A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics

Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physio...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 138; no. 33; pp. 10546 - 10553
Main Authors Popa, Ionel, Rivas-Pardo, Jaime Andrés, Eckels, Edward C, Echelman, Daniel J, Badilla, Carmen L, Valle-Orero, Jessica, Fernández, Julio M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the “human” time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force.
AbstractList Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single molecule approaches. Here we present a magnetic tweezers based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micron positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template we generate a magnet-law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this article opens new exciting ways to examine proteins on the “human” time scale and establishes magnetic tweezers as a valuable technique to study low probability events that occur during protein folding under force.
Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the “human” time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force.
Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the "human" time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force.Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the "human" time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force.
Author Badilla, Carmen L
Popa, Ionel
Valle-Orero, Jessica
Eckels, Edward C
Fernández, Julio M
Rivas-Pardo, Jaime Andrés
Echelman, Daniel J
AuthorAffiliation Columbia University
Department of Biological Sciences
AuthorAffiliation_xml – name: Department of Biological Sciences
– name: Columbia University
Author_xml – sequence: 1
  givenname: Ionel
  surname: Popa
  fullname: Popa, Ionel
  email: popa@uwm.edu
– sequence: 2
  givenname: Jaime Andrés
  surname: Rivas-Pardo
  fullname: Rivas-Pardo, Jaime Andrés
– sequence: 3
  givenname: Edward C
  surname: Eckels
  fullname: Eckels, Edward C
– sequence: 4
  givenname: Daniel J
  surname: Echelman
  fullname: Echelman, Daniel J
– sequence: 5
  givenname: Carmen L
  surname: Badilla
  fullname: Badilla, Carmen L
– sequence: 6
  givenname: Jessica
  surname: Valle-Orero
  fullname: Valle-Orero, Jessica
– sequence: 7
  givenname: Julio M
  surname: Fernández
  fullname: Fernández, Julio M
  email: jfernandez@columbia.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27409974$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1PFDEUxRsDkQV889n00QcGevsx03kxWUGFZBMNH_Gx6XbvLF1nW2xnTPjv7YaVIJH4dNPbX09Oz9knOyEGJOQtsGNgHE5W1uXjes6U5O0rMgHFWaWA1ztkwhjjVaNrsUf2c16Vo-QaXpM93kjWto2ckI9Tem77eG2XdBrcbUy4oJdjj4l2MdHviD-qWQxLejWMC4-Zxo5-S3FAH-jZfbBr7_Ih2e1sn_HNdh6Qm8-frk_Pq9nXLxen01llpWJD1XVoa4ayeBCCWaHAMa2Zm8u5wLprmbYIDbOLVgjdomw4CHQ1B1XgBkAckA8PunfjfI0Lh2FItjd3ya9tujfRevP3TfC3Zhl_GaWAqVYXgfdbgRR_jpgHs_bZYd_bgHHMhpeARKO0UP9FQYMEoXXdFvTdU1uPfv5kXICjB8ClmHPC7hEBZjYVmk2FZlthwfkz3PnBDj5uPuX7lx5t_W6WqzimUJr4N_obrN2qzw
CitedBy_id crossref_primary_10_1002_pro_5068
crossref_primary_10_1016_j_celrep_2019_04_046
crossref_primary_10_1073_pnas_1821284116
crossref_primary_10_1063_5_0098033
crossref_primary_10_1088_1361_6528_aa655e
crossref_primary_10_1038_s41570_017_0083
crossref_primary_10_3390_ijms22010055
crossref_primary_10_1038_s42003_022_03258_3
crossref_primary_10_1002_anie_202110545
crossref_primary_10_2144_btn_2021_0104
crossref_primary_10_1021_acs_macromol_7b02160
crossref_primary_10_1039_D3NR00398A
crossref_primary_10_1021_acsnano_7b02694
crossref_primary_10_1039_D2CC01350A
crossref_primary_10_1021_acs_nanolett_1c00051
crossref_primary_10_1021_jacsau_2c00002
crossref_primary_10_1074_jbc_M117_777466
crossref_primary_10_1039_C7SC03887A
crossref_primary_10_1016_j_crstbi_2022_04_003
crossref_primary_10_1038_s41557_020_00586_x
crossref_primary_10_7554_eLife_85882
crossref_primary_10_1016_j_bpj_2024_02_020
crossref_primary_10_1038_s41567_024_02438_8
crossref_primary_10_1007_s12551_021_00822_9
crossref_primary_10_1002_ange_201703630
crossref_primary_10_1038_s41596_024_00965_5
crossref_primary_10_1126_sciadv_aaz4707
crossref_primary_10_1073_pnas_2004091117
crossref_primary_10_1088_1361_6528_aa837e
crossref_primary_10_1021_acs_nanolett_4c05234
crossref_primary_10_1021_jacs_4c00224
crossref_primary_10_1103_PhysRevLett_121_168101
crossref_primary_10_1016_j_trac_2023_117083
crossref_primary_10_1021_acsnano_1c02242
crossref_primary_10_1038_s41467_025_55946_3
crossref_primary_10_1098_rsob_220054
crossref_primary_10_1039_D1SC03048E
crossref_primary_10_26508_lsa_202403111
crossref_primary_10_1021_acsnano_4c08663
crossref_primary_10_1182_bloodadvances_2022006978
crossref_primary_10_1021_acs_jpcb_0c00167
crossref_primary_10_1039_D1NR07582A
crossref_primary_10_1016_j_tibs_2023_05_002
crossref_primary_10_1021_acs_jpclett_0c03852
crossref_primary_10_1038_s41467_017_00771_6
crossref_primary_10_1021_acs_langmuir_2c03332
crossref_primary_10_1016_j_bpj_2023_05_004
crossref_primary_10_32604_biocell_2022_018197
crossref_primary_10_1002_anie_201703630
crossref_primary_10_1021_acs_biomac_2c00451
crossref_primary_10_1002_1873_3468_14301
crossref_primary_10_1021_acscentsci_0c00666
crossref_primary_10_1021_acsnano_3c06253
crossref_primary_10_1021_acs_jpclett_2c01720
crossref_primary_10_1021_acs_jchemed_2c00231
crossref_primary_10_2139_ssrn_3808298
crossref_primary_10_7554_eLife_53357
crossref_primary_10_1146_annurev_biophys_090420_083836
crossref_primary_10_1038_s41567_022_01808_4
crossref_primary_10_1073_pnas_1901794116
crossref_primary_10_1016_j_jmb_2016_09_006
crossref_primary_10_1039_D1NR01907D
crossref_primary_10_1111_febs_15508
crossref_primary_10_1088_1674_1056_acf03e
crossref_primary_10_1042_ETLS20180044
crossref_primary_10_1016_j_tibs_2020_03_002
crossref_primary_10_1042_ETLS20180043
crossref_primary_10_1002_ange_202110545
crossref_primary_10_1021_acs_jpclett_2c01316
crossref_primary_10_1021_acs_macromol_2c00076
crossref_primary_10_1038_s41467_019_10696_x
crossref_primary_10_1126_sciadv_aav1697
crossref_primary_10_1126_sciadv_abl7719
crossref_primary_10_1021_acs_macromol_8b02702
crossref_primary_10_1016_j_tibs_2023_10_009
crossref_primary_10_1016_j_bpj_2024_10_008
crossref_primary_10_7554_eLife_69091
crossref_primary_10_1039_D0CS00426J
crossref_primary_10_1021_acsnano_4c07352
crossref_primary_10_1063_1_5126071
crossref_primary_10_1021_acs_biochem_9b00453
crossref_primary_10_1038_s41467_021_25360_6
crossref_primary_10_3390_biomedicines9101395
crossref_primary_10_1021_acs_jpcb_1c10715
crossref_primary_10_1146_annurev_biochem_032620_104637
crossref_primary_10_1038_s42005_024_01916_y
crossref_primary_10_1016_j_ymeth_2021_05_012
crossref_primary_10_1146_annurev_physiol_021317_121254
crossref_primary_10_1021_acs_jpclett_7b01509
crossref_primary_10_1038_s41467_020_15465_9
crossref_primary_10_1007_s12551_025_01274_1
crossref_primary_10_1038_s41467_023_39646_4
Cites_doi 10.1371/journal.pone.0041432
10.1126/science.271.5250.795
10.1007/s00424-007-0389-x
10.1021/ja5119368
10.1016/j.bpj.2009.01.043
10.1016/j.cell.2012.09.036
10.1529/biophysj.105.061465
10.1073/pnas.0705367104
10.1016/S0006-3495(02)75672-5
10.1038/nature05938
10.1021/ja4056382
10.1016/j.bbrc.2015.03.051
10.1146/annurev.biochem.73.011303.074134
10.1093/nar/gku677
10.1073/pnas.1212167109
10.1016/j.bpj.2009.03.055
10.1107/S0907444901000373
10.1038/nmeth.1520
10.1074/jbc.M111.264093
10.1073/pnas.0901213106
10.1529/biophysj.107.121673
10.1038/nrm3810
10.1007/BF02255811
10.1073/pnas.96.7.3694
10.1016/j.bpj.2010.12.3700
10.1063/1.4904148
10.1016/j.celrep.2016.01.025
10.1126/science.276.5315.1109
10.1126/science.276.5315.1112
10.1038/35055152
10.1073/pnas.1213740110
10.1016/j.bpj.2011.06.039
10.1038/nprot.2013.056
10.1038/nature00938
10.1016/j.cell.2014.01.056
10.1529/biophysj.104.056945
10.1038/387308a0
10.1016/S0891-5849(02)00824-9
10.1126/science.1092497
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/jacs.6b05429
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 10553
ExternalDocumentID PMC5510598
27409974
10_1021_jacs_6b05429
a321635264
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL061228
– fundername: NIGMS NIH HHS
  grantid: R01 GM116122
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a450t-ffea60e4042330a351c0880cb4b3e6f908ae170ad93389e47213ec62150a37113
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 18:03:58 EDT 2025
Thu Jul 10 23:52:31 EDT 2025
Fri Jul 11 05:54:34 EDT 2025
Mon Jul 21 05:45:09 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Tue Jul 01 04:33:30 EDT 2025
Thu Aug 27 13:42:22 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a450t-ffea60e4042330a351c0880cb4b3e6f908ae170ad93389e47213ec62150a37113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, WI 53211
OpenAccessLink http://doi.org/10.1021/jacs.6b05429
PMID 27409974
PQID 1814138869
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5510598
proquest_miscellaneous_2000375835
proquest_miscellaneous_1814138869
pubmed_primary_27409974
crossref_primary_10_1021_jacs_6b05429
crossref_citationtrail_10_1021_jacs_6b05429
acs_journals_10_1021_jacs_6b05429
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-24
PublicationDateYYYYMMDD 2016-08-24
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref18/cit18
ref15/cit15a
ref15/cit15d
ref11/cit11
ref15/cit15b
ref2/cit2d
ref13/cit13a
ref15/cit15c
ref8/cit8a
ref13/cit13b
ref13/cit13c
ref8/cit8c
ref13/cit13d
ref8/cit8b
ref13/cit13e
ref13/cit13f
ref14/cit14
ref2/cit2c
ref2/cit2b
ref5/cit5
ref2/cit2a
ref17/cit17
ref10/cit10
ref4/cit4a
ref16/cit16b
ref4/cit4b
ref16/cit16a
ref19/cit19
ref12/cit12
ref20/cit20a
ref20/cit20c
ref20/cit20b
ref6/cit6a
ref1/cit1
ref6/cit6b
ref6/cit6c
ref7/cit7
17895384 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15677-81
18065448 - Biophys J. 2008 Mar 15;94(6):2343-8
10097099 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3694-9
15778439 - Biophys J. 2005 Jun;88(6):4124-36
12031893 - Free Radic Biol Med. 2002 Jun 1;32(11):1084-9
21843477 - Biophys J. 2011 Aug 17;101(4):866-74
21244848 - Biophys J. 2011 Jan 19;100(2):517-23
12023254 - Biophys J. 2002 Jun;82(6):3314-29
24854788 - Nat Rev Mol Cell Biol. 2014 Jun;15(6):384-96
23744288 - Nat Protoc. 2013;8(7):1261-76
19541635 - Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10534-9
15952902 - Annu Rev Biochem. 2005;74:739-89
15863479 - Biophys J. 2005 Jul;89(1):506-19
26854230 - Cell Rep. 2016 Feb 16;14 (6):1339-47
18058125 - Pflugers Arch. 2008 Apr;456(1):101-15
9153398 - Nature. 1997 May 15;387(6630):308-12
21768096 - J Biol Chem. 2011 Sep 9;286(36):31072-9
17589503 - Nature. 2007 Jul 12;448(7150):213-7
10971134 - J Biomed Sci. 2000 Sep-Oct;7(5):357-63
22895787 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14416-21
25726700 - J Am Chem Soc. 2015 Mar 18;137(10 ):3540-6
24630725 - Cell. 2014 Mar 13;156(6):1235-46
23909704 - J Am Chem Soc. 2013 Aug 28;135(34):12762-71
25140010 - Nucleic Acids Res. 2014 Oct;42(18):e137
20953173 - Nat Methods. 2010 Dec;7(12):977-80
23431154 - Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3865-70
15017000 - Science. 2004 Mar 12;303(5664):1674-8
9148804 - Science. 1997 May 16;276(5315):1109-12
12198551 - Nature. 2002 Aug 29;418(6901):998-1002
8628994 - Science. 1996 Feb 9;271(5250):795-9
19527664 - Biophys J. 2009 Jun 17;96(12):5040-9
11175760 - Nat Cell Biol. 2001 Feb;3(2):E46-9
19413987 - Biophys J. 2009 May 6;96(9):3810-21
9148805 - Science. 1997 May 16;276(5315):1112-6
11264576 - Acta Crystallogr D Biol Crystallogr. 2001 Apr;57(Pt 4):480-7
23141538 - Cell. 2012 Nov 9;151(4):794-806
25796331 - Biochem Biophys Res Commun. 2015 May 1;460(2):434-8
References_xml – ident: ref20/cit20c
  doi: 10.1371/journal.pone.0041432
– ident: ref16/cit16a
  doi: 10.1126/science.271.5250.795
– ident: ref4/cit4b
  doi: 10.1007/s00424-007-0389-x
– ident: ref6/cit6c
  doi: 10.1021/ja5119368
– ident: ref7/cit7
  doi: 10.1016/j.bpj.2009.01.043
– ident: ref12/cit12
  doi: 10.1016/j.cell.2012.09.036
– ident: ref9/cit9
  doi: 10.1529/biophysj.105.061465
– ident: ref4/cit4a
  doi: 10.1073/pnas.0705367104
– ident: ref13/cit13a
  doi: 10.1016/S0006-3495(02)75672-5
– ident: ref13/cit13c
  doi: 10.1038/nature05938
– ident: ref6/cit6b
  doi: 10.1021/ja4056382
– ident: ref8/cit8c
  doi: 10.1016/j.bbrc.2015.03.051
– ident: ref1/cit1
  doi: 10.1146/annurev.biochem.73.011303.074134
– ident: ref6/cit6a
  doi: 10.1093/nar/gku677
– ident: ref5/cit5
  doi: 10.1073/pnas.1212167109
– ident: ref20/cit20b
  doi: 10.1016/j.bpj.2009.03.055
– ident: ref11/cit11
  doi: 10.1107/S0907444901000373
– ident: ref13/cit13d
  doi: 10.1038/nmeth.1520
– ident: ref19/cit19
  doi: 10.1074/jbc.M111.264093
– ident: ref10/cit10
  doi: 10.1073/pnas.0901213106
– ident: ref20/cit20a
  doi: 10.1529/biophysj.107.121673
– ident: ref3/cit3
  doi: 10.1038/nrm3810
– ident: ref2/cit2c
  doi: 10.1007/BF02255811
– ident: ref18/cit18
  doi: 10.1073/pnas.96.7.3694
– ident: ref13/cit13e
  doi: 10.1016/j.bpj.2010.12.3700
– ident: ref14/cit14
  doi: 10.1063/1.4904148
– ident: ref15/cit15d
  doi: 10.1016/j.celrep.2016.01.025
– ident: ref15/cit15a
  doi: 10.1126/science.276.5315.1109
– ident: ref15/cit15b
  doi: 10.1126/science.276.5315.1112
– ident: ref2/cit2b
  doi: 10.1038/35055152
– ident: ref13/cit13f
  doi: 10.1073/pnas.1213740110
– ident: ref16/cit16b
  doi: 10.1016/j.bpj.2011.06.039
– ident: ref17/cit17
  doi: 10.1038/nprot.2013.056
– ident: ref8/cit8b
  doi: 10.1038/nature00938
– ident: ref2/cit2d
  doi: 10.1016/j.cell.2014.01.056
– ident: ref13/cit13b
  doi: 10.1529/biophysj.104.056945
– ident: ref15/cit15c
  doi: 10.1038/387308a0
– ident: ref2/cit2a
  doi: 10.1016/S0891-5849(02)00824-9
– ident: ref8/cit8a
  doi: 10.1126/science.1092497
– reference: 24630725 - Cell. 2014 Mar 13;156(6):1235-46
– reference: 9148805 - Science. 1997 May 16;276(5315):1112-6
– reference: 11175760 - Nat Cell Biol. 2001 Feb;3(2):E46-9
– reference: 25140010 - Nucleic Acids Res. 2014 Oct;42(18):e137
– reference: 23431154 - Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3865-70
– reference: 15863479 - Biophys J. 2005 Jul;89(1):506-19
– reference: 12198551 - Nature. 2002 Aug 29;418(6901):998-1002
– reference: 9148804 - Science. 1997 May 16;276(5315):1109-12
– reference: 19527664 - Biophys J. 2009 Jun 17;96(12):5040-9
– reference: 8628994 - Science. 1996 Feb 9;271(5250):795-9
– reference: 9153398 - Nature. 1997 May 15;387(6630):308-12
– reference: 12023254 - Biophys J. 2002 Jun;82(6):3314-29
– reference: 15952902 - Annu Rev Biochem. 2005;74:739-89
– reference: 15017000 - Science. 2004 Mar 12;303(5664):1674-8
– reference: 23909704 - J Am Chem Soc. 2013 Aug 28;135(34):12762-71
– reference: 23141538 - Cell. 2012 Nov 9;151(4):794-806
– reference: 20953173 - Nat Methods. 2010 Dec;7(12):977-80
– reference: 18065448 - Biophys J. 2008 Mar 15;94(6):2343-8
– reference: 19541635 - Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10534-9
– reference: 24854788 - Nat Rev Mol Cell Biol. 2014 Jun;15(6):384-96
– reference: 11264576 - Acta Crystallogr D Biol Crystallogr. 2001 Apr;57(Pt 4):480-7
– reference: 25726700 - J Am Chem Soc. 2015 Mar 18;137(10 ):3540-6
– reference: 19413987 - Biophys J. 2009 May 6;96(9):3810-21
– reference: 21244848 - Biophys J. 2011 Jan 19;100(2):517-23
– reference: 18058125 - Pflugers Arch. 2008 Apr;456(1):101-15
– reference: 23744288 - Nat Protoc. 2013;8(7):1261-76
– reference: 17895384 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15677-81
– reference: 12031893 - Free Radic Biol Med. 2002 Jun 1;32(11):1084-9
– reference: 10097099 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3694-9
– reference: 25796331 - Biochem Biophys Res Commun. 2015 May 1;460(2):434-8
– reference: 10971134 - J Biomed Sci. 2000 Sep-Oct;7(5):357-63
– reference: 26854230 - Cell Rep. 2016 Feb 16;14 (6):1339-47
– reference: 21768096 - J Biol Chem. 2011 Sep 9;286(36):31072-9
– reference: 22895787 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14416-21
– reference: 17589503 - Nature. 2007 Jul 12;448(7150):213-7
– reference: 15778439 - Biophys J. 2005 Jun;88(6):4124-36
– reference: 21843477 - Biophys J. 2011 Aug 17;101(4):866-74
SSID ssj0004281
Score 2.5111597
Snippet Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide...
Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single molecule techniques provide...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10546
SubjectTerms humans
magnetic materials
oxidation
probability
protein folding
proteins
Title A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics
URI http://dx.doi.org/10.1021/jacs.6b05429
https://www.ncbi.nlm.nih.gov/pubmed/27409974
https://www.proquest.com/docview/1814138869
https://www.proquest.com/docview/2000375835
https://pubmed.ncbi.nlm.nih.gov/PMC5510598
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB612wO9AKU8lkdlpPaEsnL8inNcFuiqKqjiIXFbOY4DiFWC9nHh1zPOY5ddRNtrMlHi8cTzjT3zDcB3m2hJE2uDSEvpA5Q00HHCA65irYVxhqa-dvj8QvVvxK9beTtPkF0-wWeeH8iOOyqhvrHSR_jElI58kNXtXc3rH5kOG5gbacXrBPflp70DsuNFB_QGVS4nR77yNmdr8LOp2amSTB4700nSsc9vKRz_MZB1WK0BJ-lWFvIFPrh8A1Z6TZ-3r3DcJX0zLK7NHenmuBiOXEoup0M3IohniWfzDX4X-R2pMw5JkZE_ntzhIScnVTv78SbcnJ1e9_pB3VkhMELSSZBlzijqhE-K4dRwGVpcbahNRMKdymKqjQsjatIYI9jYCQwTubMK4QEKR2HIt6CVF7nbAcKUYWEaWpnFmQcHJuY2YyK1XPIUwWIbDnHcg_rPGA_KQ2-GQYe_WmujDUfNlAxsTU3uO2QM35H-MZN-qig53pE7bGZ3gCr1ByEmd8UUv0GH6Lu1Vn-RYSU1j0SA2obtyiJmb8NI3hccizZEC7YyE_Cc3Yt38of7krtbloBW7_6HVvbgM6Iz5TewmdiH1mQ0dQeIgCbJt9L8XwCeif53
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB619EAvQJ-EQrtI7akyWnsfXh_TAErbEFVtkLhZ6_WaIiIbxcmFX8-M44QmFYjremzve77ZnfkG4LPLjOKZc0FslCIDJQ9MkolA6MQYab3lOcUOnw11_1z-uFAXbbA6xcJgJWr8Ut1c4t-zCxBNEBbqjFN-pefwAnFIRLZWt_fnPgwyMuEC7cZGi9bPff1t0kOuXtVD_4HLdR_Jf5TO6TYMl9VtfE2uj2bT7MjdrjE5Prk9O7DVwk_Wnc-XV_DMl69hs7fI-vYGvnVZ346rkb1k3RK3xonP2e_Z2E8YoltG3L7BoCovWet_yKqC_SKqh6uSHc-T29dv4fz0ZNTrB22ehcBKxadBUXiruZfkIiO4FSp0uPdwl8lMeF0k3FgfxtzmCdqziZdoNArvNIIFFI7DULyDjbIq_S6wSNsozEOniqQgqGAT4YpI5k4okSN07MAhtjtt10mdNlfgEZogVNr2Rge-LkYmdS1ROeXLGD8g_WUpfTMn6HhA7nAxyCl2KV2L2NJXM6yDCVGTG6MfkYkaoh6FcLUD7-cTY_k3tOsp_Fh2IF6ZMksBYvBefVJe_W2YvFUDb83eE3rlE2z2R2eDdPB9-PMDvETcpuloO5L7sDGdzPwBYqNp9rFZEXeOuQbn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VIkEvvAvhuZXghFzteh9eH0NKFKBUVWml3qz1el2qRnYVJxd-PTOOHUhQEVy9Y3ufnm88M98AvPW51Tz3Pkqs1mSgFJFNcxlJk1qrXHC8oNzhr0dmcqY-n-vzLRB9Lgx2osEnNa0Tn071dVF2DANEFYQNJudUY-kW3CaPHdlbw9G3X6mQsRU94k2skV2s--bdpIt8s66L_gCYm3GSvyme8X04WXW5jTe52l_M833_Y4PN8b_G9ADudTCUDZf75iFsheoR3B311d8ew4chm7hpfeou2LDCT-QsFOxkMQ0zhiiXEcdvdFhXF6yLQ2R1yY6J8uGyYgfLIvfNEzgbfzwdTaKu3kLklObzqCyDMzwoCpWR3EktPH6DuM9VLoMpU25dEAl3RYp2bRoUGo8yeIOgAYUTIeQubFd1FZ4Bi42LRSG8LtOSIINLpS9jVXipZYEQcgB7OO6sOy9N1rrCYzRF6Go3GwN4369O5jvCcqqbMb1B-t1K-npJ1HGD3F6_0BlOKblHXBXqBfbBCtTo1pq_yMQtYY9G2DqAp8vNsXob2veUhqwGkKxtm5UAMXmvt1SX31tGb93CXPv8H2blDdw5Phhnh5-OvryAHYRvhv5wx-olbM9ni_AKIdI8f90eip8ihAlq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+HaloTag+Anchored+Ruler+for+Week-Long+Studies+of+Protein+Dynamics&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Popa%2C+Ionel&rft.au=Rivas-Pardo%2C+Jaime+Andr%C3%A9s&rft.au=Eckels%2C+Edward+C&rft.au=Echelman%2C+Daniel+J&rft.date=2016-08-24&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=138&rft.issue=33&rft.spage=10546&rft_id=info:doi/10.1021%2Fjacs.6b05429&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon