Mechanism of Action of KL-50, a Candidate Imidazotetrazine for the Treatment of Drug-Resistant Brain Cancers

Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 146; no. 27; pp. 18241 - 18252
Main Authors Huseman, Eric D., Lo, Anna, Fedorova, Olga, Elia, James L., Gueble, Susan E., Lin, Kingson, Sundaram, Ranjini K., Oh, Joonseok, Liu, Jinchan, Menges, Fabian, Rees, Matthew G., Ronan, Melissa M., Roth, Jennifer A., Batista, Victor S., Crawford, Jason M., Pyle, Anna M., Bindra, Ranjit S., Herzon, Seth B.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)­imidazotetrazine “KL-50” is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)­guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA–MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)­guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)­imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA–MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.
AbstractList Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)­imidazotetrazine “KL-50” is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)­guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA–MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)­guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)­imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA–MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.
Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine “KL-50” is a selective toxin toward tumors that lack the DNA repair protein O 6 -methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O 6 -alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O 6 -(2-fluoroethyl)guanine (O 6 FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O 6 -ethanoguanine (N1,O 6 EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O 6 EtG formation allows healthy cells expressing MGMT to reverse the initial O 6 FEtG lesion before it evolves to N1,O 6 EtG, thereby suppressing the formation of toxic DNA–MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O 6 -(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O 6 EtG, resulting in the formation of DNA–MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.
Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine "KL-50" is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA-MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA-MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine "KL-50" is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA-MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA-MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.
Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)­imidazotetrazine “KL-50” is a selective toxin toward tumors that lack the DNA repair protein O⁶-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O⁶-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O⁶-(2-fluoroethyl)­guanine (O⁶FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O⁶-ethanoguanine (N1,O⁶EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O⁶EtG formation allows healthy cells expressing MGMT to reverse the initial O⁶FEtG lesion before it evolves to N1,O⁶EtG, thereby suppressing the formation of toxic DNA–MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O⁶-(2-chloroethyl)­guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)­imidazotetrazine mitozolomide rapidly evolve to N1,O⁶EtG, resulting in the formation of DNA–MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.
Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine "KL-50" is a selective toxin toward tumors that lack the DNA repair protein O -methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O -alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O -(2-fluoroethyl)guanine (O FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O -ethanoguanine (N1,O EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O EtG formation allows healthy cells expressing MGMT to reverse the initial O FEtG lesion before it evolves to N1,O EtG, thereby suppressing the formation of toxic DNA-MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O -(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O EtG, resulting in the formation of DNA-MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.
Author Ronan, Melissa M.
Pyle, Anna M.
Gueble, Susan E.
Herzon, Seth B.
Roth, Jennifer A.
Elia, James L.
Menges, Fabian
Liu, Jinchan
Sundaram, Ranjini K.
Lo, Anna
Rees, Matthew G.
Batista, Victor S.
Lin, Kingson
Fedorova, Olga
Crawford, Jason M.
Huseman, Eric D.
Bindra, Ranjit S.
Oh, Joonseok
AuthorAffiliation Department of Chemistry
Department of Pharmacology
Department of Therapeutic Radiology
Department of Pathology
Department of Microbial Pathogenesis
Department of Molecular, Cellular, and Developmental Biology
Broad Institute of MIT and Harvard
Institute of Biomolecular Design & Discovery
Department of Chemistry, Chemical and Biophysical Instrumentation Center
AuthorAffiliation_xml – name: Department of Molecular, Cellular, and Developmental Biology
– name: Department of Pathology
– name: Broad Institute of MIT and Harvard
– name: Department of Microbial Pathogenesis
– name: Department of Pharmacology
– name: Department of Chemistry
– name: Department of Therapeutic Radiology
– name: Department of Chemistry, Chemical and Biophysical Instrumentation Center
– name: Institute of Biomolecular Design & Discovery
Author_xml – sequence: 1
  givenname: Eric D.
  orcidid: 0000-0002-7550-1593
  surname: Huseman
  fullname: Huseman, Eric D.
  organization: Department of Chemistry
– sequence: 2
  givenname: Anna
  orcidid: 0000-0002-4489-3109
  surname: Lo
  fullname: Lo, Anna
  organization: Department of Chemistry
– sequence: 3
  givenname: Olga
  surname: Fedorova
  fullname: Fedorova, Olga
  organization: Department of Molecular, Cellular, and Developmental Biology
– sequence: 4
  givenname: James L.
  orcidid: 0000-0003-3962-7452
  surname: Elia
  fullname: Elia, James L.
  organization: Department of Pathology
– sequence: 5
  givenname: Susan E.
  surname: Gueble
  fullname: Gueble, Susan E.
  organization: Department of Therapeutic Radiology
– sequence: 6
  givenname: Kingson
  orcidid: 0000-0002-5460-4008
  surname: Lin
  fullname: Lin, Kingson
  organization: Department of Therapeutic Radiology
– sequence: 7
  givenname: Ranjini K.
  surname: Sundaram
  fullname: Sundaram, Ranjini K.
  organization: Department of Therapeutic Radiology
– sequence: 8
  givenname: Joonseok
  orcidid: 0000-0002-7616-1949
  surname: Oh
  fullname: Oh, Joonseok
  organization: Institute of Biomolecular Design & Discovery
– sequence: 9
  givenname: Jinchan
  orcidid: 0000-0003-2217-1233
  surname: Liu
  fullname: Liu, Jinchan
  organization: Department of Chemistry
– sequence: 10
  givenname: Fabian
  orcidid: 0000-0002-5859-9197
  surname: Menges
  fullname: Menges, Fabian
  organization: Department of Chemistry, Chemical and Biophysical Instrumentation Center
– sequence: 11
  givenname: Matthew G.
  surname: Rees
  fullname: Rees, Matthew G.
  organization: Broad Institute of MIT and Harvard
– sequence: 12
  givenname: Melissa M.
  surname: Ronan
  fullname: Ronan, Melissa M.
  organization: Broad Institute of MIT and Harvard
– sequence: 13
  givenname: Jennifer A.
  surname: Roth
  fullname: Roth, Jennifer A.
  organization: Broad Institute of MIT and Harvard
– sequence: 14
  givenname: Victor S.
  orcidid: 0000-0002-3262-1237
  surname: Batista
  fullname: Batista, Victor S.
  organization: Department of Chemistry
– sequence: 15
  givenname: Jason M.
  orcidid: 0000-0002-7583-1242
  surname: Crawford
  fullname: Crawford, Jason M.
  organization: Department of Microbial Pathogenesis
– sequence: 16
  givenname: Anna M.
  orcidid: 0000-0001-9045-8872
  surname: Pyle
  fullname: Pyle, Anna M.
  organization: Department of Molecular, Cellular, and Developmental Biology
– sequence: 17
  givenname: Ranjit S.
  surname: Bindra
  fullname: Bindra, Ranjit S.
  email: ranjit.bindra@yale.edu
  organization: Department of Therapeutic Radiology
– sequence: 18
  givenname: Seth B.
  orcidid: 0000-0001-5940-9853
  surname: Herzon
  fullname: Herzon, Seth B.
  email: seth.herzon@yale.edu
  organization: Department of Pharmacology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38815248$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFG2eUI4em-DveEyrLV8UiJFTO1sSxu14ldrEdJPrX46hLBQjEaeyZ3zy90TtBRyEGi9BTgs8JpuTFHkw-ZwZLrtgDtCKC4lYQKo_QCmNM205JdoxOct7XL6eKPELHTKnKcbVC40drdhB8npromgtTfAzL68O2FfisgWYDYfADFNtcTrXexmJLglsfbONiasrONlfJQplsKMvi6zRft59t9rlA7bxK4MMiYmzKj9FDB2O2Tw71FH15--Zq877dfnp3ubnYtsAFKa2znWQAdq0EdKxXVFJqKHaKOzlY6dgg-t5xMRCATg5OGdwJboSBerZiPTtFL-90b-Z-soOp1hKM-ib5CdJ3HcHr3yfB7_R1_KYJ4Xi9Jl1VeH5QSPHrbHPRk8_GjiMEG-esGRFMdqwT5P8oloyLTnFe0We_-ro39DOOCpzdASbFnJN19wjBeklbL2nrQ9oVp3_gxhdYIqxX-fFfSwe_S3Mf5xRqFH9HfwAfQbt1
CitedBy_id crossref_primary_10_1021_acsorginorgau_4c00081
Cites_doi 10.1002/anie.201108018
10.1093/carcin/1.1.21
10.1002/jps.2600640147
10.1038/s41467-019-09940-1
10.1073/pnas.81.1.13
10.1001/jama.2023.0023
10.1002/anie.201307580
10.1016/S0006-291X(87)80249-8
10.1007/BF02985159
10.1016/j.ijms.2014.04.018
10.1093/carcin/18.10.1883
10.1016/S1568-7864(03)00086-7
10.1016/0006-2952(83)90420-3
10.1038/bjc.1987.85
10.1074/jbc.M311105200
10.1038/s43018-019-0018-6
10.1093/nar/16.14.6779
10.1007/978-1-61779-421-6_9
10.1021/bi9913606
10.1038/nbt.3460
10.1021/cr300177k
10.4161/cbt.199
10.1038/s41596-021-00615-0
10.1021/tx00034a008
10.1021/jm00368a016
10.1007/BF02897208
10.1016/j.dnarep.2015.11.019
10.1186/s40478-020-0892-2
10.1016/j.tox.2017.07.007
10.3390/ph7070797
10.1038/bjc.1988.21
10.1093/noajnl/vdaa117
10.1016/j.ejmech.2005.11.007
10.1074/jbc.M205548200
10.3724/SP.J.1096.2010.00532
10.1038/ng.3590
10.1371/journal.pone.0121225
10.1016/j.ctrv.2020.102029
10.1055/s-2005-869905
10.1073/pnas.77.1.467
10.1016/S0027-5107(00)00062-2
10.6084/m9.figshare.22765112.v2
10.1080/15257770.2012.656784
10.1038/cddis.2013.388
10.1103/PhysRev.140.A1133
10.1093/nar/gki335
10.1021/bi400273m
10.1093/nass/49.1.23
10.1016/j.taap.2016.06.022
10.1158/1535-7163.MCT-20-0319
10.1021/ja038169a
10.1016/j.cell.2016.06.017
10.1007/978-3-319-13278-5_2
10.1016/0006-291X(87)90279-8
10.1126/sciadv.abh2169
10.1093/nar/25.18.3629
10.1016/S0040-4039(97)00619-9
10.1016/j.ejmech.2023.115507
10.1056/NEJMoa043330
10.1016/0277-5379(89)90036-9
10.1016/0277-5379(89)90422-7
10.1016/0277-5379(89)90216-2
10.1056/NEJMoa043331
10.1021/acschembio.2c00022
10.1038/nature11005
10.1093/nar/gkl117
10.1021/jm401121k
10.1021/tx200031q
10.1093/neuonc/noad149
10.1126/science.abn7570
10.1039/C6MD00384B
10.1007/BF00173652
10.1126/sciadv.abm6638
10.3109/02841868909092290
10.1038/nrc3399
10.1016/j.ejca.2022.10.006
10.1021/tx0497907
10.1002/ame2.12165
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/jacs.3c06483
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 18252
ExternalDocumentID PMC11409917
38815248
10_1021_jacs_3c06483
a035727710
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM131913
– fundername: NCI NIH HHS
  grantid: U19 CA264362
– fundername: NCI NIH HHS
  grantid: R01 CA276186
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NCI NIH HHS
  grantid: R01 CA266604
– fundername: NCI NIH HHS
  grantid: T32 CA193200
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAHBH
ABFRP
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGHSJ
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
AAYXX
ABBLG
ABLBI
CITATION
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a451t-fe763aae985a73b82622c20f84f6de6f3d5bbf45d1aa76df8c0754c5ca12683b3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 18:23:31 EDT 2025
Fri Jul 11 14:09:42 EDT 2025
Fri Jul 11 12:13:41 EDT 2025
Mon Jul 21 05:40:12 EDT 2025
Tue Jul 01 03:10:58 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Thu Jul 11 03:10:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a451t-fe763aae985a73b82622c20f84f6de6f3d5bbf45d1aa76df8c0754c5ca12683b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7550-1593
0000-0003-3962-7452
0000-0001-9045-8872
0000-0002-4489-3109
0000-0002-3262-1237
0000-0001-5940-9853
0000-0002-7583-1242
0000-0002-5460-4008
0000-0002-5859-9197
0000-0002-7616-1949
0000-0003-2217-1233
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11409917
PMID 38815248
PQID 3063457844
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11409917
proquest_miscellaneous_3153673751
proquest_miscellaneous_3063457844
pubmed_primary_38815248
crossref_primary_10_1021_jacs_3c06483
crossref_citationtrail_10_1021_jacs_3c06483
acs_journals_10_1021_jacs_3c06483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-10
PublicationDateYYYYMMDD 2024-07-10
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
ref23/cit23a
ref16/cit16
ref23/cit23c
Christians F. C. (ref41/cit41c) 1997; 57
ref12/cit12b
ref12/cit12a
Gonzaga P. E. (ref23/cit23d) 1992; 52
ref8/cit8
ref2/cit2
ref37/cit37
Newlands E. S. (ref18/cit18a) 1985; 69
ref43/cit43a
ref20/cit20
ref43/cit43b
ref17/cit17
ref36/cit36d
ref10/cit10
ref35/cit35
ref36/cit36a
ref36/cit36b
ref36/cit36c
Aquilina G. (ref15/cit15) 1998; 58
Dolan M. E. (ref42/cit42) 1997; 3
ref13/cit13
ref32/cit32c
Weber G. F. (ref1/cit1) 2015
ref32/cit32a
Gibson N. W. (ref19/cit19c) 1984; 44
ref19/cit19a
ref46/cit46a
ref46/cit46c
ref46/cit46b
ref46/cit46d
ref45/cit45c
ref45/cit45b
ref45/cit45a
ref19/cit19b
Wu R. S. (ref41/cit41b) 1987; 47
ref29/cit29b
ref11/cit11
ref29/cit29a
Brent T. P. (ref23/cit23b) 1987; 47
ref25/cit25b
ref25/cit25c
ref25/cit25a
Pegg A. E. (ref21/cit21) 1984; 44
ref31/cit31b
ref39/cit39
ref41/cit41d
ref5/cit5
ref31/cit31a
Bai B.-Q. (ref32/cit32b) 2010; 18
Gibson N. W. (ref19/cit19d) 1984; 44
Tong W. P. (ref14/cit14a) 1982; 42
ref40/cit40
ref41/cit41a
ref18/cit18f
ref18/cit18g
ref18/cit18d
ref18/cit18e
ref26/cit26
ref18/cit18b
ref34/cit34b
ref18/cit18c
ref34/cit34c
ref34/cit34a
ref24/cit24c
ref38/cit38b
ref24/cit24b
ref28/cit28a
ref14/cit14c
ref14/cit14b
ref38/cit38a
ref18/cit18j
ref18/cit18h
ref24/cit24a
ref28/cit28b
Fischhaber P. L. (ref33/cit33) 1999; 59
ref18/cit18i
ref30/cit30a
ref22/cit22
ref30/cit30c
ref30/cit30b
ref4/cit4
ref6/cit6a
ref47/cit47
ref6/cit6b
ref44/cit44
ref30/cit30d
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1002/anie.201108018
– ident: ref47/cit47
  doi: 10.1093/carcin/1.1.21
– volume: 44
  start-page: 3806
  year: 1984
  ident: ref21/cit21
  publication-title: Cancer Res.
– ident: ref19/cit19a
  doi: 10.1002/jps.2600640147
– ident: ref30/cit30c
  doi: 10.1038/s41467-019-09940-1
– ident: ref41/cit41a
  doi: 10.1073/pnas.81.1.13
– ident: ref5/cit5
  doi: 10.1001/jama.2023.0023
– ident: ref24/cit24c
  doi: 10.1002/anie.201307580
– volume: 57
  start-page: 2007
  year: 1997
  ident: ref41/cit41c
  publication-title: Cancer. Res.
– volume: 42
  start-page: 3102
  year: 1982
  ident: ref14/cit14a
  publication-title: Cancer Res.
– ident: ref20/cit20
  doi: 10.1016/S0006-291X(87)80249-8
– ident: ref18/cit18f
  doi: 10.1007/BF02985159
– ident: ref14/cit14b
  doi: 10.1016/j.ijms.2014.04.018
– volume: 44
  start-page: 1767
  year: 1984
  ident: ref19/cit19c
  publication-title: Cancer Res.
– ident: ref25/cit25a
  doi: 10.1093/carcin/18.10.1883
– ident: ref31/cit31a
  doi: 10.1016/S1568-7864(03)00086-7
– ident: ref26/cit26
  doi: 10.1016/0006-2952(83)90420-3
– ident: ref18/cit18b
  doi: 10.1038/bjc.1987.85
– ident: ref24/cit24b
  doi: 10.1074/jbc.M311105200
– ident: ref29/cit29b
  doi: 10.1038/s43018-019-0018-6
– volume: 59
  start-page: 4363
  year: 1999
  ident: ref33/cit33
  publication-title: Cancer Res.
– ident: ref23/cit23c
  doi: 10.1093/nar/16.14.6779
– volume: 69
  start-page: 801
  year: 1985
  ident: ref18/cit18a
  publication-title: Cancer Treat. Rep.
– volume: 44
  start-page: 1772
  year: 1984
  ident: ref19/cit19d
  publication-title: Cancer Res.
– ident: ref31/cit31b
  doi: 10.1007/978-1-61779-421-6_9
– ident: ref41/cit41d
  doi: 10.1021/bi9913606
– ident: ref29/cit29a
  doi: 10.1038/nbt.3460
– volume: 18
  start-page: 280
  year: 2010
  ident: ref32/cit32b
  publication-title: Hecheng Huaxue
– ident: ref40/cit40
  doi: 10.1021/cr300177k
– ident: ref2/cit2
  doi: 10.4161/cbt.199
– ident: ref27/cit27
  doi: 10.1038/s41596-021-00615-0
– ident: ref32/cit32a
  doi: 10.1021/tx00034a008
– ident: ref19/cit19b
  doi: 10.1021/jm00368a016
– ident: ref18/cit18j
  doi: 10.1007/BF02897208
– ident: ref11/cit11
  doi: 10.1016/j.dnarep.2015.11.019
– ident: ref12/cit12b
  doi: 10.1186/s40478-020-0892-2
– ident: ref43/cit43b
  doi: 10.1016/j.tox.2017.07.007
– ident: ref7/cit7
  doi: 10.3390/ph7070797
– ident: ref45/cit45c
– ident: ref18/cit18c
  doi: 10.1038/bjc.1988.21
– ident: ref9/cit9
  doi: 10.1093/noajnl/vdaa117
– ident: ref36/cit36b
  doi: 10.1016/j.ejmech.2005.11.007
– ident: ref24/cit24a
  doi: 10.1074/jbc.M205548200
– ident: ref32/cit32c
  doi: 10.3724/SP.J.1096.2010.00532
– ident: ref12/cit12a
  doi: 10.1038/ng.3590
– ident: ref14/cit14c
  doi: 10.1371/journal.pone.0121225
– ident: ref13/cit13
  doi: 10.1016/j.ctrv.2020.102029
– ident: ref36/cit36a
  doi: 10.1055/s-2005-869905
– ident: ref22/cit22
  doi: 10.1073/pnas.77.1.467
– ident: ref25/cit25b
  doi: 10.1016/S0027-5107(00)00062-2
– ident: ref30/cit30d
  doi: 10.6084/m9.figshare.22765112.v2
– ident: ref34/cit34c
  doi: 10.1080/15257770.2012.656784
– ident: ref44/cit44
  doi: 10.1038/cddis.2013.388
– ident: ref39/cit39
  doi: 10.1103/PhysRev.140.A1133
– ident: ref37/cit37
  doi: 10.1093/nar/gki335
– ident: ref25/cit25c
  doi: 10.1021/bi400273m
– ident: ref34/cit34a
  doi: 10.1093/nass/49.1.23
– ident: ref43/cit43a
  doi: 10.1016/j.taap.2016.06.022
– ident: ref45/cit45a
  doi: 10.1158/1535-7163.MCT-20-0319
– ident: ref45/cit45b
– ident: ref36/cit36d
  doi: 10.1021/ja038169a
– ident: ref30/cit30b
  doi: 10.1016/j.cell.2016.06.017
– start-page: 9
  volume-title: Molecular Therapies of Cancer
  year: 2015
  ident: ref1/cit1
  doi: 10.1007/978-3-319-13278-5_2
– ident: ref23/cit23a
  doi: 10.1016/0006-291X(87)90279-8
– volume: 47
  start-page: 6229
  year: 1987
  ident: ref41/cit41b
  publication-title: Cancer Res.
– ident: ref8/cit8
  doi: 10.1126/sciadv.abh2169
– ident: ref38/cit38b
  doi: 10.1093/nar/25.18.3629
– ident: ref38/cit38a
  doi: 10.1016/S0040-4039(97)00619-9
– ident: ref46/cit46d
  doi: 10.1016/j.ejmech.2023.115507
– ident: ref6/cit6a
  doi: 10.1056/NEJMoa043330
– ident: ref18/cit18e
  doi: 10.1016/0277-5379(89)90036-9
– volume: 47
  start-page: 6185
  year: 1987
  ident: ref23/cit23b
  publication-title: Cancer Res.
– ident: ref18/cit18i
  doi: 10.1016/0277-5379(89)90422-7
– volume: 52
  start-page: 6052
  year: 1992
  ident: ref23/cit23d
  publication-title: Cancer Res.
– ident: ref18/cit18h
  doi: 10.1016/0277-5379(89)90216-2
– ident: ref6/cit6b
  doi: 10.1056/NEJMoa043331
– volume: 58
  start-page: 135
  year: 1998
  ident: ref15/cit15
  publication-title: Cancer Res.
– ident: ref46/cit46c
  doi: 10.1021/acschembio.2c00022
– ident: ref30/cit30a
  doi: 10.1038/nature11005
– ident: ref34/cit34b
  doi: 10.1093/nar/gkl117
– volume: 3
  start-page: 837
  year: 1997
  ident: ref42/cit42
  publication-title: Clin. Cancer Res.
– ident: ref46/cit46a
  doi: 10.1021/jm401121k
– ident: ref10/cit10
  doi: 10.1021/tx200031q
– ident: ref4/cit4
  doi: 10.1093/neuonc/noad149
– ident: ref16/cit16
  doi: 10.1126/science.abn7570
– ident: ref46/cit46b
  doi: 10.1039/C6MD00384B
– ident: ref18/cit18d
  doi: 10.1007/BF00173652
– ident: ref28/cit28b
  doi: 10.1126/sciadv.abm6638
– ident: ref18/cit18g
  doi: 10.3109/02841868909092290
– ident: ref3/cit3
  doi: 10.1038/nrc3399
– ident: ref17/cit17
  doi: 10.1016/j.ejca.2022.10.006
– ident: ref36/cit36c
  doi: 10.1021/tx0497907
– ident: ref28/cit28a
  doi: 10.1002/ame2.12165
SSID ssj0004281
Score 2.465845
Snippet Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18241
SubjectTerms alkylation
Antineoplastic Agents - chemical synthesis
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
brain
Brain Neoplasms - drug therapy
Brain Neoplasms - pathology
Cell Line, Tumor
crosslinking
cytidine
DNA
DNA repair
DNA Repair - drug effects
drug resistance
Drug Resistance, Neoplasm - drug effects
fluorides
Humans
Imidazoles - chemistry
Imidazoles - pharmacology
Imidazoles - therapeutic use
mechanism of action
mutagens
O-Methylguanine-DNA Methyltransferase - antagonists & inhibitors
O-Methylguanine-DNA Methyltransferase - metabolism
toxicity
toxins
Title Mechanism of Action of KL-50, a Candidate Imidazotetrazine for the Treatment of Drug-Resistant Brain Cancers
URI http://dx.doi.org/10.1021/jacs.3c06483
https://www.ncbi.nlm.nih.gov/pubmed/38815248
https://www.proquest.com/docview/3063457844
https://www.proquest.com/docview/3153673751
https://pubmed.ncbi.nlm.nih.gov/PMC11409917
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoHNpLKX3QpYCM1J5ar-JnvEfY8ujz0ILEbWU7NqBCtiLZC7--M9lk6S6i5ZTIGSfxcz7bM98Q8tbEIg1cythAcseUjIK5rNAsFEllchBkDI2B7HdzdKI-n-rTWwPZxRN8gfxAoerLAKrTykdkRRgYvwiBhj9v_R-F5R3Mza2RrYH7Ym5UQKGaV0B3UOWiceRf2uZglRx2PjtTI5Nf_Unt--HmLoXjfwryjDxtASfdnfaQNbIUy-fk8bCL8_aCXH6L6P17UV3RcaK7jZ8D3n35ynT2gTo6RM8X3Bign67gejOuI_wyslJTQLwUECQ97szVMePH68kZ-xErRKaQsodBKPAlAZDmS3JysH88PGJtDAbmlOY1SxEmIOfiwGqXSw-LESGCyJJVyRTRJFlo75PSBXcuN0WyATCICjo4Di0lvXxFlstxGV8Tal3uE4-ZVc6rXDtvCgtgyiCrXFBB9cgO1NCoHUPVqDkeF7A8wdS23nrkfdd4o9CSmGMsjct7pN_NpH9PyTvukdvp-sEIKh-PTFwZxxMQAASnYFJT6h8yoDQw2o_mPbI-7Tuzr0kLRRTK9oid61UzAWT3nn9SXpw3LN8cqchgMb3xgGp5Q54IAFu458yzTbJcX0_iFoCl2m83I-UPM5kPqw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwENZAOZRLedPQAuoMnMAd62nlGAKdlKY5QDrTm0eSJdpp6zC1c-mvZ9exUxKmTE_2yCtbktfeT9Lut4R80KGIfRvTpC-YTaQIPLFpoRJfRJmKvhfBNw6yEz06kd9P1WkbrI6xMNCICu5UNZv4t-wCSBMEhcKDBTXiIXkEOISjQg-GP2_DILlhHdrNjBatn_t6bbRDvlq1Q_-Ay3Ufyb-MzsETMlk2t_E1udif127f36wxOd67P0_JVgs_6WChL8_Ig1A-J5vDLuvbC3J5HDAW-Ly6orNIB03UA54djROVfqaWDjEOBpcJ6OEVHG9mdYCWI0c1BfxLAU_Saee8jhW_Xs9_JT9ChTgVSr5gSgq8iQfc-ZKcHHybDkdJm5EhsVKxOokBfkfWhr5RNhMOpiace55GI6Mugo6iUM5FqQpmbaaLaDwgEumVt4xrI5x4RTbKWRm2CTU2c5GF1EjrZKas04UBaKWRY85LL3tkD0Yob7-oKm82yzlMVrC0Hbce-dS9w9y3lOaYWePyDumPS-nfCyqPO-T2OnXIYfBxA8WWYTYHAcBzEn5xUv5HBkwI5v5RrEdeL1Ro-TRhoItcmh4xK8q1FECu79Ur5flZw_nNkJgMptZv7jEs78nmaHo8zseHk6Md8pgDDMPVaJbuko36eh7eAoyq3bvm4_kD5FwYDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3oXl6UpwglTxK_Eely2rlpYKlVbqLbIdGyrabNVkL_31zGSThV1UBKdE9jhxnHHmczzzDcCbLJRxaGOaDCW3iZJBJDYtdeLLqFI59DL41kH2INs5Vp9O9Mka8D4WBjtR45XqdhOfZvVFGTuGAaIKwgrp0YoaeQNu0o4dKfVo_PVXKKQwvEe8uclk5-u-2ppska-XbdEfAHPVT_I3wzO5B4eLLrf-Jj-2Zo3b8lcrbI7_9Uz34W4HQ9lorjcPYC1UD-H2uM_-9gjOPgeKCT6tz9k0slEb_UBne_uJTt8zy8YUD0O_C9juOR6vpk3A3hNXNUMczBBXsqPeiZ0abl_OviWHoSa8iiUfKDUFXcQj_nwMx5OPR-OdpMvMkFileZPEgJ8la8PQaJtLh0sUIbxIo1ExK0MWZamdi0qX3No8K6PxiEyU195ykRnp5AasV9MqPAVmbO4iD6lR1qlcW5eVBiFWRlxzXnk1gE0coaKbWXXRbpoLXLRQaTduA3jXv8fCd9TmlGHj7BrptwvpizmlxzVym71KFDj4tJFiqzCdoQDiOoWfOqX-IoOmhHIAaT6AJ3M1WtxNGnxEocwAzJKCLQSI83u5pjr93nJ_cyIowyX2s38Yltdw68v2pNjfPdh7DncEojH6Kc3TF7DeXM7CS0RTjXvVzp-f5rQajw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Action+of+KL-50%2C+a+Candidate+Imidazotetrazine+for+the+Treatment+of+Drug-Resistant+Brain+Cancers&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Huseman%2C+Eric+D.&rft.au=Lo%2C+Anna&rft.au=Fedorova%2C+Olga&rft.au=Elia%2C+James+L.&rft.date=2024-07-10&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=146&rft.issue=27&rft.spage=18241&rft.epage=18252&rft_id=info:doi/10.1021%2Fjacs.3c06483&rft.externalDocID=a035727710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon