High-Performance Energy Storage and Conversion Materials Derived from a Single Metal–Organic Framework/Graphene Aerogel Composite

Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of elec...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 17; no. 5; pp. 2788 - 2795
Main Authors Xia, Wei, Qu, Chong, Liang, Zibin, Zhao, Bote, Dai, Shuge, Qiu, Bin, Jiao, Yang, Zhang, Qiaobao, Huang, Xinyu, Guo, Wenhan, Dang, Dai, Zou, Ruqiang, Xia, Dingguo, Xu, Qiang, Liu, Meilin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co­(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoO x ) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoO x /NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon–graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.
AbstractList Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.
Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co­(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoO x ) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoO x /NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon–graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.
Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM) (mIM = 2-methylimidazole). The presence of cobalt oxide (CoO ) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoO /NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.
Author Xia, Wei
Liu, Meilin
Dai, Shuge
Qiu, Bin
Zhang, Qiaobao
Dang, Dai
Zou, Ruqiang
Zhao, Bote
Xia, Dingguo
Xu, Qiang
Qu, Chong
Liang, Zibin
Jiao, Yang
Guo, Wenhan
Huang, Xinyu
AuthorAffiliation School of Chemical and Biomolecular Engineering
School of Materials Science and Engineering
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering
National Institute of Advanced Industrial Science and Technology (AIST)
Georgia Institute of Technology
AuthorAffiliation_xml – name: School of Chemical and Biomolecular Engineering
– name: National Institute of Advanced Industrial Science and Technology (AIST)
– name: School of Materials Science and Engineering
– name: Georgia Institute of Technology
– name: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering
Author_xml – sequence: 1
  givenname: Wei
  surname: Xia
  fullname: Xia, Wei
  organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering
– sequence: 2
  givenname: Chong
  surname: Qu
  fullname: Qu, Chong
  organization: School of Materials Science and Engineering
– sequence: 3
  givenname: Zibin
  surname: Liang
  fullname: Liang, Zibin
  organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering
– sequence: 4
  givenname: Bote
  orcidid: 0000-0003-1236-6862
  surname: Zhao
  fullname: Zhao, Bote
  organization: School of Materials Science and Engineering
– sequence: 5
  givenname: Shuge
  surname: Dai
  fullname: Dai, Shuge
  organization: School of Materials Science and Engineering
– sequence: 6
  givenname: Bin
  surname: Qiu
  fullname: Qiu, Bin
  organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering
– sequence: 7
  givenname: Yang
  surname: Jiao
  fullname: Jiao, Yang
  organization: Georgia Institute of Technology
– sequence: 8
  givenname: Qiaobao
  surname: Zhang
  fullname: Zhang, Qiaobao
  organization: School of Materials Science and Engineering
– sequence: 9
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
  organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering
– sequence: 10
  givenname: Wenhan
  surname: Guo
  fullname: Guo, Wenhan
  organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering
– sequence: 11
  givenname: Dai
  surname: Dang
  fullname: Dang, Dai
  organization: School of Materials Science and Engineering
– sequence: 12
  givenname: Ruqiang
  orcidid: 0000-0003-0456-4615
  surname: Zou
  fullname: Zou, Ruqiang
  email: rzou@pku.edu.cn
  organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering
– sequence: 13
  givenname: Dingguo
  orcidid: 0000-0003-2191-236X
  surname: Xia
  fullname: Xia, Dingguo
  email: dgxia@pku.edu.cn
  organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering
– sequence: 14
  givenname: Qiang
  orcidid: 0000-0001-5385-9650
  surname: Xu
  fullname: Xu, Qiang
  email: q.xu@aist.go.jp
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 15
  givenname: Meilin
  orcidid: 0000-0002-6188-2372
  surname: Liu
  fullname: Liu, Meilin
  email: meilin.liu@mse.gatech.edu
  organization: School of Materials Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28394621$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC_wBgh5ySZTO3Fu7KrpDalVkQrr6Ng-SV0Sezj2FHWH1EfoG_IkpJppFyxgdSz5-_7F_--zHR88MvZeioUUuTwEExcefBgxpUWlRSmEesX2ZFmIrGrbfOfl3ahdth_jrRCiLUrxhu3mTdGqKpd77OHcDTfZF6Q-0ATeID_xSMM9v06BYEAO3vJl8HdI0QXPLyEhORgjP57vHVreU5g48GvnhxH5JSYYf_96vKIBvDP8lGDCn4G-H54RrG7QIz9CCgOOc-q0CtElfMte93MivtveA_bt9OTr8jy7uDr7vDy6yECVMmWtQQ1tVYGUNm9rVVurpW3avpGqLLTWFnSrtDS6LrFXfV9osMLYXFqZ96UqDtjHTe6Kwo81xtRNLhocR_AY1rGTTVPVZVE35Yx-2KJrPaHtVuQmoPvuubgZUBvAUIiRsH9BpOie9unmfbrnfbrtPrP26S_NuARpbjYRuPF_stjIT7-3YU1-buvfyh8CJa85
CitedBy_id crossref_primary_10_1016_j_cej_2022_140094
crossref_primary_10_1016_j_compositesa_2022_107335
crossref_primary_10_1039_C7CS00879A
crossref_primary_10_1016_j_jallcom_2019_04_027
crossref_primary_10_1002_slct_201800979
crossref_primary_10_1016_j_ensm_2019_10_013
crossref_primary_10_1002_smll_201800285
crossref_primary_10_1080_10408347_2022_2160923
crossref_primary_10_1007_s12274_021_3375_2
crossref_primary_10_3390_gels7020057
crossref_primary_10_1021_acscatal_9b00223
crossref_primary_10_1016_j_jcis_2021_10_102
crossref_primary_10_1021_acssuschemeng_9b07487
crossref_primary_10_1039_C7TA05821G
crossref_primary_10_1007_s11581_022_04443_4
crossref_primary_10_1016_j_jwpe_2024_105366
crossref_primary_10_1039_C9NR07255A
crossref_primary_10_3390_nano10101912
crossref_primary_10_1016_j_electacta_2021_138684
crossref_primary_10_1002_slct_201902096
crossref_primary_10_1246_cl_180782
crossref_primary_10_1002_anie_201803096
crossref_primary_10_1016_j_cej_2023_147681
crossref_primary_10_1007_s10853_021_06167_8
crossref_primary_10_1016_j_colsurfa_2018_01_042
crossref_primary_10_1016_j_est_2022_103962
crossref_primary_10_1016_j_jcis_2018_07_044
crossref_primary_10_1016_j_jpowsour_2019_02_027
crossref_primary_10_1039_C8TA11007G
crossref_primary_10_1002_smtd_201700187
crossref_primary_10_1002_smtd_201900756
crossref_primary_10_14233_ajchem_2020_22859
crossref_primary_10_1002_adma_201702891
crossref_primary_10_1016_j_jwpe_2021_102481
crossref_primary_10_1016_j_materresbull_2019_110629
crossref_primary_10_1039_D0RA07146C
crossref_primary_10_1039_C9CS00880B
crossref_primary_10_1021_acs_est_8b01043
crossref_primary_10_1039_D1TA00652E
crossref_primary_10_1021_acsaem_1c00923
crossref_primary_10_3390_mi14091762
crossref_primary_10_1016_j_carbon_2021_08_086
crossref_primary_10_1002_cctc_201900058
crossref_primary_10_1016_j_watres_2024_122244
crossref_primary_10_1021_acsaem_9b00904
crossref_primary_10_1021_acssuschemeng_0c02158
crossref_primary_10_1016_j_apsusc_2020_146920
crossref_primary_10_3390_inorganics11040169
crossref_primary_10_1016_j_cej_2021_131431
crossref_primary_10_1007_s42114_022_00594_0
crossref_primary_10_1016_j_ccr_2020_213660
crossref_primary_10_1039_C7TA03773B
crossref_primary_10_1039_C8TA09528K
crossref_primary_10_1002_adfm_202103558
crossref_primary_10_1002_advs_201700515
crossref_primary_10_1016_j_electacta_2018_12_175
crossref_primary_10_1016_j_micromeso_2022_111825
crossref_primary_10_1007_s10854_018_8944_0
crossref_primary_10_1021_acsapm_4c02301
crossref_primary_10_1016_j_jcis_2017_10_067
crossref_primary_10_1039_C9MH00856J
crossref_primary_10_1039_C9NR05532K
crossref_primary_10_1016_j_electacta_2020_136769
crossref_primary_10_1039_D3SC00905J
crossref_primary_10_1002_ijch_201800077
crossref_primary_10_1007_s10934_018_0671_7
crossref_primary_10_1002_anie_201800269
crossref_primary_10_1016_j_cej_2020_124057
crossref_primary_10_1016_j_ica_2020_119629
crossref_primary_10_1016_j_surfin_2022_102266
crossref_primary_10_1021_acsami_8b00504
crossref_primary_10_1002_smll_202100135
crossref_primary_10_1007_s10853_018_2878_z
crossref_primary_10_1039_D3MA00781B
crossref_primary_10_1149_2_0391906jes
crossref_primary_10_1016_j_ijbiomac_2019_04_148
crossref_primary_10_1021_acs_nanolett_7b03982
crossref_primary_10_1039_C9TA00038K
crossref_primary_10_1002_adma_201705146
crossref_primary_10_1007_s12598_020_01470_w
crossref_primary_10_1016_j_ccr_2021_214125
crossref_primary_10_1016_j_electacta_2018_03_200
crossref_primary_10_1007_s11664_019_07505_y
crossref_primary_10_1016_j_carbon_2021_07_046
crossref_primary_10_1016_j_cej_2019_122076
crossref_primary_10_1016_j_jcis_2020_07_121
crossref_primary_10_1002_celc_202000136
crossref_primary_10_1021_acsaem_0c00361
crossref_primary_10_1016_j_apsusc_2020_148303
crossref_primary_10_1016_j_mtcomm_2021_102685
crossref_primary_10_1002_ente_201800189
crossref_primary_10_1016_j_inoche_2024_113334
crossref_primary_10_1002_aenm_201803238
crossref_primary_10_1016_j_jallcom_2019_151887
crossref_primary_10_1016_j_susmat_2023_e00588
crossref_primary_10_1039_C8NJ00667A
crossref_primary_10_3390_polym11010129
crossref_primary_10_1039_C8TA02528B
crossref_primary_10_1016_j_ccr_2022_214496
crossref_primary_10_1038_s41596_022_00718_2
crossref_primary_10_1002_admi_201800438
crossref_primary_10_1002_ange_201911023
crossref_primary_10_3390_electrochem2020017
crossref_primary_10_1142_S1793604723510165
crossref_primary_10_1021_jacs_3c06349
crossref_primary_10_1039_C7TA09976B
crossref_primary_10_1016_j_ccr_2020_213441
crossref_primary_10_1039_D0TA10329B
crossref_primary_10_1039_C8TA10575H
crossref_primary_10_1016_j_apsusc_2021_149701
crossref_primary_10_3390_agriculture13010208
crossref_primary_10_1002_advs_202409290
crossref_primary_10_1007_s12039_022_02067_9
crossref_primary_10_1021_acsaem_2c03872
crossref_primary_10_1007_s10854_019_02495_3
crossref_primary_10_1039_D0NJ02045A
crossref_primary_10_1007_s12274_020_3260_4
crossref_primary_10_1038_natrevmats_2017_75
crossref_primary_10_1039_C8DT03327G
crossref_primary_10_3390_ma17092124
crossref_primary_10_1016_j_mtchem_2019_100239
crossref_primary_10_1016_j_ccr_2021_214264
crossref_primary_10_1016_j_cej_2021_129700
crossref_primary_10_3389_fchem_2022_854666
crossref_primary_10_1016_j_mattod_2023_08_007
crossref_primary_10_1126_sciadv_abl8631
crossref_primary_10_1002_ange_201900240
crossref_primary_10_1021_acsami_1c14873
