_1016_j_bpj_2013_09_045
crossref_primary_10_1039_C6RA19714K
crossref_primary_10_1016_j_chemphyslip_2021_105083
crossref_primary_10_1016_j_bbamem_2018_04_012
crossref_primary_10_1007_s12551_017_0351_x
crossref_primary_10_1021_acs_langmuir_6b00825
crossref_primary_10_1021_jp508926e
crossref_primary_10_1002_bip_22650
crossref_primary_10_1016_j_bbamem_2011_06_012
crossref_primary_10_3390_macromol3040046
crossref_primary_10_1007_s10989_010_9202_3
crossref_primary_10_1002_chem_201602816
crossref_primary_10_1021_bm100824z
crossref_primary_10_3390_biom4010020
crossref_primary_10_1016_j_bbamem_2011_09_027
crossref_primary_10_1063_1_3385470
crossref_primary_10_1039_c3cp44542a
crossref_primary_10_3390_molecules27031021
crossref_primary_10_1016_j_ijbiomac_2023_124470
crossref_primary_10_1016_j_bbamem_2018_02_013
crossref_primary_10_1371_journal_pone_0073080
crossref_primary_10_1002_pro_5119
crossref_primary_10_1021_ar200189b
crossref_primary_10_1146_annurev_biophys_050511_102349
crossref_primary_10_1002_chem_201704910
crossref_primary_10_1016_j_ijbiomac_2020_11_161
crossref_primary_10_1155_2016_2798269
crossref_primary_10_1021_jp108870q
crossref_primary_10_1039_C7CP06463B
crossref_primary_10_1016_j_bbamem_2018_02_005
crossref_primary_10_1016_j_jsb_2009_05_009
crossref_primary_10_1074_jbc_M115_659797
crossref_primary_10_1039_C3CS60459D
Cites_doi 10.1194/jlr.R800007-JLR200
10.2337/diabetes.54.7.2235
10.1016/j.bpc.2006.05.008
10.1007/s001250051175
10.1016/j.jmb.2004.06.086
10.1074/jbc.M500997200
10.1016/j.biocel.2005.12.009
10.1021/jp0762020
10.2337/db07-0178
10.1039/b106227c
10.1016/S0022-2836(02)01377-3
10.1006/jmbi.1998.2346
10.1016/j.bbamem.2006.07.001
10.1073/pnas.93.14.7283
10.1002/j.1460-2075.1990.tb08079.x
10.1021/bi050840w
10.1006/jmbi.2001.4593
10.1152/ajpendo.00318.2007
10.1093/ilar.47.3.225
10.1038/nm0698-730
10.1210/er.2007-0037
10.2337/diabetes.52.9.2304
10.1074/jbc.275.19.14077
10.1016/S0006-3495(03)75047-4
10.2337/diabetes.47.5.743
10.1111/j.1742-4658.2006.05367.x
10.1007/s12017-007-0003-6
10.1073/pnas.0502066102
10.1155/2008/421287
10.1097/00006676-199510000-00014
10.1021/bi060579z
10.1016/j.bbamem.2006.01.018
10.1016/S0006-3495(00)76673-2
10.1021/bi036284s
10.1021/ja802210u
10.2337/db06-1579
10.1074/jbc.M608207200
10.1177/000456329403100209
10.1016/S0005-2736(99)00200-X
10.1016/0304-4157(86)90004-3
10.1021/ja710484d
10.1021/bi034889i
10.1021/bi8014357
10.1021/la7014868
10.1529/biophysj.107.117168
10.1021/bi051432v
10.1016/0006-8993(95)00148-J
10.1007/s00125-003-1304-4
10.1016/j.bbamem.2007.11.008
10.2337/diabetes.48.3.491
10.1016/j.bbamem.2007.07.001
10.1021/bi020314u
10.1002/anie.200705372
10.2337/db05-1672
10.2337/diabetes.52.7.1701
10.1002/chem.200700576
ContentType Journal Article
Copyright Copyright © 2008 American Chemical Society
Copyright_xml – notice: Copyright © 2008 American Chemical Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/bi801427c
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Single Mutation of IAPP Reduces Toxicity
EISSN 1520-4995
EndPage 12688
ExternalDocumentID 18989933
10_1021_bi801427c
ark_67375_TPS_VZB62Q08_Z
a257409719
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI054515
– fundername: NIDDK NIH HHS
  grantid: R37 DK046960
– fundername: NIDDK NIH HHS
  grantid: DK046960
– fundername: NIDDK NIH HHS
  grantid: R01 DK046960
– fundername: NIAID NIH HHS
  grantid: AI054515
GroupedDBID -
.K2
02
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFNX
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
K78
KM
L7B
LG6
P2P
ROL
TN5
UI2
UQL
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
6TJ
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
XSW
ZCA
~02
~KM
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
ANPPW
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a452t-7ac76ce9b80fe3272a3b071b3db4d62ecd5467073b1caad16cce2ee17552ad6d3
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Thu Jul 10 17:25:44 EDT 2025
Fri May 30 10:59:33 EDT 2025
Tue Jul 01 02:05:33 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Wed Oct 30 09:40:11 EDT 2024
Thu Aug 27 13:42:08 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a452t-7ac76ce9b80fe3272a3b071b3db4d62ecd5467073b1caad16cce2ee17552ad6d3
Notes istex:015FB4A90EBC1EBA84D840B7A85146F78B8039CF
ark:/67375/TPS-VZB62Q08-Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1021/bi801427c
PMID 18989933
PQID 66690967
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_66690967
pubmed_primary_18989933
crossref_primary_10_1021_bi801427c
crossref_citationtrail_10_1021_bi801427c
istex_primary_ark_67375_TPS_VZB62Q08_Z
acs_journals_10_1021_bi801427c
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-02
PublicationDateYYYYMMDD 2008-12-02
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-02
  day: 02
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2008
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Pappalardo G. (ref46/cit46) 2007; 13
Nanga R. P. R. (ref39/cit39) 2008; 47
Konarkowska B. (ref17/cit17) 2006; 273
Janson J. (ref16/cit16) 1999; 48
Khemtemourian L. (ref26/cit26) 2008
Quist A. (ref22/cit22) 2005; 102
Lin C. Y. (ref21/cit21) 2007; 56
Green J. (ref59/cit59) 2003; 326
Kawahara M. (ref40/cit40) 2000; 275
Jayasinghe S. A. (ref45/cit45) 2005; 44
Janson J. (ref10/cit10) 1996; 93
Hull R. L. (ref12/cit12) 2005; 54
Hoskin D. W. (ref32/cit32) 2008; 1778
Powers E. T. (ref24/cit24) 2008; 94
Sun X. Q. (ref55/cit55) 2008; 112
Lorenzo A. (ref3/cit3) 1996
McElhaney R. N. (ref49/cit49) 1986; 864
Heimburg T. (ref54/cit54) 2000; 78
Matveyenko A. V. (ref8/cit8) 2006; 55
Hoppener J. W. M. (ref2/cit2) 2006; 38
Hoppener J. W. M. (ref6/cit6) 1999; 42
Casas S. (ref43/cit43) 2008
Porat Y. (ref23/cit23a) 2003; 42
Bechinger B. (ref30/cit30) 2006; 1758
Vanhulst K. L. (ref34/cit34) 1994; 31
Epand R. F. (ref58/cit58) 2006; 1758
Jaikaran E. (ref37/cit37) 2001; 308
Ramamoorthy A. (ref51/cit51) 2008; 130
Shai Y. (ref31/cit31) 1999; 1462
Ladokhin A. S. (ref44/cit44) 1999; 285
Ritzel R. A. (ref19/cit19) 2003; 52
Casas S. (ref42/cit42) 2007; 56
Bell E. T. (ref14/cit14) 1959; 35
Brender J. R. (ref25/cit25) 2008; 130
Knight J. D. (ref33/cit33) 2006; 45
Yoshiike Y. (ref28/cit28) 2007; 9
Matveyenko A. V. (ref4/cit4) 2006; 47
Lee S. J. (ref36/cit36) 1998; 4
Anguiano M. (ref20/cit20) 2002; 41
Epand R. M. (ref57/cit57) 2007; 126
Meier J. J. (ref18/cit18) 2006; 291
Ariga T. (ref35/cit35) 2008; 49
Tasaka Y. (ref13/cit13) 1995; 11
Abedini A. (ref38/cit38) 2005; 44
Grasso D. (ref47/cit47) 2001; 25
Henzler-Wildman K. A. (ref48/cit48) 2004; 43
Mattson M. P. (ref41/cit41) 1995; 676
Huang C. J. (ref9/cit9) 2007; 293
Butler A. E. (ref11/cit11) 2003; 52
Brender J. R. (ref23/cit23b) 2007; 1768
Knight J. D. (ref52/cit52) 2004; 341
Pralong W. F. (ref29/cit29) 1990; 9
Necula M. (ref27/cit27) 2007; 282
Demuro A. (ref15/cit15) 2005; 280
Ivanova V. P. (ref50/cit50) 2003; 84
Mishra R. (ref53/cit53) 2008; 47
Soeller W. C. (ref7/cit7) 1998; 47
Brasseur R. (ref56/cit56) 2007; 23
Clark A. (ref1/cit1) 2004; 47
Haataja L. (ref5/cit5) 2008; 29
References_xml – volume: 49
  start-page: 1157
  year: 2008
  ident: ref35/cit35
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R800007-JLR200
– volume: 54
  start-page: 2235
  year: 2005
  ident: ref12/cit12
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.7.2235
– volume: 126
  start-page: 197
  year: 2007
  ident: ref57/cit57
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2006.05.008
– volume: 42
  start-page: 427
  year: 1999
  ident: ref6/cit6
  publication-title: Diabetologia
  doi: 10.1007/s001250051175
– volume: 291
  start-page: E1317−E1324
  year: 2006
  ident: ref18/cit18
  publication-title: Am. J. Physiol.
– volume: 341
  start-page: 1175
  year: 2004
  ident: ref52/cit52
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.06.086
– volume: 280
  start-page: 17294
  year: 2005
  ident: ref15/cit15
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500997200
– volume: 38
  start-page: 726
  year: 2006
  ident: ref2/cit2
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2005.12.009
– volume: 112
  start-page: 1968
  year: 2008
  ident: ref55/cit55
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0762020
– volume: 56
  start-page: 2284
  year: 2007
  ident: ref42/cit42
  publication-title: Diabetes
  doi: 10.2337/db07-0178
– volume: 25
  start-page: 1543
  year: 2001
  ident: ref47/cit47
  publication-title: New J. Chem.
  doi: 10.1039/b106227c
– volume: 326
  start-page: 1147
  year: 2003
  ident: ref59/cit59
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)01377-3
– volume: 285
  start-page: 1363
  year: 1999
  ident: ref44/cit44
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2346
– volume: 1758
  start-page: 1529
  year: 2006
  ident: ref30/cit30
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2006.07.001
– volume: 93
  start-page: 7283
  year: 1996
  ident: ref10/cit10
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.14.7283
– volume: 9
  start-page: 53
  year: 1990
  ident: ref29/cit29
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1990.tb08079.x
– volume: 44
  start-page: 12113
  year: 2005
  ident: ref45/cit45
  publication-title: Biochemistry
  doi: 10.1021/bi050840w
– volume: 308
  start-page: 515
  year: 2001
  ident: ref37/cit37
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4593
– volume: 293
  start-page: E1656
  year: 2007
  ident: ref9/cit9
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00318.2007
– volume: 47
  start-page: 225
  year: 2006
  ident: ref4/cit4
  publication-title: ILAR J.
  doi: 10.1093/ilar.47.3.225
– volume: 4
  start-page: 730
  year: 1998
  ident: ref36/cit36
  publication-title: Nat. Med.
  doi: 10.1038/nm0698-730
– volume: 29
  start-page: 302
  year: 2008
  ident: ref5/cit5
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2007-0037
– volume: 52
  start-page: 2304
  year: 2003
  ident: ref11/cit11
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.9.2304
– volume: 275
  start-page: 14077
  year: 2000
  ident: ref40/cit40
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.19.14077
– volume: 84
  start-page: 2427
  year: 2003
  ident: ref50/cit50
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)75047-4
– volume: 47
  start-page: 743
  year: 1998
  ident: ref7/cit7
  publication-title: Diabetes
  doi: 10.2337/diabetes.47.5.743
– volume: 273
  start-page: 3614
  year: 2006
  ident: ref17/cit17
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2006.05367.x
– volume: 9
  start-page: 270
  year: 2007
  ident: ref28/cit28
  publication-title: Neuromol. Med.
  doi: 10.1007/s12017-007-0003-6
– volume: 102
  start-page: 10427
  year: 2005
  ident: ref22/cit22
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0502066102
– start-page: 421287
  year: 2008
  ident: ref26/cit26
  publication-title: Exp. Diabetes Res.
  doi: 10.1155/2008/421287
– volume: 11
  start-page: 303
  year: 1995
  ident: ref13/cit13
  publication-title: Pancreas
  doi: 10.1097/00006676-199510000-00014
– volume: 45
  start-page: 9496
  year: 2006
  ident: ref33/cit33
  publication-title: Biochemistry
  doi: 10.1021/bi060579z
– volume: 1758
  start-page: 1343
  year: 2006
  ident: ref58/cit58
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2006.01.018
– year: 2008
  ident: ref43/cit43
  publication-title: Diabetologia
– volume: 78
  start-page: 1154
  year: 2000
  ident: ref54/cit54
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76673-2
– volume: 43
  start-page: 8459
  year: 2004
  ident: ref48/cit48
  publication-title: Biochemistry
  doi: 10.1021/bi036284s
– volume: 130
  start-page: 11023
  year: 2008
  ident: ref51/cit51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja802210u
– volume: 56
  start-page: 1324
  year: 2007
  ident: ref21/cit21
  publication-title: Diabetes
  doi: 10.2337/db06-1579
– volume: 282
  start-page: 10311
  year: 2007
  ident: ref27/cit27
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M608207200
– volume: 31
  start-page: 165
  year: 1994
  ident: ref34/cit34
  publication-title: Ann. Clin. Biochem.
  doi: 10.1177/000456329403100209
– volume: 1462
  start-page: 55
  year: 1999
  ident: ref31/cit31
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(99)00200-X
– volume: 864
  start-page: 361
  year: 1986
  ident: ref49/cit49
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(86)90004-3
– volume: 35
  start-page: 801
  year: 1959
  ident: ref14/cit14
  publication-title: Am. J. Pathol.
– volume: 130
  start-page: 6424
  year: 2008
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja710484d
– volume: 42
  start-page: 10971
  year: 2003
  ident: ref23/cit23a
  publication-title: Biochemistry
  doi: 10.1021/bi034889i
– volume: 47
  start-page: 12689
  year: 2008
  ident: ref39/cit39
  publication-title: Biochemistry
  doi: 10.1021/bi8014357
– volume: 23
  start-page: 9769
  year: 2007
  ident: ref56/cit56
  publication-title: Langmuir
  doi: 10.1021/la7014868
– volume: 94
  start-page: 379
  year: 2008
  ident: ref24/cit24
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.117168
– volume: 44
  start-page: 16284
  year: 2005
  ident: ref38/cit38
  publication-title: Biochemistry
  doi: 10.1021/bi051432v
– start-page: 89
  volume-title: Neurobiology of Alzheimer’s Disease
  year: 1996
  ident: ref3/cit3
– volume: 676
  start-page: 219
  year: 1995
  ident: ref41/cit41
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(95)00148-J
– volume: 47
  start-page: 157
  year: 2004
  ident: ref1/cit1
  publication-title: Diabetologia
  doi: 10.1007/s00125-003-1304-4
– volume: 1778
  start-page: 357
  year: 2008
  ident: ref32/cit32
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2007.11.008
– volume: 48
  start-page: 491
  year: 1999
  ident: ref16/cit16
  publication-title: Diabetes
  doi: 10.2337/diabetes.48.3.491
– volume: 1768
  start-page: 2026
  year: 2007
  ident: ref23/cit23b
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2007.07.001
– volume: 41
  start-page: 11338
  year: 2002
  ident: ref20/cit20
  publication-title: Biochemistry
  doi: 10.1021/bi020314u
– volume: 47
  start-page: 4679
  year: 2008
  ident: ref53/cit53
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.200705372
– volume: 55
  start-page: 2106
  year: 2006
  ident: ref8/cit8
  publication-title: Diabetes
  doi: 10.2337/db05-1672
– volume: 52
  start-page: 1701
  year: 2003
  ident: ref19/cit19
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.7.1701
– volume: 13
  start-page: 10204
  year: 2007
  ident: ref46/cit46
  publication-title: Chem.-Eur. J.
  doi: 10.1002/chem.200700576
SSID ssj0004074
Score 2.3311625
Snippet Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by β-cells in the islets of Langerhans. The aggregation of the peptide...
Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by beta-cells in the islets of Langerhans. The aggregation of the...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12680
SubjectTerms Amino Acid Sequence
Amyloid - chemistry
Amyloid - genetics
Amyloid - metabolism
Amyloid - toxicity
Animals
Calorimetry, Differential Scanning
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell Membrane Permeability - drug effects
Humans
Islet Amyloid Polypeptide
Islets of Langerhans - cytology
Islets of Langerhans - drug effects
Molecular Sequence Data
Mutation
Phosphatidylglycerols - metabolism
Rats
Title A Single Mutation in the Nonamyloidogenic Region of Islet Amyloid Polypeptide Greatly Reduces Toxicity
URI http://dx.doi.org/10.1021/bi801427c
https://api.istex.fr/ark:/67375/TPS-VZB62Q08-Z/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/18989933
https://www.proquest.com/docview/66690967
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9gAXHi2PLVAsQBWXlMSJne5xWagqpFaF3aKqF8se21LUbVJ1s1LLr2ecxxZEC-dMlIc_e77PM54BeB-jsTE6TyIHZZSh0NEw9RnNK9ISRM9R2CAUDw7l_nH29UScrMC7OyL4PPloilDghOd4D9a4pMkb-M94cnP4Me5KLZM05sTH-_JBv98aXA_O_3A9a-EvXt3NKxv_svcIPvendNq0krOdRW128OffRRv_9eqP4WHHL9moBcQTWHHlOmyMStLW59dsmzUZn81W-jrcH_fd3jbAj9iEvNjMsYNFG51nRcmIHbJD4urnJOsLWxHYCmTfXchhZpVnhCdXs1F7lR1VMxK1tARZx5qdh9k12VrCzpxNq6sCifA_heO9L9PxftT1YIh0Jngd5RpziW5odmPvUp5znRpiJSa1JrOSO7SCllpaJ0yCWttEIjruHJESwbWVNn0Gq2VVuhfAhBfOyMznsfaZdVxrY62WHqVJdIJ2AFs0SKqbQ3PVhMd5opZ_cQAf-vFT2FUwD400ZreZvl2aXrRlO24z2m5AsLTQl2chzy0Xano0UT9OP0n-Ld5VpwN406NE0bCEkIouXbWYKxJ_QxKB-QCet-C5eVroyzlM083_fdVLeNDkoIQUGf4KVuvLhXtNRKc2Ww3QfwEAHff5
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLVgexgvMDY-CmOzEJp4yUic2FkfQ7WpwFoN2qFpL5Z97UjRugQtqbTx67l20nagIXjOTeKPY_sc-_peQt6FoE0INkeRAyJIgKugH-cJjivUEkjPgRsnFEdjMTxLPp_z8y5MjrsLg4Wo8Uu1P8RfRReIPujCxTlhKTwk60hCmENzNpis7kCGXcRlVMgMafkiitDdV90KBPVvK9C6a8ybv9NLv8wcP2nzFfkCeu-Sy4N5ow_g5x-xG_-vBpvkccc2adbC4yl5YMstsp2VqLSvbuk-9f6ffmN9i2wMFrnftkme0QmuaTNLR_P2rJ4WJUWuSMfI3K9Q5BemQugVQL9Z59FMq5wiumxDs_YpPa1mKHFxQjKW-n2I2S3aGkRSTafVTQFI_5-Rs-Oj6WAYdBkZApVw1gSpglSA7evDMLcxS5mKNXIUHRudGMEsGI4TL84aOgKlTCQALLMWKQpnyggTPydrZVXal4TynFstkjwNVZ4Yy5TSxiiRg9CRisD0yC42ouxGVC39YTmL5LIVe-T9ohsldPHMXVqN2X2mb5emP9ogHvcZ7XssLC3U9aXzeku5nJ5O5PeLj4J9DQ_lRY_sLcAisVvcAYsqbTWvJUrBPkrCtEdetBha_c1l6ezH8at_1WqPbAynoxN58mn85TV55L1TnPMM2yFrzfXcvkEK1Ohdj_1fGisAaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgk4AXLhuXsrFZCE28ZCRO4qyPWaEal5VCOzTtxbKPbSlal0xLKm379Rw7aQdoCJ5zkvjy2f4-n-NjQt6EoHQIxqLIAR4kkMqgH9sExxVqCaTnkGonFA9H_OAo-XScHndC0Z2FwULU-KXaO_HdqD7XtsswEL1Thct1wjK4S1adu84hOh9Mbs5Bhl3WZVTJDKn5IpPQr6-6VQjq31ahVdegl3-nmH6pGT4iX5eF9BEmp7vzRu3C9R_5G_-_Fo_Jw4510ryFyRNyx5RrZD0vUXGfXdEd6uNA_Qb7Grk_WNwBt05sTie4ts0MPZy3PntalBQ5Ix0hgz9DsV_oCiFYAP1uXGQzrSxFlJmG5u1TOq5mKHVxYtKG-v2I2RXaakRUTafVZQEoA56So-GH6eAg6G5mCGSSsibIJGQcTF_thdbELGMyVshVVKxVojkzoFOcgHH2UBFIqSMOYJgxSFVSJjXX8TOyUlaleUFoalOjeGKzUNpEGyal0lpyC1xFMgLdI1vYkKIbWbXwTnMWiWUr9sjbRVcK6PKau-s1ZreZvl6anrfJPG4z2vF4WFrIi1MX_ZalYjqeiB8n-5x9C_fESY9sLwAjsFuco0WWpprXAiVhH6Vh1iPPWxzd_M3d1tmP45f_qtU2uTd-PxRfPo4-b5AHPkjFxdCwTbLSXMzNK2RCjdry8P8Jar8C7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single+Mutation+in+the+Nonamyloidogenic+Region+of+Islet+Amyloid+Polypeptide+Greatly+Reduces+Toxicity&rft.jtitle=Biochemistry+%28Easton%29&rft.au=BRENDER%2C+Jeffrey+R.&rft.au=HARTMAN%2C+Kevin&rft.au=REID%2C+Kendra+R.&rft.au=KENNEDY%2C+Robert+T.&rft.date=2008-12-02&rft.pub=American+Chemical+Society&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=47&rft.issue=48&rft.spage=12680&rft.epage=12688&rft_id=info:doi/10.1021%2Fbi801427c&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_VZB62Q08_Z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon