Dialumene as a Dimeric or Monomeric Al Synthon for C–F Activation in Monofluorobenzene

The activation of C–F bonds has long been regarded as the subject of research in organometallic chemistry, given their synthetic relevance and the fact that fluorine is the most abundant halogen in the Earth’s crust. However, C–F bond activation remains a largely unsolved challenge due to the high b...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 146; no. 33; pp. 23591 - 23597
Main Authors Liu, Xufang, Dong, Shicheng, Zhu, Jun, Inoue, Shigeyoshi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The activation of C–F bonds has long been regarded as the subject of research in organometallic chemistry, given their synthetic relevance and the fact that fluorine is the most abundant halogen in the Earth’s crust. However, C–F bond activation remains a largely unsolved challenge due to the high bond dissociation energies, which was historically dominated by transition metal complexes. Main group elements that can cleave unactivated monofluorobenzene are still quite rare and restricted to s-block complexes with a biphilic nature. Herein, we demonstrate an Al-mediated activation of monofluorobenzene using a neutral dialumene, allowing for the synthesis of the formal oxidative addition products at either double or single aluminum centers. This neutral dialumene system introduces a novel methodology for C–F bond activation based on formal oxidative addition and reductive elimination processes around the two aluminum centers, as demonstrated by combined experimental and computational studies. A “masked” alumylene was unprecedentedly synthesized to prove the proposed reductive elimination pathway. Furthermore, the synthetic utility is highlighted by the functionalization of the resulting aryl-aluminum compounds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.4c08171