crossref_primary_10_1039_D1TB02141A
crossref_primary_10_1002_adfm_201804950
crossref_primary_10_1002_celc_201700627
crossref_primary_10_1016_j_cis_2022_102732
crossref_primary_10_1002_smll_201704282
crossref_primary_10_1016_j_jallcom_2019_03_128
crossref_primary_10_1016_j_jpowsour_2018_12_014
crossref_primary_10_1039_C9CP06181A
crossref_primary_10_1039_D1QI00797A
crossref_primary_10_1016_j_optmat_2020_110634
crossref_primary_10_3390_molecules27144571
crossref_primary_10_1002_adfm_202102300
crossref_primary_10_1016_j_compositesb_2021_108642
crossref_primary_10_1039_C9DT03011E
crossref_primary_10_1039_D1RA08817C
crossref_primary_10_1016_j_bioelechem_2022_108201
crossref_primary_10_1021_acsanm_0c02749
crossref_primary_10_1002_adfm_201900326
crossref_primary_10_1002_ange_201803096
crossref_primary_10_3389_fchem_2020_00226
crossref_primary_10_1016_j_ccr_2020_213221
crossref_primary_10_1016_j_est_2024_111447
crossref_primary_10_1002_adem_202300625
crossref_primary_10_1002_smll_202303911
crossref_primary_10_1002_adma_201804881
crossref_primary_10_1021_acssuschemeng_8b03683
crossref_primary_10_1039_D0QM01103G
crossref_primary_10_3389_fchem_2018_00555
crossref_primary_10_1002_smll_202308804
crossref_primary_10_1002_admi_201701548
crossref_primary_10_1016_j_jallcom_2018_12_239
crossref_primary_10_1021_acs_inorgchem_8b01106
crossref_primary_10_1039_D1CE00638J
crossref_primary_10_1002_app_54284
crossref_primary_10_1021_acssuschemeng_7b04319
crossref_primary_10_1039_C7TA11100B
crossref_primary_10_1039_C9TA07540B
crossref_primary_10_1039_C8TA11704G
crossref_primary_10_1016_j_cej_2020_126710
crossref_primary_10_1021_acsami_9b00415
crossref_primary_10_1016_j_ccr_2019_213016
crossref_primary_10_1016_j_snb_2020_127885
crossref_primary_10_1016_j_carbon_2021_05_016
crossref_primary_10_1002_asia_201901616
crossref_primary_10_1016_j_compositesb_2018_11_085
crossref_primary_10_1021_acs_inorgchem_8b03533
crossref_primary_10_1002_er_6834
crossref_primary_10_1016_j_carbpol_2020_116422
crossref_primary_10_1063_5_0213150
crossref_primary_10_1039_D0NR02016H
crossref_primary_10_1016_j_compscitech_2020_108191
crossref_primary_10_1016_j_jpowsour_2018_09_023
crossref_primary_10_1039_D0NH00332H
crossref_primary_10_1039_D0NR08569C
crossref_primary_10_1039_D3DT01966G
crossref_primary_10_3390_ma13184215
crossref_primary_10_1016_j_electacta_2021_138048
crossref_primary_10_1016_j_carbon_2019_01_065
crossref_primary_10_1021_acsaem_4c00919
crossref_primary_10_1016_j_est_2023_108055
crossref_primary_10_1039_C8DT02082E
crossref_primary_10_1021_acsami_1c03812
crossref_primary_10_1016_j_coco_2024_102144
crossref_primary_10_1016_j_seppur_2023_124464
crossref_primary_10_1016_j_nanoen_2020_104592
crossref_primary_10_1002_adfm_202003407
crossref_primary_10_1039_C9TA12776C
crossref_primary_10_1016_j_apsusc_2018_11_188
crossref_primary_10_1021_acsami_8b08861
crossref_primary_10_1039_D3NJ03787H
crossref_primary_10_1016_j_isci_2023_107132
crossref_primary_10_1002_cctc_202001326
crossref_primary_10_1039_C7NJ03798H
crossref_primary_10_1007_s11581_018_2812_z
crossref_primary_10_1039_C7NJ05159J
crossref_primary_10_1007_s10853_021_06212_6
crossref_primary_10_1016_j_enchem_2021_100065
crossref_primary_10_1016_j_cclet_2018_09_017
crossref_primary_10_1016_j_jallcom_2019_05_240
crossref_primary_10_1088_2399_1984_ac3c8f
crossref_primary_10_3390_polym10101102
crossref_primary_10_1126_sciadv_aap9252
crossref_primary_10_1021_acsanm_8b01428
crossref_primary_10_1002_ange_201800269
crossref_primary_10_1016_j_ijoes_2025_100958
crossref_primary_10_1021_acs_nanolett_2c02159
crossref_primary_10_1016_j_compositesb_2021_109532
crossref_primary_10_1021_acs_nanolett_0c02766
crossref_primary_10_3389_fmats_2021_777149
crossref_primary_10_1002_anie_201900240
crossref_primary_10_1016_j_electacta_2018_05_024
crossref_primary_10_1021_acs_energyfuels_3c05193
crossref_primary_10_1002_cssc_201800509
crossref_primary_10_1016_j_est_2023_109164
crossref_primary_10_1016_j_jelechem_2019_113670
crossref_primary_10_1016_j_jpowsour_2022_231324
crossref_primary_10_1002_asia_201900318
crossref_primary_10_1016_j_jallcom_2020_157134
crossref_primary_10_1002_slct_201803150
crossref_primary_10_12677_AEPE_2023_115017
crossref_primary_10_2139_ssrn_4003920
crossref_primary_10_1002_anie_201911023
crossref_primary_10_1016_j_ijoes_2024_100548
crossref_primary_10_1002_advs_202300526
crossref_primary_10_1016_j_jallcom_2021_162191
crossref_primary_10_1016_j_apsb_2018_09_003
crossref_primary_10_1039_D0CC02464C
crossref_primary_10_1088_1402_4896_ad92c1
crossref_primary_10_1039_C9SE00544G
crossref_primary_10_3390_molecules24071246
crossref_primary_10_1007_s10934_024_01706_5
crossref_primary_10_1016_j_jpowsour_2018_03_055
crossref_primary_10_1016_j_electacta_2021_138973
crossref_primary_10_1039_C7TA06419E
crossref_primary_10_1039_D2DT00551D
crossref_primary_10_1002_smtd_201800049
crossref_primary_10_1007_s10971_023_06242_3
crossref_primary_10_1016_j_commatsci_2020_110252
crossref_primary_10_1039_D1SC00095K
crossref_primary_10_1002_adfm_202002788
crossref_primary_10_1016_j_ensm_2019_12_019
crossref_primary_10_1021_acsanm_1c01185
crossref_primary_10_1016_j_cclet_2021_03_050
crossref_primary_10_1002_ange_201806862
crossref_primary_10_1021_acsanm_0c00702
crossref_primary_10_1016_j_apsusc_2019_145166
crossref_primary_10_1002_smll_201801454
crossref_primary_10_1021_acsami_8b04733
crossref_primary_10_1039_C8CY01371C
crossref_primary_10_3389_fenrg_2017_00033
crossref_primary_10_1021_acsami_7b13117
crossref_primary_10_1007_s40843_018_9290_y
crossref_primary_10_1016_j_micromeso_2019_03_030
crossref_primary_10_1039_D3CP02122J
crossref_primary_10_1016_j_electacta_2019_04_121
crossref_primary_10_1016_j_jpowsour_2022_232434
crossref_primary_10_1007_s10854_019_01593_6
crossref_primary_10_1007_s11581_023_05120_w
crossref_primary_10_1002_smll_202304981
crossref_primary_10_1016_j_jpowsour_2019_02_079
crossref_primary_10_1016_j_apmt_2023_101877
crossref_primary_10_1016_j_est_2021_103248
crossref_primary_10_1002_batt_202000046
crossref_primary_10_1002_ejic_201900940
crossref_primary_10_1021_acs_energyfuels_1c04183
crossref_primary_10_1002_smll_201704207
crossref_primary_10_1039_C8SC05236K
crossref_primary_10_1002_chem_201705232
crossref_primary_10_1016_j_jcat_2019_02_005
crossref_primary_10_1007_s40820_022_00851_3
crossref_primary_10_1007_s10904_024_03413_9
crossref_primary_10_3390_gels10120810
crossref_primary_10_1016_j_apsusc_2020_148716
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1039_D2CS00585A
crossref_primary_10_1016_j_ensm_2018_11_025
crossref_primary_10_1002_cctc_201801484
crossref_primary_10_1016_j_electacta_2018_04_130
crossref_primary_10_1016_j_cej_2024_155822
crossref_primary_10_1016_j_electacta_2019_06_141
crossref_primary_10_1021_acsenergylett_7b00265
crossref_primary_10_1016_j_ica_2020_119440
crossref_primary_10_1002_aenm_201801515
crossref_primary_10_1002_aenm_202003410
crossref_primary_10_1016_j_gee_2020_11_005
crossref_primary_10_1016_j_jmat_2021_03_001
crossref_primary_10_1039_D0TA08634G
crossref_primary_10_1016_j_ccr_2017_10_014
crossref_primary_10_1016_j_jhazmat_2021_127503
crossref_primary_10_1021_acsaem_9b00700
crossref_primary_10_1016_j_jechem_2020_04_067
crossref_primary_10_1016_j_jhazmat_2021_127069
crossref_primary_10_1021_acscatal_9b02748
crossref_primary_10_1039_C8TA10925G
crossref_primary_10_3390_molecules28227479
crossref_primary_10_1002_cssc_201801521
crossref_primary_10_1021_acsaem_0c02864
crossref_primary_10_1039_C8TA00132D
crossref_primary_10_1016_j_enchem_2019_100001
crossref_primary_10_1002_adma_201703711
crossref_primary_10_1002_chem_202400157
crossref_primary_10_1016_j_electacta_2020_137410
crossref_primary_10_1039_C7TA08748A
crossref_primary_10_1007_s11270_023_06247_2
crossref_primary_10_1016_j_cis_2023_102967
crossref_primary_10_1016_j_jelechem_2022_116121
crossref_primary_10_1016_j_jcis_2018_05_086
crossref_primary_10_1002_sstr_202000027
crossref_primary_10_1007_s10854_017_8169_7
crossref_primary_10_1021_acsami_8b11726
crossref_primary_10_1002_anie_201806862
crossref_primary_10_1039_D3TA01531A
crossref_primary_10_1021_jacs_9b05869
crossref_primary_10_1039_C9NR02914A
crossref_primary_10_1039_D1CC01989A
crossref_primary_10_1021_acsanm_0c00732
crossref_primary_10_1002_mame_202200469
crossref_primary_10_1039_D3NJ01475D
crossref_primary_10_1039_D1TA00900A
crossref_primary_10_1016_j_jssc_2018_05_034
crossref_primary_10_1007_s42114_021_00323_z
crossref_primary_10_1039_D3CC01167D
crossref_primary_10_1021_acs_jpcc_7b07772
crossref_primary_10_1021_acssuschemeng_9b03955
crossref_primary_10_1039_D0NR05050D
crossref_primary_10_3390_polym10121397
crossref_primary_10_1007_s40843_019_1178_5
crossref_primary_10_1016_j_ccr_2019_213093
crossref_primary_10_1007_s10854_018_8785_x
crossref_primary_10_1016_j_nanoen_2019_103919
crossref_primary_10_1002_pssr_201900534
crossref_primary_10_1021_acssuschemeng_9b01656
crossref_primary_10_1021_acs_iecr_9b01412
crossref_primary_10_1016_j_apsusc_2019_06_238
crossref_primary_10_1088_1755_1315_657_1_012014
crossref_primary_10_1016_j_cej_2022_140881
crossref_primary_10_1016_j_jhazmat_2022_128684
crossref_primary_10_1021_acs_langmuir_2c02743
crossref_primary_10_1002_slct_201901652
crossref_primary_10_1039_C7TA09608A
Cites_doi 10.1016/j.nanoen.2016.04.003
10.1038/nchem.931
10.1002/anie.201504830
10.1021/ja5084128
10.1002/adma.200902986
10.1039/C5EE00762C
10.1002/anie.201509382
10.1039/C3NR05192G
10.1021/nn4000836
10.1039/C1EE02243A
10.1039/C4TA02029D
10.1002/adma.201304218
10.1126/science.1152516
10.1002/adma.201306126
10.1021/ja307475c
10.1002/chem.201003080
10.1039/C2TA00278G
10.1126/science.aad0832
10.1016/j.nanoen.2013.04.008
10.1021/jacs.5b01613
10.1021/cm981085u
10.1039/b200393g
10.1002/anie.201308013
10.1002/adma.201501735
10.1126/science.1216744
10.1038/35035045
10.1039/c2nr30991b
10.1002/adma.201202146
10.1021/ja208940u
10.1039/C4TA01656D
10.1002/adma.201602028
10.1126/science.1096566
10.1021/nn505582e
10.1002/anie.201402371
10.1021/cs100153a
10.1002/adma.201601351
10.1002/adma.201201948
10.1126/science.aaa8765
10.1021/acscatal.5b00030
10.1039/C4TA00734D
10.1021/ja01539a017
10.1126/science.1230444
10.1021/ja8006947
10.1039/C5TA05660H
10.1126/science.1249061
10.1021/ja410794p
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.6b05004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 2795
ExternalDocumentID 28394621
10_1021_acs_nanolett_6b05004
c911978061
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a451t-9ceba966a11d29747ddb1d89f81453bbbdab94b1cb75ef4ff3bad0cd21d12f543
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 16:09:57 EDT 2025
Mon Jul 21 05:48:16 EDT 2025
Tue Jul 01 03:13:54 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Metal−organic framework
N-doped graphene aerogel
ORR catalyst
supercapacitor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a451t-9ceba966a11d29747ddb1d89f81453bbbdab94b1cb75ef4ff3bad0cd21d12f543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6188-2372
0000-0003-1236-6862
0000-0003-2191-236X
0000-0001-5385-9650
0000-0003-0456-4615
PMID 28394621
PQID 1886753785
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1886753785
pubmed_primary_28394621
crossref_primary_10_1021_acs_nanolett_6b05004
crossref_citationtrail_10_1021_acs_nanolett_6b05004
acs_journals_10_1021_acs_nanolett_6b05004
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-10
PublicationDateYYYYMMDD 2017-05-10
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
Liu B. (ref12/cit12) 2008; 130
ref31/cit31
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref15/cit15
Yuan C. (ref2/cit2) 2014; 53
ref42/cit42
ref46/cit46
ref41/cit41
Xu J. (ref5/cit5) 2012; 5
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1016/j.nanoen.2016.04.003
– ident: ref30/cit30
  doi: 10.1038/nchem.931
– ident: ref18/cit18
  doi: 10.1002/anie.201504830
– ident: ref22/cit22
  doi: 10.1021/ja5084128
– ident: ref44/cit44
  doi: 10.1002/adma.200902986
– ident: ref9/cit9
  doi: 10.1039/C5EE00762C
– ident: ref25/cit25
  doi: 10.1002/anie.201509382
– ident: ref11/cit11
  doi: 10.1039/C3NR05192G
– ident: ref41/cit41
  doi: 10.1021/nn4000836
– volume: 5
  start-page: 5281
  year: 2012
  ident: ref5/cit5
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02243A
– ident: ref17/cit17
  doi: 10.1039/C4TA02029D
– ident: ref21/cit21
  doi: 10.1002/adma.201304218
– ident: ref26/cit26
  doi: 10.1126/science.1152516
– ident: ref1/cit1
  doi: 10.1002/adma.201306126
– ident: ref14/cit14
  doi: 10.1021/ja307475c
– ident: ref19/cit19
  doi: 10.1002/chem.201003080
– ident: ref10/cit10
  doi: 10.1039/C2TA00278G
– ident: ref32/cit32
  doi: 10.1126/science.aad0832
– ident: ref16/cit16
  doi: 10.1016/j.nanoen.2013.04.008
– ident: ref23/cit23
  doi: 10.1021/jacs.5b01613
– ident: ref45/cit45
  doi: 10.1021/cm981085u
– ident: ref8/cit8
  doi: 10.1039/b200393g
– ident: ref15/cit15
  doi: 10.1002/anie.201308013
– ident: ref36/cit36
  doi: 10.1002/adma.201501735
– ident: ref40/cit40
  doi: 10.1126/science.1216744
– ident: ref6/cit6
  doi: 10.1038/35035045
– ident: ref39/cit39
  doi: 10.1039/c2nr30991b
– ident: ref3/cit3
  doi: 10.1002/adma.201202146
– ident: ref13/cit13
  doi: 10.1021/ja208940u
– ident: ref27/cit27
  doi: 10.1039/C4TA01656D
– ident: ref37/cit37
  doi: 10.1002/adma.201602028
– ident: ref33/cit33
  doi: 10.1126/science.1096566
– ident: ref20/cit20
  doi: 10.1021/nn505582e
– volume: 53
  start-page: 4816
  year: 2014
  ident: ref2/cit2
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402371
– ident: ref31/cit31
  doi: 10.1021/cs100153a
– ident: ref24/cit24
  doi: 10.1002/adma.201601351
– ident: ref42/cit42
  doi: 10.1002/adma.201201948
– ident: ref29/cit29
  doi: 10.1126/science.aaa8765
– ident: ref4/cit4
  doi: 10.1021/acscatal.5b00030
– ident: ref38/cit38
  doi: 10.1039/C4TA00734D
– ident: ref46/cit46
  doi: 10.1021/ja01539a017
– ident: ref7/cit7
  doi: 10.1126/science.1230444
– volume: 130
  start-page: 5428
  year: 2008
  ident: ref12/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8006947
– ident: ref43/cit43
  doi: 10.1039/C5TA05660H
– ident: ref28/cit28
  doi: 10.1126/science.1249061
– ident: ref34/cit34
  doi: 10.1021/ja410794p
SSID ssj0009350
Score 2.646413
Snippet Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2788
Title High-Performance Energy Storage and Conversion Materials Derived from a Single Metal–Organic Framework/Graphene Aerogel Composite
URI http://dx.doi.org/10.1021/acs.nanolett.6b05004
https://www.ncbi.nlm.nih.gov/pubmed/28394621
https://www.proquest.com/docview/1886753785
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUquLQHSltKFyhypV44ZIkdJ7GPq4UFVdq20oLELRp_pAdW2Wo32wMnJH5C_2F_CWMnYUsRopwiRfEodmbsefG8Z0I-O5ZBYoWKOM85AhTFIogNj6wyEFsQTAa62PhrdnouvlykFyug-O8OPmeHYBb9CqoZdqPuZzpOg_znOs9k7sHWYDhZiewm4URWDGKEREqKjir3iBW_IJnF_QXpkSwzrDaj1-Rbx9lpikwu-8ta983VQwnH_-zIJtloE086aDzlDXnhqrfk1V9yhO_IjS_6iL6vqAT0ODAD6QSBOc47FCpLh75MPfxjo2OoG_-lR3j95Sz1ZBUKdILmpo6OHWb2f65_N3xPQ0ddIdjhiZfJxlmWDtx89sNNqZ-WfPmY2yLno-Oz4WnUHtIQgUhZHSnjNCBmAsYs9-DEWs2sVKVkIk201ha0EpoZnaeuFGWZaLCxsZxZxstUJO_JWjWr3AdCnRRS5xakR60GcomtVRnn3gC6Ut4jBziGRRtkiyLsn3NW-JvdwBbtwPZI0n3VwrRq5_7QjekTraK7Vj8btY8nnv_UOUyBYen3WqBysyW-m5QIxZJcpj2y3XjSnUXM6JTIONt5Rn92yUvuE4qgG7tH1ur50n3EdKjW-yEGbgEwjgsR
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoAe-Kddfo0EBw7Zxo6zcQ4cVtsuW9qtkLaVegv-Sw9dZVGTBcEJqY_QZ-BVeBCehLGT7AJSVXGoxCmSFY8cz3888xngpaU9GRmeBowlDBOUlAYy1CwwqZahkZwK3y423u-NDvm7o_hoBb63vTC4iBIplf4Qf4kuQDfdWCGLGX5N1e2pMEbuNrWUu_bLZ8zUyjc7W8jWV4wNtw8Go6C5TCCQPKZVkGqrJMb2klLDXBBtjKJGpLmgPI6UUkaqlCuqVRLbnOd5pKQJtWHUUJbHPEK61-A6xj_M5Xj9wWSJ7Rv5i2DRdmAmlgreduhdsGrnB3X5px-8ILj1Tm54G34stsfXtpx055Xq6q9_IUf-9_t3B241YTbp13pxF1ZscQ_WfgNfvA9nrsQleL9snCDbvg-STCpUi2NLZGHIwBXl-z-KZCyrWlvJFj4_WUNcaw6RZILkppaMLeYxP7-d192tmgzbsrfNtw4UHH0K6dvT2bGdEmeEXbGcfQCHV7ILD2G1mBV2A4gVXKjESOFydC0TgbPTPEwcAVScpAOvkWdZY1LKzFcLMJq5wZaRWcPIDkStMGW6wXZ3V4xML5kVLGZ9rLFNLnn_RSunGRohd7IkCzub49qEwMQzSkTcgfVagBcUMX5NeY_RR__wPc_hxuhgvJft7ezvPoabzIVSHjH3CaxWp3P7FAPBSj3zakjgw1XL7S8Yu3EZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0YnkaCBYtMY8eZ2AsWo5kOLWWqSkOl7oJf6YJRpmoyIFgh8Ql8Bb_CZ_AlXDvJFJCqikUXrCJZ8ZXj-47vPQZ45uhAJZbLiLGMYYIiaaRiwyIrjYqt4lSEdrHp7mBrn78-SA_W4HvXC4OLqJBSFQ7xvVYf2aJFGKAbfrxU5QK_qO4PdJwih9t6yh336SNma9XL7TGy9jljk823o62ovVAgUjyldSSN0wrje0WpZT6QtlZTK2QhKE8TrbVVWnJNjc5SV_CiSLSysbGMWsqKlCdI9wJc9CeFPs8bjmYn-L5JuAwW7QdmY1LwrkvvlFV7X2iqP33hKQFucHSTa_BjtUWhvuV9f1nrvvn8F3rkf7GH1-FqG26TYaMfN2DNlTfhym8gjLfgqy91ifZOGijIZuiHJLMa1ePQEVVaMvLF-eHPIpmqutFaMsbnB2eJb9EhisyQ3NyRqcN85ueXb02XqyGTrvxt45UHB0ffQobueHHo5sQbY180527D_rnswh1YLxeluwfECS50ZpXwubpRmcDZsogzTwAVKOvBC-RZ3pqWKg9VA4zmfrBjZN4ysgdJJ1C5aTHe_VUj8zNmRatZRw3GyRnvP-1kNUdj5E-YVOkWS1ybEJiAJplIe3C3EeIVRYxjJR8wev8fvucJXNobT_I327s7D-Ay8xFVAM59COv18dI9wniw1o-DJhJ4d95i-wvlHHOc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Energy+Storage+and+Conversion+Materials+Derived+from+a+Single+Metal-Organic+Framework%2FGraphene+Aerogel+Composite&rft.jtitle=Nano+letters&rft.au=Xia%2C+Wei&rft.au=Qu%2C+Chong&rft.au=Liang%2C+Zibin&rft.au=Zhao%2C+Bote&rft.date=2017-05-10&rft.eissn=1530-6992&rft.volume=17&rft.issue=5&rft.spage=2788&rft_id=info:doi/10.1021%2Facs.nanolett.6b05004&rft_id=info%3Apmid%2F28394621&rft.externalDocID=28394621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon