A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics
Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physio...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 33; pp. 10546 - 10553 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the “human” time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force. |
---|---|
AbstractList | Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single molecule approaches. Here we present a magnetic tweezers based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micron positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template we generate a magnet-law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this article opens new exciting ways to examine proteins on the “human” time scale and establishes magnetic tweezers as a valuable technique to study low probability events that occur during protein folding under force. Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the “human” time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force. Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the "human" time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force.Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the "human" time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force. |
Author | Badilla, Carmen L Popa, Ionel Valle-Orero, Jessica Eckels, Edward C Fernández, Julio M Rivas-Pardo, Jaime Andrés Echelman, Daniel J |
AuthorAffiliation | Columbia University Department of Biological Sciences |
AuthorAffiliation_xml | – name: Department of Biological Sciences – name: Columbia University |
Author_xml | – sequence: 1 givenname: Ionel surname: Popa fullname: Popa, Ionel email: popa@uwm.edu – sequence: 2 givenname: Jaime Andrés surname: Rivas-Pardo fullname: Rivas-Pardo, Jaime Andrés – sequence: 3 givenname: Edward C surname: Eckels fullname: Eckels, Edward C – sequence: 4 givenname: Daniel J surname: Echelman fullname: Echelman, Daniel J – sequence: 5 givenname: Carmen L surname: Badilla fullname: Badilla, Carmen L – sequence: 6 givenname: Jessica surname: Valle-Orero fullname: Valle-Orero, Jessica – sequence: 7 givenname: Julio M surname: Fernández fullname: Fernández, Julio M email: jfernandez@columbia.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27409974$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1PFDEUxRsDkQV889n00QcGevsx03kxWUGFZBMNH_Gx6XbvLF1nW2xnTPjv7YaVIJH4dNPbX09Oz9knOyEGJOQtsGNgHE5W1uXjes6U5O0rMgHFWaWA1ztkwhjjVaNrsUf2c16Vo-QaXpM93kjWto2ckI9Tem77eG2XdBrcbUy4oJdjj4l2MdHviD-qWQxLejWMC4-Zxo5-S3FAH-jZfbBr7_Ih2e1sn_HNdh6Qm8-frk_Pq9nXLxen01llpWJD1XVoa4ayeBCCWaHAMa2Zm8u5wLprmbYIDbOLVgjdomw4CHQ1B1XgBkAckA8PunfjfI0Lh2FItjd3ya9tujfRevP3TfC3Zhl_GaWAqVYXgfdbgRR_jpgHs_bZYd_bgHHMhpeARKO0UP9FQYMEoXXdFvTdU1uPfv5kXICjB8ClmHPC7hEBZjYVmk2FZlthwfkz3PnBDj5uPuX7lx5t_W6WqzimUJr4N_obrN2qzw |
CitedBy_id | crossref_primary_10_1002_pro_5068 crossref_primary_10_1016_j_celrep_2019_04_046 crossref_primary_10_1073_pnas_1821284116 crossref_primary_10_1063_5_0098033 crossref_primary_10_1088_1361_6528_aa655e crossref_primary_10_1038_s41570_017_0083 crossref_primary_10_3390_ijms22010055 crossref_primary_10_1038_s42003_022_03258_3 crossref_primary_10_1002_anie_202110545 crossref_primary_10_2144_btn_2021_0104 crossref_primary_10_1021_acs_macromol_7b02160 crossref_primary_10_1039_D3NR00398A crossref_primary_10_1021_acsnano_7b02694 crossref_primary_10_1039_D2CC01350A crossref_primary_10_1021_acs_nanolett_1c00051 crossref_primary_10_1021_jacsau_2c00002 crossref_primary_10_1074_jbc_M117_777466 crossref_primary_10_1039_C7SC03887A crossref_primary_10_1016_j_crstbi_2022_04_003 crossref_primary_10_1038_s41557_020_00586_x crossref_primary_10_7554_eLife_85882 crossref_primary_10_1016_j_bpj_2024_02_020 crossref_primary_10_1038_s41567_024_02438_8 crossref_primary_10_1007_s12551_021_00822_9 crossref_primary_10_1002_ange_201703630 crossref_primary_10_1038_s41596_024_00965_5 crossref_primary_10_1126_sciadv_aaz4707 crossref_primary_10_1073_pnas_2004091117 crossref_primary_10_1088_1361_6528_aa837e crossref_primary_10_1021_acs_nanolett_4c05234 crossref_primary_10_1021_jacs_4c00224 crossref_primary_10_1103_PhysRevLett_121_168101 crossref_primary_10_1016_j_trac_2023_117083 crossref_primary_10_1021_acsnano_1c02242 crossref_primary_10_1038_s41467_025_55946_3 crossref_primary_10_1098_rsob_220054 crossref_primary_10_1039_D1SC03048E crossref_primary_10_26508_lsa_202403111 crossref_primary_10_1021_acsnano_4c08663 crossref_primary_10_1182_bloodadvances_2022006978 crossref_primary_10_1021_acs_jpcb_0c00167 crossref_primary_10_1039_D1NR07582A crossref_primary_10_1016_j_tibs_2023_05_002 crossref_primary_10_1021_acs_jpclett_0c03852 crossref_primary_10_1038_s41467_017_00771_6 crossref_primary_10_1021_acs_langmuir_2c03332 crossref_primary_10_1016_j_bpj_2023_05_004 crossref_primary_10_32604_biocell_2022_018197 crossref_primary_10_1002_anie_201703630 crossref_primary_10_1021_acs_biomac_2c00451 crossref_primary_10_1002_1873_3468_14301 crossref_primary_10_1021_acscentsci_0c00666 crossref_primary_10_1021_acsnano_3c06253 crossref_primary_10_1021_acs_jpclett_2c01720 crossref_primary_10_1021_acs_jchemed_2c00231 crossref_primary_10_2139_ssrn_3808298 crossref_primary_10_7554_eLife_53357 crossref_primary_10_1146_annurev_biophys_090420_083836 crossref_primary_10_1038_s41567_022_01808_4 crossref_primary_10_1073_pnas_1901794116 crossref_primary_10_1016_j_jmb_2016_09_006 crossref_primary_10_1039_D1NR01907D crossref_primary_10_1111_febs_15508 crossref_primary_10_1088_1674_1056_acf03e crossref_primary_10_1042_ETLS20180044 crossref_primary_10_1016_j_tibs_2020_03_002 crossref_primary_10_1042_ETLS20180043 crossref_primary_10_1002_ange_202110545 crossref_primary_10_1021_acs_jpclett_2c01316 crossref_primary_10_1021_acs_macromol_2c00076 crossref_primary_10_1038_s41467_019_10696_x crossref_primary_10_1126_sciadv_aav1697 crossref_primary_10_1126_sciadv_abl7719 crossref_primary_10_1021_acs_macromol_8b02702 crossref_primary_10_1016_j_tibs_2023_10_009 crossref_primary_10_1016_j_bpj_2024_10_008 crossref_primary_10_7554_eLife_69091 crossref_primary_10_1039_D0CS00426J crossref_primary_10_1021_acsnano_4c07352 crossref_primary_10_1063_1_5126071 crossref_primary_10_1021_acs_biochem_9b00453 crossref_primary_10_1038_s41467_021_25360_6 crossref_primary_10_3390_biomedicines9101395 crossref_primary_10_1021_acs_jpcb_1c10715 crossref_primary_10_1146_annurev_biochem_032620_104637 crossref_primary_10_1038_s42005_024_01916_y crossref_primary_10_1016_j_ymeth_2021_05_012 crossref_primary_10_1146_annurev_physiol_021317_121254 crossref_primary_10_1021_acs_jpclett_7b01509 crossref_primary_10_1038_s41467_020_15465_9 crossref_primary_10_1007_s12551_025_01274_1 crossref_primary_10_1038_s41467_023_39646_4 |
Cites_doi | 10.1371/journal.pone.0041432 10.1126/science.271.5250.795 10.1007/s00424-007-0389-x 10.1021/ja5119368 10.1016/j.bpj.2009.01.043 10.1016/j.cell.2012.09.036 10.1529/biophysj.105.061465 10.1073/pnas.0705367104 10.1016/S0006-3495(02)75672-5 10.1038/nature05938 10.1021/ja4056382 10.1016/j.bbrc.2015.03.051 10.1146/annurev.biochem.73.011303.074134 10.1093/nar/gku677 10.1073/pnas.1212167109 10.1016/j.bpj.2009.03.055 10.1107/S0907444901000373 10.1038/nmeth.1520 10.1074/jbc.M111.264093 10.1073/pnas.0901213106 10.1529/biophysj.107.121673 10.1038/nrm3810 10.1007/BF02255811 10.1073/pnas.96.7.3694 10.1016/j.bpj.2010.12.3700 10.1063/1.4904148 10.1016/j.celrep.2016.01.025 10.1126/science.276.5315.1109 10.1126/science.276.5315.1112 10.1038/35055152 10.1073/pnas.1213740110 10.1016/j.bpj.2011.06.039 10.1038/nprot.2013.056 10.1038/nature00938 10.1016/j.cell.2014.01.056 10.1529/biophysj.104.056945 10.1038/387308a0 10.1016/S0891-5849(02)00824-9 10.1126/science.1092497 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.6b05429 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 10553 |
ExternalDocumentID | PMC5510598 27409974 10_1021_jacs_6b05429 a321635264 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL061228 – fundername: NIGMS NIH HHS grantid: R01 GM116122 |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a450t-ffea60e4042330a351c0880cb4b3e6f908ae170ad93389e47213ec62150a37113 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 18:03:58 EDT 2025 Thu Jul 10 23:52:31 EDT 2025 Fri Jul 11 05:54:34 EDT 2025 Mon Jul 21 05:45:09 EDT 2025 Thu Apr 24 23:05:49 EDT 2025 Tue Jul 01 04:33:30 EDT 2025 Thu Aug 27 13:42:22 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a450t-ffea60e4042330a351c0880cb4b3e6f908ae170ad93389e47213ec62150a37113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, WI 53211 |
OpenAccessLink | http://doi.org/10.1021/jacs.6b05429 |
PMID | 27409974 |
PQID | 1814138869 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5510598 proquest_miscellaneous_2000375835 proquest_miscellaneous_1814138869 pubmed_primary_27409974 crossref_primary_10_1021_jacs_6b05429 crossref_citationtrail_10_1021_jacs_6b05429 acs_journals_10_1021_jacs_6b05429 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-24 |
PublicationDateYYYYMMDD | 2016-08-24 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref18/cit18 ref15/cit15a ref15/cit15d ref11/cit11 ref15/cit15b ref2/cit2d ref13/cit13a ref15/cit15c ref8/cit8a ref13/cit13b ref13/cit13c ref8/cit8c ref13/cit13d ref8/cit8b ref13/cit13e ref13/cit13f ref14/cit14 ref2/cit2c ref2/cit2b ref5/cit5 ref2/cit2a ref17/cit17 ref10/cit10 ref4/cit4a ref16/cit16b ref4/cit4b ref16/cit16a ref19/cit19 ref12/cit12 ref20/cit20a ref20/cit20c ref20/cit20b ref6/cit6a ref1/cit1 ref6/cit6b ref6/cit6c ref7/cit7 17895384 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15677-81 18065448 - Biophys J. 2008 Mar 15;94(6):2343-8 10097099 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3694-9 15778439 - Biophys J. 2005 Jun;88(6):4124-36 12031893 - Free Radic Biol Med. 2002 Jun 1;32(11):1084-9 21843477 - Biophys J. 2011 Aug 17;101(4):866-74 21244848 - Biophys J. 2011 Jan 19;100(2):517-23 12023254 - Biophys J. 2002 Jun;82(6):3314-29 24854788 - Nat Rev Mol Cell Biol. 2014 Jun;15(6):384-96 23744288 - Nat Protoc. 2013;8(7):1261-76 19541635 - Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10534-9 15952902 - Annu Rev Biochem. 2005;74:739-89 15863479 - Biophys J. 2005 Jul;89(1):506-19 26854230 - Cell Rep. 2016 Feb 16;14 (6):1339-47 18058125 - Pflugers Arch. 2008 Apr;456(1):101-15 9153398 - Nature. 1997 May 15;387(6630):308-12 21768096 - J Biol Chem. 2011 Sep 9;286(36):31072-9 17589503 - Nature. 2007 Jul 12;448(7150):213-7 10971134 - J Biomed Sci. 2000 Sep-Oct;7(5):357-63 22895787 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14416-21 25726700 - J Am Chem Soc. 2015 Mar 18;137(10 ):3540-6 24630725 - Cell. 2014 Mar 13;156(6):1235-46 23909704 - J Am Chem Soc. 2013 Aug 28;135(34):12762-71 25140010 - Nucleic Acids Res. 2014 Oct;42(18):e137 20953173 - Nat Methods. 2010 Dec;7(12):977-80 23431154 - Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3865-70 15017000 - Science. 2004 Mar 12;303(5664):1674-8 9148804 - Science. 1997 May 16;276(5315):1109-12 12198551 - Nature. 2002 Aug 29;418(6901):998-1002 8628994 - Science. 1996 Feb 9;271(5250):795-9 19527664 - Biophys J. 2009 Jun 17;96(12):5040-9 11175760 - Nat Cell Biol. 2001 Feb;3(2):E46-9 19413987 - Biophys J. 2009 May 6;96(9):3810-21 9148805 - Science. 1997 May 16;276(5315):1112-6 11264576 - Acta Crystallogr D Biol Crystallogr. 2001 Apr;57(Pt 4):480-7 23141538 - Cell. 2012 Nov 9;151(4):794-806 25796331 - Biochem Biophys Res Commun. 2015 May 1;460(2):434-8 |
References_xml | – ident: ref20/cit20c doi: 10.1371/journal.pone.0041432 – ident: ref16/cit16a doi: 10.1126/science.271.5250.795 – ident: ref4/cit4b doi: 10.1007/s00424-007-0389-x – ident: ref6/cit6c doi: 10.1021/ja5119368 – ident: ref7/cit7 doi: 10.1016/j.bpj.2009.01.043 – ident: ref12/cit12 doi: 10.1016/j.cell.2012.09.036 – ident: ref9/cit9 doi: 10.1529/biophysj.105.061465 – ident: ref4/cit4a doi: 10.1073/pnas.0705367104 – ident: ref13/cit13a doi: 10.1016/S0006-3495(02)75672-5 – ident: ref13/cit13c doi: 10.1038/nature05938 – ident: ref6/cit6b doi: 10.1021/ja4056382 – ident: ref8/cit8c doi: 10.1016/j.bbrc.2015.03.051 – ident: ref1/cit1 doi: 10.1146/annurev.biochem.73.011303.074134 – ident: ref6/cit6a doi: 10.1093/nar/gku677 – ident: ref5/cit5 doi: 10.1073/pnas.1212167109 – ident: ref20/cit20b doi: 10.1016/j.bpj.2009.03.055 – ident: ref11/cit11 doi: 10.1107/S0907444901000373 – ident: ref13/cit13d doi: 10.1038/nmeth.1520 – ident: ref19/cit19 doi: 10.1074/jbc.M111.264093 – ident: ref10/cit10 doi: 10.1073/pnas.0901213106 – ident: ref20/cit20a doi: 10.1529/biophysj.107.121673 – ident: ref3/cit3 doi: 10.1038/nrm3810 – ident: ref2/cit2c doi: 10.1007/BF02255811 – ident: ref18/cit18 doi: 10.1073/pnas.96.7.3694 – ident: ref13/cit13e doi: 10.1016/j.bpj.2010.12.3700 – ident: ref14/cit14 doi: 10.1063/1.4904148 – ident: ref15/cit15d doi: 10.1016/j.celrep.2016.01.025 – ident: ref15/cit15a doi: 10.1126/science.276.5315.1109 – ident: ref15/cit15b doi: 10.1126/science.276.5315.1112 – ident: ref2/cit2b doi: 10.1038/35055152 – ident: ref13/cit13f doi: 10.1073/pnas.1213740110 – ident: ref16/cit16b doi: 10.1016/j.bpj.2011.06.039 – ident: ref17/cit17 doi: 10.1038/nprot.2013.056 – ident: ref8/cit8b doi: 10.1038/nature00938 – ident: ref2/cit2d doi: 10.1016/j.cell.2014.01.056 – ident: ref13/cit13b doi: 10.1529/biophysj.104.056945 – ident: ref15/cit15c doi: 10.1038/387308a0 – ident: ref2/cit2a doi: 10.1016/S0891-5849(02)00824-9 – ident: ref8/cit8a doi: 10.1126/science.1092497 – reference: 24630725 - Cell. 2014 Mar 13;156(6):1235-46 – reference: 9148805 - Science. 1997 May 16;276(5315):1112-6 – reference: 11175760 - Nat Cell Biol. 2001 Feb;3(2):E46-9 – reference: 25140010 - Nucleic Acids Res. 2014 Oct;42(18):e137 – reference: 23431154 - Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3865-70 – reference: 15863479 - Biophys J. 2005 Jul;89(1):506-19 – reference: 12198551 - Nature. 2002 Aug 29;418(6901):998-1002 – reference: 9148804 - Science. 1997 May 16;276(5315):1109-12 – reference: 19527664 - Biophys J. 2009 Jun 17;96(12):5040-9 – reference: 8628994 - Science. 1996 Feb 9;271(5250):795-9 – reference: 9153398 - Nature. 1997 May 15;387(6630):308-12 – reference: 12023254 - Biophys J. 2002 Jun;82(6):3314-29 – reference: 15952902 - Annu Rev Biochem. 2005;74:739-89 – reference: 15017000 - Science. 2004 Mar 12;303(5664):1674-8 – reference: 23909704 - J Am Chem Soc. 2013 Aug 28;135(34):12762-71 – reference: 23141538 - Cell. 2012 Nov 9;151(4):794-806 – reference: 20953173 - Nat Methods. 2010 Dec;7(12):977-80 – reference: 18065448 - Biophys J. 2008 Mar 15;94(6):2343-8 – reference: 19541635 - Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10534-9 – reference: 24854788 - Nat Rev Mol Cell Biol. 2014 Jun;15(6):384-96 – reference: 11264576 - Acta Crystallogr D Biol Crystallogr. 2001 Apr;57(Pt 4):480-7 – reference: 25726700 - J Am Chem Soc. 2015 Mar 18;137(10 ):3540-6 – reference: 19413987 - Biophys J. 2009 May 6;96(9):3810-21 – reference: 21244848 - Biophys J. 2011 Jan 19;100(2):517-23 – reference: 18058125 - Pflugers Arch. 2008 Apr;456(1):101-15 – reference: 23744288 - Nat Protoc. 2013;8(7):1261-76 – reference: 17895384 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15677-81 – reference: 12031893 - Free Radic Biol Med. 2002 Jun 1;32(11):1084-9 – reference: 10097099 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3694-9 – reference: 25796331 - Biochem Biophys Res Commun. 2015 May 1;460(2):434-8 – reference: 10971134 - J Biomed Sci. 2000 Sep-Oct;7(5):357-63 – reference: 26854230 - Cell Rep. 2016 Feb 16;14 (6):1339-47 – reference: 21768096 - J Biol Chem. 2011 Sep 9;286(36):31072-9 – reference: 22895787 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14416-21 – reference: 17589503 - Nature. 2007 Jul 12;448(7150):213-7 – reference: 15778439 - Biophys J. 2005 Jun;88(6):4124-36 – reference: 21843477 - Biophys J. 2011 Aug 17;101(4):866-74 |
SSID | ssj0004281 |
Score | 2.5111597 |
Snippet | Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide... Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single molecule techniques provide... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10546 |
SubjectTerms | humans magnetic materials oxidation probability protein folding proteins |
Title | A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics |
URI | http://dx.doi.org/10.1021/jacs.6b05429 https://www.ncbi.nlm.nih.gov/pubmed/27409974 https://www.proquest.com/docview/1814138869 https://www.proquest.com/docview/2000375835 https://pubmed.ncbi.nlm.nih.gov/PMC5510598 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB612wO9AKU8lkdlpPaEsnL8inNcFuiqKqjiIXFbOY4DiFWC9nHh1zPOY5ddRNtrMlHi8cTzjT3zDcB3m2hJE2uDSEvpA5Q00HHCA65irYVxhqa-dvj8QvVvxK9beTtPkF0-wWeeH8iOOyqhvrHSR_jElI58kNXtXc3rH5kOG5gbacXrBPflp70DsuNFB_QGVS4nR77yNmdr8LOp2amSTB4700nSsc9vKRz_MZB1WK0BJ-lWFvIFPrh8A1Z6TZ-3r3DcJX0zLK7NHenmuBiOXEoup0M3IohniWfzDX4X-R2pMw5JkZE_ntzhIScnVTv78SbcnJ1e9_pB3VkhMELSSZBlzijqhE-K4dRwGVpcbahNRMKdymKqjQsjatIYI9jYCQwTubMK4QEKR2HIt6CVF7nbAcKUYWEaWpnFmQcHJuY2YyK1XPIUwWIbDnHcg_rPGA_KQ2-GQYe_WmujDUfNlAxsTU3uO2QM35H-MZN-qig53pE7bGZ3gCr1ByEmd8UUv0GH6Lu1Vn-RYSU1j0SA2obtyiJmb8NI3hccizZEC7YyE_Cc3Yt38of7krtbloBW7_6HVvbgM6Iz5TewmdiH1mQ0dQeIgCbJt9L8XwCeif53 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB619EAvQJ-EQrtI7akyWnsfXh_TAErbEFVtkLhZ6_WaIiIbxcmFX8-M44QmFYjremzve77ZnfkG4LPLjOKZc0FslCIDJQ9MkolA6MQYab3lOcUOnw11_1z-uFAXbbA6xcJgJWr8Ut1c4t-zCxBNEBbqjFN-pefwAnFIRLZWt_fnPgwyMuEC7cZGi9bPff1t0kOuXtVD_4HLdR_Jf5TO6TYMl9VtfE2uj2bT7MjdrjE5Prk9O7DVwk_Wnc-XV_DMl69hs7fI-vYGvnVZ346rkb1k3RK3xonP2e_Z2E8YoltG3L7BoCovWet_yKqC_SKqh6uSHc-T29dv4fz0ZNTrB22ehcBKxadBUXiruZfkIiO4FSp0uPdwl8lMeF0k3FgfxtzmCdqziZdoNArvNIIFFI7DULyDjbIq_S6wSNsozEOniqQgqGAT4YpI5k4okSN07MAhtjtt10mdNlfgEZogVNr2Rge-LkYmdS1ROeXLGD8g_WUpfTMn6HhA7nAxyCl2KV2L2NJXM6yDCVGTG6MfkYkaoh6FcLUD7-cTY_k3tOsp_Fh2IF6ZMksBYvBefVJe_W2YvFUDb83eE3rlE2z2R2eDdPB9-PMDvETcpuloO5L7sDGdzPwBYqNp9rFZEXeOuQbn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VIkEvvAvhuZXghFzteh9eH0NKFKBUVWml3qz1el2qRnYVJxd-PTOOHUhQEVy9Y3ufnm88M98AvPW51Tz3Pkqs1mSgFJFNcxlJk1qrXHC8oNzhr0dmcqY-n-vzLRB9Lgx2osEnNa0Tn071dVF2DANEFYQNJudUY-kW3CaPHdlbw9G3X6mQsRU94k2skV2s--bdpIt8s66L_gCYm3GSvyme8X04WXW5jTe52l_M833_Y4PN8b_G9ADudTCUDZf75iFsheoR3B311d8ew4chm7hpfeou2LDCT-QsFOxkMQ0zhiiXEcdvdFhXF6yLQ2R1yY6J8uGyYgfLIvfNEzgbfzwdTaKu3kLklObzqCyDMzwoCpWR3EktPH6DuM9VLoMpU25dEAl3RYp2bRoUGo8yeIOgAYUTIeQubFd1FZ4Bi42LRSG8LtOSIINLpS9jVXipZYEQcgB7OO6sOy9N1rrCYzRF6Go3GwN4369O5jvCcqqbMb1B-t1K-npJ1HGD3F6_0BlOKblHXBXqBfbBCtTo1pq_yMQtYY9G2DqAp8vNsXob2veUhqwGkKxtm5UAMXmvt1SX31tGb93CXPv8H2blDdw5Phhnh5-OvryAHYRvhv5wx-olbM9ni_AKIdI8f90eip8ihAlq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+HaloTag+Anchored+Ruler+for+Week-Long+Studies+of+Protein+Dynamics&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Popa%2C+Ionel&rft.au=Rivas-Pardo%2C+Jaime+Andr%C3%A9s&rft.au=Eckels%2C+Edward+C&rft.au=Echelman%2C+Daniel+J&rft.date=2016-08-24&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=138&rft.issue=33&rft.spage=10546&rft_id=info:doi/10.1021%2Fjacs.6b05429&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |