A Single Mutation in the Nonamyloidogenic Region of Islet Amyloid Polypeptide Greatly Reduces Toxicity
Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by β-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of β-cells during type 2 diabetes through disruption...
Saved in:
Published in | Biochemistry (Easton) Vol. 47; no. 48; pp. 12680 - 12688 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.12.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by β-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of β-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for β-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1−19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP1−19 on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP1−19, indicating disruption of the cellular membrane, while the rat version of the IAPP1−19 peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP1−19 is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP1−19 to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP1−19. At pH 6.0, where H18 is likely to be protonated, hIAPP1−19 resembles rIAPP1−19 in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP1−19 compared to hIAPP1−19. Human IAPP1−19 has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP1−19, however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP. |
---|---|
AbstractList | Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by beta-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of beta-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for beta-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1-19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP(1-19) on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP(1-19), indicating disruption of the cellular membrane, while the rat version of the IAPP(1-19) peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP(1-19) is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP(1-19) to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP(1-19). At pH 6.0, where H18 is likely to be protonated, hIAPP(1-19) resembles rIAPP(1-19) in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP(1-19) compared to hIAPP(1-19). Human IAPP(1-19) has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP(1-19), however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP. Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by beta-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of beta-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for beta-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1-19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP(1-19) on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP(1-19), indicating disruption of the cellular membrane, while the rat version of the IAPP(1-19) peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP(1-19) is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP(1-19) to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP(1-19). At pH 6.0, where H18 is likely to be protonated, hIAPP(1-19) resembles rIAPP(1-19) in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP(1-19) compared to hIAPP(1-19). Human IAPP(1-19) has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP(1-19), however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP.Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by beta-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of beta-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for beta-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1-19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP(1-19) on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP(1-19), indicating disruption of the cellular membrane, while the rat version of the IAPP(1-19) peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP(1-19) is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP(1-19) to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP(1-19). At pH 6.0, where H18 is likely to be protonated, hIAPP(1-19) resembles rIAPP(1-19) in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP(1-19) compared to hIAPP(1-19). Human IAPP(1-19) has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP(1-19), however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP. Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by β-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of β-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for β-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1−19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP1−19 on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP1−19, indicating disruption of the cellular membrane, while the rat version of the IAPP1−19 peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP1−19 is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP1−19 to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP1−19. At pH 6.0, where H18 is likely to be protonated, hIAPP1−19 resembles rIAPP1−19 in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP1−19 compared to hIAPP1−19. Human IAPP1−19 has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP1−19, however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP. |
Author | Brender, Jeffrey R Ramamoorthy, Ayyalusamy Hartman, Kevin Reid, Kendra R Kennedy, Robert T |
Author_xml | – sequence: 1 givenname: Jeffrey R surname: Brender fullname: Brender, Jeffrey R – sequence: 2 givenname: Kevin surname: Hartman fullname: Hartman, Kevin – sequence: 3 givenname: Kendra R surname: Reid fullname: Reid, Kendra R – sequence: 4 givenname: Robert T surname: Kennedy fullname: Kennedy, Robert T – sequence: 5 givenname: Ayyalusamy surname: Ramamoorthy fullname: Ramamoorthy, Ayyalusamy email: ramamoor@umich.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18989933$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0EFPFDEYBuDGQGQBD_4B04smHkbazkw7Pa4EkQQUZPXApem036zF7nRpOwnz7x0cxMRwaprv-d607z7a6UMPCL2m5AMljB61riG0YsK8QAtaM1JUUtY7aEEI4QWTnOyh_ZRup2tFRPUS7dFGNlKW5QJ1S3zt-rUHfDFknV3osetx_gn4S-j1ZvTB2bCG3hn8DdYP49Dhs-Qh4-U8xZfBj1vYZmcBn0bQ2Y-TtYOBhFfh3hmXx0O022mf4NXjeYC-fzpZHX8uzr-enh0vzwtd1SwXQhvBDci2IR2UTDBdtkTQtrRtZTkDY-uKCyLKlhqtLeXGAAOgoq6ZttyWB-jdnLuN4W6AlNXGJQPe6x7CkBTnXBLJxQTfPMKh3YBV2-g2Oo7qbzMTeD8DE0NKEbp_hKiH1tVT65M9-s9Of_5TZo7a-Wc3innDpQz3T9E6_lLT40StVpfX6sfNR86uSKNuJv929tokdRuG2E8tPpP7G0G9oAU |
CitedBy_id | crossref_primary_10_1016_j_bpj_2009_08_041 crossref_primary_10_1155_2015_849017 crossref_primary_10_1016_j_bbamem_2011_01_010 crossref_primary_10_1016_j_bpj_2010_07_010 crossref_primary_10_1021_jp101811u crossref_primary_10_1098_rsif_2012_0368 crossref_primary_10_1021_ja9010095 crossref_primary_10_1016_j_jcis_2011_04_053 crossref_primary_10_1155_2015_946037 crossref_primary_10_1021_ja1007867 crossref_primary_10_1016_j_saa_2013_11_033 crossref_primary_10_1021_bi8014357 crossref_primary_10_1039_B9NJ00253G crossref_primary_10_1021_ja908170s crossref_primary_10_1002_ange_200901694 crossref_primary_10_1371_journal_pcbi_1003211 crossref_primary_10_1021_jacs_9b04995 crossref_primary_10_1093_protein_gzp029 crossref_primary_10_1039_C6DT00628K crossref_primary_10_1016_j_bbamem_2010_05_022 crossref_primary_10_1073_pnas_1102971108 crossref_primary_10_1038_s41598_022_24968_y crossref_primary_10_1016_j_micron_2012_07_001 crossref_primary_10_1016_j_jmb_2009_08_055 crossref_primary_10_1016_j_jmb_2011_12_035 crossref_primary_10_1016_j_ejmech_2020_112197 crossref_primary_10_1021_jp511758w crossref_primary_10_1002_adfm_202102978 crossref_primary_10_1016_j_ijbiomac_2021_12_127 crossref_primary_10_1021_ja900285z crossref_primary_10_1021_bi400087n crossref_primary_10_1021_jp409755y crossref_primary_10_1021_ja9049299 crossref_primary_10_1073_pnas_1219059110 crossref_primary_10_1371_journal_ppat_1003005 crossref_primary_10_1016_j_bbapap_2020_140378 crossref_primary_10_1039_C8CS00034D crossref_primary_10_1038_s41598_021_04197_5 crossref_primary_10_1016_j_ab_2011_01_009 crossref_primary_10_1021_bi401164k crossref_primary_10_1016_j_bpc_2023_107130 crossref_primary_10_3390_molecules28104191 crossref_primary_10_1016_j_bbamem_2018_03_006 crossref_primary_10_1039_C5CP03991F crossref_primary_10_1021_acsbiomaterials_8b01384 crossref_primary_10_1371_journal_pcbi_1000357 crossref_primary_10_1016_j_chemphyslip_2009_03_008 crossref_primary_10_1021_bi3009888 crossref_primary_10_1039_C1CS15112F crossref_primary_10_1007_s10822_021_00393_7 crossref_primary_10_1016_j_bbamem_2018_03_014 crossref_primary_10_1039_c3cp44696d crossref_primary_10_1016_j_febslet_2009_07_044 crossref_primary_10_1039_D0CB00086H crossref_primary_10_1074_jbc_M111_240762 crossref_primary_10_1016_j_bpc_2020_106507 crossref_primary_10_1016_j_jmb_2011_05_015 crossref_primary_10_1016_j_bpj_2012_11_3811 crossref_primary_10_1016_j_biochi_2010_12_012 crossref_primary_10_1155_2016_1867059 crossref_primary_10_1038_s41598_019_54570_8 crossref_primary_10_1021_acs_jcim_1c00767 crossref_primary_10_1021_ja1069882 crossref_primary_10_1002_pro_2274 crossref_primary_10_3390_molecules29030740 crossref_primary_10_1016_j_febslet_2013_01_046 crossref_primary_10_1021_ja809002a crossref_primary_10_1007_s12011_018_1444_5 crossref_primary_10_1021_bm401406e crossref_primary_10_5012_bkcs_2011_32_5_1751 crossref_primary_10_1021_jp5111357 crossref_primary_10_1016_j_bbamem_2009_12_012 crossref_primary_10_1039_C6CP04431J crossref_primary_10_1096_fj_11_194613 crossref_primary_10_1103_PhysRevE_84_051922 crossref_primary_10_1016_j_bbamem_2018_02_018 crossref_primary_10_1371_journal_pone_0056467 crossref_primary_10_1016_j_jinorgbio_2017_06_008 crossref_primary_10_1515_hsz_2020_0174 crossref_primary_10_1016_j_bpj_2010_09_070 crossref_primary_10_1021_acs_jpcb_7b12083 crossref_primary_10_1021_acs_biochem_5b00052 crossref_primary_10_3389_fmolb_2022_849979 crossref_primary_10_1021_acs_jpcb_9b10349 crossref_primary_10_1016_j_bpc_2021_106702 crossref_primary_10_1111_febs_12807 crossref_primary_10_1016_j_bbagen_2017_06_004 crossref_primary_10_1002_anie_200901694 crossref_primary_10_1016_j_biochi_2017_07_015 crossref_primary_10_1039_C4SM00907J crossref_primary_10_1039_C5TB00487J crossref_primary_10_1016_j_bbagen_2016_01_008 crossref_primary_10_1021_bi300542g crossref_primary_10_3390_cells7080095 crossref_primary_10_1021_la902980d crossref_primary_10_1016_j_bpj_2013_09_045 crossref_primary_10_1039_C6RA19714K crossref_primary_10_1016_j_chemphyslip_2021_105083 crossref_primary_10_1016_j_bbamem_2018_04_012 crossref_primary_10_1007_s12551_017_0351_x crossref_primary_10_1021_acs_langmuir_6b00825 crossref_primary_10_1021_jp508926e crossref_primary_10_1002_bip_22650 crossref_primary_10_1016_j_bbamem_2011_06_012 crossref_primary_10_3390_macromol3040046 crossref_primary_10_1007_s10989_010_9202_3 crossref_primary_10_1002_chem_201602816 crossref_primary_10_1021_bm100824z crossref_primary_10_3390_biom4010020 crossref_primary_10_1016_j_bbamem_2011_09_027 crossref_primary_10_1063_1_3385470 crossref_primary_10_1039_c3cp44542a crossref_primary_10_3390_molecules27031021 crossref_primary_10_1016_j_ijbiomac_2023_124470 crossref_primary_10_1016_j_bbamem_2018_02_013 crossref_primary_10_1371_journal_pone_0073080 crossref_primary_10_1002_pro_5119 crossref_primary_10_1021_ar200189b crossref_primary_10_1146_annurev_biophys_050511_102349 crossref_primary_10_1002_chem_201704910 crossref_primary_10_1016_j_ijbiomac_2020_11_161 crossref_primary_10_1155_2016_2798269 crossref_primary_10_1021_jp108870q crossref_primary_10_1039_C7CP06463B crossref_primary_10_1016_j_bbamem_2018_02_005 crossref_primary_10_1016_j_jsb_2009_05_009 crossref_primary_10_1074_jbc_M115_659797 crossref_primary_10_1039_C3CS60459D |
Cites_doi | 10.1194/jlr.R800007-JLR200 10.2337/diabetes.54.7.2235 10.1016/j.bpc.2006.05.008 10.1007/s001250051175 10.1016/j.jmb.2004.06.086 10.1074/jbc.M500997200 10.1016/j.biocel.2005.12.009 10.1021/jp0762020 10.2337/db07-0178 10.1039/b106227c 10.1016/S0022-2836(02)01377-3 10.1006/jmbi.1998.2346 10.1016/j.bbamem.2006.07.001 10.1073/pnas.93.14.7283 10.1002/j.1460-2075.1990.tb08079.x 10.1021/bi050840w 10.1006/jmbi.2001.4593 10.1152/ajpendo.00318.2007 10.1093/ilar.47.3.225 10.1038/nm0698-730 10.1210/er.2007-0037 10.2337/diabetes.52.9.2304 10.1074/jbc.275.19.14077 10.1016/S0006-3495(03)75047-4 10.2337/diabetes.47.5.743 10.1111/j.1742-4658.2006.05367.x 10.1007/s12017-007-0003-6 10.1073/pnas.0502066102 10.1155/2008/421287 10.1097/00006676-199510000-00014 10.1021/bi060579z 10.1016/j.bbamem.2006.01.018 10.1016/S0006-3495(00)76673-2 10.1021/bi036284s 10.1021/ja802210u 10.2337/db06-1579 10.1074/jbc.M608207200 10.1177/000456329403100209 10.1016/S0005-2736(99)00200-X 10.1016/0304-4157(86)90004-3 10.1021/ja710484d 10.1021/bi034889i 10.1021/bi8014357 10.1021/la7014868 10.1529/biophysj.107.117168 10.1021/bi051432v 10.1016/0006-8993(95)00148-J 10.1007/s00125-003-1304-4 10.1016/j.bbamem.2007.11.008 10.2337/diabetes.48.3.491 10.1016/j.bbamem.2007.07.001 10.1021/bi020314u 10.1002/anie.200705372 10.2337/db05-1672 10.2337/diabetes.52.7.1701 10.1002/chem.200700576 |
ContentType | Journal Article |
Copyright | Copyright © 2008 American Chemical Society |
Copyright_xml | – notice: Copyright © 2008 American Chemical Society |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/bi801427c |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Single Mutation of IAPP Reduces Toxicity |
EISSN | 1520-4995 |
EndPage | 12688 |
ExternalDocumentID | 18989933 10_1021_bi801427c ark_67375_TPS_VZB62Q08_Z a257409719 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI054515 – fundername: NIDDK NIH HHS grantid: R37 DK046960 – fundername: NIDDK NIH HHS grantid: DK046960 – fundername: NIDDK NIH HHS grantid: R01 DK046960 – fundername: NIAID NIH HHS grantid: AI054515 |
GroupedDBID | - .K2 02 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFFNX AJYGW ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 K78 KM L7B LG6 P2P ROL TN5 UI2 UQL VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 6TJ ABJNI ABQRX ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK XSW ZCA ~02 ~KM AAYXX ABBLG ABLBI ACRPL ADNMO ANPPW CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a452t-7ac76ce9b80fe3272a3b071b3db4d62ecd5467073b1caad16cce2ee17552ad6d3 |
IEDL.DBID | ACS |
ISSN | 0006-2960 1520-4995 |
IngestDate | Thu Jul 10 17:25:44 EDT 2025 Fri May 30 10:59:33 EDT 2025 Tue Jul 01 02:05:33 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Wed Oct 30 09:40:11 EDT 2024 Thu Aug 27 13:42:08 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a452t-7ac76ce9b80fe3272a3b071b3db4d62ecd5467073b1caad16cce2ee17552ad6d3 |
Notes | istex:015FB4A90EBC1EBA84D840B7A85146F78B8039CF ark:/67375/TPS-VZB62Q08-Z ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1021/bi801427c |
PMID | 18989933 |
PQID | 66690967 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_66690967 pubmed_primary_18989933 crossref_primary_10_1021_bi801427c crossref_citationtrail_10_1021_bi801427c istex_primary_ark_67375_TPS_VZB62Q08_Z acs_journals_10_1021_bi801427c |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-12-02 |
PublicationDateYYYYMMDD | 2008-12-02 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-02 day: 02 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2008 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Pappalardo G. (ref46/cit46) 2007; 13 Nanga R. P. R. (ref39/cit39) 2008; 47 Konarkowska B. (ref17/cit17) 2006; 273 Janson J. (ref16/cit16) 1999; 48 Khemtemourian L. (ref26/cit26) 2008 Quist A. (ref22/cit22) 2005; 102 Lin C. Y. (ref21/cit21) 2007; 56 Green J. (ref59/cit59) 2003; 326 Kawahara M. (ref40/cit40) 2000; 275 Jayasinghe S. A. (ref45/cit45) 2005; 44 Janson J. (ref10/cit10) 1996; 93 Hull R. L. (ref12/cit12) 2005; 54 Hoskin D. W. (ref32/cit32) 2008; 1778 Powers E. T. (ref24/cit24) 2008; 94 Sun X. Q. (ref55/cit55) 2008; 112 Lorenzo A. (ref3/cit3) 1996 McElhaney R. N. (ref49/cit49) 1986; 864 Heimburg T. (ref54/cit54) 2000; 78 Matveyenko A. V. (ref8/cit8) 2006; 55 Hoppener J. W. M. (ref2/cit2) 2006; 38 Hoppener J. W. M. (ref6/cit6) 1999; 42 Casas S. (ref43/cit43) 2008 Porat Y. (ref23/cit23a) 2003; 42 Bechinger B. (ref30/cit30) 2006; 1758 Vanhulst K. L. (ref34/cit34) 1994; 31 Epand R. F. (ref58/cit58) 2006; 1758 Jaikaran E. (ref37/cit37) 2001; 308 Ramamoorthy A. (ref51/cit51) 2008; 130 Shai Y. (ref31/cit31) 1999; 1462 Ladokhin A. S. (ref44/cit44) 1999; 285 Ritzel R. A. (ref19/cit19) 2003; 52 Casas S. (ref42/cit42) 2007; 56 Bell E. T. (ref14/cit14) 1959; 35 Brender J. R. (ref25/cit25) 2008; 130 Knight J. D. (ref33/cit33) 2006; 45 Yoshiike Y. (ref28/cit28) 2007; 9 Matveyenko A. V. (ref4/cit4) 2006; 47 Lee S. J. (ref36/cit36) 1998; 4 Anguiano M. (ref20/cit20) 2002; 41 Epand R. M. (ref57/cit57) 2007; 126 Meier J. J. (ref18/cit18) 2006; 291 Ariga T. (ref35/cit35) 2008; 49 Tasaka Y. (ref13/cit13) 1995; 11 Abedini A. (ref38/cit38) 2005; 44 Grasso D. (ref47/cit47) 2001; 25 Henzler-Wildman K. A. (ref48/cit48) 2004; 43 Mattson M. P. (ref41/cit41) 1995; 676 Huang C. J. (ref9/cit9) 2007; 293 Butler A. E. (ref11/cit11) 2003; 52 Brender J. R. (ref23/cit23b) 2007; 1768 Knight J. D. (ref52/cit52) 2004; 341 Pralong W. F. (ref29/cit29) 1990; 9 Necula M. (ref27/cit27) 2007; 282 Demuro A. (ref15/cit15) 2005; 280 Ivanova V. P. (ref50/cit50) 2003; 84 Mishra R. (ref53/cit53) 2008; 47 Soeller W. C. (ref7/cit7) 1998; 47 Brasseur R. (ref56/cit56) 2007; 23 Clark A. (ref1/cit1) 2004; 47 Haataja L. (ref5/cit5) 2008; 29 |
References_xml | – volume: 49 start-page: 1157 year: 2008 ident: ref35/cit35 publication-title: J. Lipid Res. doi: 10.1194/jlr.R800007-JLR200 – volume: 54 start-page: 2235 year: 2005 ident: ref12/cit12 publication-title: Diabetes doi: 10.2337/diabetes.54.7.2235 – volume: 126 start-page: 197 year: 2007 ident: ref57/cit57 publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2006.05.008 – volume: 42 start-page: 427 year: 1999 ident: ref6/cit6 publication-title: Diabetologia doi: 10.1007/s001250051175 – volume: 291 start-page: E1317−E1324 year: 2006 ident: ref18/cit18 publication-title: Am. J. Physiol. – volume: 341 start-page: 1175 year: 2004 ident: ref52/cit52 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.06.086 – volume: 280 start-page: 17294 year: 2005 ident: ref15/cit15 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500997200 – volume: 38 start-page: 726 year: 2006 ident: ref2/cit2 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2005.12.009 – volume: 112 start-page: 1968 year: 2008 ident: ref55/cit55 publication-title: J. Phys. Chem. B doi: 10.1021/jp0762020 – volume: 56 start-page: 2284 year: 2007 ident: ref42/cit42 publication-title: Diabetes doi: 10.2337/db07-0178 – volume: 25 start-page: 1543 year: 2001 ident: ref47/cit47 publication-title: New J. Chem. doi: 10.1039/b106227c – volume: 326 start-page: 1147 year: 2003 ident: ref59/cit59 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)01377-3 – volume: 285 start-page: 1363 year: 1999 ident: ref44/cit44 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2346 – volume: 1758 start-page: 1529 year: 2006 ident: ref30/cit30 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2006.07.001 – volume: 93 start-page: 7283 year: 1996 ident: ref10/cit10 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.14.7283 – volume: 9 start-page: 53 year: 1990 ident: ref29/cit29 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1990.tb08079.x – volume: 44 start-page: 12113 year: 2005 ident: ref45/cit45 publication-title: Biochemistry doi: 10.1021/bi050840w – volume: 308 start-page: 515 year: 2001 ident: ref37/cit37 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4593 – volume: 293 start-page: E1656 year: 2007 ident: ref9/cit9 publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00318.2007 – volume: 47 start-page: 225 year: 2006 ident: ref4/cit4 publication-title: ILAR J. doi: 10.1093/ilar.47.3.225 – volume: 4 start-page: 730 year: 1998 ident: ref36/cit36 publication-title: Nat. Med. doi: 10.1038/nm0698-730 – volume: 29 start-page: 302 year: 2008 ident: ref5/cit5 publication-title: Endocr. Rev. doi: 10.1210/er.2007-0037 – volume: 52 start-page: 2304 year: 2003 ident: ref11/cit11 publication-title: Diabetes doi: 10.2337/diabetes.52.9.2304 – volume: 275 start-page: 14077 year: 2000 ident: ref40/cit40 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.19.14077 – volume: 84 start-page: 2427 year: 2003 ident: ref50/cit50 publication-title: Biophys. J. doi: 10.1016/S0006-3495(03)75047-4 – volume: 47 start-page: 743 year: 1998 ident: ref7/cit7 publication-title: Diabetes doi: 10.2337/diabetes.47.5.743 – volume: 273 start-page: 3614 year: 2006 ident: ref17/cit17 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2006.05367.x – volume: 9 start-page: 270 year: 2007 ident: ref28/cit28 publication-title: Neuromol. Med. doi: 10.1007/s12017-007-0003-6 – volume: 102 start-page: 10427 year: 2005 ident: ref22/cit22 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0502066102 – start-page: 421287 year: 2008 ident: ref26/cit26 publication-title: Exp. Diabetes Res. doi: 10.1155/2008/421287 – volume: 11 start-page: 303 year: 1995 ident: ref13/cit13 publication-title: Pancreas doi: 10.1097/00006676-199510000-00014 – volume: 45 start-page: 9496 year: 2006 ident: ref33/cit33 publication-title: Biochemistry doi: 10.1021/bi060579z – volume: 1758 start-page: 1343 year: 2006 ident: ref58/cit58 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2006.01.018 – year: 2008 ident: ref43/cit43 publication-title: Diabetologia – volume: 78 start-page: 1154 year: 2000 ident: ref54/cit54 publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76673-2 – volume: 43 start-page: 8459 year: 2004 ident: ref48/cit48 publication-title: Biochemistry doi: 10.1021/bi036284s – volume: 130 start-page: 11023 year: 2008 ident: ref51/cit51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja802210u – volume: 56 start-page: 1324 year: 2007 ident: ref21/cit21 publication-title: Diabetes doi: 10.2337/db06-1579 – volume: 282 start-page: 10311 year: 2007 ident: ref27/cit27 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M608207200 – volume: 31 start-page: 165 year: 1994 ident: ref34/cit34 publication-title: Ann. Clin. Biochem. doi: 10.1177/000456329403100209 – volume: 1462 start-page: 55 year: 1999 ident: ref31/cit31 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(99)00200-X – volume: 864 start-page: 361 year: 1986 ident: ref49/cit49 publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(86)90004-3 – volume: 35 start-page: 801 year: 1959 ident: ref14/cit14 publication-title: Am. J. Pathol. – volume: 130 start-page: 6424 year: 2008 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja710484d – volume: 42 start-page: 10971 year: 2003 ident: ref23/cit23a publication-title: Biochemistry doi: 10.1021/bi034889i – volume: 47 start-page: 12689 year: 2008 ident: ref39/cit39 publication-title: Biochemistry doi: 10.1021/bi8014357 – volume: 23 start-page: 9769 year: 2007 ident: ref56/cit56 publication-title: Langmuir doi: 10.1021/la7014868 – volume: 94 start-page: 379 year: 2008 ident: ref24/cit24 publication-title: Biophys. J. doi: 10.1529/biophysj.107.117168 – volume: 44 start-page: 16284 year: 2005 ident: ref38/cit38 publication-title: Biochemistry doi: 10.1021/bi051432v – start-page: 89 volume-title: Neurobiology of Alzheimer’s Disease year: 1996 ident: ref3/cit3 – volume: 676 start-page: 219 year: 1995 ident: ref41/cit41 publication-title: Brain Res. doi: 10.1016/0006-8993(95)00148-J – volume: 47 start-page: 157 year: 2004 ident: ref1/cit1 publication-title: Diabetologia doi: 10.1007/s00125-003-1304-4 – volume: 1778 start-page: 357 year: 2008 ident: ref32/cit32 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2007.11.008 – volume: 48 start-page: 491 year: 1999 ident: ref16/cit16 publication-title: Diabetes doi: 10.2337/diabetes.48.3.491 – volume: 1768 start-page: 2026 year: 2007 ident: ref23/cit23b publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2007.07.001 – volume: 41 start-page: 11338 year: 2002 ident: ref20/cit20 publication-title: Biochemistry doi: 10.1021/bi020314u – volume: 47 start-page: 4679 year: 2008 ident: ref53/cit53 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.200705372 – volume: 55 start-page: 2106 year: 2006 ident: ref8/cit8 publication-title: Diabetes doi: 10.2337/db05-1672 – volume: 52 start-page: 1701 year: 2003 ident: ref19/cit19 publication-title: Diabetes doi: 10.2337/diabetes.52.7.1701 – volume: 13 start-page: 10204 year: 2007 ident: ref46/cit46 publication-title: Chem.-Eur. J. doi: 10.1002/chem.200700576 |
SSID | ssj0004074 |
Score | 2.3311625 |
Snippet | Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by β-cells in the islets of Langerhans. The aggregation of the peptide... Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by beta-cells in the islets of Langerhans. The aggregation of the... |
SourceID | proquest pubmed crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12680 |
SubjectTerms | Amino Acid Sequence Amyloid - chemistry Amyloid - genetics Amyloid - metabolism Amyloid - toxicity Animals Calorimetry, Differential Scanning Cell Membrane - drug effects Cell Membrane - metabolism Cell Membrane Permeability - drug effects Humans Islet Amyloid Polypeptide Islets of Langerhans - cytology Islets of Langerhans - drug effects Molecular Sequence Data Mutation Phosphatidylglycerols - metabolism Rats |
Title | A Single Mutation in the Nonamyloidogenic Region of Islet Amyloid Polypeptide Greatly Reduces Toxicity |
URI | http://dx.doi.org/10.1021/bi801427c https://api.istex.fr/ark:/67375/TPS-VZB62Q08-Z/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/18989933 https://www.proquest.com/docview/66690967 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9gAXHi2PLVAsQBWXlMSJne5xWagqpFaF3aKqF8se21LUbVJ1s1LLr2ecxxZEC-dMlIc_e77PM54BeB-jsTE6TyIHZZSh0NEw9RnNK9ISRM9R2CAUDw7l_nH29UScrMC7OyL4PPloilDghOd4D9a4pMkb-M94cnP4Me5KLZM05sTH-_JBv98aXA_O_3A9a-EvXt3NKxv_svcIPvendNq0krOdRW128OffRRv_9eqP4WHHL9moBcQTWHHlOmyMStLW59dsmzUZn81W-jrcH_fd3jbAj9iEvNjMsYNFG51nRcmIHbJD4urnJOsLWxHYCmTfXchhZpVnhCdXs1F7lR1VMxK1tARZx5qdh9k12VrCzpxNq6sCifA_heO9L9PxftT1YIh0Jngd5RpziW5odmPvUp5znRpiJSa1JrOSO7SCllpaJ0yCWttEIjruHJESwbWVNn0Gq2VVuhfAhBfOyMznsfaZdVxrY62WHqVJdIJ2AFs0SKqbQ3PVhMd5opZ_cQAf-vFT2FUwD400ZreZvl2aXrRlO24z2m5AsLTQl2chzy0Xano0UT9OP0n-Ld5VpwN406NE0bCEkIouXbWYKxJ_QxKB-QCet-C5eVroyzlM083_fdVLeNDkoIQUGf4KVuvLhXtNRKc2Ww3QfwEAHff5 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLVgexgvMDY-CmOzEJp4yUic2FkfQ7WpwFoN2qFpL5Z97UjRugQtqbTx67l20nagIXjOTeKPY_sc-_peQt6FoE0INkeRAyJIgKugH-cJjivUEkjPgRsnFEdjMTxLPp_z8y5MjrsLg4Wo8Uu1P8RfRReIPujCxTlhKTwk60hCmENzNpis7kCGXcRlVMgMafkiitDdV90KBPVvK9C6a8ybv9NLv8wcP2nzFfkCeu-Sy4N5ow_g5x-xG_-vBpvkccc2adbC4yl5YMstsp2VqLSvbuk-9f6ffmN9i2wMFrnftkme0QmuaTNLR_P2rJ4WJUWuSMfI3K9Q5BemQugVQL9Z59FMq5wiumxDs_YpPa1mKHFxQjKW-n2I2S3aGkRSTafVTQFI_5-Rs-Oj6WAYdBkZApVw1gSpglSA7evDMLcxS5mKNXIUHRudGMEsGI4TL84aOgKlTCQALLMWKQpnyggTPydrZVXal4TynFstkjwNVZ4Yy5TSxiiRg9CRisD0yC42ouxGVC39YTmL5LIVe-T9ohsldPHMXVqN2X2mb5emP9ogHvcZ7XssLC3U9aXzeku5nJ5O5PeLj4J9DQ_lRY_sLcAisVvcAYsqbTWvJUrBPkrCtEdetBha_c1l6ezH8at_1WqPbAynoxN58mn85TV55L1TnPMM2yFrzfXcvkEK1Ohdj_1fGisAaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgk4AXLhuXsrFZCE28ZCRO4qyPWaEal5VCOzTtxbKPbSlal0xLKm379Rw7aQdoCJ5zkvjy2f4-n-NjQt6EoHQIxqLIAR4kkMqgH9sExxVqCaTnkGonFA9H_OAo-XScHndC0Z2FwULU-KXaO_HdqD7XtsswEL1Thct1wjK4S1adu84hOh9Mbs5Bhl3WZVTJDKn5IpPQr6-6VQjq31ahVdegl3-nmH6pGT4iX5eF9BEmp7vzRu3C9R_5G_-_Fo_Jw4510ryFyRNyx5RrZD0vUXGfXdEd6uNA_Qb7Grk_WNwBt05sTie4ts0MPZy3PntalBQ5Ix0hgz9DsV_oCiFYAP1uXGQzrSxFlJmG5u1TOq5mKHVxYtKG-v2I2RXaakRUTafVZQEoA56So-GH6eAg6G5mCGSSsibIJGQcTF_thdbELGMyVshVVKxVojkzoFOcgHH2UBFIqSMOYJgxSFVSJjXX8TOyUlaleUFoalOjeGKzUNpEGyal0lpyC1xFMgLdI1vYkKIbWbXwTnMWiWUr9sjbRVcK6PKau-s1ZreZvl6anrfJPG4z2vF4WFrIi1MX_ZalYjqeiB8n-5x9C_fESY9sLwAjsFuco0WWpprXAiVhH6Vh1iPPWxzd_M3d1tmP45f_qtU2uTd-PxRfPo4-b5AHPkjFxdCwTbLSXMzNK2RCjdry8P8Jar8C7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single+Mutation+in+the+Nonamyloidogenic+Region+of+Islet+Amyloid+Polypeptide+Greatly+Reduces+Toxicity&rft.jtitle=Biochemistry+%28Easton%29&rft.au=BRENDER%2C+Jeffrey+R.&rft.au=HARTMAN%2C+Kevin&rft.au=REID%2C+Kendra+R.&rft.au=KENNEDY%2C+Robert+T.&rft.date=2008-12-02&rft.pub=American+Chemical+Society&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=47&rft.issue=48&rft.spage=12680&rft.epage=12688&rft_id=info:doi/10.1021%2Fbi801427c&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_VZB62Q08_Z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |