Mechanism of Action of KL-50, a Candidate Imidazotetrazine for the Treatment of Drug-Resistant Brain Cancers
Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show...
Saved in:
Published in | Journal of the American Chemical Society Vol. 146; no. 27; pp. 18241 - 18252 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine “KL-50” is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA–MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA–MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents. |
---|---|
AbstractList | Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine “KL-50” is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA–MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA–MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents. Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine “KL-50” is a selective toxin toward tumors that lack the DNA repair protein O 6 -methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O 6 -alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O 6 -(2-fluoroethyl)guanine (O 6 FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O 6 -ethanoguanine (N1,O 6 EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O 6 EtG formation allows healthy cells expressing MGMT to reverse the initial O 6 FEtG lesion before it evolves to N1,O 6 EtG, thereby suppressing the formation of toxic DNA–MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O 6 -(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O 6 EtG, resulting in the formation of DNA–MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents. Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine "KL-50" is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA-MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA-MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine "KL-50" is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA-MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA-MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents. Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine “KL-50” is a selective toxin toward tumors that lack the DNA repair protein O⁶-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O⁶-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O⁶-(2-fluoroethyl)guanine (O⁶FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O⁶-ethanoguanine (N1,O⁶EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O⁶EtG formation allows healthy cells expressing MGMT to reverse the initial O⁶FEtG lesion before it evolves to N1,O⁶EtG, thereby suppressing the formation of toxic DNA–MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O⁶-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O⁶EtG, resulting in the formation of DNA–MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents. Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine "KL-50" is a selective toxin toward tumors that lack the DNA repair protein O -methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O -alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O -(2-fluoroethyl)guanine (O FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O -ethanoguanine (N1,O EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O EtG formation allows healthy cells expressing MGMT to reverse the initial O FEtG lesion before it evolves to N1,O EtG, thereby suppressing the formation of toxic DNA-MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O -(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O EtG, resulting in the formation of DNA-MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents. |
Author | Ronan, Melissa M. Pyle, Anna M. Gueble, Susan E. Herzon, Seth B. Roth, Jennifer A. Elia, James L. Menges, Fabian Liu, Jinchan Sundaram, Ranjini K. Lo, Anna Rees, Matthew G. Batista, Victor S. Lin, Kingson Fedorova, Olga Crawford, Jason M. Huseman, Eric D. Bindra, Ranjit S. Oh, Joonseok |
AuthorAffiliation | Department of Chemistry Department of Pharmacology Department of Therapeutic Radiology Department of Pathology Department of Microbial Pathogenesis Department of Molecular, Cellular, and Developmental Biology Broad Institute of MIT and Harvard Institute of Biomolecular Design & Discovery Department of Chemistry, Chemical and Biophysical Instrumentation Center |
AuthorAffiliation_xml | – name: Department of Molecular, Cellular, and Developmental Biology – name: Department of Pathology – name: Broad Institute of MIT and Harvard – name: Department of Microbial Pathogenesis – name: Department of Pharmacology – name: Department of Chemistry – name: Department of Therapeutic Radiology – name: Department of Chemistry, Chemical and Biophysical Instrumentation Center – name: Institute of Biomolecular Design & Discovery |
Author_xml | – sequence: 1 givenname: Eric D. orcidid: 0000-0002-7550-1593 surname: Huseman fullname: Huseman, Eric D. organization: Department of Chemistry – sequence: 2 givenname: Anna orcidid: 0000-0002-4489-3109 surname: Lo fullname: Lo, Anna organization: Department of Chemistry – sequence: 3 givenname: Olga surname: Fedorova fullname: Fedorova, Olga organization: Department of Molecular, Cellular, and Developmental Biology – sequence: 4 givenname: James L. orcidid: 0000-0003-3962-7452 surname: Elia fullname: Elia, James L. organization: Department of Pathology – sequence: 5 givenname: Susan E. surname: Gueble fullname: Gueble, Susan E. organization: Department of Therapeutic Radiology – sequence: 6 givenname: Kingson orcidid: 0000-0002-5460-4008 surname: Lin fullname: Lin, Kingson organization: Department of Therapeutic Radiology – sequence: 7 givenname: Ranjini K. surname: Sundaram fullname: Sundaram, Ranjini K. organization: Department of Therapeutic Radiology – sequence: 8 givenname: Joonseok orcidid: 0000-0002-7616-1949 surname: Oh fullname: Oh, Joonseok organization: Institute of Biomolecular Design & Discovery – sequence: 9 givenname: Jinchan orcidid: 0000-0003-2217-1233 surname: Liu fullname: Liu, Jinchan organization: Department of Chemistry – sequence: 10 givenname: Fabian orcidid: 0000-0002-5859-9197 surname: Menges fullname: Menges, Fabian organization: Department of Chemistry, Chemical and Biophysical Instrumentation Center – sequence: 11 givenname: Matthew G. surname: Rees fullname: Rees, Matthew G. organization: Broad Institute of MIT and Harvard – sequence: 12 givenname: Melissa M. surname: Ronan fullname: Ronan, Melissa M. organization: Broad Institute of MIT and Harvard – sequence: 13 givenname: Jennifer A. surname: Roth fullname: Roth, Jennifer A. organization: Broad Institute of MIT and Harvard – sequence: 14 givenname: Victor S. orcidid: 0000-0002-3262-1237 surname: Batista fullname: Batista, Victor S. organization: Department of Chemistry – sequence: 15 givenname: Jason M. orcidid: 0000-0002-7583-1242 surname: Crawford fullname: Crawford, Jason M. organization: Department of Microbial Pathogenesis – sequence: 16 givenname: Anna M. orcidid: 0000-0001-9045-8872 surname: Pyle fullname: Pyle, Anna M. organization: Department of Molecular, Cellular, and Developmental Biology – sequence: 17 givenname: Ranjit S. surname: Bindra fullname: Bindra, Ranjit S. email: ranjit.bindra@yale.edu organization: Department of Therapeutic Radiology – sequence: 18 givenname: Seth B. orcidid: 0000-0001-5940-9853 surname: Herzon fullname: Herzon, Seth B. email: seth.herzon@yale.edu organization: Department of Pharmacology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38815248$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFG2eUI4em-DveEyrLV8UiJFTO1sSxu14ldrEdJPrX46hLBQjEaeyZ3zy90TtBRyEGi9BTgs8JpuTFHkw-ZwZLrtgDtCKC4lYQKo_QCmNM205JdoxOct7XL6eKPELHTKnKcbVC40drdhB8npromgtTfAzL68O2FfisgWYDYfADFNtcTrXexmJLglsfbONiasrONlfJQplsKMvi6zRft59t9rlA7bxK4MMiYmzKj9FDB2O2Tw71FH15--Zq877dfnp3ubnYtsAFKa2znWQAdq0EdKxXVFJqKHaKOzlY6dgg-t5xMRCATg5OGdwJboSBerZiPTtFL-90b-Z-soOp1hKM-ib5CdJ3HcHr3yfB7_R1_KYJ4Xi9Jl1VeH5QSPHrbHPRk8_GjiMEG-esGRFMdqwT5P8oloyLTnFe0We_-ro39DOOCpzdASbFnJN19wjBeklbL2nrQ9oVp3_gxhdYIqxX-fFfSwe_S3Mf5xRqFH9HfwAfQbt1 |
CitedBy_id | crossref_primary_10_1021_acsorginorgau_4c00081 |
Cites_doi | 10.1002/anie.201108018 10.1093/carcin/1.1.21 10.1002/jps.2600640147 10.1038/s41467-019-09940-1 10.1073/pnas.81.1.13 10.1001/jama.2023.0023 10.1002/anie.201307580 10.1016/S0006-291X(87)80249-8 10.1007/BF02985159 10.1016/j.ijms.2014.04.018 10.1093/carcin/18.10.1883 10.1016/S1568-7864(03)00086-7 10.1016/0006-2952(83)90420-3 10.1038/bjc.1987.85 10.1074/jbc.M311105200 10.1038/s43018-019-0018-6 10.1093/nar/16.14.6779 10.1007/978-1-61779-421-6_9 10.1021/bi9913606 10.1038/nbt.3460 10.1021/cr300177k 10.4161/cbt.199 10.1038/s41596-021-00615-0 10.1021/tx00034a008 10.1021/jm00368a016 10.1007/BF02897208 10.1016/j.dnarep.2015.11.019 10.1186/s40478-020-0892-2 10.1016/j.tox.2017.07.007 10.3390/ph7070797 10.1038/bjc.1988.21 10.1093/noajnl/vdaa117 10.1016/j.ejmech.2005.11.007 10.1074/jbc.M205548200 10.3724/SP.J.1096.2010.00532 10.1038/ng.3590 10.1371/journal.pone.0121225 10.1016/j.ctrv.2020.102029 10.1055/s-2005-869905 10.1073/pnas.77.1.467 10.1016/S0027-5107(00)00062-2 10.6084/m9.figshare.22765112.v2 10.1080/15257770.2012.656784 10.1038/cddis.2013.388 10.1103/PhysRev.140.A1133 10.1093/nar/gki335 10.1021/bi400273m 10.1093/nass/49.1.23 10.1016/j.taap.2016.06.022 10.1158/1535-7163.MCT-20-0319 10.1021/ja038169a 10.1016/j.cell.2016.06.017 10.1007/978-3-319-13278-5_2 10.1016/0006-291X(87)90279-8 10.1126/sciadv.abh2169 10.1093/nar/25.18.3629 10.1016/S0040-4039(97)00619-9 10.1016/j.ejmech.2023.115507 10.1056/NEJMoa043330 10.1016/0277-5379(89)90036-9 10.1016/0277-5379(89)90422-7 10.1016/0277-5379(89)90216-2 10.1056/NEJMoa043331 10.1021/acschembio.2c00022 10.1038/nature11005 10.1093/nar/gkl117 10.1021/jm401121k 10.1021/tx200031q 10.1093/neuonc/noad149 10.1126/science.abn7570 10.1039/C6MD00384B 10.1007/BF00173652 10.1126/sciadv.abm6638 10.3109/02841868909092290 10.1038/nrc3399 10.1016/j.ejca.2022.10.006 10.1021/tx0497907 10.1002/ame2.12165 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.3c06483 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 18252 |
ExternalDocumentID | PMC11409917 38815248 10_1021_jacs_3c06483 a035727710 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM131913 – fundername: NCI NIH HHS grantid: U19 CA264362 – fundername: NCI NIH HHS grantid: R01 CA276186 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NCI NIH HHS grantid: R01 CA266604 – fundername: NCI NIH HHS grantid: T32 CA193200 |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI AAHBH ABFRP ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGHSJ AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 AAYXX ABBLG ABLBI CITATION AAYWT CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a451t-fe763aae985a73b82622c20f84f6de6f3d5bbf45d1aa76df8c0754c5ca12683b3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 18:23:31 EDT 2025 Fri Jul 11 14:09:42 EDT 2025 Fri Jul 11 12:13:41 EDT 2025 Mon Jul 21 05:40:12 EDT 2025 Tue Jul 01 03:10:58 EDT 2025 Thu Apr 24 23:05:49 EDT 2025 Thu Jul 11 03:10:22 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a451t-fe763aae985a73b82622c20f84f6de6f3d5bbf45d1aa76df8c0754c5ca12683b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7550-1593 0000-0003-3962-7452 0000-0001-9045-8872 0000-0002-4489-3109 0000-0002-3262-1237 0000-0001-5940-9853 0000-0002-7583-1242 0000-0002-5460-4008 0000-0002-5859-9197 0000-0002-7616-1949 0000-0003-2217-1233 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11409917 |
PMID | 38815248 |
PQID | 3063457844 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11409917 proquest_miscellaneous_3153673751 proquest_miscellaneous_3063457844 pubmed_primary_38815248 crossref_primary_10_1021_jacs_3c06483 crossref_citationtrail_10_1021_jacs_3c06483 acs_journals_10_1021_jacs_3c06483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-10 |
PublicationDateYYYYMMDD | 2024-07-10 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref27/cit27 ref23/cit23a ref16/cit16 ref23/cit23c Christians F. C. (ref41/cit41c) 1997; 57 ref12/cit12b ref12/cit12a Gonzaga P. E. (ref23/cit23d) 1992; 52 ref8/cit8 ref2/cit2 ref37/cit37 Newlands E. S. (ref18/cit18a) 1985; 69 ref43/cit43a ref20/cit20 ref43/cit43b ref17/cit17 ref36/cit36d ref10/cit10 ref35/cit35 ref36/cit36a ref36/cit36b ref36/cit36c Aquilina G. (ref15/cit15) 1998; 58 Dolan M. E. (ref42/cit42) 1997; 3 ref13/cit13 ref32/cit32c Weber G. F. (ref1/cit1) 2015 ref32/cit32a Gibson N. W. (ref19/cit19c) 1984; 44 ref19/cit19a ref46/cit46a ref46/cit46c ref46/cit46b ref46/cit46d ref45/cit45c ref45/cit45b ref45/cit45a ref19/cit19b Wu R. S. (ref41/cit41b) 1987; 47 ref29/cit29b ref11/cit11 ref29/cit29a Brent T. P. (ref23/cit23b) 1987; 47 ref25/cit25b ref25/cit25c ref25/cit25a Pegg A. E. (ref21/cit21) 1984; 44 ref31/cit31b ref39/cit39 ref41/cit41d ref5/cit5 ref31/cit31a Bai B.-Q. (ref32/cit32b) 2010; 18 Gibson N. W. (ref19/cit19d) 1984; 44 Tong W. P. (ref14/cit14a) 1982; 42 ref40/cit40 ref41/cit41a ref18/cit18f ref18/cit18g ref18/cit18d ref18/cit18e ref26/cit26 ref18/cit18b ref34/cit34b ref18/cit18c ref34/cit34c ref34/cit34a ref24/cit24c ref38/cit38b ref24/cit24b ref28/cit28a ref14/cit14c ref14/cit14b ref38/cit38a ref18/cit18j ref18/cit18h ref24/cit24a ref28/cit28b Fischhaber P. L. (ref33/cit33) 1999; 59 ref18/cit18i ref30/cit30a ref22/cit22 ref30/cit30c ref30/cit30b ref4/cit4 ref6/cit6a ref47/cit47 ref6/cit6b ref44/cit44 ref30/cit30d ref7/cit7 |
References_xml | – ident: ref35/cit35 doi: 10.1002/anie.201108018 – ident: ref47/cit47 doi: 10.1093/carcin/1.1.21 – volume: 44 start-page: 3806 year: 1984 ident: ref21/cit21 publication-title: Cancer Res. – ident: ref19/cit19a doi: 10.1002/jps.2600640147 – ident: ref30/cit30c doi: 10.1038/s41467-019-09940-1 – ident: ref41/cit41a doi: 10.1073/pnas.81.1.13 – ident: ref5/cit5 doi: 10.1001/jama.2023.0023 – ident: ref24/cit24c doi: 10.1002/anie.201307580 – volume: 57 start-page: 2007 year: 1997 ident: ref41/cit41c publication-title: Cancer. Res. – volume: 42 start-page: 3102 year: 1982 ident: ref14/cit14a publication-title: Cancer Res. – ident: ref20/cit20 doi: 10.1016/S0006-291X(87)80249-8 – ident: ref18/cit18f doi: 10.1007/BF02985159 – ident: ref14/cit14b doi: 10.1016/j.ijms.2014.04.018 – volume: 44 start-page: 1767 year: 1984 ident: ref19/cit19c publication-title: Cancer Res. – ident: ref25/cit25a doi: 10.1093/carcin/18.10.1883 – ident: ref31/cit31a doi: 10.1016/S1568-7864(03)00086-7 – ident: ref26/cit26 doi: 10.1016/0006-2952(83)90420-3 – ident: ref18/cit18b doi: 10.1038/bjc.1987.85 – ident: ref24/cit24b doi: 10.1074/jbc.M311105200 – ident: ref29/cit29b doi: 10.1038/s43018-019-0018-6 – volume: 59 start-page: 4363 year: 1999 ident: ref33/cit33 publication-title: Cancer Res. – ident: ref23/cit23c doi: 10.1093/nar/16.14.6779 – volume: 69 start-page: 801 year: 1985 ident: ref18/cit18a publication-title: Cancer Treat. Rep. – volume: 44 start-page: 1772 year: 1984 ident: ref19/cit19d publication-title: Cancer Res. – ident: ref31/cit31b doi: 10.1007/978-1-61779-421-6_9 – ident: ref41/cit41d doi: 10.1021/bi9913606 – ident: ref29/cit29a doi: 10.1038/nbt.3460 – volume: 18 start-page: 280 year: 2010 ident: ref32/cit32b publication-title: Hecheng Huaxue – ident: ref40/cit40 doi: 10.1021/cr300177k – ident: ref2/cit2 doi: 10.4161/cbt.199 – ident: ref27/cit27 doi: 10.1038/s41596-021-00615-0 – ident: ref32/cit32a doi: 10.1021/tx00034a008 – ident: ref19/cit19b doi: 10.1021/jm00368a016 – ident: ref18/cit18j doi: 10.1007/BF02897208 – ident: ref11/cit11 doi: 10.1016/j.dnarep.2015.11.019 – ident: ref12/cit12b doi: 10.1186/s40478-020-0892-2 – ident: ref43/cit43b doi: 10.1016/j.tox.2017.07.007 – ident: ref7/cit7 doi: 10.3390/ph7070797 – ident: ref45/cit45c – ident: ref18/cit18c doi: 10.1038/bjc.1988.21 – ident: ref9/cit9 doi: 10.1093/noajnl/vdaa117 – ident: ref36/cit36b doi: 10.1016/j.ejmech.2005.11.007 – ident: ref24/cit24a doi: 10.1074/jbc.M205548200 – ident: ref32/cit32c doi: 10.3724/SP.J.1096.2010.00532 – ident: ref12/cit12a doi: 10.1038/ng.3590 – ident: ref14/cit14c doi: 10.1371/journal.pone.0121225 – ident: ref13/cit13 doi: 10.1016/j.ctrv.2020.102029 – ident: ref36/cit36a doi: 10.1055/s-2005-869905 – ident: ref22/cit22 doi: 10.1073/pnas.77.1.467 – ident: ref25/cit25b doi: 10.1016/S0027-5107(00)00062-2 – ident: ref30/cit30d doi: 10.6084/m9.figshare.22765112.v2 – ident: ref34/cit34c doi: 10.1080/15257770.2012.656784 – ident: ref44/cit44 doi: 10.1038/cddis.2013.388 – ident: ref39/cit39 doi: 10.1103/PhysRev.140.A1133 – ident: ref37/cit37 doi: 10.1093/nar/gki335 – ident: ref25/cit25c doi: 10.1021/bi400273m – ident: ref34/cit34a doi: 10.1093/nass/49.1.23 – ident: ref43/cit43a doi: 10.1016/j.taap.2016.06.022 – ident: ref45/cit45a doi: 10.1158/1535-7163.MCT-20-0319 – ident: ref45/cit45b – ident: ref36/cit36d doi: 10.1021/ja038169a – ident: ref30/cit30b doi: 10.1016/j.cell.2016.06.017 – start-page: 9 volume-title: Molecular Therapies of Cancer year: 2015 ident: ref1/cit1 doi: 10.1007/978-3-319-13278-5_2 – ident: ref23/cit23a doi: 10.1016/0006-291X(87)90279-8 – volume: 47 start-page: 6229 year: 1987 ident: ref41/cit41b publication-title: Cancer Res. – ident: ref8/cit8 doi: 10.1126/sciadv.abh2169 – ident: ref38/cit38b doi: 10.1093/nar/25.18.3629 – ident: ref38/cit38a doi: 10.1016/S0040-4039(97)00619-9 – ident: ref46/cit46d doi: 10.1016/j.ejmech.2023.115507 – ident: ref6/cit6a doi: 10.1056/NEJMoa043330 – ident: ref18/cit18e doi: 10.1016/0277-5379(89)90036-9 – volume: 47 start-page: 6185 year: 1987 ident: ref23/cit23b publication-title: Cancer Res. – ident: ref18/cit18i doi: 10.1016/0277-5379(89)90422-7 – volume: 52 start-page: 6052 year: 1992 ident: ref23/cit23d publication-title: Cancer Res. – ident: ref18/cit18h doi: 10.1016/0277-5379(89)90216-2 – ident: ref6/cit6b doi: 10.1056/NEJMoa043331 – volume: 58 start-page: 135 year: 1998 ident: ref15/cit15 publication-title: Cancer Res. – ident: ref46/cit46c doi: 10.1021/acschembio.2c00022 – ident: ref30/cit30a doi: 10.1038/nature11005 – ident: ref34/cit34b doi: 10.1093/nar/gkl117 – volume: 3 start-page: 837 year: 1997 ident: ref42/cit42 publication-title: Clin. Cancer Res. – ident: ref46/cit46a doi: 10.1021/jm401121k – ident: ref10/cit10 doi: 10.1021/tx200031q – ident: ref4/cit4 doi: 10.1093/neuonc/noad149 – ident: ref16/cit16 doi: 10.1126/science.abn7570 – ident: ref46/cit46b doi: 10.1039/C6MD00384B – ident: ref18/cit18d doi: 10.1007/BF00173652 – ident: ref28/cit28b doi: 10.1126/sciadv.abm6638 – ident: ref18/cit18g doi: 10.3109/02841868909092290 – ident: ref3/cit3 doi: 10.1038/nrc3399 – ident: ref17/cit17 doi: 10.1016/j.ejca.2022.10.006 – ident: ref36/cit36c doi: 10.1021/tx0497907 – ident: ref28/cit28a doi: 10.1002/ame2.12165 |
SSID | ssj0004281 |
Score | 2.465845 |
Snippet | Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18241 |
SubjectTerms | alkylation Antineoplastic Agents - chemical synthesis Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use brain Brain Neoplasms - drug therapy Brain Neoplasms - pathology Cell Line, Tumor crosslinking cytidine DNA DNA repair DNA Repair - drug effects drug resistance Drug Resistance, Neoplasm - drug effects fluorides Humans Imidazoles - chemistry Imidazoles - pharmacology Imidazoles - therapeutic use mechanism of action mutagens O-Methylguanine-DNA Methyltransferase - antagonists & inhibitors O-Methylguanine-DNA Methyltransferase - metabolism toxicity toxins |
Title | Mechanism of Action of KL-50, a Candidate Imidazotetrazine for the Treatment of Drug-Resistant Brain Cancers |
URI | http://dx.doi.org/10.1021/jacs.3c06483 https://www.ncbi.nlm.nih.gov/pubmed/38815248 https://www.proquest.com/docview/3063457844 https://www.proquest.com/docview/3153673751 https://pubmed.ncbi.nlm.nih.gov/PMC11409917 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoHNpLKX3QpYCM1J5ar-JnvEfY8ujz0ILEbWU7NqBCtiLZC7--M9lk6S6i5ZTIGSfxcz7bM98Q8tbEIg1cythAcseUjIK5rNAsFEllchBkDI2B7HdzdKI-n-rTWwPZxRN8gfxAoerLAKrTykdkRRgYvwiBhj9v_R-F5R3Mza2RrYH7Ym5UQKGaV0B3UOWiceRf2uZglRx2PjtTI5Nf_Unt--HmLoXjfwryjDxtASfdnfaQNbIUy-fk8bCL8_aCXH6L6P17UV3RcaK7jZ8D3n35ynT2gTo6RM8X3Bign67gejOuI_wyslJTQLwUECQ97szVMePH68kZ-xErRKaQsodBKPAlAZDmS3JysH88PGJtDAbmlOY1SxEmIOfiwGqXSw-LESGCyJJVyRTRJFlo75PSBXcuN0WyATCICjo4Di0lvXxFlstxGV8Tal3uE4-ZVc6rXDtvCgtgyiCrXFBB9cgO1NCoHUPVqDkeF7A8wdS23nrkfdd4o9CSmGMsjct7pN_NpH9PyTvukdvp-sEIKh-PTFwZxxMQAASnYFJT6h8yoDQw2o_mPbI-7Tuzr0kLRRTK9oid61UzAWT3nn9SXpw3LN8cqchgMb3xgGp5Q54IAFu458yzTbJcX0_iFoCl2m83I-UPM5kPqw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwENZAOZRLedPQAuoMnMAd62nlGAKdlKY5QDrTm0eSJdpp6zC1c-mvZ9exUxKmTE_2yCtbktfeT9Lut4R80KGIfRvTpC-YTaQIPLFpoRJfRJmKvhfBNw6yEz06kd9P1WkbrI6xMNCICu5UNZv4t-wCSBMEhcKDBTXiIXkEOISjQg-GP2_DILlhHdrNjBatn_t6bbRDvlq1Q_-Ay3Ufyb-MzsETMlk2t_E1udif127f36wxOd67P0_JVgs_6WChL8_Ig1A-J5vDLuvbC3J5HDAW-Ly6orNIB03UA54djROVfqaWDjEOBpcJ6OEVHG9mdYCWI0c1BfxLAU_Saee8jhW_Xs9_JT9ChTgVSr5gSgq8iQfc-ZKcHHybDkdJm5EhsVKxOokBfkfWhr5RNhMOpiace55GI6Mugo6iUM5FqQpmbaaLaDwgEumVt4xrI5x4RTbKWRm2CTU2c5GF1EjrZKas04UBaKWRY85LL3tkD0Yob7-oKm82yzlMVrC0Hbce-dS9w9y3lOaYWePyDumPS-nfCyqPO-T2OnXIYfBxA8WWYTYHAcBzEn5xUv5HBkwI5v5RrEdeL1Ro-TRhoItcmh4xK8q1FECu79Ur5flZw_nNkJgMptZv7jEs78nmaHo8zseHk6Md8pgDDMPVaJbuko36eh7eAoyq3bvm4_kD5FwYDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3oXl6UpwglTxK_Eely2rlpYKlVbqLbIdGyrabNVkL_31zGSThV1UBKdE9jhxnHHmczzzDcCbLJRxaGOaDCW3iZJBJDYtdeLLqFI59DL41kH2INs5Vp9O9Mka8D4WBjtR45XqdhOfZvVFGTuGAaIKwgrp0YoaeQNu0o4dKfVo_PVXKKQwvEe8uclk5-u-2ppska-XbdEfAHPVT_I3wzO5B4eLLrf-Jj-2Zo3b8lcrbI7_9Uz34W4HQ9lorjcPYC1UD-H2uM_-9gjOPgeKCT6tz9k0slEb_UBne_uJTt8zy8YUD0O_C9juOR6vpk3A3hNXNUMczBBXsqPeiZ0abl_OviWHoSa8iiUfKDUFXcQj_nwMx5OPR-OdpMvMkFileZPEgJ8la8PQaJtLh0sUIbxIo1ExK0MWZamdi0qX3No8K6PxiEyU195ykRnp5AasV9MqPAVmbO4iD6lR1qlcW5eVBiFWRlxzXnk1gE0coaKbWXXRbpoLXLRQaTduA3jXv8fCd9TmlGHj7BrptwvpizmlxzVym71KFDj4tJFiqzCdoQDiOoWfOqX-IoOmhHIAaT6AJ3M1WtxNGnxEocwAzJKCLQSI83u5pjr93nJ_cyIowyX2s38Yltdw68v2pNjfPdh7DncEojH6Kc3TF7DeXM7CS0RTjXvVzp-f5rQajw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Action+of+KL-50%2C+a+Candidate+Imidazotetrazine+for+the+Treatment+of+Drug-Resistant+Brain+Cancers&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Huseman%2C+Eric+D.&rft.au=Lo%2C+Anna&rft.au=Fedorova%2C+Olga&rft.au=Elia%2C+James+L.&rft.date=2024-07-10&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=146&rft.issue=27&rft.spage=18241&rft.epage=18252&rft_id=info:doi/10.1021%2Fjacs.3c06483&rft.externalDocID=a035727710 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |