Acarbose May Function as a Competitive Exclusion Agent for the Producing Bacteria
Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by...
Saved in:
Published in | ACS chemical biology Vol. 18; no. 2; pp. 367 - 376 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose. |
---|---|
AbstractList | Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose. Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., sp. SE50/110 (acarbose producer), GLA.O (acarbose producer), and ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from M1152 and the PsOS-producing actinobacteria revealed that the α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose. Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose.Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose. |
Author | Tsunoda, Takeshi Tanoeyadi, Samuel Ito, Takuya Philmus, Benjamin Mahmud, Taifo |
AuthorAffiliation | Department of Pharmaceutical Sciences Laboratory of Natural Medicines, Faculty of Pharmacy |
AuthorAffiliation_xml | – name: Department of Pharmaceutical Sciences – name: Laboratory of Natural Medicines, Faculty of Pharmacy |
Author_xml | – sequence: 1 givenname: Samuel surname: Tanoeyadi fullname: Tanoeyadi, Samuel organization: Department of Pharmaceutical Sciences – sequence: 2 givenname: Takeshi orcidid: 0000-0002-4374-7863 surname: Tsunoda fullname: Tsunoda, Takeshi organization: Department of Pharmaceutical Sciences – sequence: 3 givenname: Takuya surname: Ito fullname: Ito, Takuya organization: Laboratory of Natural Medicines, Faculty of Pharmacy – sequence: 4 givenname: Benjamin orcidid: 0000-0003-2085-0873 surname: Philmus fullname: Philmus, Benjamin email: benjamin.philmus@oregonstate.edu organization: Department of Pharmaceutical Sciences – sequence: 5 givenname: Taifo orcidid: 0000-0001-9639-526X surname: Mahmud fullname: Mahmud, Taifo email: Taifo.Mahmud@oregonstate.edu organization: Department of Pharmaceutical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36648321$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtLxDAQgIMovv-AB8nRy65tHm16XBdfsKKCnsvsdKqRtlmTVPTf22XXFTx4msB8X2C-A7bduY4YO0mTcZqI9Bww4Cu1c-vGApMkL_QW20-1ViNTyHx78xbFHjsI4S1JlMxMscv2ZJYpI0W6zx4nCH7uAvE7-OJXfYfRuo5D4MCnrl1QtNF-EL_8xKYPy9XkhbrIa-d5fCX-4F3Vo-1e-AVgJG_hiO3U0AQ6Xs9D9nx1-TS9Gc3ur2-nk9kIlBZxpKDKEHVS5ZmshUIjpVGFKnLSlUohJa3JmEqJGnVVgKlqyBRmeV2g0HJey0N2tvp34d17TyGWrQ1ITQMduT6UIh-OlHLoMqCna7Sft1SVC29b8F_lT4YBECsAvQvBU71B0qRcti5_W5fr1oNk_khoIyzzRQ-2-V8dr9RhV7653ndDqf-Eb0jelvg |
CitedBy_id | crossref_primary_10_3390_pr11051299 crossref_primary_10_1016_j_synbio_2024_03_006 crossref_primary_10_3390_foods13172809 crossref_primary_10_1007_s00203_024_04139_5 crossref_primary_10_24323_akademik_gida_1350684 |
Cites_doi | 10.7164/antibiotics.37.182 10.1186/1471-2164-13-112 10.1016/j.ab.2006.01.036 10.1038/s41586-021-03819-2 10.1021/acschembio.8b00173 10.1016/j.carres.2007.11.012 10.1016/S0008-6215(03)00293-3 10.1016/j.carres.2008.01.020 10.1093/nar/gkab1045 10.1021/np400159a 10.1042/ETLS20180010 10.1016/j.cell.2006.07.014 10.1111/j.1751-7915.2010.00208.x 10.1271/bbb1961.46.2021 10.1021/np070210q 10.1039/b205561a 10.7164/antibiotics.35.1234 10.1093/protein/gzl044 10.1093/bioinformatics/btt403 10.1021/acs.jnatprod.9b01285 10.1074/jbc.274.16.10889 10.7164/antibiotics.35.1160 10.3389/fmicb.2020.00002 10.1016/j.jbiotec.2008.10.016 10.7164/antibiotics.34.1424 10.1038/s41467-022-31232-4 10.1073/pnas.2107335118 10.1002/j.1460-2075.1987.tb02731.x 10.1002/pro.4379 10.1021/acs.jnatprod.1c01046 10.1093/nar/gkx360 10.1016/j.biortech.2011.09.121 10.7164/antibiotics.36.1157 10.1021/acs.jcim.1c00203 10.1016/j.bjm.2016.10.005 10.1016/j.chemosphere.2020.129167 10.1038/8235 10.7164/antibiotics.34.1429 10.1021/ja3041866 10.1093/bioinformatics/btw638 10.1093/oxfordjournals.jbchem.a134659 10.1039/C9NP00050J 10.1002/jcc.21256 10.1111/j.1751-7915.2010.00219.x |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acschembio.2c00795 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1554-8937 |
EndPage | 376 |
ExternalDocumentID | 36648321 10_1021_acschembio_2c00795 a472322152 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI129957 |
GroupedDBID | --- 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L EBS ED~ F5P GGK GNL GX1 IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a452t-4ad6cc50d763f24c833849497e5d41a1e55e88d42fc5d9a8dfa64c67f9c253bf3 |
IEDL.DBID | ACS |
ISSN | 1554-8929 1554-8937 |
IngestDate | Fri Jul 11 16:08:05 EDT 2025 Thu Jan 02 22:38:52 EST 2025 Tue Jul 01 01:23:20 EDT 2025 Thu Apr 24 23:08:00 EDT 2025 Tue Feb 21 10:51:57 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a452t-4ad6cc50d763f24c833849497e5d41a1e55e88d42fc5d9a8dfa64c67f9c253bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4374-7863 0000-0001-9639-526X 0000-0003-2085-0873 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9957957 |
PMID | 36648321 |
PQID | 2766433007 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2766433007 pubmed_primary_36648321 crossref_primary_10_1021_acschembio_2c00795 crossref_citationtrail_10_1021_acschembio_2c00795 acs_journals_10_1021_acschembio_2c00795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-17 |
PublicationDateYYYYMMDD | 2023-02-17 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS chemical biology |
PublicationTitleAlternate | ACS Chem. Biol |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Janson G. (ref44/cit44) 2017; 33 ref11/cit11 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 Laube H. (ref25/cit25) 1980; 30 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.7164/antibiotics.37.182 – volume: 30 start-page: 1154 year: 1980 ident: ref25/cit25 publication-title: Arzneimittelforschung – ident: ref29/cit29 doi: 10.1186/1471-2164-13-112 – ident: ref35/cit35 doi: 10.1016/j.ab.2006.01.036 – ident: ref43/cit43 doi: 10.1038/s41586-021-03819-2 – ident: ref7/cit7 doi: 10.1021/acschembio.8b00173 – ident: ref17/cit17 doi: 10.1016/j.carres.2007.11.012 – ident: ref40/cit40 doi: 10.1016/S0008-6215(03)00293-3 – ident: ref18/cit18 doi: 10.1016/j.carres.2008.01.020 – ident: ref33/cit33 doi: 10.1093/nar/gkab1045 – ident: ref30/cit30 doi: 10.1021/np400159a – ident: ref11/cit11 doi: 10.1042/ETLS20180010 – ident: ref3/cit3 doi: 10.1016/j.cell.2006.07.014 – ident: ref4/cit4 doi: 10.1111/j.1751-7915.2010.00208.x – ident: ref20/cit20 doi: 10.1271/bbb1961.46.2021 – ident: ref32/cit32 doi: 10.1021/np070210q – ident: ref12/cit12 doi: 10.1039/b205561a – ident: ref19/cit19 doi: 10.7164/antibiotics.35.1234 – ident: ref34/cit34 doi: 10.1093/protein/gzl044 – ident: ref42/cit42 doi: 10.1093/bioinformatics/btt403 – ident: ref1/cit1 doi: 10.1021/acs.jnatprod.9b01285 – ident: ref28/cit28 doi: 10.1074/jbc.274.16.10889 – ident: ref26/cit26 doi: 10.7164/antibiotics.35.1160 – ident: ref6/cit6 doi: 10.3389/fmicb.2020.00002 – ident: ref16/cit16 doi: 10.1016/j.jbiotec.2008.10.016 – ident: ref22/cit22 doi: 10.7164/antibiotics.34.1424 – ident: ref13/cit13 doi: 10.1038/s41467-022-31232-4 – ident: ref8/cit8 doi: 10.1073/pnas.2107335118 – ident: ref37/cit37 doi: 10.1002/j.1460-2075.1987.tb02731.x – ident: ref39/cit39 doi: 10.1002/pro.4379 – ident: ref5/cit5 doi: 10.1021/acs.jnatprod.1c01046 – ident: ref9/cit9 doi: 10.1093/nar/gkx360 – ident: ref14/cit14 doi: 10.1016/j.biortech.2011.09.121 – ident: ref23/cit23 doi: 10.7164/antibiotics.36.1157 – ident: ref41/cit41 doi: 10.1021/acs.jcim.1c00203 – ident: ref2/cit2 doi: 10.1016/j.bjm.2016.10.005 – ident: ref15/cit15 doi: 10.1016/j.chemosphere.2020.129167 – ident: ref38/cit38 doi: 10.1038/8235 – ident: ref21/cit21 doi: 10.7164/antibiotics.34.1429 – ident: ref31/cit31 doi: 10.1021/ja3041866 – volume: 33 start-page: 444 year: 2017 ident: ref44/cit44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw638 – ident: ref36/cit36 doi: 10.1093/oxfordjournals.jbchem.a134659 – ident: ref10/cit10 doi: 10.1039/C9NP00050J – ident: ref45/cit45 doi: 10.1002/jcc.21256 – ident: ref27/cit27 doi: 10.1111/j.1751-7915.2010.00219.x |
SSID | ssj0043689 |
Score | 2.3869545 |
Snippet | Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 367 |
SubjectTerms | Acarbose Actinobacteria - metabolism alpha-Amylases - metabolism Bacterial Proteins - metabolism Diabetes Mellitus, Type 2 Humans |
Title | Acarbose May Function as a Competitive Exclusion Agent for the Producing Bacteria |
URI | http://dx.doi.org/10.1021/acschembio.2c00795 https://www.ncbi.nlm.nih.gov/pubmed/36648321 https://www.proquest.com/docview/2766433007 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB48HvTF-1gvIgg-aNdNmrTp47q4irCiqLBvJVdB1F2xu6D-eic9FPHAl740Cc1kOt9MMvkGYM_6uqpZyzM_WokBCldoB7UKaBxrpxOE7IKBr3cRnd3y877oT8DhLyf4jB4pg2Gee9R3wyYziGiJmIRpFsnYh1rtznVtdz2VelKwowoeSET96orMz2N4MDL5VzD6xcMskKY7D736vk6ZYHLfHI9007x9p2_81yQWYK5yOUm71JFFmHCDJZjp1JXeluGqbdSzHuaO9NQr6SLS-dUiKieKdAq_ukgwIicv5mHsd9dI21_IIujvEvQfyWXBGosYSI5L7me1Arfdk5vOWVCVWggUF2wUcGUjY0TLornJGDcSI1fPWxM7YTlV1AnhpLScZUbYREmbqYibKM4Sw0Sos3AVpgbDgVsHophAY64N88T1sdHSGpmoDLGYaua0bMA-SiOtfpU8LU7BGU0_RZRWImoArVcnNRVjuS-c8fBnn4OPPk8lX8efrXfrRU9R5v6sRA3ccJynLMavD0Ns1YC1Uhs-xgvxlS_wtPHvmWzCrC9T77O9abwFU6PnsdtGZ2akdwodxudpn74Dp8XxpQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54edAX75d5jSD4IJ02Tdb0cQ7H1E0UJ_hWciuIuondQP31nmTdhqKir20SkpP0fF-anO8A7BuXVzU7dsqPRuAGhUn0g0oGYRwrqxKEbK_A17qsNG7Z-R2_K-K4XSwMdiLHlnJ_iD9WFwiP8BmO4kndd8tUI7AlfBKmkY1Qt-Oq1m6G7tcpqideJJWzQCD4F5Ey37fhMEnnnzHpB6LpAac-D-1RV_09k4dyv6fK-v2LiuM_x7IAcwUBJdXBilmECdtZgpnaMO_bMlxXtXxR3dySlnwjdcQ9N3dE5kSSmmfZ_roROX3Vj333r41UXXgWQfZLkE2SK68hi4hITgZK0HIFbuun7VojKBIvBJJx2guYNBWt-bFB55NRpgXuY52KTWy5YaEMLedWCMNoprlJpDCZrDBdibNEUx6pLFqFqU63Y9eBSMrRtStNnYx9rJUwWiQyQ2QOFbVKlOAArZEWH06e-jNxGqZjE6WFiUoQDicp1YV-uUuj8fhrncNRneeBesevpfeGc5-izd3JiezYbj9PaYy9jyIsVYK1waIYtRfhK5fuaePPI9mFmUa71UybZ5cXmzDrEti7e-BhvAVTvZe-3Uaa01M7fll_ACrL-RU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkMZegA02ytc8aRIPU7rGsRvnsZRVA9ZqiE3qW-SvSNNKMy2txPbXc-cknUAwIV4T27LP9v3OPt_vAPYd5VUtesT86BQeUIRGPWh0FKep8SZDyA4MfONJ__hcfJ7KaXN1QbEw2IkKW6qCE5929ZUrGoaB-BC_40i-m4uyyy2CWyYfwiPy29GpazD81qpgYlXPAlGqFJFCA6CJlvlzG4RLtvoVl_5ibAbQGT2F6aq74a3JZXe5MF17-xuT43-M5xk8aQxRNqhXziY88PMteDxs8789h68Dq69NWXk21jdshPhHc8h0xTQbBms7PDtiRz_sbEl3bmxAYVoMrWCGViU7DVyyiIzsQ80IrV_A-ejobHgcNQkYIi0kX0RCu761sudQCRVcWIXnWWKzSb10Itaxl9Ir5QQvrHSZVq7QfWH7aZFZLhNTJNuwNi_n_iUwzSWqeGM50dmn1ihnVaYLROjYcG9UB96jNPJmA1V58I3zOL8TUd6IqANxO1G5bXjMKZ3G7N46B6s6VzWLx72l99r5z1Hm5EHRc18uq5yn2PskwVId2KkXxqq9BH9R2qdX_zySXVg__TjKTz5NvryGDcpjT8_B4_QNrC2ul_4tWjsL8y6s7J8zl_uY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acarbose+May+Function+as+a+Competitive+Exclusion+Agent+for+the+Producing+Bacteria&rft.jtitle=ACS+chemical+biology&rft.au=Tanoeyadi%2C+Samuel&rft.au=Tsunoda%2C+Takeshi&rft.au=Ito%2C+Takuya&rft.au=Philmus%2C+Benjamin&rft.date=2023-02-17&rft.eissn=1554-8937&rft.volume=18&rft.issue=2&rft.spage=367&rft_id=info:doi/10.1021%2Facschembio.2c00795&rft_id=info%3Apmid%2F36648321&rft.externalDocID=36648321 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8929&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8929&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8929&client=summon |