Acarbose May Function as a Competitive Exclusion Agent for the Producing Bacteria

Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by...

Full description

Saved in:
Bibliographic Details
Published inACS chemical biology Vol. 18; no. 2; pp. 367 - 376
Main Authors Tanoeyadi, Samuel, Tsunoda, Takeshi, Ito, Takuya, Philmus, Benjamin, Mahmud, Taifo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose.
AbstractList Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose.
Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., sp. SE50/110 (acarbose producer), GLA.O (acarbose producer), and ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from M1152 and the PsOS-producing actinobacteria revealed that the α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose.
Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose.Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose.
Author Tsunoda, Takeshi
Tanoeyadi, Samuel
Ito, Takuya
Philmus, Benjamin
Mahmud, Taifo
AuthorAffiliation Department of Pharmaceutical Sciences
Laboratory of Natural Medicines, Faculty of Pharmacy
AuthorAffiliation_xml – name: Department of Pharmaceutical Sciences
– name: Laboratory of Natural Medicines, Faculty of Pharmacy
Author_xml – sequence: 1
  givenname: Samuel
  surname: Tanoeyadi
  fullname: Tanoeyadi, Samuel
  organization: Department of Pharmaceutical Sciences
– sequence: 2
  givenname: Takeshi
  orcidid: 0000-0002-4374-7863
  surname: Tsunoda
  fullname: Tsunoda, Takeshi
  organization: Department of Pharmaceutical Sciences
– sequence: 3
  givenname: Takuya
  surname: Ito
  fullname: Ito, Takuya
  organization: Laboratory of Natural Medicines, Faculty of Pharmacy
– sequence: 4
  givenname: Benjamin
  orcidid: 0000-0003-2085-0873
  surname: Philmus
  fullname: Philmus, Benjamin
  email: benjamin.philmus@oregonstate.edu
  organization: Department of Pharmaceutical Sciences
– sequence: 5
  givenname: Taifo
  orcidid: 0000-0001-9639-526X
  surname: Mahmud
  fullname: Mahmud, Taifo
  email: Taifo.Mahmud@oregonstate.edu
  organization: Department of Pharmaceutical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36648321$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLxDAQgIMovv-AB8nRy65tHm16XBdfsKKCnsvsdKqRtlmTVPTf22XXFTx4msB8X2C-A7bduY4YO0mTcZqI9Bww4Cu1c-vGApMkL_QW20-1ViNTyHx78xbFHjsI4S1JlMxMscv2ZJYpI0W6zx4nCH7uAvE7-OJXfYfRuo5D4MCnrl1QtNF-EL_8xKYPy9XkhbrIa-d5fCX-4F3Vo-1e-AVgJG_hiO3U0AQ6Xs9D9nx1-TS9Gc3ur2-nk9kIlBZxpKDKEHVS5ZmshUIjpVGFKnLSlUohJa3JmEqJGnVVgKlqyBRmeV2g0HJey0N2tvp34d17TyGWrQ1ITQMduT6UIh-OlHLoMqCna7Sft1SVC29b8F_lT4YBECsAvQvBU71B0qRcti5_W5fr1oNk_khoIyzzRQ-2-V8dr9RhV7653ndDqf-Eb0jelvg
CitedBy_id crossref_primary_10_3390_pr11051299
crossref_primary_10_1016_j_synbio_2024_03_006
crossref_primary_10_3390_foods13172809
crossref_primary_10_1007_s00203_024_04139_5
crossref_primary_10_24323_akademik_gida_1350684
Cites_doi 10.7164/antibiotics.37.182
10.1186/1471-2164-13-112
10.1016/j.ab.2006.01.036
10.1038/s41586-021-03819-2
10.1021/acschembio.8b00173
10.1016/j.carres.2007.11.012
10.1016/S0008-6215(03)00293-3
10.1016/j.carres.2008.01.020
10.1093/nar/gkab1045
10.1021/np400159a
10.1042/ETLS20180010
10.1016/j.cell.2006.07.014
10.1111/j.1751-7915.2010.00208.x
10.1271/bbb1961.46.2021
10.1021/np070210q
10.1039/b205561a
10.7164/antibiotics.35.1234
10.1093/protein/gzl044
10.1093/bioinformatics/btt403
10.1021/acs.jnatprod.9b01285
10.1074/jbc.274.16.10889
10.7164/antibiotics.35.1160
10.3389/fmicb.2020.00002
10.1016/j.jbiotec.2008.10.016
10.7164/antibiotics.34.1424
10.1038/s41467-022-31232-4
10.1073/pnas.2107335118
10.1002/j.1460-2075.1987.tb02731.x
10.1002/pro.4379
10.1021/acs.jnatprod.1c01046
10.1093/nar/gkx360
10.1016/j.biortech.2011.09.121
10.7164/antibiotics.36.1157
10.1021/acs.jcim.1c00203
10.1016/j.bjm.2016.10.005
10.1016/j.chemosphere.2020.129167
10.1038/8235
10.7164/antibiotics.34.1429
10.1021/ja3041866
10.1093/bioinformatics/btw638
10.1093/oxfordjournals.jbchem.a134659
10.1039/C9NP00050J
10.1002/jcc.21256
10.1111/j.1751-7915.2010.00219.x
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acschembio.2c00795
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1554-8937
EndPage 376
ExternalDocumentID 36648321
10_1021_acschembio_2c00795
a472322152
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI129957
GroupedDBID ---
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
EBS
ED~
F5P
GGK
GNL
GX1
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a452t-4ad6cc50d763f24c833849497e5d41a1e55e88d42fc5d9a8dfa64c67f9c253bf3
IEDL.DBID ACS
ISSN 1554-8929
1554-8937
IngestDate Fri Jul 11 16:08:05 EDT 2025
Thu Jan 02 22:38:52 EST 2025
Tue Jul 01 01:23:20 EDT 2025
Thu Apr 24 23:08:00 EDT 2025
Tue Feb 21 10:51:57 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a452t-4ad6cc50d763f24c833849497e5d41a1e55e88d42fc5d9a8dfa64c67f9c253bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4374-7863
0000-0001-9639-526X
0000-0003-2085-0873
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9957957
PMID 36648321
PQID 2766433007
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2766433007
pubmed_primary_36648321
crossref_primary_10_1021_acschembio_2c00795
crossref_citationtrail_10_1021_acschembio_2c00795
acs_journals_10_1021_acschembio_2c00795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-17
PublicationDateYYYYMMDD 2023-02-17
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS chemical biology
PublicationTitleAlternate ACS Chem. Biol
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Janson G. (ref44/cit44) 2017; 33
ref11/cit11
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
Laube H. (ref25/cit25) 1980; 30
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.7164/antibiotics.37.182
– volume: 30
  start-page: 1154
  year: 1980
  ident: ref25/cit25
  publication-title: Arzneimittelforschung
– ident: ref29/cit29
  doi: 10.1186/1471-2164-13-112
– ident: ref35/cit35
  doi: 10.1016/j.ab.2006.01.036
– ident: ref43/cit43
  doi: 10.1038/s41586-021-03819-2
– ident: ref7/cit7
  doi: 10.1021/acschembio.8b00173
– ident: ref17/cit17
  doi: 10.1016/j.carres.2007.11.012
– ident: ref40/cit40
  doi: 10.1016/S0008-6215(03)00293-3
– ident: ref18/cit18
  doi: 10.1016/j.carres.2008.01.020
– ident: ref33/cit33
  doi: 10.1093/nar/gkab1045
– ident: ref30/cit30
  doi: 10.1021/np400159a
– ident: ref11/cit11
  doi: 10.1042/ETLS20180010
– ident: ref3/cit3
  doi: 10.1016/j.cell.2006.07.014
– ident: ref4/cit4
  doi: 10.1111/j.1751-7915.2010.00208.x
– ident: ref20/cit20
  doi: 10.1271/bbb1961.46.2021
– ident: ref32/cit32
  doi: 10.1021/np070210q
– ident: ref12/cit12
  doi: 10.1039/b205561a
– ident: ref19/cit19
  doi: 10.7164/antibiotics.35.1234
– ident: ref34/cit34
  doi: 10.1093/protein/gzl044
– ident: ref42/cit42
  doi: 10.1093/bioinformatics/btt403
– ident: ref1/cit1
  doi: 10.1021/acs.jnatprod.9b01285
– ident: ref28/cit28
  doi: 10.1074/jbc.274.16.10889
– ident: ref26/cit26
  doi: 10.7164/antibiotics.35.1160
– ident: ref6/cit6
  doi: 10.3389/fmicb.2020.00002
– ident: ref16/cit16
  doi: 10.1016/j.jbiotec.2008.10.016
– ident: ref22/cit22
  doi: 10.7164/antibiotics.34.1424
– ident: ref13/cit13
  doi: 10.1038/s41467-022-31232-4
– ident: ref8/cit8
  doi: 10.1073/pnas.2107335118
– ident: ref37/cit37
  doi: 10.1002/j.1460-2075.1987.tb02731.x
– ident: ref39/cit39
  doi: 10.1002/pro.4379
– ident: ref5/cit5
  doi: 10.1021/acs.jnatprod.1c01046
– ident: ref9/cit9
  doi: 10.1093/nar/gkx360
– ident: ref14/cit14
  doi: 10.1016/j.biortech.2011.09.121
– ident: ref23/cit23
  doi: 10.7164/antibiotics.36.1157
– ident: ref41/cit41
  doi: 10.1021/acs.jcim.1c00203
– ident: ref2/cit2
  doi: 10.1016/j.bjm.2016.10.005
– ident: ref15/cit15
  doi: 10.1016/j.chemosphere.2020.129167
– ident: ref38/cit38
  doi: 10.1038/8235
– ident: ref21/cit21
  doi: 10.7164/antibiotics.34.1429
– ident: ref31/cit31
  doi: 10.1021/ja3041866
– volume: 33
  start-page: 444
  year: 2017
  ident: ref44/cit44
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw638
– ident: ref36/cit36
  doi: 10.1093/oxfordjournals.jbchem.a134659
– ident: ref10/cit10
  doi: 10.1039/C9NP00050J
– ident: ref45/cit45
  doi: 10.1002/jcc.21256
– ident: ref27/cit27
  doi: 10.1111/j.1751-7915.2010.00219.x
SSID ssj0043689
Score 2.3869545
Snippet Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 367
SubjectTerms Acarbose
Actinobacteria - metabolism
alpha-Amylases - metabolism
Bacterial Proteins - metabolism
Diabetes Mellitus, Type 2
Humans
Title Acarbose May Function as a Competitive Exclusion Agent for the Producing Bacteria
URI http://dx.doi.org/10.1021/acschembio.2c00795
https://www.ncbi.nlm.nih.gov/pubmed/36648321
https://www.proquest.com/docview/2766433007
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB48HvTF-1gvIgg-aNdNmrTp47q4irCiqLBvJVdB1F2xu6D-eic9FPHAl740Cc1kOt9MMvkGYM_6uqpZyzM_WokBCldoB7UKaBxrpxOE7IKBr3cRnd3y877oT8DhLyf4jB4pg2Gee9R3wyYziGiJmIRpFsnYh1rtznVtdz2VelKwowoeSET96orMz2N4MDL5VzD6xcMskKY7D736vk6ZYHLfHI9007x9p2_81yQWYK5yOUm71JFFmHCDJZjp1JXeluGqbdSzHuaO9NQr6SLS-dUiKieKdAq_ukgwIicv5mHsd9dI21_IIujvEvQfyWXBGosYSI5L7me1Arfdk5vOWVCVWggUF2wUcGUjY0TLornJGDcSI1fPWxM7YTlV1AnhpLScZUbYREmbqYibKM4Sw0Sos3AVpgbDgVsHophAY64N88T1sdHSGpmoDLGYaua0bMA-SiOtfpU8LU7BGU0_RZRWImoArVcnNRVjuS-c8fBnn4OPPk8lX8efrXfrRU9R5v6sRA3ccJynLMavD0Ns1YC1Uhs-xgvxlS_wtPHvmWzCrC9T77O9abwFU6PnsdtGZ2akdwodxudpn74Dp8XxpQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54edAX75d5jSD4IJ02Tdb0cQ7H1E0UJ_hWciuIuondQP31nmTdhqKir20SkpP0fF-anO8A7BuXVzU7dsqPRuAGhUn0g0oGYRwrqxKEbK_A17qsNG7Z-R2_K-K4XSwMdiLHlnJ_iD9WFwiP8BmO4kndd8tUI7AlfBKmkY1Qt-Oq1m6G7tcpqideJJWzQCD4F5Ey37fhMEnnnzHpB6LpAac-D-1RV_09k4dyv6fK-v2LiuM_x7IAcwUBJdXBilmECdtZgpnaMO_bMlxXtXxR3dySlnwjdcQ9N3dE5kSSmmfZ_roROX3Vj333r41UXXgWQfZLkE2SK68hi4hITgZK0HIFbuun7VojKBIvBJJx2guYNBWt-bFB55NRpgXuY52KTWy5YaEMLedWCMNoprlJpDCZrDBdibNEUx6pLFqFqU63Y9eBSMrRtStNnYx9rJUwWiQyQ2QOFbVKlOAArZEWH06e-jNxGqZjE6WFiUoQDicp1YV-uUuj8fhrncNRneeBesevpfeGc5-izd3JiezYbj9PaYy9jyIsVYK1waIYtRfhK5fuaePPI9mFmUa71UybZ5cXmzDrEti7e-BhvAVTvZe-3Uaa01M7fll_ACrL-RU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkMZegA02ytc8aRIPU7rGsRvnsZRVA9ZqiE3qW-SvSNNKMy2txPbXc-cknUAwIV4T27LP9v3OPt_vAPYd5VUtesT86BQeUIRGPWh0FKep8SZDyA4MfONJ__hcfJ7KaXN1QbEw2IkKW6qCE5929ZUrGoaB-BC_40i-m4uyyy2CWyYfwiPy29GpazD81qpgYlXPAlGqFJFCA6CJlvlzG4RLtvoVl_5ibAbQGT2F6aq74a3JZXe5MF17-xuT43-M5xk8aQxRNqhXziY88PMteDxs8789h68Dq69NWXk21jdshPhHc8h0xTQbBms7PDtiRz_sbEl3bmxAYVoMrWCGViU7DVyyiIzsQ80IrV_A-ejobHgcNQkYIi0kX0RCu761sudQCRVcWIXnWWKzSb10Itaxl9Ir5QQvrHSZVq7QfWH7aZFZLhNTJNuwNi_n_iUwzSWqeGM50dmn1ihnVaYLROjYcG9UB96jNPJmA1V58I3zOL8TUd6IqANxO1G5bXjMKZ3G7N46B6s6VzWLx72l99r5z1Hm5EHRc18uq5yn2PskwVId2KkXxqq9BH9R2qdX_zySXVg__TjKTz5NvryGDcpjT8_B4_QNrC2ul_4tWjsL8y6s7J8zl_uY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acarbose+May+Function+as+a+Competitive+Exclusion+Agent+for+the+Producing+Bacteria&rft.jtitle=ACS+chemical+biology&rft.au=Tanoeyadi%2C+Samuel&rft.au=Tsunoda%2C+Takeshi&rft.au=Ito%2C+Takuya&rft.au=Philmus%2C+Benjamin&rft.date=2023-02-17&rft.eissn=1554-8937&rft.volume=18&rft.issue=2&rft.spage=367&rft_id=info:doi/10.1021%2Facschembio.2c00795&rft_id=info%3Apmid%2F36648321&rft.externalDocID=36648321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8929&client=summon