Controlled Bioactive Delivery Using Degradable Electroactive Polymers
Biomaterials capable of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances have significant markets in the agriscience/healthcare industries. Here, we report the development of degradable electroactive polymers and their application for the controlled delivery of a clinic...
Saved in:
Published in | Biomacromolecules Vol. 23; no. 7; pp. 3031 - 3040 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
11.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomaterials capable of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances have significant markets in the agriscience/healthcare industries. Here, we report the development of degradable electroactive polymers and their application for the controlled delivery of a clinically relevant drug (the anti-inflammatory dexamethasone phosphate, DMP). Electroactive copolymers composed of blocks of polycaprolactone (PCL) and naturally occurring electroactive pyrrole oligomers (e.g., bilirubin, biliverdin, and hemin) were prepared and solution-processed to produce films (optionally doped with DMP). A combination of in silico/in vitro/in vivo studies demonstrated the cytocompatibility of the polymers. The release of DMP in response to the application of an electrical stimulus was observed to be enhanced by ca. 10–30% relative to the passive release from nonstimulated samples in vitro. Such stimuli-responsive biomaterials have the potential for integration devices capable of delivering a variety of molecules for technical/medical applications. |
---|---|
AbstractList | Biomaterials capable of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances have significant markets in the agriscience/healthcare industries. Here, we report the development of degradable electroactive polymers and their application for the controlled delivery of a clinically relevant drug (the anti-inflammatory dexamethasone phosphate, DMP). Electroactive copolymers composed of blocks of polycaprolactone (PCL) and naturally occurring electroactive pyrrole oligomers (e.g., bilirubin, biliverdin, and hemin) were prepared and solution-processed to produce films (optionally doped with DMP). A combination of in silico/in vitro/in vivo studies demonstrated the cytocompatibility of the polymers. The release of DMP in response to the application of an electrical stimulus was observed to be enhanced by ca. 10–30% relative to the passive release from nonstimulated samples in vitro. Such stimuli-responsive biomaterials have the potential for integration devices capable of delivering a variety of molecules for technical/medical applications. Biomaterials capable of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances have significant markets in the agriscience/healthcare industries. Here, we report the development of degradable electroactive polymers and their application for the controlled delivery of a clinically relevant drug (the anti-inflammatory dexamethasone phosphate, DMP). Electroactive copolymers composed of blocks of polycaprolactone (PCL) and naturally occurring electroactive pyrrole oligomers (e.g., bilirubin, biliverdin, and hemin) were prepared and solution-processed to produce films (optionally doped with DMP). A combination of in silico/in vitro/in vivo studies demonstrated the cytocompatibility of the polymers. The release of DMP in response to the application of an electrical stimulus was observed to be enhanced by ca. 10-30% relative to the passive release from nonstimulated samples in vitro. Such stimuli-responsive biomaterials have the potential for integration devices capable of delivering a variety of molecules for technical/medical applications.Biomaterials capable of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances have significant markets in the agriscience/healthcare industries. Here, we report the development of degradable electroactive polymers and their application for the controlled delivery of a clinically relevant drug (the anti-inflammatory dexamethasone phosphate, DMP). Electroactive copolymers composed of blocks of polycaprolactone (PCL) and naturally occurring electroactive pyrrole oligomers (e.g., bilirubin, biliverdin, and hemin) were prepared and solution-processed to produce films (optionally doped with DMP). A combination of in silico/in vitro/in vivo studies demonstrated the cytocompatibility of the polymers. The release of DMP in response to the application of an electrical stimulus was observed to be enhanced by ca. 10-30% relative to the passive release from nonstimulated samples in vitro. Such stimuli-responsive biomaterials have the potential for integration devices capable of delivering a variety of molecules for technical/medical applications. Biomaterials capable of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances have significant markets in the agriscience/healthcare industries. Here, we report the development of degradable electroactive polymers and their application for the controlled delivery of a clinically relevant drug (the anti-inflammatory dexamethasone phosphate, DMP). Electroactive copolymers composed of blocks of polycaprolactone (PCL) and naturally occurring electroactive pyrrole oligomers (e.g., bilirubin, biliverdin, and hemin) were prepared and solution-processed to produce films (optionally doped with DMP). A combination of in silico/in vitro/in vivo studies demonstrated the cytocompatibility of the polymers. The release of DMP in response to the application of an electrical stimulus was observed to be enhanced by ca. 10–30% relative to the passive release from nonstimulated samples in vitro. Such stimuli-responsive biomaterials have the potential for integration devices capable of delivering a variety of molecules for technical/medical applications. |
Author | Ashton, Mark D. Shnyder, Steven D. Hardy, John G. Municoy, Sofia Desimone, Martin F. Cooper, Patricia A. Cheneler, David |
AuthorAffiliation | Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET) Department of Engineering, Faculty of Science and Technology Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences Materials Science Institute Department of Chemistry, Faculty of Science and Technology Lancaster University |
AuthorAffiliation_xml | – name: Materials Science Institute – name: Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET) – name: Lancaster University – name: Department of Engineering, Faculty of Science and Technology – name: Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences – name: Department of Chemistry, Faculty of Science and Technology |
Author_xml | – sequence: 1 givenname: Mark D. orcidid: 0000-0003-2199-6057 surname: Ashton fullname: Ashton, Mark D. organization: Department of Chemistry, Faculty of Science and Technology – sequence: 2 givenname: Patricia A. surname: Cooper fullname: Cooper, Patricia A. organization: Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences – sequence: 3 givenname: Sofia surname: Municoy fullname: Municoy, Sofia organization: Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET) – sequence: 4 givenname: Martin F. surname: Desimone fullname: Desimone, Martin F. organization: Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET) – sequence: 5 givenname: David orcidid: 0000-0003-1353-0329 surname: Cheneler fullname: Cheneler, David organization: Lancaster University – sequence: 6 givenname: Steven D. surname: Shnyder fullname: Shnyder, Steven D. organization: Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences – sequence: 7 givenname: John G. orcidid: 0000-0003-0655-2167 surname: Hardy fullname: Hardy, John G. email: j.g.hardy@lancaster.ac.uk organization: Lancaster University |
BookMark | eNqFkUtLAzEUhYNUtD7-gKsu3UzNczKzEbTWBxR0oeuQJndqJDOpyVTovze1RdCFrm7CPefkkO8IDbrQAUJnBI8JpuRCmzSeu9BqM6YGY0HKPTQkgpYFLzEdfJ1FIWUtD9FRSm8Y45pxcYAOmZC8kpIO0XQSuj4G78GOrl3QpncfMLoBn0dcj16S6xb5uoja6rmH0dSDyfqd7in4dQsxnaD9RvsEp7t5jF5up8-T-2L2ePcwuZoVmgvSF7wxIBsqZQMUSl3x2hrBwDbUEMxqkKyWtWCk1NaUsuJWiIZZaTjDFusG2DG63OYuV_MWrIHcXXu1jK7Vca2CdurnpnOvahE-VJ0fFRXNAee7gBjeV5B61bpkwHvdQVglRSWpqOSUs_-lZZVLU4E3qXQrNTGkFKH5bkSw2qBSGZXaolI7VNlU_TIZ1-vebXho5_-2jrfWze4trGKXP_0vwydSFq5L |
CitedBy_id | crossref_primary_10_1002_slct_202301868 crossref_primary_10_1016_j_ijpharm_2024_124701 crossref_primary_10_1002_adma_202211273 crossref_primary_10_1016_j_matchemphys_2023_128545 crossref_primary_10_3390_pharmaceutics15122743 crossref_primary_10_3390_polym14224953 crossref_primary_10_1016_j_mtcomm_2024_108563 |
Cites_doi | 10.1016/j.jconrel.2015.05.266 10.1595/205651319X15585277727868 10.1016/S0021-9258(18)63087-X 10.1002/mabi.201400020 10.1016/j.yrtph.2015.12.006 10.3390/antibiotics10111420 10.1002/j.1875-9114.1982.tb03212.x 10.1016/j.yrtph.2018.11.001 10.1021/acsami.1c25179 10.1039/C5TB00757G 10.1163/156856209X434647 10.1002/pen.760220402 10.1016/j.jconrel.2017.05.028 10.1039/C5RA01851J 10.1038/sj.bjc.6605642 10.1021/acs.molpharmaceut.6b00015 10.1039/c2ra20451g 10.1021/acs.chemmater.9b01798 10.1016/j.progpolymsci.2019.05.002 10.1002/mds3.10141 10.1002/pi.6017 10.1021/acs.biomac.1c01436.s001 10.1002/mabi.201500171 10.1002/admt.202100055 10.1016/j.progpolymsci.2013.06.003 10.1021/la500033b 10.1021/acsmacrolett.0c00488 10.1039/C4RA16103C 10.1016/j.jconrel.2014.03.053 10.1039/C5TB00106D 10.1046/j.1471-4159.1997.69020581.x 10.1039/C6PY01455K 10.1002/pi.5997 10.1021/acsmacrolett.1c00643 10.1021/jacs.5b09974 10.1016/j.jtice.2015.01.003 10.1002/jbm.a.34869 10.1021/am501754s 10.1016/j.cej.2019.01.028 10.1016/j.jconrel.2010.03.023 10.1016/j.addr.2008.02.008 10.1039/C4CS00133H 10.1021/ja00334a076 10.1073/pnas.61.2.748 10.1088/1748-6041/3/3/034108 10.1021/acsabm.1c00699 10.2147/IJN.S94777 10.1002/app.50330 10.1016/j.jconrel.2010.07.122 10.1039/C4RA02861A 10.1159/000350847 10.1038/s41598-018-22066-6 10.1016/j.ccr.2016.04.004 10.1016/0041-008X(79)90270-9 10.1002/adhm.201900622 10.1021/acsbiomaterials.1c01305 10.1002/pi.6089 10.1016/j.copbio.2013.03.011 10.1002/pi.6384 10.1016/j.biomaterials.2006.11.026 10.1016/j.ijpharm.2009.07.033 10.1039/C3CS60235D 10.4236/snl.2012.23009 10.7150/thno.63481 10.1063/1.5138587 10.1021/cm2031569 10.1021/acs.molpharmaceut.5b00697 10.1016/j.nano.2011.08.012 10.1002/macp.201500047 10.1039/C4TB00355A 10.1002/pi.5756 10.1016/j.addr.2007.07.001 10.1021/acsapm.8b00100 10.1016/j.addr.2013.05.010 10.1039/c2tx20035j 10.1002/pi.4908 10.1016/j.addr.2020.09.011 10.1002/adhm.202001876 10.1016/0006-291X(79)92046-1 10.1007/BF03028642 10.1016/j.colsurfb.2018.05.015 10.1039/D1TC03600A |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | AAYXX CITATION 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.biomac.2c00516 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 3040 |
ExternalDocumentID | PMC9277582 10_1021_acs_biomac_2c00516 a161680915 |
GrantInformation_xml | – fundername: ; grantid: A103355 – fundername: ; grantid: EP/R003823/1 – fundername: ; grantid: RG160449 – fundername: ; grantid: EP/R512564/1/2065445 |
GroupedDBID | - 02 23N 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED F5P GGK GNL IH9 JG P2P RNS ROL TN5 UI2 VF5 VG9 W1F X XKZ ZCA --- -~X 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ ED~ JG~ ~02 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a451t-4fce7f277fe2e6a849dc53edf2c1039e739795316adc6784d55f3d7c430d0afe3 |
IEDL.DBID | ACS |
ISSN | 1525-7797 1526-4602 |
IngestDate | Thu Aug 21 18:43:09 EDT 2025 Thu Jul 10 19:34:13 EDT 2025 Fri Jul 11 11:01:26 EDT 2025 Tue Jul 01 04:08:17 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Tue Jul 12 03:10:57 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a451t-4fce7f277fe2e6a849dc53edf2c1039e739795316adc6784d55f3d7c430d0afe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1353-0329 0000-0003-0655-2167 0000-0003-2199-6057 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9277582 |
PMID | 35748772 |
PQID | 2681032502 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9277582 proquest_miscellaneous_2718274243 proquest_miscellaneous_2681032502 crossref_primary_10_1021_acs_biomac_2c00516 crossref_citationtrail_10_1021_acs_biomac_2c00516 acs_journals_10_1021_acs_biomac_2c00516 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-11 |
PublicationDateYYYYMMDD | 2022-07-11 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 Shefrin A. E. (ref60/cit60) 2009; 55 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 Casado N. (ref68/cit68) 2021; 21 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 Tenhunen R. (ref57/cit57) 1976; 8 ref26/cit26 Zimmerman H. J. (ref75/cit75) 1999 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref39/cit39 doi: 10.1016/j.jconrel.2015.05.266 – ident: ref35/cit35 doi: 10.1595/205651319X15585277727868 – ident: ref64/cit64 doi: 10.1016/S0021-9258(18)63087-X – ident: ref80/cit80 doi: 10.1002/mabi.201400020 – ident: ref72/cit72 doi: 10.1016/j.yrtph.2015.12.006 – ident: ref62/cit62 doi: 10.3390/antibiotics10111420 – ident: ref76/cit76 doi: 10.1002/j.1875-9114.1982.tb03212.x – ident: ref71/cit71 doi: 10.1016/j.yrtph.2018.11.001 – ident: ref13/cit13 doi: 10.1021/acsami.1c25179 – ident: ref14/cit14 doi: 10.1039/C5TB00757G – ident: ref23/cit23 doi: 10.1163/156856209X434647 – ident: ref66/cit66 doi: 10.1002/pen.760220402 – ident: ref78/cit78 doi: 10.1016/j.jconrel.2017.05.028 – ident: ref69/cit69 doi: 10.1039/C5RA01851J – ident: ref86/cit86 doi: 10.1038/sj.bjc.6605642 – ident: ref3/cit3 doi: 10.1021/acs.molpharmaceut.6b00015 – ident: ref5/cit5 doi: 10.1039/c2ra20451g – ident: ref6/cit6 doi: 10.1021/acs.chemmater.9b01798 – ident: ref45/cit45 doi: 10.1016/j.progpolymsci.2019.05.002 – ident: ref33/cit33 doi: 10.1002/mds3.10141 – ident: ref47/cit47 doi: 10.1002/pi.6017 – ident: ref70/cit70 doi: 10.1021/acs.biomac.1c01436.s001 – ident: ref82/cit82 doi: 10.1002/mabi.201500171 – ident: ref31/cit31 doi: 10.1002/admt.202100055 – ident: ref10/cit10 doi: 10.1016/j.progpolymsci.2013.06.003 – ident: ref40/cit40 doi: 10.1021/la500033b – ident: ref8/cit8 doi: 10.1021/acsmacrolett.0c00488 – ident: ref18/cit18 doi: 10.1039/C4RA16103C – ident: ref85/cit85 doi: 10.1016/j.jconrel.2014.03.053 – ident: ref41/cit41 doi: 10.1039/C5TB00106D – ident: ref79/cit79 doi: 10.1046/j.1471-4159.1997.69020581.x – ident: ref16/cit16 doi: 10.1039/C6PY01455K – ident: ref48/cit48 doi: 10.1002/pi.5997 – ident: ref7/cit7 doi: 10.1021/acsmacrolett.1c00643 – ident: ref2/cit2 doi: 10.1021/jacs.5b09974 – ident: ref51/cit51 doi: 10.1016/j.jtice.2015.01.003 – ident: ref11/cit11 doi: 10.1002/jbm.a.34869 – ident: ref9/cit9 doi: 10.1021/am501754s – ident: ref32/cit32 doi: 10.1016/j.cej.2019.01.028 – ident: ref25/cit25 doi: 10.1016/j.jconrel.2010.03.023 – ident: ref54/cit54 doi: 10.1016/j.addr.2008.02.008 – ident: ref1/cit1 doi: 10.1039/C4CS00133H – ident: ref22/cit22 doi: 10.1021/ja00334a076 – ident: ref58/cit58 doi: 10.1073/pnas.61.2.748 – ident: ref55/cit55 doi: 10.1088/1748-6041/3/3/034108 – ident: ref15/cit15 doi: 10.1021/acsabm.1c00699 – ident: ref42/cit42 doi: 10.2147/IJN.S94777 – ident: ref61/cit61 doi: 10.1002/app.50330 – ident: ref84/cit84 doi: 10.1016/j.jconrel.2010.07.122 – ident: ref20/cit20 doi: 10.1039/C4RA02861A – ident: ref59/cit59 doi: 10.1159/000350847 – ident: ref81/cit81 doi: 10.1038/s41598-018-22066-6 – ident: ref12/cit12 doi: 10.1016/j.ccr.2016.04.004 – volume: 55 start-page: 704 year: 2009 ident: ref60/cit60 publication-title: Can. Fam. Physician – ident: ref74/cit74 doi: 10.1016/0041-008X(79)90270-9 – ident: ref36/cit36 doi: 10.1002/adhm.201900622 – ident: ref26/cit26 doi: 10.1021/acsbiomaterials.1c01305 – ident: ref38/cit38 doi: 10.1002/pi.6089 – ident: ref34/cit34 doi: 10.1016/j.copbio.2013.03.011 – ident: ref46/cit46 doi: 10.1002/pi.6384 – ident: ref24/cit24 doi: 10.1016/j.biomaterials.2006.11.026 – ident: ref52/cit52 doi: 10.1016/j.ijpharm.2009.07.033 – ident: ref30/cit30 doi: 10.1039/C3CS60235D – ident: ref67/cit67 doi: 10.4236/snl.2012.23009 – ident: ref43/cit43 doi: 10.7150/thno.63481 – ident: ref37/cit37 doi: 10.1063/1.5138587 – ident: ref4/cit4 doi: 10.1021/cm2031569 – ident: ref21/cit21 doi: 10.1021/acs.molpharmaceut.5b00697 – ident: ref77/cit77 doi: 10.1016/j.nano.2011.08.012 – ident: ref53/cit53 doi: 10.1002/macp.201500047 – volume: 8 start-page: 2 year: 1976 ident: ref57/cit57 publication-title: Ann. Clin. Res. – ident: ref29/cit29 doi: 10.1039/C4TB00355A – ident: ref49/cit49 doi: 10.1002/pi.5756 – ident: ref83/cit83 doi: 10.1016/j.addr.2007.07.001 – ident: ref17/cit17 doi: 10.1021/acsapm.8b00100 – ident: ref19/cit19 doi: 10.1016/j.addr.2013.05.010 – ident: ref44/cit44 doi: 10.1039/c2tx20035j – ident: ref50/cit50 doi: 10.1002/pi.4908 – volume: 21 start-page: 1 volume-title: RSC Polymer Chemistry Series year: 2021 ident: ref68/cit68 – ident: ref27/cit27 doi: 10.1016/j.addr.2020.09.011 – ident: ref73/cit73 doi: 10.1002/adhm.202001876 – ident: ref56/cit56 doi: 10.1016/0006-291X(79)92046-1 – ident: ref65/cit65 doi: 10.1007/BF03028642 – ident: ref63/cit63 doi: 10.1016/j.colsurfb.2018.05.015 – volume-title: Hepatotoxicity: The Adverse Effects of Drugs and Other Chemicals on the Liver year: 1999 ident: ref75/cit75 – ident: ref28/cit28 doi: 10.1039/D1TC03600A |
SSID | ssj0009345 |
Score | 2.4369276 |
Snippet | Biomaterials capable of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances have significant markets in the agriscience/healthcare... Biomaterials capable of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances have significant markets in the agriscience/healthcare... |
SourceID | pubmedcentral proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3031 |
SubjectTerms | agrochemicals bilirubin biocompatible materials composite polymers computer simulation dexamethasone health services phosphates pyrroles |
Title | Controlled Bioactive Delivery Using Degradable Electroactive Polymers |
URI | http://dx.doi.org/10.1021/acs.biomac.2c00516 https://www.proquest.com/docview/2681032502 https://www.proquest.com/docview/2718274243 https://pubmed.ncbi.nlm.nih.gov/PMC9277582 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOMCFN2K8VCQkDtCxpknTHcfYNCENIcEkblWaB0xMHdrjMH49cdttTMC0Y1snVR27dmL7M8AlIyq2gkRcLYzdoBAeuLEKmUsMV1RSRkRaKNx-DFod-vDKXgtw808En3i3Qg7LWIpupycSZShYg3UShBy3WrX68xxi109bEmNDH-szVnleIvP3HGiM5HDRGM09zMX8yB8Gp7kN7WnZTpZn8lEej-Ky_PqN4rjSt-zAVu55OrVMVHahoJM92KhPG77tQ6Oepa33tHLuun2R_gmde93D1I2JkyYX2Mu3gVBYb-U0sg46Od1TvzfBM_AD6DQbL_WWm3dZcAVl3silRmpuCOdGEx2IkFaVZL5WhkgME2uOkT-rqYFQ0lo2qhgzvuKS-hVVEUb7h1BM-ok-AocFxo81Vyz2FEXcmbBirImUQhhDTShKcGU5EOVaMozSADjxIryZsSXK2VICb7owkczByrFnRm_pmOvZmM8MqmMp9cV0vSPLZwyTiET3x8OIIESbb11DsoTGmnQMclO_BHxBWGavRtzuxSdJ9z3F765aZrOQHK_MjRPYJFh1gXie3ikUR4OxPrO-0Cg-T1XgG1CLCGg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcigX3ojwNBKIA3KJx7te58ChpKlS-hASrdSbWe8DKiIH1YlQ-Dv8FX4YM2snIQhFXCpxtL0Pe3Z291vPzDcAzyXakhQJY6c9HVBQZXFpcxmjV1YYIVGHQOGj42x4Kt6dybMN-DGPhaGXqKmlOhjxl-wCyWu-xxHp1AsaVqWs9aQ8cLNvdE6r3-zv0qC-QNwbnPSHcZtKINZCJpNYeOOUR6W8Q5fpXPSskamzHg3bQp1i8xapY6atoeVbWCl9apURadd2tXcptXsFrhL6QT7h7fQ_LJl905AJmfMIEVTtqTYy5-_vzHugqVf3wCWwXXXL_G2f27sBPxcSCu4tX7ank3LbfP-DPPI_F-FNuN7i7GinmRi3YMNVt2GrP09vdwcG_cZJf-Rs9PZ8rMO6H-26ETuqzKLgSkGXny605eiyaNDkC2rLvR-PZvzH_y6cXspX3IPNaly5-xDJzKelU1aWiRXMspN3PQECo7X3wue6Ay9J4kW7JtRFMPdjUvDNZhiKdhg6kMz1oTAtNTtnCBmtrfNqUedrQ0yytvSzuZoVJGc2CunKjad1gUxIlxIQxjVlCMCwSV-kHVArOrromlnKV59U558DW3mPhC1zfPDP0ngKW8OTo8PicP_44CFcQ443YSbT5BFsTi6m7jGhwEn5JMzCCD5ets7-AtRObBI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgGXlqdYaCFIIA4oZePYcfbQQ7sPtRSqSlCpt9TxAypW2arZVbX8If4KP6szjnfLIrTi0gPHOH5lPLZnMjPfALwWzJTISCy2yqGCwmQWlyYXMXPScM0FUz5Q-NNhtnfMP5yIkxX4OYuFwUnU2FPtjfi0q8-NCwgDyXsqp6h0HIlpYqcseFMe2Okl6mr19n4PF_YNY4P-l-5eHNIJxIqLZBxzp610TEpnmc1UzjtGi9QaxzTZQ60kExeyZKaMxiOcGyFcaqTmadu0lbMp9nsLbpOdkLS8ne7na3Tf1GdDplxCKK52ZIjO-fuc6R7U9eI9eC3cLrpm_nbXDdbh15xK3sXl-9ZkXG7pH38ASP4HZLwPa0HejnaaDfIAVmz1EO52Z2nuHkG_2zjrD62Jds9Gyp__Uc8OyWFlGnmXCnz8eqEMRZlF_SZvUKh3NBpO6c__Yzi-ka94AqvVqLJPIRKZS0srjSgTwwltJ287FAy0Us5xl6sWvEWKF-FsqAtv9mdJQYXNMhRhGVqQzHii0AGinTKFDJe2eTdvc94AlCyt_WrGagXSmYxDqrKjSV0wAqZLUSBmS-qgIEOmfZ62QC7w6XxoQitffFOdffOo5R0ktsjZs3-mxku4c9QbFB_3Dw-ewz1GYScEaJpswOr4YmI3URgcly_8Rozg9KZZ9gqcXG6V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+Bioactive+Delivery+Using+Degradable+Electroactive+Polymers&rft.jtitle=Biomacromolecules&rft.au=Ashton%2C+Mark+D&rft.au=Cooper%2C+Patricia+A&rft.au=Municoy%2C+Sofia&rft.au=Desimone%2C+Martin+F&rft.date=2022-07-11&rft.issn=1526-4602&rft.volume=23&rft.issue=7+p.3031-3040&rft.spage=3031&rft.epage=3040&rft_id=info:doi/10.1021%2Facs.biomac.2c00516&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |