High-Performance Energy Storage and Conversion Materials Derived from a Single Metal–Organic Framework/Graphene Aerogel Composite
Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of elec...
Saved in:
Published in | Nano letters Vol. 17; no. 5; pp. 2788 - 2795 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoO x ) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoO x /NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon–graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities. |
---|---|
AbstractList | Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities. Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoO x ) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoO x /NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon–graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities. Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM) (mIM = 2-methylimidazole). The presence of cobalt oxide (CoO ) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoO /NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities. |
Author | Xia, Wei Liu, Meilin Dai, Shuge Qiu, Bin Zhang, Qiaobao Dang, Dai Zou, Ruqiang Zhao, Bote Xia, Dingguo Xu, Qiang Qu, Chong Liang, Zibin Jiao, Yang Guo, Wenhan Huang, Xinyu |
AuthorAffiliation | School of Chemical and Biomolecular Engineering School of Materials Science and Engineering Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering National Institute of Advanced Industrial Science and Technology (AIST) Georgia Institute of Technology |
AuthorAffiliation_xml | – name: School of Chemical and Biomolecular Engineering – name: National Institute of Advanced Industrial Science and Technology (AIST) – name: School of Materials Science and Engineering – name: Georgia Institute of Technology – name: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering |
Author_xml | – sequence: 1 givenname: Wei surname: Xia fullname: Xia, Wei organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering – sequence: 2 givenname: Chong surname: Qu fullname: Qu, Chong organization: School of Materials Science and Engineering – sequence: 3 givenname: Zibin surname: Liang fullname: Liang, Zibin organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering – sequence: 4 givenname: Bote orcidid: 0000-0003-1236-6862 surname: Zhao fullname: Zhao, Bote organization: School of Materials Science and Engineering – sequence: 5 givenname: Shuge surname: Dai fullname: Dai, Shuge organization: School of Materials Science and Engineering – sequence: 6 givenname: Bin surname: Qiu fullname: Qiu, Bin organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering – sequence: 7 givenname: Yang surname: Jiao fullname: Jiao, Yang organization: Georgia Institute of Technology – sequence: 8 givenname: Qiaobao surname: Zhang fullname: Zhang, Qiaobao organization: School of Materials Science and Engineering – sequence: 9 givenname: Xinyu surname: Huang fullname: Huang, Xinyu organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering – sequence: 10 givenname: Wenhan surname: Guo fullname: Guo, Wenhan organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering – sequence: 11 givenname: Dai surname: Dang fullname: Dang, Dai organization: School of Materials Science and Engineering – sequence: 12 givenname: Ruqiang orcidid: 0000-0003-0456-4615 surname: Zou fullname: Zou, Ruqiang email: rzou@pku.edu.cn organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering – sequence: 13 givenname: Dingguo orcidid: 0000-0003-2191-236X surname: Xia fullname: Xia, Dingguo email: dgxia@pku.edu.cn organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering – sequence: 14 givenname: Qiang orcidid: 0000-0001-5385-9650 surname: Xu fullname: Xu, Qiang email: q.xu@aist.go.jp organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 15 givenname: Meilin orcidid: 0000-0002-6188-2372 surname: Liu fullname: Liu, Meilin email: meilin.liu@mse.gatech.edu organization: School of Materials Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28394621$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC_wBgh5ySZTO3Fu7KrpDalVkQrr6Ng-SV0Sezj2FHWH1EfoG_IkpJppFyxgdSz5-_7F_--zHR88MvZeioUUuTwEExcefBgxpUWlRSmEesX2ZFmIrGrbfOfl3ahdth_jrRCiLUrxhu3mTdGqKpd77OHcDTfZF6Q-0ATeID_xSMM9v06BYEAO3vJl8HdI0QXPLyEhORgjP57vHVreU5g48GvnhxH5JSYYf_96vKIBvDP8lGDCn4G-H54RrG7QIz9CCgOOc-q0CtElfMte93MivtveA_bt9OTr8jy7uDr7vDy6yECVMmWtQQ1tVYGUNm9rVVurpW3avpGqLLTWFnSrtDS6LrFXfV9osMLYXFqZ96UqDtjHTe6Kwo81xtRNLhocR_AY1rGTTVPVZVE35Yx-2KJrPaHtVuQmoPvuubgZUBvAUIiRsH9BpOie9unmfbrnfbrtPrP26S_NuARpbjYRuPF_stjIT7-3YU1-buvfyh8CJa85 |
CitedBy_id | crossref_primary_10_1016_j_cej_2022_140094 crossref_primary_10_1016_j_compositesa_2022_107335 crossref_primary_10_1039_C7CS00879A crossref_primary_10_1016_j_jallcom_2019_04_027 crossref_primary_10_1002_slct_201800979 crossref_primary_10_1016_j_ensm_2019_10_013 crossref_primary_10_1002_smll_201800285 crossref_primary_10_1080_10408347_2022_2160923 crossref_primary_10_1007_s12274_021_3375_2 crossref_primary_10_3390_gels7020057 crossref_primary_10_1021_acscatal_9b00223 crossref_primary_10_1016_j_jcis_2021_10_102 crossref_primary_10_1021_acssuschemeng_9b07487 crossref_primary_10_1039_C7TA05821G crossref_primary_10_1007_s11581_022_04443_4 crossref_primary_10_1016_j_jwpe_2024_105366 crossref_primary_10_1039_C9NR07255A crossref_primary_10_3390_nano10101912 crossref_primary_10_1016_j_electacta_2021_138684 crossref_primary_10_1002_slct_201902096 crossref_primary_10_1246_cl_180782 crossref_primary_10_1002_anie_201803096 crossref_primary_10_1016_j_cej_2023_147681 crossref_primary_10_1007_s10853_021_06167_8 crossref_primary_10_1016_j_colsurfa_2018_01_042 crossref_primary_10_1016_j_est_2022_103962 crossref_primary_10_1016_j_jcis_2018_07_044 crossref_primary_10_1016_j_jpowsour_2019_02_027 crossref_primary_10_1039_C8TA11007G crossref_primary_10_1002_smtd_201700187 crossref_primary_10_1002_smtd_201900756 crossref_primary_10_14233_ajchem_2020_22859 crossref_primary_10_1002_adma_201702891 crossref_primary_10_1016_j_jwpe_2021_102481 crossref_primary_10_1016_j_materresbull_2019_110629 crossref_primary_10_1039_D0RA07146C crossref_primary_10_1039_C9CS00880B crossref_primary_10_1021_acs_est_8b01043 crossref_primary_10_1039_D1TA00652E crossref_primary_10_1021_acsaem_1c00923 crossref_primary_10_3390_mi14091762 crossref_primary_10_1016_j_carbon_2021_08_086 crossref_primary_10_1002_cctc_201900058 crossref_primary_10_1016_j_watres_2024_122244 crossref_primary_10_1021_acsaem_9b00904 crossref_primary_10_1021_acssuschemeng_0c02158 crossref_primary_10_1016_j_apsusc_2020_146920 crossref_primary_10_3390_inorganics11040169 crossref_primary_10_1016_j_cej_2021_131431 crossref_primary_10_1007_s42114_022_00594_0 crossref_primary_10_1016_j_ccr_2020_213660 crossref_primary_10_1039_C7TA03773B crossref_primary_10_1039_C8TA09528K crossref_primary_10_1002_adfm_202103558 crossref_primary_10_1002_advs_201700515 crossref_primary_10_1016_j_electacta_2018_12_175 crossref_primary_10_1016_j_micromeso_2022_111825 crossref_primary_10_1007_s10854_018_8944_0 crossref_primary_10_1021_acsapm_4c02301 crossref_primary_10_1016_j_jcis_2017_10_067 crossref_primary_10_1039_C9MH00856J crossref_primary_10_1039_C9NR05532K crossref_primary_10_1016_j_electacta_2020_136769 crossref_primary_10_1039_D3SC00905J crossref_primary_10_1002_ijch_201800077 crossref_primary_10_1007_s10934_018_0671_7 crossref_primary_10_1002_anie_201800269 crossref_primary_10_1016_j_cej_2020_124057 crossref_primary_10_1016_j_ica_2020_119629 crossref_primary_10_1016_j_surfin_2022_102266 crossref_primary_10_1021_acsami_8b00504 crossref_primary_10_1002_smll_202100135 crossref_primary_10_1007_s10853_018_2878_z crossref_primary_10_1039_D3MA00781B crossref_primary_10_1149_2_0391906jes crossref_primary_10_1016_j_ijbiomac_2019_04_148 crossref_primary_10_1021_acs_nanolett_7b03982 crossref_primary_10_1039_C9TA00038K crossref_primary_10_1002_adma_201705146 crossref_primary_10_1007_s12598_020_01470_w crossref_primary_10_1016_j_ccr_2021_214125 crossref_primary_10_1016_j_electacta_2018_03_200 crossref_primary_10_1007_s11664_019_07505_y crossref_primary_10_1016_j_carbon_2021_07_046 crossref_primary_10_1016_j_cej_2019_122076 crossref_primary_10_1016_j_jcis_2020_07_121 crossref_primary_10_1002_celc_202000136 crossref_primary_10_1021_acsaem_0c00361 crossref_primary_10_1016_j_apsusc_2020_148303 crossref_primary_10_1016_j_mtcomm_2021_102685 crossref_primary_10_1002_ente_201800189 crossref_primary_10_1016_j_inoche_2024_113334 crossref_primary_10_1002_aenm_201803238 crossref_primary_10_1016_j_jallcom_2019_151887 crossref_primary_10_1016_j_susmat_2023_e00588 crossref_primary_10_1039_C8NJ00667A crossref_primary_10_3390_polym11010129 crossref_primary_10_1039_C8TA02528B crossref_primary_10_1016_j_ccr_2022_214496 crossref_primary_10_1038_s41596_022_00718_2 crossref_primary_10_1002_admi_201800438 crossref_primary_10_1002_ange_201911023 crossref_primary_10_3390_electrochem2020017 crossref_primary_10_1142_S1793604723510165 crossref_primary_10_1021_jacs_3c06349 crossref_primary_10_1039_C7TA09976B crossref_primary_10_1016_j_ccr_2020_213441 crossref_primary_10_1039_D0TA10329B crossref_primary_10_1039_C8TA10575H crossref_primary_10_1016_j_apsusc_2021_149701 crossref_primary_10_3390_agriculture13010208 crossref_primary_10_1002_advs_202409290 crossref_primary_10_1007_s12039_022_02067_9 crossref_primary_10_1021_acsaem_2c03872 crossref_primary_10_1007_s10854_019_02495_3 crossref_primary_10_1039_D0NJ02045A crossref_primary_10_1007_s12274_020_3260_4 crossref_primary_10_1038_natrevmats_2017_75 crossref_primary_10_1039_C8DT03327G crossref_primary_10_3390_ma17092124 crossref_primary_10_1016_j_mtchem_2019_100239 crossref_primary_10_1016_j_ccr_2021_214264 crossref_primary_10_1016_j_cej_2021_129700 crossref_primary_10_3389_fchem_2022_854666 crossref_primary_10_1016_j_mattod_2023_08_007 crossref_primary_10_1126_sciadv_abl8631 crossref_primary_10_1002_ange_201900240 crossref_primary_10_1021_acsami_1c14873 crossref_primary_10_1039_D1TB02141A crossref_primary_10_1002_adfm_201804950 crossref_primary_10_1002_celc_201700627 crossref_primary_10_1016_j_cis_2022_102732 crossref_primary_10_1002_smll_201704282 crossref_primary_10_1016_j_jallcom_2019_03_128 crossref_primary_10_1016_j_jpowsour_2018_12_014 crossref_primary_10_1039_C9CP06181A crossref_primary_10_1039_D1QI00797A crossref_primary_10_1016_j_optmat_2020_110634 crossref_primary_10_3390_molecules27144571 crossref_primary_10_1002_adfm_202102300 crossref_primary_10_1016_j_compositesb_2021_108642 crossref_primary_10_1039_C9DT03011E crossref_primary_10_1039_D1RA08817C crossref_primary_10_1016_j_bioelechem_2022_108201 crossref_primary_10_1021_acsanm_0c02749 crossref_primary_10_1002_adfm_201900326 crossref_primary_10_1002_ange_201803096 crossref_primary_10_3389_fchem_2020_00226 crossref_primary_10_1016_j_ccr_2020_213221 crossref_primary_10_1016_j_est_2024_111447 crossref_primary_10_1002_adem_202300625 crossref_primary_10_1002_smll_202303911 crossref_primary_10_1002_adma_201804881 crossref_primary_10_1021_acssuschemeng_8b03683 crossref_primary_10_1039_D0QM01103G crossref_primary_10_3389_fchem_2018_00555 crossref_primary_10_1002_smll_202308804 crossref_primary_10_1002_admi_201701548 crossref_primary_10_1016_j_jallcom_2018_12_239 crossref_primary_10_1021_acs_inorgchem_8b01106 crossref_primary_10_1039_D1CE00638J crossref_primary_10_1002_app_54284 crossref_primary_10_1021_acssuschemeng_7b04319 crossref_primary_10_1039_C7TA11100B crossref_primary_10_1039_C9TA07540B crossref_primary_10_1039_C8TA11704G crossref_primary_10_1016_j_cej_2020_126710 crossref_primary_10_1021_acsami_9b00415 crossref_primary_10_1016_j_ccr_2019_213016 crossref_primary_10_1016_j_snb_2020_127885 crossref_primary_10_1016_j_carbon_2021_05_016 crossref_primary_10_1002_asia_201901616 crossref_primary_10_1016_j_compositesb_2018_11_085 crossref_primary_10_1021_acs_inorgchem_8b03533 crossref_primary_10_1002_er_6834 crossref_primary_10_1016_j_carbpol_2020_116422 crossref_primary_10_1063_5_0213150 crossref_primary_10_1039_D0NR02016H crossref_primary_10_1016_j_compscitech_2020_108191 crossref_primary_10_1016_j_jpowsour_2018_09_023 crossref_primary_10_1039_D0NH00332H crossref_primary_10_1039_D0NR08569C crossref_primary_10_1039_D3DT01966G crossref_primary_10_3390_ma13184215 crossref_primary_10_1016_j_electacta_2021_138048 crossref_primary_10_1016_j_carbon_2019_01_065 crossref_primary_10_1021_acsaem_4c00919 crossref_primary_10_1016_j_est_2023_108055 crossref_primary_10_1039_C8DT02082E crossref_primary_10_1021_acsami_1c03812 crossref_primary_10_1016_j_coco_2024_102144 crossref_primary_10_1016_j_seppur_2023_124464 crossref_primary_10_1016_j_nanoen_2020_104592 crossref_primary_10_1002_adfm_202003407 crossref_primary_10_1039_C9TA12776C crossref_primary_10_1016_j_apsusc_2018_11_188 crossref_primary_10_1021_acsami_8b08861 crossref_primary_10_1039_D3NJ03787H crossref_primary_10_1016_j_isci_2023_107132 crossref_primary_10_1002_cctc_202001326 crossref_primary_10_1039_C7NJ03798H crossref_primary_10_1007_s11581_018_2812_z crossref_primary_10_1039_C7NJ05159J crossref_primary_10_1007_s10853_021_06212_6 crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_1016_j_cclet_2018_09_017 crossref_primary_10_1016_j_jallcom_2019_05_240 crossref_primary_10_1088_2399_1984_ac3c8f crossref_primary_10_3390_polym10101102 crossref_primary_10_1126_sciadv_aap9252 crossref_primary_10_1021_acsanm_8b01428 crossref_primary_10_1002_ange_201800269 crossref_primary_10_1016_j_ijoes_2025_100958 crossref_primary_10_1021_acs_nanolett_2c02159 crossref_primary_10_1016_j_compositesb_2021_109532 crossref_primary_10_1021_acs_nanolett_0c02766 crossref_primary_10_3389_fmats_2021_777149 crossref_primary_10_1002_anie_201900240 crossref_primary_10_1016_j_electacta_2018_05_024 crossref_primary_10_1021_acs_energyfuels_3c05193 crossref_primary_10_1002_cssc_201800509 crossref_primary_10_1016_j_est_2023_109164 crossref_primary_10_1016_j_jelechem_2019_113670 crossref_primary_10_1016_j_jpowsour_2022_231324 crossref_primary_10_1002_asia_201900318 crossref_primary_10_1016_j_jallcom_2020_157134 crossref_primary_10_1002_slct_201803150 crossref_primary_10_12677_AEPE_2023_115017 crossref_primary_10_2139_ssrn_4003920 crossref_primary_10_1002_anie_201911023 crossref_primary_10_1016_j_ijoes_2024_100548 crossref_primary_10_1002_advs_202300526 crossref_primary_10_1016_j_jallcom_2021_162191 crossref_primary_10_1016_j_apsb_2018_09_003 crossref_primary_10_1039_D0CC02464C crossref_primary_10_1088_1402_4896_ad92c1 crossref_primary_10_1039_C9SE00544G crossref_primary_10_3390_molecules24071246 crossref_primary_10_1007_s10934_024_01706_5 crossref_primary_10_1016_j_jpowsour_2018_03_055 crossref_primary_10_1016_j_electacta_2021_138973 crossref_primary_10_1039_C7TA06419E crossref_primary_10_1039_D2DT00551D crossref_primary_10_1002_smtd_201800049 crossref_primary_10_1007_s10971_023_06242_3 crossref_primary_10_1016_j_commatsci_2020_110252 crossref_primary_10_1039_D1SC00095K crossref_primary_10_1002_adfm_202002788 crossref_primary_10_1016_j_ensm_2019_12_019 crossref_primary_10_1021_acsanm_1c01185 crossref_primary_10_1016_j_cclet_2021_03_050 crossref_primary_10_1002_ange_201806862 crossref_primary_10_1021_acsanm_0c00702 crossref_primary_10_1016_j_apsusc_2019_145166 crossref_primary_10_1002_smll_201801454 crossref_primary_10_1021_acsami_8b04733 crossref_primary_10_1039_C8CY01371C crossref_primary_10_3389_fenrg_2017_00033 crossref_primary_10_1021_acsami_7b13117 crossref_primary_10_1007_s40843_018_9290_y crossref_primary_10_1016_j_micromeso_2019_03_030 crossref_primary_10_1039_D3CP02122J crossref_primary_10_1016_j_electacta_2019_04_121 crossref_primary_10_1016_j_jpowsour_2022_232434 crossref_primary_10_1007_s10854_019_01593_6 crossref_primary_10_1007_s11581_023_05120_w crossref_primary_10_1002_smll_202304981 crossref_primary_10_1016_j_jpowsour_2019_02_079 crossref_primary_10_1016_j_apmt_2023_101877 crossref_primary_10_1016_j_est_2021_103248 crossref_primary_10_1002_batt_202000046 crossref_primary_10_1002_ejic_201900940 crossref_primary_10_1021_acs_energyfuels_1c04183 crossref_primary_10_1002_smll_201704207 crossref_primary_10_1039_C8SC05236K crossref_primary_10_1002_chem_201705232 crossref_primary_10_1016_j_jcat_2019_02_005 crossref_primary_10_1007_s40820_022_00851_3 crossref_primary_10_1007_s10904_024_03413_9 crossref_primary_10_3390_gels10120810 crossref_primary_10_1016_j_apsusc_2020_148716 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1039_D2CS00585A crossref_primary_10_1016_j_ensm_2018_11_025 crossref_primary_10_1002_cctc_201801484 crossref_primary_10_1016_j_electacta_2018_04_130 crossref_primary_10_1016_j_cej_2024_155822 crossref_primary_10_1016_j_electacta_2019_06_141 crossref_primary_10_1021_acsenergylett_7b00265 crossref_primary_10_1016_j_ica_2020_119440 crossref_primary_10_1002_aenm_201801515 crossref_primary_10_1002_aenm_202003410 crossref_primary_10_1016_j_gee_2020_11_005 crossref_primary_10_1016_j_jmat_2021_03_001 crossref_primary_10_1039_D0TA08634G crossref_primary_10_1016_j_ccr_2017_10_014 crossref_primary_10_1016_j_jhazmat_2021_127503 crossref_primary_10_1021_acsaem_9b00700 crossref_primary_10_1016_j_jechem_2020_04_067 crossref_primary_10_1016_j_jhazmat_2021_127069 crossref_primary_10_1021_acscatal_9b02748 crossref_primary_10_1039_C8TA10925G crossref_primary_10_3390_molecules28227479 crossref_primary_10_1002_cssc_201801521 crossref_primary_10_1021_acsaem_0c02864 crossref_primary_10_1039_C8TA00132D crossref_primary_10_1016_j_enchem_2019_100001 crossref_primary_10_1002_adma_201703711 crossref_primary_10_1002_chem_202400157 crossref_primary_10_1016_j_electacta_2020_137410 crossref_primary_10_1039_C7TA08748A crossref_primary_10_1007_s11270_023_06247_2 crossref_primary_10_1016_j_cis_2023_102967 crossref_primary_10_1016_j_jelechem_2022_116121 crossref_primary_10_1016_j_jcis_2018_05_086 crossref_primary_10_1002_sstr_202000027 crossref_primary_10_1007_s10854_017_8169_7 crossref_primary_10_1021_acsami_8b11726 crossref_primary_10_1002_anie_201806862 crossref_primary_10_1039_D3TA01531A crossref_primary_10_1021_jacs_9b05869 crossref_primary_10_1039_C9NR02914A crossref_primary_10_1039_D1CC01989A crossref_primary_10_1021_acsanm_0c00732 crossref_primary_10_1002_mame_202200469 crossref_primary_10_1039_D3NJ01475D crossref_primary_10_1039_D1TA00900A crossref_primary_10_1016_j_jssc_2018_05_034 crossref_primary_10_1007_s42114_021_00323_z crossref_primary_10_1039_D3CC01167D crossref_primary_10_1021_acs_jpcc_7b07772 crossref_primary_10_1021_acssuschemeng_9b03955 crossref_primary_10_1039_D0NR05050D crossref_primary_10_3390_polym10121397 crossref_primary_10_1007_s40843_019_1178_5 crossref_primary_10_1016_j_ccr_2019_213093 crossref_primary_10_1007_s10854_018_8785_x crossref_primary_10_1016_j_nanoen_2019_103919 crossref_primary_10_1002_pssr_201900534 crossref_primary_10_1021_acssuschemeng_9b01656 crossref_primary_10_1021_acs_iecr_9b01412 crossref_primary_10_1016_j_apsusc_2019_06_238 crossref_primary_10_1088_1755_1315_657_1_012014 crossref_primary_10_1016_j_cej_2022_140881 crossref_primary_10_1016_j_jhazmat_2022_128684 crossref_primary_10_1021_acs_langmuir_2c02743 crossref_primary_10_1002_slct_201901652 crossref_primary_10_1039_C7TA09608A |
Cites_doi | 10.1016/j.nanoen.2016.04.003 10.1038/nchem.931 10.1002/anie.201504830 10.1021/ja5084128 10.1002/adma.200902986 10.1039/C5EE00762C 10.1002/anie.201509382 10.1039/C3NR05192G 10.1021/nn4000836 10.1039/C1EE02243A 10.1039/C4TA02029D 10.1002/adma.201304218 10.1126/science.1152516 10.1002/adma.201306126 10.1021/ja307475c 10.1002/chem.201003080 10.1039/C2TA00278G 10.1126/science.aad0832 10.1016/j.nanoen.2013.04.008 10.1021/jacs.5b01613 10.1021/cm981085u 10.1039/b200393g 10.1002/anie.201308013 10.1002/adma.201501735 10.1126/science.1216744 10.1038/35035045 10.1039/c2nr30991b 10.1002/adma.201202146 10.1021/ja208940u 10.1039/C4TA01656D 10.1002/adma.201602028 10.1126/science.1096566 10.1021/nn505582e 10.1002/anie.201402371 10.1021/cs100153a 10.1002/adma.201601351 10.1002/adma.201201948 10.1126/science.aaa8765 10.1021/acscatal.5b00030 10.1039/C4TA00734D 10.1021/ja01539a017 10.1126/science.1230444 10.1021/ja8006947 10.1039/C5TA05660H 10.1126/science.1249061 10.1021/ja410794p |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.6b05004 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 2795 |
ExternalDocumentID | 28394621 10_1021_acs_nanolett_6b05004 c911978061 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a451t-9ceba966a11d29747ddb1d89f81453bbbdab94b1cb75ef4ff3bad0cd21d12f543 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 16:09:57 EDT 2025 Mon Jul 21 05:48:16 EDT 2025 Tue Jul 01 03:13:54 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Metal−organic framework N-doped graphene aerogel ORR catalyst supercapacitor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a451t-9ceba966a11d29747ddb1d89f81453bbbdab94b1cb75ef4ff3bad0cd21d12f543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6188-2372 0000-0003-1236-6862 0000-0003-2191-236X 0000-0001-5385-9650 0000-0003-0456-4615 |
PMID | 28394621 |
PQID | 1886753785 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1886753785 pubmed_primary_28394621 crossref_primary_10_1021_acs_nanolett_6b05004 crossref_citationtrail_10_1021_acs_nanolett_6b05004 acs_journals_10_1021_acs_nanolett_6b05004 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-10 |
PublicationDateYYYYMMDD | 2017-05-10 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 Liu B. (ref12/cit12) 2008; 130 ref31/cit31 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref15/cit15 Yuan C. (ref2/cit2) 2014; 53 ref42/cit42 ref46/cit46 ref41/cit41 Xu J. (ref5/cit5) 2012; 5 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref35/cit35 doi: 10.1016/j.nanoen.2016.04.003 – ident: ref30/cit30 doi: 10.1038/nchem.931 – ident: ref18/cit18 doi: 10.1002/anie.201504830 – ident: ref22/cit22 doi: 10.1021/ja5084128 – ident: ref44/cit44 doi: 10.1002/adma.200902986 – ident: ref9/cit9 doi: 10.1039/C5EE00762C – ident: ref25/cit25 doi: 10.1002/anie.201509382 – ident: ref11/cit11 doi: 10.1039/C3NR05192G – ident: ref41/cit41 doi: 10.1021/nn4000836 – volume: 5 start-page: 5281 year: 2012 ident: ref5/cit5 publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02243A – ident: ref17/cit17 doi: 10.1039/C4TA02029D – ident: ref21/cit21 doi: 10.1002/adma.201304218 – ident: ref26/cit26 doi: 10.1126/science.1152516 – ident: ref1/cit1 doi: 10.1002/adma.201306126 – ident: ref14/cit14 doi: 10.1021/ja307475c – ident: ref19/cit19 doi: 10.1002/chem.201003080 – ident: ref10/cit10 doi: 10.1039/C2TA00278G – ident: ref32/cit32 doi: 10.1126/science.aad0832 – ident: ref16/cit16 doi: 10.1016/j.nanoen.2013.04.008 – ident: ref23/cit23 doi: 10.1021/jacs.5b01613 – ident: ref45/cit45 doi: 10.1021/cm981085u – ident: ref8/cit8 doi: 10.1039/b200393g – ident: ref15/cit15 doi: 10.1002/anie.201308013 – ident: ref36/cit36 doi: 10.1002/adma.201501735 – ident: ref40/cit40 doi: 10.1126/science.1216744 – ident: ref6/cit6 doi: 10.1038/35035045 – ident: ref39/cit39 doi: 10.1039/c2nr30991b – ident: ref3/cit3 doi: 10.1002/adma.201202146 – ident: ref13/cit13 doi: 10.1021/ja208940u – ident: ref27/cit27 doi: 10.1039/C4TA01656D – ident: ref37/cit37 doi: 10.1002/adma.201602028 – ident: ref33/cit33 doi: 10.1126/science.1096566 – ident: ref20/cit20 doi: 10.1021/nn505582e – volume: 53 start-page: 4816 year: 2014 ident: ref2/cit2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201402371 – ident: ref31/cit31 doi: 10.1021/cs100153a – ident: ref24/cit24 doi: 10.1002/adma.201601351 – ident: ref42/cit42 doi: 10.1002/adma.201201948 – ident: ref29/cit29 doi: 10.1126/science.aaa8765 – ident: ref4/cit4 doi: 10.1021/acscatal.5b00030 – ident: ref38/cit38 doi: 10.1039/C4TA00734D – ident: ref46/cit46 doi: 10.1021/ja01539a017 – ident: ref7/cit7 doi: 10.1126/science.1230444 – volume: 130 start-page: 5428 year: 2008 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8006947 – ident: ref43/cit43 doi: 10.1039/C5TA05660H – ident: ref28/cit28 doi: 10.1126/science.1249061 – ident: ref34/cit34 doi: 10.1021/ja410794p |
SSID | ssj0009350 |
Score | 2.646413 |
Snippet | Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2788 |
Title | High-Performance Energy Storage and Conversion Materials Derived from a Single Metal–Organic Framework/Graphene Aerogel Composite |
URI | http://dx.doi.org/10.1021/acs.nanolett.6b05004 https://www.ncbi.nlm.nih.gov/pubmed/28394621 https://www.proquest.com/docview/1886753785 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUquLQHSltKFyhypV44ZIkdJ7GPq4UFVdq20oLELRp_pAdW2Wo32wMnJH5C_2F_CWMnYUsRopwiRfEodmbsefG8Z0I-O5ZBYoWKOM85AhTFIogNj6wyEFsQTAa62PhrdnouvlykFyug-O8OPmeHYBb9CqoZdqPuZzpOg_znOs9k7sHWYDhZiewm4URWDGKEREqKjir3iBW_IJnF_QXpkSwzrDaj1-Rbx9lpikwu-8ta983VQwnH_-zIJtloE086aDzlDXnhqrfk1V9yhO_IjS_6iL6vqAT0ODAD6QSBOc47FCpLh75MPfxjo2OoG_-lR3j95Sz1ZBUKdILmpo6OHWb2f65_N3xPQ0ddIdjhiZfJxlmWDtx89sNNqZ-WfPmY2yLno-Oz4WnUHtIQgUhZHSnjNCBmAsYs9-DEWs2sVKVkIk201ha0EpoZnaeuFGWZaLCxsZxZxstUJO_JWjWr3AdCnRRS5xakR60GcomtVRnn3gC6Ut4jBziGRRtkiyLsn3NW-JvdwBbtwPZI0n3VwrRq5_7QjekTraK7Vj8btY8nnv_UOUyBYen3WqBysyW-m5QIxZJcpj2y3XjSnUXM6JTIONt5Rn92yUvuE4qgG7tH1ur50n3EdKjW-yEGbgEwjgsR |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoAe-Kddfo0EBw7Zxo6zcQ4cVtsuW9qtkLaVegv-Sw9dZVGTBcEJqY_QZ-BVeBCehLGT7AJSVXGoxCmSFY8cz3888xngpaU9GRmeBowlDBOUlAYy1CwwqZahkZwK3y423u-NDvm7o_hoBb63vTC4iBIplf4Qf4kuQDfdWCGLGX5N1e2pMEbuNrWUu_bLZ8zUyjc7W8jWV4wNtw8Go6C5TCCQPKZVkGqrJMb2klLDXBBtjKJGpLmgPI6UUkaqlCuqVRLbnOd5pKQJtWHUUJbHPEK61-A6xj_M5Xj9wWSJ7Rv5i2DRdmAmlgreduhdsGrnB3X5px-8ILj1Tm54G34stsfXtpx055Xq6q9_IUf-9_t3B241YTbp13pxF1ZscQ_WfgNfvA9nrsQleL9snCDbvg-STCpUi2NLZGHIwBXl-z-KZCyrWlvJFj4_WUNcaw6RZILkppaMLeYxP7-d192tmgzbsrfNtw4UHH0K6dvT2bGdEmeEXbGcfQCHV7ILD2G1mBV2A4gVXKjESOFydC0TgbPTPEwcAVScpAOvkWdZY1LKzFcLMJq5wZaRWcPIDkStMGW6wXZ3V4xML5kVLGZ9rLFNLnn_RSunGRohd7IkCzub49qEwMQzSkTcgfVagBcUMX5NeY_RR__wPc_hxuhgvJft7ezvPoabzIVSHjH3CaxWp3P7FAPBSj3zakjgw1XL7S8Yu3EZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0YnkaCBYtMY8eZ2AsWo5kOLWWqSkOl7oJf6YJRpmoyIFgh8Ql8Bb_CZ_AlXDvJFJCqikUXrCJZ8ZXj-47vPQZ45uhAJZbLiLGMYYIiaaRiwyIrjYqt4lSEdrHp7mBrn78-SA_W4HvXC4OLqJBSFQ7xvVYf2aJFGKAbfrxU5QK_qO4PdJwih9t6yh336SNma9XL7TGy9jljk823o62ovVAgUjyldSSN0wrje0WpZT6QtlZTK2QhKE8TrbVVWnJNjc5SV_CiSLSysbGMWsqKlCdI9wJc9CeFPs8bjmYn-L5JuAwW7QdmY1LwrkvvlFV7X2iqP33hKQFucHSTa_BjtUWhvuV9f1nrvvn8F3rkf7GH1-FqG26TYaMfN2DNlTfhym8gjLfgqy91ifZOGijIZuiHJLMa1ePQEVVaMvLF-eHPIpmqutFaMsbnB2eJb9EhisyQ3NyRqcN85ueXb02XqyGTrvxt45UHB0ffQobueHHo5sQbY180527D_rnswh1YLxeluwfECS50ZpXwubpRmcDZsogzTwAVKOvBC-RZ3pqWKg9VA4zmfrBjZN4ysgdJJ1C5aTHe_VUj8zNmRatZRw3GyRnvP-1kNUdj5E-YVOkWS1ybEJiAJplIe3C3EeIVRYxjJR8wev8fvucJXNobT_I327s7D-Ay8xFVAM59COv18dI9wniw1o-DJhJ4d95i-wvlHHOc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Energy+Storage+and+Conversion+Materials+Derived+from+a+Single+Metal-Organic+Framework%2FGraphene+Aerogel+Composite&rft.jtitle=Nano+letters&rft.au=Xia%2C+Wei&rft.au=Qu%2C+Chong&rft.au=Liang%2C+Zibin&rft.au=Zhao%2C+Bote&rft.date=2017-05-10&rft.eissn=1530-6992&rft.volume=17&rft.issue=5&rft.spage=2788&rft_id=info:doi/10.1021%2Facs.nanolett.6b05004&rft_id=info%3Apmid%2F28394621&rft.externalDocID=28394621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |