SERS Based Lateral Flow Immunoassay for Point-of-Care Detection of SARS-CoV‑2 in Clinical Samples
The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid, user-friendly, and inexpensive on-site monitoring system for diagnosis. The early and rapid diagnosis of SARS-CoV-2 plays an important role i...
Saved in:
Published in | ACS applied bio materials Vol. 4; no. 4; pp. 2974 - 2995 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid, user-friendly, and inexpensive on-site monitoring system for diagnosis. The early and rapid diagnosis of SARS-CoV-2 plays an important role in combating the outbreak. Although conventional methods such as PCR, RT-PCR, and ELISA, etc., offer a gold-standard solution to manage the pandemic, they cannot be implemented as a point-of-care (POC) testing arrangement. Moreover, surface-enhanced Raman spectroscopy (SERS) having a high enhancement factor provides quantitative results with high specificity, sensitivity, and multiplex detection ability but lacks in POC setup. In contrast, POC devices such as lateral flow immunoassay (LFIA) offer rapid, simple-to-use, cost-effective, reliable platform. However, LFIA has limitations in quantitative and sensitive analyses of SARS-CoV-2 detection. To resolve these concerns, herein we discuss a unique modality that is an integration of SERS with LFIA for quantitative analyses of SARS-CoV-2. The miniaturization ability of SERS-based devices makes them promising in biosensor application and has the potential to make a better alternative of conventional diagnostic methods. This review also demonstrates the commercially available and FDA/ICMR approved LFIA kits for on-site diagnosis of SARS-CoV-2. |
---|---|
AbstractList | The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid, user-friendly, and inexpensive on-site monitoring system for diagnosis. The early and rapid diagnosis of SARS-CoV-2 plays an important role in combating the outbreak. Although conventional methods such as PCR, RT-PCR, and ELISA, etc., offer a gold-standard solution to manage the pandemic, they cannot be implemented as a point-of-care (POC) testing arrangement. Moreover, surface-enhanced Raman spectroscopy (SERS) having a high enhancement factor provides quantitative results with high specificity, sensitivity, and multiplex detection ability but lacks in POC setup. In contrast, POC devices such as lateral flow immunoassay (LFIA) offer rapid, simple-to-use, cost-effective, reliable platform. However, LFIA has limitations in quantitative and sensitive analyses of SARS-CoV-2 detection. To resolve these concerns, herein we discuss a unique modality that is an integration of SERS with LFIA for quantitative analyses of SARS-CoV-2. The miniaturization ability of SERS-based devices makes them promising in biosensor application and has the potential to make a better alternative of conventional diagnostic methods. This review also demonstrates the commercially available and FDA/ICMR approved LFIA kits for on-site diagnosis of SARS-CoV-2. The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid, user-friendly, and inexpensive on-site monitoring system for diagnosis. The early and rapid diagnosis of SARS-CoV-2 plays an important role in combating the outbreak. Although conventional methods such as PCR, RT-PCR, and ELISA, etc., offer a gold-standard solution to manage the pandemic, they cannot be implemented as a point-of-care (POC) testing arrangement. Moreover, surface-enhanced Raman spectroscopy (SERS) having a high enhancement factor provides quantitative results with high specificity, sensitivity, and multiplex detection ability but lacks in POC setup. In contrast, POC devices such as lateral flow immunoassay (LFIA) offer rapid, simple-to-use, cost-effective, reliable platform. However, LFIA has limitations in quantitative and sensitive analyses of SARS-CoV-2 detection. To resolve these concerns, herein we discuss a unique modality that is an integration of SERS with LFIA for quantitative analyses of SARS-CoV-2. The miniaturization ability of SERS-based devices makes them promising in biosensor application and has the potential to make a better alternative of conventional diagnostic methods. This review also demonstrates the commercially available and FDA/ICMR approved LFIA kits for on-site diagnosis of SARS-CoV-2.The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid, user-friendly, and inexpensive on-site monitoring system for diagnosis. The early and rapid diagnosis of SARS-CoV-2 plays an important role in combating the outbreak. Although conventional methods such as PCR, RT-PCR, and ELISA, etc., offer a gold-standard solution to manage the pandemic, they cannot be implemented as a point-of-care (POC) testing arrangement. Moreover, surface-enhanced Raman spectroscopy (SERS) having a high enhancement factor provides quantitative results with high specificity, sensitivity, and multiplex detection ability but lacks in POC setup. In contrast, POC devices such as lateral flow immunoassay (LFIA) offer rapid, simple-to-use, cost-effective, reliable platform. However, LFIA has limitations in quantitative and sensitive analyses of SARS-CoV-2 detection. To resolve these concerns, herein we discuss a unique modality that is an integration of SERS with LFIA for quantitative analyses of SARS-CoV-2. The miniaturization ability of SERS-based devices makes them promising in biosensor application and has the potential to make a better alternative of conventional diagnostic methods. This review also demonstrates the commercially available and FDA/ICMR approved LFIA kits for on-site diagnosis of SARS-CoV-2. The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid, user-friendly, and inexpensive on-site monitoring system for diagnosis. The early and rapid diagnosis of SARS-CoV-2 plays an important role in combating the outbreak. Although conventional methods such as PCR, RT-PCR, and ELISA, etc., offer a gold-standard solution to manage the pandemic, they cannot be implemented as a point-of-care (POC) testing arrangement. Moreover, surface-enhanced Raman spectroscopy (SERS) having a high enhancement factor provides quantitative results with high specificity, sensitivity, and multiplex detection ability but lacks in POC setup. In contrast, POC devices such as lateral flow immunoassay (LFIA) offer rapid, simple-to-use, cost-effective, reliable platform. However, LFIA has limitations in quantitative and sensitive analyses of SARS-CoV-2 detection. To resolve these concerns, herein we discuss a unique modality that is an integration of SERS with LFIA for quantitative analyses of SARS-CoV-2. The miniaturization ability of SERS-based devices makes them promising in biosensor application and has the potential to make a better alternative of conventional diagnostic methods. This review also demonstrates the commercially available and FDA/ICMR approved LFIA kits for on-site diagnosis of SARS-CoV-2. |
Author | Kumar, Neeraj Yadav, Shalu Srivastava, Avanish K Khan, Raju Sadique, Mohd. Abubakar Ranjan, Pushpesh Singhal, Ayushi |
AuthorAffiliation | Academy of Scientific and Innovative Research (AcSIR) Microfluidics & MEMS Centre |
AuthorAffiliation_xml | – name: Microfluidics & MEMS Centre – name: Academy of Scientific and Innovative Research (AcSIR) |
Author_xml | – sequence: 1 givenname: Shalu surname: Yadav fullname: Yadav, Shalu organization: Academy of Scientific and Innovative Research (AcSIR) – sequence: 2 givenname: Mohd. Abubakar surname: Sadique fullname: Sadique, Mohd. Abubakar organization: Microfluidics & MEMS Centre – sequence: 3 givenname: Pushpesh surname: Ranjan fullname: Ranjan, Pushpesh organization: Academy of Scientific and Innovative Research (AcSIR) – sequence: 4 givenname: Neeraj surname: Kumar fullname: Kumar, Neeraj organization: Academy of Scientific and Innovative Research (AcSIR) – sequence: 5 givenname: Ayushi surname: Singhal fullname: Singhal, Ayushi organization: Academy of Scientific and Innovative Research (AcSIR) – sequence: 6 givenname: Avanish K surname: Srivastava fullname: Srivastava, Avanish K organization: Microfluidics & MEMS Centre – sequence: 7 givenname: Raju orcidid: 0000-0002-3007-0232 surname: Khan fullname: Khan, Raju email: khan.raju@gmail.com, khan.raju@ampri.res.in organization: Academy of Scientific and Innovative Research (AcSIR) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35014387$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UctqFTEYDlKxF7t1KVmKMMdc5pLZCHVstXBA6ajb8E8umjKTHJMZpbu-gq_ok5jDOZUqdJPkT74L-b5jdOCDNwg9o2RFCaOvQCUYphVVhOT5ETpiVVMXdcnYwb3zITpN6ZoQwgjhVLRP0CGvCC25aI6Q6s-vevwGktF4DbOJMOKLMfzEl9O0-AApwQ22IeKPwfm5CLboIBr81sxGzS54HCzuz676ogtfft_-Yth53I3OO5WFepg2o0lP0WMLYzKn-_0Efb44_9S9L9Yf3l12Z-sCyorORWNKQ4kleqgb0IPlqmXCqlYIoTRXVcWsouVAVaO1Fg1p27xoq8Hyqmw55yfo9U53swyT0cr4OX9HbqKbIN7IAE7---LdN_k1_JBNK-q2EVngxV4ghu-LSbOcXFJmHMGbsCTJ6hwfqQTbQp_f9_prcpdsBpQ7gIohpWisVG6GbWTZ2o2SErntUO46lPsOM231H-1O-UHCyx0h38vrsESfI34I_Afhmq4P |
CitedBy_id | crossref_primary_10_1016_j_aca_2023_341931 crossref_primary_10_37747_2312_640X_2022_20_116_118 crossref_primary_10_1021_acs_nanolett_4c00451 crossref_primary_10_1016_j_saa_2023_123445 crossref_primary_10_1063_5_0130011 crossref_primary_10_1002_admt_202100842 crossref_primary_10_1016_j_colsurfa_2023_131353 crossref_primary_10_1039_D3CS00719G crossref_primary_10_1007_s40820_022_00845_1 crossref_primary_10_1016_j_bios_2022_114903 crossref_primary_10_3390_bioengineering9070266 crossref_primary_10_1021_acs_analchem_1c04483 crossref_primary_10_1016_j_aca_2021_339207 crossref_primary_10_1021_acs_est_3c10311 crossref_primary_10_29026_oea_2021_210048 crossref_primary_10_1002_adfm_202405340 crossref_primary_10_1021_accountsmr_1c00177 crossref_primary_10_3390_chemosensors10050190 crossref_primary_10_1021_acs_analchem_2c05381 crossref_primary_10_3390_ijms23010557 crossref_primary_10_1128_spectrum_00731_22 crossref_primary_10_1002_btm2_10481 crossref_primary_10_1039_D1TB00472G crossref_primary_10_3390_healthcare9091124 crossref_primary_10_1021_acsomega_1c05587 crossref_primary_10_3390_chemosensors10080326 crossref_primary_10_1007_s11082_022_04503_z crossref_primary_10_1016_j_cej_2024_153327 crossref_primary_10_3390_v14122821 crossref_primary_10_3390_foods11111540 crossref_primary_10_1021_acsomega_1c04012 crossref_primary_10_1016_j_envres_2023_116505 crossref_primary_10_15324_kjcls_2022_54_2_79 crossref_primary_10_1039_D3AN01899G crossref_primary_10_1002_INMD_20230022 crossref_primary_10_3390_diagnostics11101760 crossref_primary_10_3390_nano14030268 crossref_primary_10_1631_jzus_B2200625 crossref_primary_10_1016_j_bios_2022_114843 crossref_primary_10_1021_acs_analchem_3c04361 crossref_primary_10_1039_D1TB02277F crossref_primary_10_1021_acs_analchem_3c01522 crossref_primary_10_1021_acsanm_4c03280 crossref_primary_10_1021_acssensors_3c01019 crossref_primary_10_2147_IJN_S313140 crossref_primary_10_1002_admi_202400005 crossref_primary_10_3389_fbioe_2022_866368 crossref_primary_10_1039_D2TB02135H crossref_primary_10_3390_mi12121464 crossref_primary_10_3390_diseases11010020 crossref_primary_10_3390_bios13030328 crossref_primary_10_1109_JSEN_2024_3458995 crossref_primary_10_1111_jam_15233 crossref_primary_10_3390_arm92050038 crossref_primary_10_1016_j_bioelechem_2023_108438 crossref_primary_10_1016_j_microc_2021_106305 crossref_primary_10_1039_D1NR01652K crossref_primary_10_1021_acsanm_3c05922 crossref_primary_10_1186_s40580_024_00449_y crossref_primary_10_3390_diagnostics12112612 crossref_primary_10_1016_j_cej_2024_155163 crossref_primary_10_1016_j_cobme_2023_100504 crossref_primary_10_1002_ctd2_195 crossref_primary_10_1021_acsami_2c15407 crossref_primary_10_1039_D3AY00890H crossref_primary_10_1021_acsami_3c02428 crossref_primary_10_22207_JPAM_16_4_38 crossref_primary_10_3390_chemosensors11080461 crossref_primary_10_1016_j_bios_2022_113974 crossref_primary_10_1038_s41428_021_00547_2 crossref_primary_10_1039_D1CC04066A crossref_primary_10_1039_D4AY00347K crossref_primary_10_1007_s42765_022_00179_y crossref_primary_10_1016_j_bioana_2024_06_003 crossref_primary_10_3390_bios12080590 crossref_primary_10_1016_j_vibspec_2022_103389 crossref_primary_10_1016_j_trac_2024_117973 crossref_primary_10_1016_j_trac_2021_116488 crossref_primary_10_3390_bios14020108 crossref_primary_10_3390_ijms242115605 crossref_primary_10_1021_acsanm_2c05077 crossref_primary_10_1039_D3AY00182B crossref_primary_10_1002_smsc_202400259 crossref_primary_10_1016_j_chroma_2022_463181 crossref_primary_10_34133_research_0572 crossref_primary_10_1016_j_talanta_2023_124818 crossref_primary_10_1007_s00217_022_04038_3 crossref_primary_10_1016_j_heliyon_2023_e19492 crossref_primary_10_1016_j_hybadv_2023_100108 crossref_primary_10_3390_ijms25115959 crossref_primary_10_3390_bios11120512 crossref_primary_10_1021_acsanm_3c04696 crossref_primary_10_1021_acsbiomaterials_2c00509 crossref_primary_10_3390_ma15217738 crossref_primary_10_1021_acsanm_2c00068 crossref_primary_10_1021_acsabm_1c01151 crossref_primary_10_3390_diagnostics13142418 crossref_primary_10_1021_acsomega_1c07321 crossref_primary_10_1080_00032719_2025_2472223 crossref_primary_10_1007_s13206_022_00078_9 crossref_primary_10_1016_j_porgcoat_2023_107840 crossref_primary_10_1016_j_slast_2024_100146 crossref_primary_10_1016_j_microc_2024_110912 crossref_primary_10_1016_j_microc_2023_109774 crossref_primary_10_3390_jfb15030058 crossref_primary_10_1039_D2TB01409B crossref_primary_10_1021_acsabm_2c00301 crossref_primary_10_1021_acsanm_1c03217 crossref_primary_10_1039_D4NH00226A crossref_primary_10_1007_s41683_022_00103_x crossref_primary_10_1002_jrs_6443 crossref_primary_10_1016_j_biosx_2022_100167 crossref_primary_10_3390_bios11110414 crossref_primary_10_1039_D3RA02560H crossref_primary_10_3390_nano15010064 crossref_primary_10_1021_acsaom_3c00129 crossref_primary_10_1016_j_aca_2023_341326 crossref_primary_10_3390_molecules30061371 crossref_primary_10_3390_pr11041191 crossref_primary_10_1021_acsabm_4c01457 crossref_primary_10_1109_JSEN_2022_3207222 crossref_primary_10_1016_j_bios_2023_115987 crossref_primary_10_1021_acsabm_2c00832 crossref_primary_10_1021_acs_analchem_1c01487 |
Cites_doi | 10.1080/22221751.2020.1756698 10.1021/acsabm.0c01004 10.1016/j.biotechadv.2019.107440 10.1016/j.diagmicrobio.2020.115161 10.1371/journal.pone.0234682 10.1155/2012/971380 10.1021/acs.analchem.0c03202 10.1016/j.jscs.2014.09.001 10.1016/j.ccr.2018.05.007 10.1039/C8AN00160J 10.1016/j.talanta.2020.121737 10.1080/14737159.2020.1757437 10.1021/acsinfecdis.0c00365 10.20944/preprints202003.0409.v2 10.1016/j.cell.2020.04.011 10.1002/jrs.1376 10.1021/acs.jproteome.0c00412 10.1093/nar/30.6.1292 10.3390/diagnostics10110866 10.1186/s13104-020-05212-0 10.1021/acs.analchem.0c01975 10.1016/j.ijid.2020.01.050 10.1016/j.mtchem.2020.100306 10.1016/j.chom.2020.02.001 10.1016/j.snb.2020.129214 10.1021/acs.analchem.8b05533 10.1016/j.bios.2021.112971 10.1016/j.jcv.2020.104413 10.1038/s41591-020-0897-1 10.5772/65478 10.1016/j.jim.2020.112909 10.1126/science.275.5303.1102 10.1039/D0AN00629G 10.1016/j.measurement.2020.108335 10.1093/nsr/nwaa036 10.1039/C7CS00207F 10.1063/5.0021842 10.1021/jp0257449 10.1002/advs.201902477 10.3390/diseases8040036 10.1016/j.biomaterials.2018.07.045 10.1038/s41467-020-19925-0 10.1016/S0140-6736(03)14630-2 10.1183/13993003.03006-2020 10.1007/s00216-009-2761-5 10.1002/jmv.25727 10.1016/j.snb.2020.129196 10.1016/j.virusres.2020.198129 10.1039/D0QM00294A 10.1039/c3cp43858a 10.1126/science.297.5586.1536 10.3390/v11010059 10.1016/j.jinf.2020.06.023 10.1007/s10096-020-04010-7 10.1007/s10096-020-04092-3 10.1002/btm2.10177 10.1038/s41551-020-00655-z 10.1007/s42399-020-00551-2 10.1016/j.bios.2020.112715 10.1039/C8AN02295J 10.1056/NEJMc2001737 10.1039/D0LC00828A 10.1016/j.jlumin.2020.117704 10.1021/acsinfecdis.0c00274 10.1021/acssensors.0c01153 10.1016/j.jsb.2010.11.021 10.1016/j.abst.2020.08.001 10.1016/0009-2614(74)85388-1 10.1021/acs.jpcc.5b07556 10.1021/acs.jafc.9b05077 10.1021/acs.analchem.6b01597 10.1016/j.talanta.2020.121392 10.1021/acssynbio.0c00359 10.3390/ijms21083004 10.1016/j.aca.2018.11.056 10.1016/j.trac.2015.10.017 10.1021/acsomega.0c01554 10.1016/j.diagmicrobio.2020.115248 10.1016/j.snr.2021.100025 10.1016/j.ijid.2021.01.016 10.7150/thno.18019 10.1021/acs.analchem.5b02661 10.1016/j.jsps.2020.09.014 10.1016/j.cmi.2020.04.001 10.1586/erm.09.37 10.1186/s12985-019-1182-0 10.1016/j.mcp.2020.101662 10.1063/1.126546 10.1016/j.bios.2012.08.048 10.3390/v12060582 10.3390/nano7060142 10.1021/acs.chemrev.7b00027 10.1016/j.apsb.2020.04.009 10.1016/S0022-0728(77)80224-6 10.1016/S0140-6736(21)00298-1 10.1016/0022-0728(87)80230-9 10.1016/j.biopha.2020.110738 10.1080/08830185.2021.1872566 10.1016/j.ijid.2020.03.042 10.1021/ja00457a071 10.1021/acssensors.0c01742 10.1038/ncomms5357 10.1002/jmv.25681 10.1021/acs.analchem.0c03484 10.1021/acsabm.0c01083 10.1101/2020.05.24.20111682 10.1136/thoraxjnl-2020-215732 10.1021/acssensors.7b00299 10.1021/acscentsci.0c00501 10.1016/S1369-7021(12)70017-2 10.1016/S0140-6736(20)30154-9 10.1021/acs.analchem.0c00784 10.1016/j.bios.2017.02.048 10.3390/app9071448 10.1021/acscentsci.0c00855 10.1021/acschemneuro.0c00172 10.3233/JAD-200831 10.1021/jasms.0c00238 10.1016/S0009-2614(99)01451-7 10.1021/acs.jproteome.0c00280 10.1016/j.biotechadv.2019.107442 10.1101/2020.01.23.20018549 10.1103/PhysRevLett.78.1667 10.1016/j.jinf.2020.12.024 10.1016/j.coelec.2020.08.011 10.1088/1361-6528/aa8e8c 10.1016/j.jcv.2020.104511 10.1007/978-1-4939-6925-8_7 10.1366/11-06365 10.1371/journal.pone.0216247 10.1016/j.ab.2020.113996 10.7150/thno.44298 10.1016/j.jcv.2020.104473 10.1073/pnas.2010254117 10.1002/cbic.202000744 10.1016/j.snb.2019.127394 10.1039/C5NR07243C 10.1016/j.bios.2015.11.099 10.1016/j.trac.2016.06.006 10.1016/j.diagmicrobio.2020.115167 10.1038/s41587-020-0659-0 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society 2021 American Chemical Society 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society – notice: 2021 American Chemical Society 2021 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/acsabm.1c00102 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 2995 |
ExternalDocumentID | PMC7986978 35014387 10_1021_acsabm_1c00102 b13514029 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | ABFRP ABUCX ACS ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 53G AAYXX ABBLG ABJNI ABLBI ABQRX AHGAQ BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a451t-7e4e10f0db67adbf3c928fc9888cd3c552fc14b1c7ddd87099870dfdaf3549333 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Thu Aug 21 18:16:51 EDT 2025 Fri Jul 11 03:41:15 EDT 2025 Mon Jul 21 06:06:40 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Tue Jul 01 04:25:39 EDT 2025 Wed Apr 21 03:41:34 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | COVID-19 POC devices SARS-CoV-2 lateral flow immunoassay surface-enhanced Raman spectroscopy |
Language | English |
License | https://doi.org/10.15223/policy-017 https://doi.org/10.15223/policy-009 https://doi.org/10.15223/policy-001 This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a451t-7e4e10f0db67adbf3c928fc9888cd3c552fc14b1c7ddd87099870dfdaf3549333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3007-0232 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7986978 |
PMID | 35014387 |
PQID | 2618905828 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7986978 proquest_miscellaneous_2618905828 pubmed_primary_35014387 crossref_citationtrail_10_1021_acsabm_1c00102 crossref_primary_10_1021_acsabm_1c00102 acs_journals_10_1021_acsabm_1c00102 |
ProviderPackageCode | ABFRP ACS VG9 ABUCX GGK VF5 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-19 |
PublicationDateYYYYMMDD | 2021-04-19 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied bio materials |
PublicationTitleAlternate | ACS Appl. Bio Mater |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 Raman C. V. (ref92/cit92) 1928; 2 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 Sharma B. (ref154/cit154) 2012; 15 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref152/cit152 ref153/cit153 ref27/cit27 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref149/cit149 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref42/cit42 doi: 10.1080/22221751.2020.1756698 – ident: ref67/cit67 doi: 10.1021/acsabm.0c01004 – ident: ref68/cit68 doi: 10.1016/j.biotechadv.2019.107440 – ident: ref129/cit129 doi: 10.1016/j.diagmicrobio.2020.115161 – ident: ref43/cit43 doi: 10.1371/journal.pone.0234682 – ident: ref147/cit147 doi: 10.1155/2012/971380 – ident: ref122/cit122 doi: 10.1021/acs.analchem.0c03202 – ident: ref106/cit106 doi: 10.1016/j.jscs.2014.09.001 – ident: ref77/cit77 doi: 10.1016/j.ccr.2018.05.007 – ident: ref76/cit76 doi: 10.1039/C8AN00160J – ident: ref112/cit112 doi: 10.1016/j.talanta.2020.121737 – ident: ref40/cit40 doi: 10.1080/14737159.2020.1757437 – ident: ref36/cit36 doi: 10.1021/acsinfecdis.0c00365 – ident: ref30/cit30 doi: 10.20944/preprints202003.0409.v2 – ident: ref1/cit1 doi: 10.1016/j.cell.2020.04.011 – ident: ref99/cit99 doi: 10.1002/jrs.1376 – ident: ref8/cit8 – ident: ref56/cit56 doi: 10.1021/acs.jproteome.0c00412 – ident: ref39/cit39 doi: 10.1093/nar/30.6.1292 – ident: ref54/cit54 doi: 10.3390/diagnostics10110866 – ident: ref142/cit142 – ident: ref123/cit123 doi: 10.1186/s13104-020-05212-0 – ident: ref118/cit118 doi: 10.1021/acs.analchem.0c01975 – ident: ref20/cit20 doi: 10.1016/j.ijid.2020.01.050 – ident: ref145/cit145 – ident: ref62/cit62 doi: 10.1016/j.mtchem.2020.100306 – ident: ref23/cit23 doi: 10.1016/j.chom.2020.02.001 – ident: ref146/cit146 – ident: ref91/cit91 doi: 10.1016/j.snb.2020.129214 – ident: ref141/cit141 doi: 10.1021/acs.analchem.8b05533 – ident: ref69/cit69 doi: 10.1016/j.bios.2021.112971 – ident: ref133/cit133 doi: 10.1016/j.jcv.2020.104413 – ident: ref35/cit35 doi: 10.1038/s41591-020-0897-1 – ident: ref153/cit153 doi: 10.5772/65478 – ident: ref128/cit128 doi: 10.1016/j.jim.2020.112909 – ident: ref60/cit60 – ident: ref94/cit94 doi: 10.1126/science.275.5303.1102 – ident: ref26/cit26 – ident: ref115/cit115 doi: 10.1039/D0AN00629G – ident: ref19/cit19 doi: 10.1016/j.measurement.2020.108335 – ident: ref24/cit24 doi: 10.1093/nsr/nwaa036 – ident: ref85/cit85 doi: 10.1039/C7CS00207F – ident: ref116/cit116 doi: 10.1063/5.0021842 – ident: ref98/cit98 doi: 10.1021/jp0257449 – ident: ref84/cit84 doi: 10.1002/advs.201902477 – ident: ref119/cit119 doi: 10.3390/diseases8040036 – ident: ref79/cit79 doi: 10.1016/j.biomaterials.2018.07.045 – ident: ref58/cit58 doi: 10.1038/s41467-020-19925-0 – ident: ref3/cit3 doi: 10.1016/S0140-6736(03)14630-2 – ident: ref33/cit33 doi: 10.1183/13993003.03006-2020 – ident: ref151/cit151 doi: 10.1007/s00216-009-2761-5 – ident: ref109/cit109 doi: 10.1002/jmv.25727 – ident: ref131/cit131 doi: 10.1016/j.snb.2020.129196 – ident: ref53/cit53 doi: 10.1016/j.virusres.2020.198129 – ident: ref136/cit136 doi: 10.1039/D0QM00294A – ident: ref101/cit101 doi: 10.1039/c3cp43858a – ident: ref100/cit100 doi: 10.1126/science.297.5586.1536 – ident: ref2/cit2 doi: 10.3390/v11010059 – ident: ref134/cit134 doi: 10.1016/j.jinf.2020.06.023 – ident: ref137/cit137 doi: 10.1007/s10096-020-04010-7 – ident: ref138/cit138 doi: 10.1007/s10096-020-04092-3 – ident: ref47/cit47 doi: 10.1002/btm2.10177 – ident: ref121/cit121 doi: 10.1038/s41551-020-00655-z – ident: ref139/cit139 doi: 10.1007/s42399-020-00551-2 – ident: ref140/cit140 doi: 10.1016/j.bios.2020.112715 – ident: ref107/cit107 doi: 10.1039/C8AN02295J – ident: ref11/cit11 doi: 10.1056/NEJMc2001737 – ident: ref135/cit135 doi: 10.1039/D0LC00828A – ident: ref87/cit87 doi: 10.1016/j.jlumin.2020.117704 – ident: ref7/cit7 – ident: ref13/cit13 doi: 10.1021/acsinfecdis.0c00274 – ident: ref63/cit63 doi: 10.1021/acssensors.0c01153 – ident: ref31/cit31 doi: 10.1016/j.jsb.2010.11.021 – ident: ref32/cit32 doi: 10.1016/j.abst.2020.08.001 – ident: ref71/cit71 doi: 10.1016/0009-2614(74)85388-1 – ident: ref74/cit74 doi: 10.1021/acs.jpcc.5b07556 – ident: ref149/cit149 doi: 10.1021/acs.jafc.9b05077 – ident: ref80/cit80 doi: 10.1021/acs.analchem.6b01597 – ident: ref14/cit14 doi: 10.1016/j.talanta.2020.121392 – ident: ref45/cit45 doi: 10.1021/acssynbio.0c00359 – ident: ref38/cit38 doi: 10.3390/ijms21083004 – ident: ref16/cit16 doi: 10.1016/j.aca.2018.11.056 – ident: ref110/cit110 doi: 10.1016/j.trac.2015.10.017 – ident: ref125/cit125 doi: 10.1021/acsomega.0c01554 – ident: ref130/cit130 doi: 10.1016/j.diagmicrobio.2020.115248 – ident: ref12/cit12 doi: 10.1016/j.snr.2021.100025 – ident: ref108/cit108 doi: 10.1016/j.ijid.2021.01.016 – ident: ref82/cit82 doi: 10.7150/thno.18019 – ident: ref103/cit103 doi: 10.1021/acs.analchem.5b02661 – ident: ref4/cit4 doi: 10.1016/j.jsps.2020.09.014 – ident: ref44/cit44 doi: 10.1016/j.cmi.2020.04.001 – ident: ref150/cit150 doi: 10.1586/erm.09.37 – ident: ref22/cit22 doi: 10.1186/s12985-019-1182-0 – ident: ref48/cit48 doi: 10.1016/j.mcp.2020.101662 – ident: ref96/cit96 doi: 10.1063/1.126546 – ident: ref102/cit102 doi: 10.1016/j.bios.2012.08.048 – ident: ref51/cit51 doi: 10.3390/v12060582 – ident: ref143/cit143 – ident: ref29/cit29 – ident: ref152/cit152 doi: 10.3390/nano7060142 – ident: ref144/cit144 – ident: ref78/cit78 doi: 10.1021/acs.chemrev.7b00027 – ident: ref18/cit18 doi: 10.1016/j.apsb.2020.04.009 – ident: ref72/cit72 doi: 10.1016/S0022-0728(77)80224-6 – ident: ref27/cit27 doi: 10.1016/S0140-6736(21)00298-1 – ident: ref93/cit93 doi: 10.1016/0022-0728(87)80230-9 – ident: ref52/cit52 doi: 10.1016/j.biopha.2020.110738 – ident: ref34/cit34 doi: 10.1080/08830185.2021.1872566 – ident: ref10/cit10 doi: 10.1016/j.ijid.2020.03.042 – ident: ref73/cit73 doi: 10.1021/ja00457a071 – ident: ref46/cit46 doi: 10.1021/acssensors.0c01742 – ident: ref81/cit81 doi: 10.1038/ncomms5357 – ident: ref17/cit17 doi: 10.1002/jmv.25681 – volume: 2 start-page: 387 year: 1928 ident: ref92/cit92 publication-title: Indian J. Phys. – ident: ref126/cit126 doi: 10.1021/acs.analchem.0c03484 – ident: ref61/cit61 doi: 10.1021/acsabm.0c01083 – ident: ref50/cit50 doi: 10.1101/2020.05.24.20111682 – ident: ref114/cit114 doi: 10.1136/thoraxjnl-2020-215732 – ident: ref37/cit37 doi: 10.1021/acssensors.7b00299 – ident: ref6/cit6 – ident: ref111/cit111 doi: 10.1021/acscentsci.0c00501 – volume: 15 start-page: 16 year: 2012 ident: ref154/cit154 publication-title: Mater. Today doi: 10.1016/S1369-7021(12)70017-2 – ident: ref9/cit9 doi: 10.1016/S0140-6736(20)30154-9 – ident: ref124/cit124 doi: 10.1021/acs.analchem.0c00784 – ident: ref83/cit83 doi: 10.1016/j.bios.2017.02.048 – ident: ref75/cit75 doi: 10.3390/app9071448 – ident: ref28/cit28 – ident: ref127/cit127 doi: 10.1021/acscentsci.0c00855 – ident: ref5/cit5 doi: 10.1021/acschemneuro.0c00172 – ident: ref41/cit41 doi: 10.3233/JAD-200831 – ident: ref59/cit59 doi: 10.1021/jasms.0c00238 – ident: ref97/cit97 doi: 10.1016/S0009-2614(99)01451-7 – ident: ref57/cit57 doi: 10.1021/acs.jproteome.0c00280 – ident: ref64/cit64 doi: 10.1016/j.biotechadv.2019.107442 – ident: ref21/cit21 doi: 10.1101/2020.01.23.20018549 – ident: ref95/cit95 doi: 10.1103/PhysRevLett.78.1667 – ident: ref25/cit25 doi: 10.1016/j.jinf.2020.12.024 – ident: ref66/cit66 doi: 10.1016/j.coelec.2020.08.011 – ident: ref104/cit104 doi: 10.1088/1361-6528/aa8e8c – ident: ref113/cit113 doi: 10.1016/j.jcv.2020.104511 – ident: ref49/cit49 doi: 10.1007/978-1-4939-6925-8_7 – ident: ref148/cit148 doi: 10.1366/11-06365 – ident: ref15/cit15 doi: 10.1371/journal.pone.0216247 – ident: ref65/cit65 doi: 10.1016/j.ab.2020.113996 – ident: ref88/cit88 doi: 10.7150/thno.44298 – ident: ref132/cit132 doi: 10.1016/j.jcv.2020.104473 – ident: ref55/cit55 doi: 10.1073/pnas.2010254117 – ident: ref70/cit70 doi: 10.1002/cbic.202000744 – ident: ref86/cit86 doi: 10.1016/j.snb.2019.127394 – ident: ref89/cit89 doi: 10.1039/C5NR07243C – ident: ref90/cit90 doi: 10.1016/j.bios.2015.11.099 – ident: ref105/cit105 doi: 10.1016/j.trac.2016.06.006 – ident: ref120/cit120 doi: 10.1016/j.diagmicrobio.2020.115167 – ident: ref117/cit117 doi: 10.1038/s41587-020-0659-0 |
SSID | ssj0002003189 |
Score | 2.5225074 |
SecondaryResourceType | review_article |
Snippet | The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid,... The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid,... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2974 |
SubjectTerms | Antibodies, Immobilized - chemistry Antibodies, Immobilized - immunology Antibodies, Viral - blood Antibodies, Viral - immunology Biomarkers - blood Biomarkers - metabolism COVID-19 - diagnosis COVID-19 - virology Humans Immunoassay - methods Point-of-Care Systems Review SARS-CoV-2 - isolation & purification SARS-CoV-2 - metabolism Spectrum Analysis, Raman Viral Proteins - immunology Viral Proteins - metabolism |
Title | SERS Based Lateral Flow Immunoassay for Point-of-Care Detection of SARS-CoV‑2 in Clinical Samples |
URI | http://dx.doi.org/10.1021/acsabm.1c00102 https://www.ncbi.nlm.nih.gov/pubmed/35014387 https://www.proquest.com/docview/2618905828 https://pubmed.ncbi.nlm.nih.gov/PMC7986978 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUoXLgAFaVdoJVRkXryktiJHR-XLStABVWkIG6RP8WKJUEkKwSn_oX-RX5J7SS7dFkhes7Eku2x5j3PzDMAu5RLaqOYIIYNQZHgAkmlGZKUxjqyzIb1YzAnp_TwPDq-jC-f7zteZvBxuCdUKeRNN1S1_Nk7sIRpwjzN6vXT6W0Krp3TY10PoJED1Xii0Dg3hI9DqpyNQ3Pg8mWN5D9BZ7DaKCCVtVahrzW57o4r2VWP80qOb85nDay0yBP2Gld5DxZMvg5UenCWwn0XyjT8IXw38ggORsU9PPJ9I4VD1uIBOlwLfxbDvEKFRb5hCX43VV3ClcPCwrR3lqJ-cfH0-w-Gwxy2UqMjmAovPVx-AOeDg1_9Q9S-u4BEFIcVYiYyYWADLSkTWlqiOE6s4o4sK01UHGOrwkiGimmt3Xl3jI0F2mphiWObhJANsJgXufkEIHcILrGBI1nuj0SahBItpVAsFiKwMe-Ar249svbclFmdEsdh1ixS1i5SB6DJXmWqlS73L2iMXrX_NrW_bUQ7XrXcmWx95s6VT5aI3BTjMnPMMuGBTyp2wMfGFaZjNaqICesANuMkUwOv2T37JR9e1drdjCfUEffN_5r3FljGvoTGS0vybbBY3Y3NZ4eBKvmldv-_eiACDA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLWqsoAND_EaaMEIECsPifNwvGAxTDuaodMKNS3qLvgpRgwJajKq2hW_wBfwK3wLX8J1kglMq0psKrFNHMuxr33Pse89RuhFzGVswyggjJqAhIILIpVmRMZxpEPLrF9fBrO7F48Pw3dH0dEa-rHMhYFGlFBTWR_i_1EX8F_DMyG_9H1Vq6C1UZQ75vQEOFr5ZrIFA_qS0tH2wXBM2msEiAgjvyLMhMb3rKdlzISWNlCcJlZx4H5KByqKqFV-KH3FtNZgvkBAmKetFjYA8hS4HU9Y468B8qGO3Q2GabeJQ-s54SC2w-0EsDxdCkNeaLJzf6pcdX8XMO350My_fN3oFvrZ9VId4vK5v6hkX52dE5D8j7vxNrrZ4mw8aCbGHbRm8rtIpdv7KX4LjlvjqXC513M8mhcneOKyZArgEeIUA4rH74tZXpHCEpeehbdMVQes5biwOB3sp2RYfPj17TvFsxy3wqpznAontFzeQ4dX8l_30Xpe5OYhwhzwamI9oJTwRSJNEgdaSqFYJIRnI95Dz6H_s3aVKLM6AID6WTMoWTsoPUSWJpKpVqjd3Rcyv7T8q67810ai5NKSz5YWl8Eq4o6GRG6KRZkBj064545Qe-hBY4FdXY0GZMJ6iK3YZlfAKZSvvslnn2qlcsaTmLPk0T_991N0fXywO82mk72dx-gGdcFDTlSTb6D16nhhNgH9VfJJPQMx-njVtvobsjlmQA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELaqIlVc-BF_SykYAeLkJXF-HB84LLtddWmpqoai3lL_ihXbpCJZVe2JV-AZeBWehCdhnGSjbqtKXCpxTRzLsWc833hmPiP0OuYytmEUEEZNQELBBZFKMyLjONKhZdavL4P5tBtvHYQfD6PDFfRrUQsDgyihp7IO4jutPtG2ZRjw38FzIY_7vqqZ0NpMym1zdgp-Wvl-MoJFfUPpePPzcIu0VwkQEUZ-RZgJje9ZT8uYCS1toDhNrOLg_ykdqCiiVvmh9BXTWoMIgxPCPG21sAE4UIE79YR9_paLEToPbzBMu4McWuuFg9kOuxPA83RBDnllyM4EqnLZBF7BtZfTMy_Yu_Fd9LubqTrN5Vt_Xsm-Or9EIvmfT-U9dKfF23jQKMh9tGLyB0ilm_sp_gAGXOMd4WqwZ3g8K07xxFXLFOBPiDMMaB7vFdO8IoUlrkwLj0xVJ67luLA4HeynZFh8-fPjJ8XTHLcEqzOcCke4XD5EBzfyX4_Qal7k5gnCHHBrYj1wLeGLRJokDrSUQrFICM9GvIdewfxn7W5RZnUiAPWzZlGydlF6iCzEJFMtYbu7N2R2bfu3XfuThqrk2pYvF1KXwW7iQkQiN8W8zMCfTrjnQqk99LiRwq6vhgsyYT3EluSza-CYypff5NOvNWM540nMWfL0n_77BVrbG42zncnu9jq6TV0OkePW5M_QavV9bjYABFbyea2EGB3dtKj-BWWTaMM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SERS+Based+Lateral+Flow+Immunoassay+for+Point-of-Care+Detection+of+SARS-CoV-2+in+Clinical+Samples&rft.jtitle=ACS+applied+bio+materials&rft.au=Yadav%2C+Shalu&rft.au=Sadique%2C+Mohd.+Abubakar&rft.au=Ranjan%2C+Pushpesh&rft.au=Kumar%2C+Neeraj&rft.date=2021-04-19&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=4&rft.issue=4&rft.spage=2974&rft.epage=2995&rft_id=info:doi/10.1021%2Facsabm.1c00102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsabm_1c00102 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |