More than the sum of the parts: forest climate response from joint species distribution models

The perceived threat of climate change is often evaluated from species distribution models that are fitted to many species independently and then added together. This approach ignores the fact that species are jointly distributed and limit one another. Species respond to the same underlying climatic...

Full description

Saved in:
Bibliographic Details
Published inEcological applications Vol. 24; no. 5; p. 990
Main Authors Clark, James S, Gelfand, Alan E, Woodall, Christopher W, Zhu, Kai
Format Journal Article
LanguageEnglish
Published United States 01.07.2014
Subjects
Online AccessGet more information

Cover

Loading…
Abstract The perceived threat of climate change is often evaluated from species distribution models that are fitted to many species independently and then added together. This approach ignores the fact that species are jointly distributed and limit one another. Species respond to the same underlying climatic variables, and the abundance of any one species can be constrained by competition; a large increase in one is inevitably linked to declines of others. Omitting this basic relationship explains why responses modeled independently do not agree with the species richness or basal areas of actual forests. We introduce a joint species distribution modeling approach (JSDM), which is unique in three ways, and apply it to forests of eastern North America. First, it accommodates the joint distribution of species. Second, this joint distribution includes both abundance and presence-absence data. We solve the common issue of large numbers of zeros in abundance data by accommodating zeros in both stem counts and basal area data, i.e., a new approach to zero inflation. Finally, inverse prediction can be applied to the joint distribution of predictions to integrate the role of climate risks across all species and identify geographic areas where communities will change most (in terms of changes in abundance) with climate change. Application to forests in the eastern United States shows that climate can have greatest impact in the Northeast, due to temperature, and in the Upper Midwest, due to temperature and precipitation. Thus, these are the regions experiencing the fastest warming and are also identified as most responsive at this scale.
AbstractList The perceived threat of climate change is often evaluated from species distribution models that are fitted to many species independently and then added together. This approach ignores the fact that species are jointly distributed and limit one another. Species respond to the same underlying climatic variables, and the abundance of any one species can be constrained by competition; a large increase in one is inevitably linked to declines of others. Omitting this basic relationship explains why responses modeled independently do not agree with the species richness or basal areas of actual forests. We introduce a joint species distribution modeling approach (JSDM), which is unique in three ways, and apply it to forests of eastern North America. First, it accommodates the joint distribution of species. Second, this joint distribution includes both abundance and presence-absence data. We solve the common issue of large numbers of zeros in abundance data by accommodating zeros in both stem counts and basal area data, i.e., a new approach to zero inflation. Finally, inverse prediction can be applied to the joint distribution of predictions to integrate the role of climate risks across all species and identify geographic areas where communities will change most (in terms of changes in abundance) with climate change. Application to forests in the eastern United States shows that climate can have greatest impact in the Northeast, due to temperature, and in the Upper Midwest, due to temperature and precipitation. Thus, these are the regions experiencing the fastest warming and are also identified as most responsive at this scale.
Author Gelfand, Alan E
Woodall, Christopher W
Zhu, Kai
Clark, James S
Author_xml – sequence: 1
  givenname: James S
  surname: Clark
  fullname: Clark, James S
– sequence: 2
  givenname: Alan E
  surname: Gelfand
  fullname: Gelfand, Alan E
– sequence: 3
  givenname: Christopher W
  surname: Woodall
  fullname: Woodall, Christopher W
– sequence: 4
  givenname: Kai
  surname: Zhu
  fullname: Zhu, Kai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25154092$$D View this record in MEDLINE/PubMed
BookMark eNo1T8lOBCEU5DDGWfTgDxh-oEegG2i8mYlbMsaLXp2wPCKTaegAffDv7bjUoZa85KVqjRYxRUDoipIt7RW5oW1DCeVbukArSjhtiBR0idalHMkMxtg5WjJOeUcUW6GPl5QB108dZwJcpgEn_2NHnWu5xX6-l4rtKQy6Ap7DmGIB7HMa8DGFWHEZwQYo2IVSczBTDSniITk4lQt05vWpwOWfbtD7w_3b7qnZvz4-7-72je44I00vhLJSSOl7z4k2xmggnWYgbNup1gmiuCPMC2eFYd5yC0b6TkjR95xZxTbo-vfvOJkB3GHMc938dfgfyr4BLBdUig
CitedBy_id crossref_primary_10_1214_16_BA1031
crossref_primary_10_1007_s13253_023_00595_6
crossref_primary_10_1093_aobpla_ply074
crossref_primary_10_1214_19_BA1158
crossref_primary_10_1002_ecs2_4868
crossref_primary_10_1073_pnas_2308811121
crossref_primary_10_3390_f9050259
crossref_primary_10_3389_ffgc_2022_962816
crossref_primary_10_1007_s10021_018_0259_8
crossref_primary_10_1016_j_baae_2019_06_002
crossref_primary_10_1002_ece3_5445
crossref_primary_10_1111_2041_210X_12502
crossref_primary_10_1098_rsif_2021_0681
crossref_primary_10_1016_j_ecoinf_2020_101155
crossref_primary_10_1111_2041_210X_12501
crossref_primary_10_1007_s00267_020_01331_3
crossref_primary_10_1111_geb_12464
crossref_primary_10_1111_1365_2664_12664
crossref_primary_10_1111_cobi_14218
crossref_primary_10_1371_journal_pone_0184062
crossref_primary_10_1016_j_tree_2020_08_015
crossref_primary_10_1139_cjfas_2019_0348
crossref_primary_10_1038_s41598_021_83457_w
crossref_primary_10_1002_ecy_2929
crossref_primary_10_1371_journal_pone_0165768
crossref_primary_10_1111_ele_13525
crossref_primary_10_1007_s10651_020_00460_6
crossref_primary_10_1007_s12080_015_0281_9
crossref_primary_10_1002_ecy_1557
crossref_primary_10_1002_ecy_1710
crossref_primary_10_1111_geb_13827
crossref_primary_10_1016_j_ecoinf_2022_101787
crossref_primary_10_1088_1748_9326_ada8c4
crossref_primary_10_1111_jvs_12597
crossref_primary_10_1016_j_eti_2023_103177
crossref_primary_10_1016_j_tree_2016_08_005
crossref_primary_10_1111_2041_210X_12359
crossref_primary_10_1016_j_jenvman_2025_124543
crossref_primary_10_1111_2041_210X_13687
crossref_primary_10_1093_icesjms_fsz140
crossref_primary_10_1146_annurev_ecolsys_112414_054441
crossref_primary_10_1002_ecs2_1853
crossref_primary_10_3390_plants11121616
crossref_primary_10_1002_ecs2_1579
crossref_primary_10_1139_cjfas_2017_0150
crossref_primary_10_1111_ele_12526
crossref_primary_10_3390_d14050320
crossref_primary_10_1016_j_baae_2015_02_002
crossref_primary_10_1016_j_ecoinf_2015_10_006
crossref_primary_10_1016_j_foreco_2021_119221
crossref_primary_10_1016_j_pocean_2019_102244
crossref_primary_10_1371_journal_pclm_0000520
crossref_primary_10_1111_ecog_05513
crossref_primary_10_1002_ecm_1370
crossref_primary_10_1002_ece3_2518
crossref_primary_10_1002_lno_10944
crossref_primary_10_1111_ecog_03571
crossref_primary_10_1111_ecog_05471
crossref_primary_10_1111_2041_210X_12762
crossref_primary_10_1002_ecs2_4732
crossref_primary_10_1016_j_scitotenv_2020_138765
crossref_primary_10_1111_geb_13098
crossref_primary_10_1111_ddi_13152
crossref_primary_10_1016_j_ecoinf_2023_102181
crossref_primary_10_1016_j_foreco_2018_12_018
crossref_primary_10_1007_s11258_015_0467_7
crossref_primary_10_1111_gcb_13208
crossref_primary_10_1093_icb_icx057
crossref_primary_10_1016_j_spasta_2022_100660
crossref_primary_10_1111_ele_13108
crossref_primary_10_1111_gcb_14138
crossref_primary_10_1111_1365_2745_12428
crossref_primary_10_1111_jbi_13668
crossref_primary_10_1002_mcf2_10135
crossref_primary_10_1007_s11258_016_0598_5
crossref_primary_10_1007_s42974_024_00183_9
crossref_primary_10_1111_2041_210X_12936
crossref_primary_10_1002_ecm_1241
crossref_primary_10_1016_j_foreco_2022_120356
crossref_primary_10_1111_2041_210X_14437
crossref_primary_10_1111_2041_210X_13106
crossref_primary_10_1002_ecy_4362
crossref_primary_10_1111_gcb_13045
crossref_primary_10_1111_gcb_13160
crossref_primary_10_3390_f15111894
crossref_primary_10_1111_jav_01225
crossref_primary_10_1371_journal_pone_0300311
crossref_primary_10_1016_j_scitotenv_2017_08_301
crossref_primary_10_1111_geb_12666
crossref_primary_10_1016_j_fishres_2023_106792
crossref_primary_10_1111_ecog_04728
crossref_primary_10_1002_ece3_6059
crossref_primary_10_1016_j_jspi_2024_106229
crossref_primary_10_1016_j_ecolmodel_2020_108956
crossref_primary_10_1016_j_envpol_2022_120377
crossref_primary_10_1111_ecog_02303
crossref_primary_10_1111_ecog_06500
crossref_primary_10_1002_ece3_2657
crossref_primary_10_1086_680983
crossref_primary_10_4996_fireecology_1202160
crossref_primary_10_3390_ijerph20032206
crossref_primary_10_3389_ffgc_2025_1516623
crossref_primary_10_1111_2041_210X_13110
crossref_primary_10_1002_ecs2_3864
crossref_primary_10_1002_env_2830
crossref_primary_10_1007_s11258_016_0693_7
crossref_primary_10_1111_gcb_12779
crossref_primary_10_1111_eva_12776
crossref_primary_10_1139_cjfas_2023_0385
crossref_primary_10_1111_mec_14694
crossref_primary_10_1111_1365_2745_12724
crossref_primary_10_22201_ib_20078706e_2019_90_2829
crossref_primary_10_1111_jbi_14617
crossref_primary_10_1080_11956860_2016_1213107
crossref_primary_10_1111_ecog_07546
crossref_primary_10_1016_j_soilbio_2020_108042
crossref_primary_10_1111_jbi_14106
crossref_primary_10_1086_709024
crossref_primary_10_1007_s10745_016_9808_y
crossref_primary_10_1016_j_biocon_2023_110436
crossref_primary_10_3390_rs11010093
crossref_primary_10_1093_icesjms_fsw193
crossref_primary_10_1111_gcb_13585
crossref_primary_10_1371_journal_pone_0135987
crossref_primary_10_1111_eva_12883
crossref_primary_10_1038_s41467_017_01350_5
crossref_primary_10_1016_j_scitotenv_2024_175783
crossref_primary_10_1016_j_ecss_2023_108599
crossref_primary_10_1016_j_ijppaw_2020_04_011
crossref_primary_10_1016_j_tree_2021_01_002
crossref_primary_10_1111_jbi_12825
crossref_primary_10_3389_fevo_2019_00057
crossref_primary_10_1111_oik_04420
crossref_primary_10_1111_1365_2745_13200
crossref_primary_10_1093_icesjms_fsz099
crossref_primary_10_1002_nafm_10741
crossref_primary_10_1111_2041_210X_12723
crossref_primary_10_1111_jbi_14972
crossref_primary_10_1098_rspb_2020_2219
crossref_primary_10_3390_f15061026
crossref_primary_10_1111_2041_210X_13496
crossref_primary_10_51387_24_NEJSDS66
crossref_primary_10_1002_ecs2_1525
crossref_primary_10_1111_gcb_14977
crossref_primary_10_1111_ele_12575
crossref_primary_10_1111_geb_12759
crossref_primary_10_1002_eap_1875
crossref_primary_10_1111_cobi_13797
crossref_primary_10_1002_eap_2567
crossref_primary_10_1016_j_tree_2015_09_007
crossref_primary_10_1038_s41598_018_38416_3
crossref_primary_10_1134_S2079086422010078
crossref_primary_10_1007_s00477_018_1548_7
crossref_primary_10_1016_j_scitotenv_2022_159790
crossref_primary_10_1016_j_ecolind_2022_108826
crossref_primary_10_1111_jbi_13633
crossref_primary_10_1002_env_2440
crossref_primary_10_1002_ecy_1453
crossref_primary_10_1073_pnas_2003852117
crossref_primary_10_1111_1365_2435_12309
crossref_primary_10_1111_gcb_13000
crossref_primary_10_1007_s11802_025_5965_1
crossref_primary_10_1111_2041_210X_12332
crossref_primary_10_1002_ecs2_3434
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1890/13-1015.1
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
ExternalDocumentID 25154092
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
-~X
.-4
..I
0R~
1OB
1OC
29G
2AX
33P
4.4
42X
53G
5GY
85S
8WZ
A6W
AAESR
AAHBH
AAHHS
AAHKG
AAHQN
AAIHA
AAIKC
AAISJ
AAKGQ
AAMNL
AAMNW
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABAWQ
ABBHK
ABCUV
ABEFU
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACGFS
ACHIC
ACHJO
ACNCT
ACPOU
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADNWM
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFFPM
AFGKR
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AHBTC
AHXOZ
AI.
AIDAL
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ANHSF
AQVQM
AS~
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
CBGCD
CGR
CS3
CUY
CUYZI
CVF
DCZOG
DDYGU
DEVKO
DRFUL
DRSTM
DU5
EBS
ECGQY
ECM
EIF
EJD
F5P
FVMVE
GTFYD
HGD
HGLYW
HQ2
HTVGU
HVGLF
H~9
IAG
IAO
IEA
IEP
IGH
IOF
IPSME
ITC
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MV1
MVM
MXFUL
MXSTM
NHB
NPM
NXSMM
O9-
P0-
P2P
P2W
PALCI
RJQFR
ROL
RSZ
SA0
SAMSI
SUPJJ
TN5
UKR
V62
VH1
VOH
WBKPD
WH7
WOHZO
WXSBR
XIH
XSW
Y6R
YV5
YXE
YYM
YYP
Z0I
ZCA
ZCG
ZO4
ZZTAW
~02
~KM
ID FETCH-LOGICAL-a4520-8669c7677f8f50abbbae04a2e6c3493d6095d02f6dc6b2fc5ceb7f46768852c92
ISSN 1051-0761
IngestDate Thu Apr 03 07:08:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4520-8669c7677f8f50abbbae04a2e6c3493d6095d02f6dc6b2fc5ceb7f46768852c92
PMID 25154092
ParticipantIDs pubmed_primary_25154092
PublicationCentury 2000
PublicationDate July 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Ecological applications
PublicationTitleAlternate Ecol Appl
PublicationYear 2014
SSID ssj0000222
Score 2.5231395
Snippet The perceived threat of climate change is often evaluated from species distribution models that are fitted to many species independently and then added...
SourceID pubmed
SourceType Index Database
StartPage 990
SubjectTerms Climate Change
Forests
Models, Biological
Temperature
United States
Title More than the sum of the parts: forest climate response from joint species distribution models
URI https://www.ncbi.nlm.nih.gov/pubmed/25154092
Volume 24
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2VEhcEBTKG_nQ2yolcRwn4YZQoapET62oemhle21RVDYruj3Ahb_ON3biTctDlItlxUnW6_k8Gc-Tsa2y1KXMXZNJn1scUKTMNAX4uKLUNZV3x2PkbbGvdg_l3lF1NJn8GHktXS7Ntv3-27iS_6EqroGuFCV7A8qml-IC-qAvWlAY7T_R-EP31U1J9x3ER_zyYPFf4Obg6waRFGyf4h8hmVKFlOAR62JUyefubL6cUqwljstkqknVr2KBnIsranub2OTY6H3Fzye53a4Uqu_duR98J88x0RT48LHrZjraPEYJDqZJ5XP86TJ6e5yNFROFTE6sAy_Ffs9ITTJmtjFgugdVNeKcbawa-gtHb1pygSzIga6otovxPVjGxZdAWghpkDxjUb2_j15Lrj0MrbE1HDOobiope4YPeTRCpf_RJ6bCjF6l-VAy6f4d1w4mQUA5uMfu9icL_ibC5D6buPkGux1rjX5DLxIQvc2dVXAjHui5-8UDdkJ44oQnNI4DT7zzoRvw9JpHNPEeTXxAEyc08YAm3qOJj9HEI5oessN3Owdvd7O-_ga2ayXyrFGqtbWqa9_4KtfGGO1yqYVTtpRtOaNchbNceDWzyghvK-tM7fHlVU1TCduKTXZr3s3dY8alE5D1TeuFcLItrDZFoynzD-R9VZr8CXsU1-50EZOsnA6r-vSPI8_YnRXsnrN1j13tXkBEXJqXgZA_Ad9VZRY
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+than+the+sum+of+the+parts%3A+forest+climate+response+from+joint+species+distribution+models&rft.jtitle=Ecological+applications&rft.au=Clark%2C+James+S&rft.au=Gelfand%2C+Alan+E&rft.au=Woodall%2C+Christopher+W&rft.au=Zhu%2C+Kai&rft.date=2014-07-01&rft.issn=1051-0761&rft.volume=24&rft.issue=5&rft.spage=990&rft_id=info:doi/10.1890%2F13-1015.1&rft_id=info%3Apmid%2F25154092&rft_id=info%3Apmid%2F25154092&rft.externalDocID=25154092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon