A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode
Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a...
Saved in:
Published in | Journal of the American Chemical Society Vol. 144; no. 21; pp. 9434 - 9442 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
01.06.2022
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g–1 as normalized to the active COF material at a current density of 200 mA g–1, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g–1 at 5000 mA g–1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e–/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode. |
---|---|
AbstractList | Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g–1 as normalized to the active COF material at a current density of 200 mA g–1, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g–1 at 5000 mA g–1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e–/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode. Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g–¹ as normalized to the active COF material at a current density of 200 mA g–¹, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g–¹ at 5000 mA g–¹ (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e–/4 Li⁺ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode. Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g-1 as normalized to the active COF material at a current density of 200 mA g-1, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g-1 at 5000 mA g-1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e-/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g-1 as normalized to the active COF material at a current density of 200 mA g-1, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g-1 at 5000 mA g-1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e-/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode. Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g(-1) as normalized to the active COF material at a current density of 200 mA g(-1), which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PTCOF-50 exhibited excellent rate performance, delivering a capacity of 229 mAh g(-1) at 5000 mA g(-1) (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e(-)/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode. Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g as normalized to the active COF material at a current density of 200 mA g , which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g at 5000 mA g (18.5C). Using Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e /4 Li redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode. Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g –1 as normalized to the active COF material at a current density of 200 mA g –1 , which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g –1 at 5000 mA g –1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e – /4 Li + redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode. |
Author | Bahri, Mounib Wang, Xue Cooper, Andrew I. Gao, Hui Yang, Haofan Hardwick, Laurence J. Browning, Nigel D. Zhu, Qiang Neale, Alex R. Little, Marc A. Xu, Yongjie Clowes, Rob |
AuthorAffiliation | Stephenson Institute for Renewable Energy, Department of Chemistry Materials Innovation Factory and Department of Chemistry Leverhulme Research Centre for Functional Materials Design Albert Crewe Centre |
AuthorAffiliation_xml | – name: Stephenson Institute for Renewable Energy, Department of Chemistry – name: Materials Innovation Factory and Department of Chemistry – name: Leverhulme Research Centre for Functional Materials Design – name: Albert Crewe Centre |
Author_xml | – sequence: 1 givenname: Hui surname: Gao fullname: Gao, Hui organization: Stephenson Institute for Renewable Energy, Department of Chemistry – sequence: 2 givenname: Alex R. surname: Neale fullname: Neale, Alex R. email: alex.neale@liverpool.ac.uk organization: Stephenson Institute for Renewable Energy, Department of Chemistry – sequence: 3 givenname: Qiang surname: Zhu fullname: Zhu, Qiang organization: Leverhulme Research Centre for Functional Materials Design – sequence: 4 givenname: Mounib surname: Bahri fullname: Bahri, Mounib organization: Albert Crewe Centre – sequence: 5 givenname: Xue surname: Wang fullname: Wang, Xue organization: Leverhulme Research Centre for Functional Materials Design – sequence: 6 givenname: Haofan surname: Yang fullname: Yang, Haofan organization: Leverhulme Research Centre for Functional Materials Design – sequence: 7 givenname: Yongjie surname: Xu fullname: Xu, Yongjie organization: Leverhulme Research Centre for Functional Materials Design – sequence: 8 givenname: Rob surname: Clowes fullname: Clowes, Rob organization: Materials Innovation Factory and Department of Chemistry – sequence: 9 givenname: Nigel D. orcidid: 0000-0003-0491-251X surname: Browning fullname: Browning, Nigel D. organization: Albert Crewe Centre – sequence: 10 givenname: Marc A. orcidid: 0000-0002-1994-0591 surname: Little fullname: Little, Marc A. email: malittle@liverpool.ac.uk organization: Materials Innovation Factory and Department of Chemistry – sequence: 11 givenname: Laurence J. orcidid: 0000-0001-8796-685X surname: Hardwick fullname: Hardwick, Laurence J. email: hardwick@liverpool.ac.uk organization: Stephenson Institute for Renewable Energy, Department of Chemistry – sequence: 12 givenname: Andrew I. orcidid: 0000-0003-0201-1021 surname: Cooper fullname: Cooper, Andrew I. email: aicooper@liverpool.ac.uk organization: Leverhulme Research Centre for Functional Materials Design |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35588159$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URD_gxhn5iMSm-CNxkgtSCS2ttFIrUc7WxJlsvWTtrZ3davn1eLXbChAITh7bz_t6xjPH5MB5h4S85uyUM8Hfz8HEU2FSWKtn5IgXgmUFF-qAHDHGRFZWSh6S4xjnaZuLir8gh7IoqooX9RH5fkZvNgEdZvmkmNQTzrJbHAOkN7KPELGjjV_DgG6k12EGzhp6EWCBDz58o59wsGsMkV7a2R39skRj-wQ0sARjxw2FSIFObXblHb3x0Y6JpucDmjH4Dl-S5z0MEV_t1xPy9eL8trnMptefr5qzaQZ5wcasRyj7tmx72SkllWgN1MARUm2K9x2WshPSdB2HPIcKC8WhrFtpQLYyL2sjT8iHne9y1S6wM6mWAINeBruAsNEerP71xtk7PfNrXXOVCymSwdu9QfD3K4yjXthocBjAoV9FLUpeCZlS4_9GlSrLmsu8SOibn9N6yuexNwmodsADtr6PxqIz-ISlZla8lozVKWK8sSOM1rvGr9yYpO_-X5posaNN8DEG7LXZu6XvsIPmTG8nTW8nTe8nLYkmv4ke7f-C7z9mezj3q-BSy_-M_gBHpeBI |
CitedBy_id | crossref_primary_10_1021_jacs_3c01131 crossref_primary_10_1002_anie_202414566 crossref_primary_10_1021_acs_macromol_3c02001 crossref_primary_10_1021_acs_macromol_4c02970 crossref_primary_10_1002_batt_202200406 crossref_primary_10_1016_j_ijhydene_2025_02_101 crossref_primary_10_1016_j_cej_2024_149986 crossref_primary_10_1002_smll_202405118 crossref_primary_10_1039_D3SC07013A crossref_primary_10_1002_anie_202306091 crossref_primary_10_1002_sus2_180 crossref_primary_10_1016_j_nanoen_2024_110073 crossref_primary_10_1007_s40843_024_3255_y crossref_primary_10_1039_D3TA07403J crossref_primary_10_1039_D4LP00276H crossref_primary_10_1016_j_ijoes_2024_100684 crossref_primary_10_1002_advs_202310239 crossref_primary_10_1002_aenm_202304210 crossref_primary_10_1002_cssc_202401975 crossref_primary_10_1007_s11426_023_1853_x crossref_primary_10_1016_j_electacta_2024_145257 crossref_primary_10_1002_anie_202416874 crossref_primary_10_1039_D4SC07210C crossref_primary_10_1002_ange_202311460 crossref_primary_10_1021_acsami_4c06012 crossref_primary_10_1016_j_jpowsour_2024_235733 crossref_primary_10_1039_D3TA02363J crossref_primary_10_1039_D4LP00320A crossref_primary_10_1002_ange_202310937 crossref_primary_10_1002_ange_202412334 crossref_primary_10_1002_anie_202300892 crossref_primary_10_1002_ange_202305131 crossref_primary_10_3390_batteries9010026 crossref_primary_10_1002_ange_202501743 crossref_primary_10_1016_j_ensm_2024_103674 crossref_primary_10_1002_anie_202416845 crossref_primary_10_1016_j_cej_2023_147305 crossref_primary_10_1002_adfm_202419764 crossref_primary_10_1016_j_cej_2023_142658 crossref_primary_10_1002_anie_202311460 crossref_primary_10_1002_ange_202401253 crossref_primary_10_1007_s11581_024_05607_0 crossref_primary_10_1002_ange_202409421 crossref_primary_10_1002_smll_202305978 crossref_primary_10_1021_jacs_3c13863 crossref_primary_10_1002_ange_202304036 crossref_primary_10_1021_acsapm_2c02047 crossref_primary_10_1002_adma_202305037 crossref_primary_10_1002_ange_202414566 crossref_primary_10_1002_anie_202310937 crossref_primary_10_1016_j_cej_2024_152628 crossref_primary_10_1007_s40242_022_2219_2 crossref_primary_10_1021_acsami_2c18869 crossref_primary_10_1002_anie_202501743 crossref_primary_10_1002_anie_202305131 crossref_primary_10_1016_j_cej_2025_161061 crossref_primary_10_1021_jacs_3c04657 crossref_primary_10_1002_cssc_202301809 crossref_primary_10_1016_j_apsusc_2023_157871 crossref_primary_10_1007_s11426_022_1391_0 crossref_primary_10_1016_j_nanoen_2024_110161 crossref_primary_10_1002_anie_202409421 crossref_primary_10_1016_j_cej_2024_155289 crossref_primary_10_1016_j_est_2025_115746 crossref_primary_10_1002_anie_202401253 crossref_primary_10_3866_PKU_WHXB202303060 crossref_primary_10_1002_adma_202306491 crossref_primary_10_1002_adma_202416661 crossref_primary_10_1039_D4NJ01478B crossref_primary_10_1002_smll_202308953 crossref_primary_10_1007_s11426_024_2456_x crossref_primary_10_1002_anie_202418086 crossref_primary_10_1002_marc_202200782 crossref_primary_10_1016_j_seppur_2024_127941 crossref_primary_10_1002_ange_202416874 crossref_primary_10_1002_anie_202304036 crossref_primary_10_1016_j_cej_2022_140283 crossref_primary_10_1038_s41467_023_40969_5 crossref_primary_10_1039_D3CC00700F crossref_primary_10_1002_smm2_1309 crossref_primary_10_1002_macp_202300427 crossref_primary_10_1016_j_cej_2024_151103 crossref_primary_10_1002_adma_202314050 crossref_primary_10_1016_j_ensm_2023_103014 crossref_primary_10_1039_D3TA05190K crossref_primary_10_1002_anie_202423992 crossref_primary_10_1021_acsami_4c05191 crossref_primary_10_1002_cssc_202301118 crossref_primary_10_1039_D2TA08032J crossref_primary_10_1016_j_cclet_2024_109803 crossref_primary_10_1016_j_cej_2024_154743 crossref_primary_10_1002_ange_202416845 crossref_primary_10_1021_jacs_2c10509 crossref_primary_10_1002_ange_202418086 crossref_primary_10_1002_ange_202300892 crossref_primary_10_1002_adma_202405747 crossref_primary_10_1021_jacs_3c08755 crossref_primary_10_1016_j_mtener_2025_101849 crossref_primary_10_1002_adma_202415676 crossref_primary_10_1039_D2TA05185K crossref_primary_10_1021_acs_jpcc_3c01387 crossref_primary_10_1038_s44160_025_00741_7 crossref_primary_10_1002_ange_202306091 crossref_primary_10_1016_j_cej_2023_142229 crossref_primary_10_1021_acsaem_3c01307 crossref_primary_10_1016_j_ensm_2023_103143 crossref_primary_10_1021_acsnano_3c07743 crossref_primary_10_1002_adfm_202310668 crossref_primary_10_1039_D3CC04322C crossref_primary_10_1002_pol_20230164 crossref_primary_10_1039_D3TA05152H crossref_primary_10_1016_j_cej_2023_147870 crossref_primary_10_1021_acsami_4c09728 crossref_primary_10_1016_j_ensm_2024_103199 crossref_primary_10_1016_j_nanoen_2024_110534 crossref_primary_10_1039_D3CC05493D crossref_primary_10_1002_aenm_202201347 crossref_primary_10_1002_ange_202500336 crossref_primary_10_1021_jacs_4c03223 crossref_primary_10_1039_D3CC03735E crossref_primary_10_3390_catal15010012 crossref_primary_10_1002_smll_202405974 crossref_primary_10_1039_D4TA05466K crossref_primary_10_1016_j_mser_2025_100974 crossref_primary_10_1016_j_scib_2024_08_010 crossref_primary_10_1002_aenm_202203253 crossref_primary_10_1021_acs_jpcc_4c02998 crossref_primary_10_1002_adma_202415882 crossref_primary_10_1002_anie_202500336 crossref_primary_10_1021_jacs_2c10501 crossref_primary_10_1002_anie_202412334 crossref_primary_10_1016_j_cej_2024_149535 crossref_primary_10_1039_D2TA04581H crossref_primary_10_1002_ange_202423992 crossref_primary_10_1039_D4NR01092B crossref_primary_10_1016_j_ensm_2023_103046 crossref_primary_10_1002_cssc_202301725 crossref_primary_10_1021_acsnano_3c11780 crossref_primary_10_1021_jacs_2c11037 crossref_primary_10_1016_j_joule_2024_11_007 crossref_primary_10_1002_adfm_202421858 crossref_primary_10_1016_j_ensm_2023_103164 crossref_primary_10_1021_jacs_3c13032 crossref_primary_10_1039_D3RA02269B crossref_primary_10_1002_smll_202407756 crossref_primary_10_1021_acsnano_4c06737 crossref_primary_10_1038_s41467_024_47377_3 |
Cites_doi | 10.1002/aenm.202001445 10.1002/adma.201901478 10.1002/aenm.202003735 10.1039/D0TA11648C 10.1002/anie.201805540 10.1016/j.joule.2017.08.018 10.1149/2.0031514jes 10.1038/srep08225 10.31635/ccschem.020.202000257 10.1002/ange.201002439 10.1021/ja409421d 10.1038/s41570-020-0160-9 10.1021/acs.chemrev.6b00070 10.1021/ja306663g 10.1002/aenm.202100177 10.1002/adfm.202101019 10.1002/aenm.202101880 10.1021/ja507852t 10.1016/j.jpowsour.2011.07.071 10.1039/c3ee40709h 10.1039/D0TA03321A 10.1021/acs.chemmater.8b01304 10.1021/ja308278w 10.1002/anie.201812685 10.1039/C6TA09754E 10.1002/cssc.202001389 10.1039/D1TA04943G 10.1039/C4FD00079J 10.1038/s41586-021-04139-1 10.1126/science.1120411 10.1021/jacs.9b08147 10.1002/anie.201601119 10.1038/s41467-018-02889-7 10.1021/jacs.0c03418 10.1021/nl2039666 10.1038/451652a 10.1039/C9NR00088G 10.1016/j.carbon.2019.10.106 10.1002/advs.201500018 10.1039/C5CC09350C 10.1002/cssc.201903007 10.1039/c9nr00088g 10.1039/d0ta03321a 10.1039/d0ta11648c 10.1039/c5cc09350c 10.1039/c4fd00079j 10.1039/d1ta04943g 10.1039/c6ta09754e 10.1002/anie.201002439 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | AAYXX CITATION 17B 1KM 1KN AHQBO BLEPL DTL EGQ NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.2c02196 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Web of Science PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Web of Science PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 9442 |
ExternalDocumentID | PMC9164232 35588159 000819300900001 10_1021_jacs_2c02196 c011000761 |
Genre | Journal Article |
GrantInformation_xml | – fundername: UUI; UK Research & Innovation (UKRI) grantid: EP/R020744/1 – fundername: Leverhulme Trust via the Leverhulme Research Centre for Functional Materials Design; Leverhulme Trust – fundername: EPSRC; UK Research & Innovation (UKRI); Engineering & Physical Sciences Research Council (EPSRC) grantid: EP/R020744/1; EP/V026887/1; EP/N004884/1 – fundername: China Scholarship Council (CSC); China Scholarship Council – fundername: EPSRC; UK Research & Innovation (UKRI); Engineering & Physical Sciences Research Council (EPSRC) grantid: EP/V026887/1; EP/N004884/1 – fundername: University of Liverpool Graduate Association (Hong Kong) – fundername: ; grantid: NA – fundername: ; grantid: EP/V026887/1 – fundername: ; grantid: EP/R020744/1 – fundername: ; grantid: EP/N004884/1 |
GroupedDBID | - 02 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFO ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AGXLV ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DC DU5 DZ EBS ED ET F5P GGK GNL IH2 IH9 JG K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XSW YQT YZZ ZCA ZHY --- -DZ -ET -~X .DC .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ ED~ JG~ ~02 17B 1KM 1KN AAYWT BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a450t-fea7fb7bf3d66362bca9a1ea00261fde73d23cdd1a44a8e561a79b3ca3b3479c3 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 151 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000819300900001 |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 14:07:46 EDT 2025 Fri Jul 11 10:36:00 EDT 2025 Fri Jul 11 03:33:14 EDT 2025 Mon Jul 21 06:03:22 EDT 2025 Fri Aug 29 15:55:20 EDT 2025 Wed Aug 06 11:37:36 EDT 2025 Tue Jul 01 03:54:10 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Fri Jun 03 04:15:14 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a450t-fea7fb7bf3d66362bca9a1ea00261fde73d23cdd1a44a8e561a79b3ca3b3479c3 |
Notes | UKRI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8796-685X 0000-0003-0491-251X 0000-0002-1994-0591 0000-0003-0201-1021 0000-0002-8336-9158 0000-0001-7675-5432 0000-0001-8239-3693 0000-0002-1338-7705 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9164232 |
PMID | 35588159 |
PQID | 2667791345 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9164232 acs_journals_10_1021_jacs_2c02196 crossref_citationtrail_10_1021_jacs_2c02196 webofscience_primary_000819300900001 crossref_primary_10_1021_jacs_2c02196 pubmed_primary_35588159 webofscience_primary_000819300900001CitationCount proquest_miscellaneous_2718233621 proquest_miscellaneous_2667791345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAbbrev | J AM CHEM SOC |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2022 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 Nokami, T (WOS:000311869600037) 2012; 134 Côté, AP (WOS:000233437300040) 2005; 310 Li, M (WOS:000794136000003) 2021; 3 Singh, V (WOS:000630216900001) 2021; 11 Kandambeth, S (WOS:000647192300001) 2022; 12 Armand, M (WOS:000252929500029) 2008; 451 Zhao, GF (WOS:000648487700001) 2021; 31 Yao, CJ (WOS:000504755900001) 2020; 13 Zhu, ZQ (WOS:000366069300004) 2015; 162 Lu, Y (WOS:000513106500001) 2020; 4 Muench, S (WOS:000382179100007) 2016; 116 Kim, J (WOS:000425302500011) 2017; 1 Shi, Y (WOS:000433403800037) 2018; 30 Sui, D (WOS:000502548500074) 2020; 157 Wang, ZL (WOS:000465361800021) 2019; 11 Luo, ZQ (WOS:000438712600039) 2018; 57 Gao, H (WOS:000567230900001) 2020; 13 Song, ZP (WOS:000284015600028) 2010; 49 Wang, KW (WOS:000543780500030) 2020; 142 Xu, SQ (WOS:000455033700034) 2019; 58 Kandambeth, S (WOS:000311869600007) 2012; 134 Jeon, T (WOS:000709039800001) 2021; 9 Viswanathan, V (WOS:000749546400017) 2022; 601 Huang, YS (WOS:000395075600034) 2017; 5 Ma, T (WOS:000377921200010) 2016; 55 Zhu, ZQ (WOS:000345720500001) 2014; 136 Zheng, SB (WOS:000616679700012) 2021; 9 Wang, H (WOS:000542473000027) 2020; 8 Lei, ZD (WOS:000424451600004) 2018; 9 Vitaku, E (WOS:000507144400002) 2020; 142 Gao, H (WOS:000696346800001) 2021; 11 Dahbi, M (WOS:000295602400085) 2011; 196 Wang, G (WOS:000477972300021) 2019; 31 Song, ZP (WOS:000303696400005) 2012; 12 Cabo-Fernandez, L (WOS:000371598900025) 2016; 52 Zhang, K (WOS:000368943300004) 2015; 2 Sole, C (WOS:000345578300013) 2014; 172 Xu, F (WOS:000348767600001) 2015; 5 Lee, S (WOS:000540436700001) 2020; 10 DeBlase, CR (WOS:000327103600020) 2013; 135 Song, ZP (WOS:000321983800004) 2013; 6 |
References_xml | – ident: ref9/cit9 doi: 10.1002/aenm.202001445 – ident: ref13/cit13 doi: 10.1002/adma.201901478 – ident: ref36/cit36 doi: 10.1002/aenm.202003735 – ident: ref40/cit40 doi: 10.1039/D0TA11648C – ident: ref33/cit33 doi: 10.1002/anie.201805540 – ident: ref7/cit7 doi: 10.1016/j.joule.2017.08.018 – ident: ref22/cit22 doi: 10.1149/2.0031514jes – ident: ref17/cit17 doi: 10.1038/srep08225 – ident: ref27/cit27 doi: 10.31635/ccschem.020.202000257 – ident: ref25/cit25 doi: 10.1002/ange.201002439 – ident: ref29/cit29 doi: 10.1021/ja409421d – ident: ref1/cit1 doi: 10.1038/s41570-020-0160-9 – ident: ref8/cit8 doi: 10.1021/acs.chemrev.6b00070 – ident: ref19/cit19 doi: 10.1021/ja306663g – ident: ref15/cit15 doi: 10.1002/aenm.202100177 – ident: ref16/cit16 doi: 10.1002/adfm.202101019 – ident: ref26/cit26 doi: 10.1002/aenm.202101880 – ident: ref6/cit6 doi: 10.1021/ja507852t – ident: ref30/cit30 doi: 10.1016/j.jpowsour.2011.07.071 – ident: ref2/cit2 doi: 10.1039/c3ee40709h – ident: ref35/cit35 doi: 10.1039/D0TA03321A – ident: ref31/cit31 doi: 10.1021/acs.chemmater.8b01304 – ident: ref28/cit28 doi: 10.1021/ja308278w – ident: ref14/cit14 doi: 10.1002/anie.201812685 – ident: ref20/cit20 doi: 10.1039/C6TA09754E – ident: ref24/cit24 doi: 10.1002/cssc.202001389 – ident: ref41/cit41 doi: 10.1039/D1TA04943G – ident: ref38/cit38 doi: 10.1039/C4FD00079J – ident: ref3/cit3 doi: 10.1038/s41586-021-04139-1 – ident: ref10/cit10 doi: 10.1126/science.1120411 – ident: ref32/cit32 doi: 10.1021/jacs.9b08147 – ident: ref5/cit5 doi: 10.1002/anie.201601119 – ident: ref11/cit11 doi: 10.1038/s41467-018-02889-7 – ident: ref18/cit18 doi: 10.1021/jacs.0c03418 – ident: ref23/cit23 doi: 10.1021/nl2039666 – ident: ref4/cit4 doi: 10.1038/451652a – ident: ref12/cit12 doi: 10.1039/C9NR00088G – ident: ref21/cit21 doi: 10.1016/j.carbon.2019.10.106 – ident: ref34/cit34 doi: 10.1002/advs.201500018 – ident: ref39/cit39 doi: 10.1039/C5CC09350C – ident: ref37/cit37 doi: 10.1002/cssc.201903007 – volume: 55 start-page: 6428 year: 2016 ident: WOS:000377921200010 article-title: A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201601119 – volume: 4 start-page: 127 year: 2020 ident: WOS:000513106500001 article-title: Prospects of organic electrode materials for practical lithium batteries publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-020-0160-9 – volume: 11 start-page: 5330 year: 2019 ident: WOS:000465361800021 article-title: Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries publication-title: NANOSCALE doi: 10.1039/c9nr00088g – volume: 58 start-page: 849 year: 2019 ident: WOS:000455033700034 article-title: A Nitrogen-Rich 2D sp2-Carbon-Linked Conjugated Polymer Framework as a High-Performance Cathode for Lithium-Ion Batteries publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201812685 – volume: 6 start-page: 2280 year: 2013 ident: WOS:000321983800004 article-title: Towards sustainable and versatile energy storage devices: an overview of organic electrode materials publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c3ee40709h – volume: 12 start-page: ARTN 2100177 year: 2022 ident: WOS:000647192300001 article-title: 2D Covalent-Organic Framework Electrodes for Supercapacitors and Rechargeable Metal-Ion Batteries publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202100177 – volume: 136 start-page: 16461 year: 2014 ident: WOS:000345720500001 article-title: All-Solid-State Lithium Organic Battery with Composite Polymer Electrolyte and Pillar[5]quinone Cathode publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja507852t – volume: 11 start-page: ARTN 2101880 year: 2021 ident: WOS:000696346800001 article-title: Integrated Covalent Organic Framework/Carbon Nanotube Composite as Li-Ion Positive Electrode with Ultra-High Rate Performance publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202101880 – volume: 8 start-page: 11906 year: 2020 ident: WOS:000542473000027 article-title: Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs) publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/d0ta03321a – volume: 9 start-page: 2700 year: 2021 ident: WOS:000616679700012 article-title: An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/d0ta11648c – volume: 12 start-page: 2205 year: 2012 ident: WOS:000303696400005 article-title: Polymer-Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries publication-title: NANO LETTERS doi: 10.1021/nl2039666 – volume: 10 start-page: ARTN 2001445 year: 2020 ident: WOS:000540436700001 article-title: Redox-Active Organic Compounds for Future Sustainable Energy Storage System publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202001445 – volume: 134 start-page: 19694 year: 2012 ident: WOS:000311869600037 article-title: Polymer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja306663g – volume: 52 start-page: 3970 year: 2016 ident: WOS:000371598900025 article-title: In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries - investigation of SEI growth publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c5cc09350c – volume: 9 start-page: ARTN 576 year: 2018 ident: WOS:000424451600004 article-title: Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-018-02889-7 – volume: 13 start-page: 2457 year: 2020 ident: WOS:000504755900001 article-title: Two-Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binder-free Lithium-Ion Battery publication-title: CHEMSUSCHEM doi: 10.1002/cssc.201903007 – volume: 172 start-page: 223 year: 2014 ident: WOS:000345578300013 article-title: In situ Raman study of lithium-ion intercalation into microcrystalline graphite publication-title: FARADAY DISCUSSIONS doi: 10.1039/c4fd00079j – volume: 9 start-page: 23929 year: 2021 ident: WOS:000709039800001 article-title: The molecular sieving mechanism of a polysulfide-blocking metal-organic framework separator for lithium-sulfur batteries publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/d1ta04943g – volume: 142 start-page: 16 year: 2020 ident: WOS:000507144400002 article-title: Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b08147 – volume: 162 start-page: A2393 year: 2015 ident: WOS:000366069300004 article-title: Review-Advanced Carbon-Supported Organic Electrode Materials for Lithium (Sodium)-Ion Batteries publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY doi: 10.1149/2.0031514jes – volume: 116 start-page: 9438 year: 2016 ident: WOS:000382179100007 article-title: Polymer-Based Organic Batteries publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00070 – volume: 31 start-page: ARTN 1901478 year: 2019 ident: WOS:000477972300021 article-title: A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201901478 – volume: 11 start-page: ARTN 2003735 year: 2021 ident: WOS:000630216900001 article-title: Thiazole-Linked Covalent Organic Framework Promoting Fast Two-Electron Transfer for Lithium-Organic Batteries publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202003735 – volume: 5 start-page: 2710 year: 2017 ident: WOS:000395075600034 article-title: Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/c6ta09754e – volume: 135 start-page: 16821 year: 2013 ident: WOS:000327103600020 article-title: β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja409421d – volume: 196 start-page: 9743 year: 2011 ident: WOS:000295602400085 article-title: Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage publication-title: JOURNAL OF POWER SOURCES doi: 10.1016/j.jpowsour.2011.07.071 – volume: 601 start-page: 519 year: 2022 ident: WOS:000749546400017 article-title: The challenges and opportunities of battery-powered flight publication-title: NATURE doi: 10.1038/s41586-021-04139-1 – volume: 310 start-page: 1166 year: 2005 ident: WOS:000233437300040 article-title: Porous, crystalline, covalent organic frameworks publication-title: SCIENCE doi: 10.1126/science.1120411 – volume: 57 start-page: 9443 year: 2018 ident: WOS:000438712600039 article-title: A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201805540 – volume: 3 start-page: 696 year: 2021 ident: WOS:000794136000003 article-title: Skeleton Engineering of Isostructural 2D Covalent Organic Frameworks: Orthoquinone Redox-Active Sites Enhanced Energy Storage publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.020.202000257 – volume: 5 start-page: ARTN 8225 year: 2015 ident: WOS:000348767600001 article-title: Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage publication-title: SCIENTIFIC REPORTS doi: 10.1038/srep08225 – volume: 31 start-page: ARTN 2101019 year: 2021 ident: WOS:000648487700001 article-title: Dual-Active-Center of Polyimide and Triazine Modified Atomic-Layer Covalent Organic Frameworks for High-Performance Li Storage publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202101019 – volume: 13 start-page: 5571 year: 2020 ident: WOS:000567230900001 article-title: Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithium-Ion Cells publication-title: CHEMSUSCHEM doi: 10.1002/cssc.202001389 – volume: 157 start-page: 656 year: 2020 ident: WOS:000502548500074 article-title: A 3D cross-linked graphene-based honeycomb carbon composite with excellent confinement effect of organic cathode material for lithium-ion batteries publication-title: CARBON doi: 10.1016/j.carbon.2019.10.106 – volume: 2 start-page: ARTN 1500018 year: 2015 ident: WOS:000368943300004 article-title: High-Performance Organic Lithium Batteries with an Ether-Based Electrolyte and 9,10-Anthraquinone (AQ)/CMK-3 Cathode publication-title: ADVANCED SCIENCE doi: 10.1002/advs.201500018 – volume: 134 start-page: 19524 year: 2012 ident: WOS:000311869600007 article-title: Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja308278w – volume: 142 start-page: 11131 year: 2020 ident: WOS:000543780500030 article-title: Synthesis of Stable Thiazole-Linked Covalent Organic Frameworks via a Multicomponent Reaction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c03418 – volume: 49 start-page: 8444 year: 2010 ident: WOS:000284015600028 article-title: Polyimides: Promising Energy-Storage Materials publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201002439 – volume: 30 start-page: 3508 year: 2018 ident: WOS:000433403800037 article-title: Understanding the Electrochemical Properties of Naphthalene Diimide: Implication for Stable and High-Rate Lithium-Ion Battery Electrodes publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.8b01304 – volume: 451 start-page: 652 year: 2008 ident: WOS:000252929500029 article-title: Building better batteries publication-title: NATURE doi: 10.1038/451652a – volume: 1 start-page: 739 year: 2017 ident: WOS:000425302500011 article-title: Redox-Active Polymers for Energy Storage Nanoarchitectonics publication-title: JOULE doi: 10.1016/j.joule.2017.08.018 |
SSID | ssj0004281 |
Score | 2.6660986 |
Snippet | Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities... Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities... |
Source | Web of Science |
SourceID | pubmedcentral proquest pubmed webofscience crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9434 |
SubjectTerms | carbon nanotubes cathodes Chemistry Chemistry, Multidisciplinary electrochemistry lithium batteries microscopy Physical Sciences Science & Technology |
Title | A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode |
URI | http://dx.doi.org/10.1021/jacs.2c02196 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000819300900001 https://www.ncbi.nlm.nih.gov/pubmed/35588159 https://www.proquest.com/docview/2667791345 https://www.proquest.com/docview/2718233621 https://pubmed.ncbi.nlm.nih.gov/PMC9164232 |
Volume | 144 |
WOS | 000819300900001 |
WOSCitedRecordID | wos000819300900001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOcCF98O8tJXKiTiyd9de-xhMQ0EIVaKVeotmH1YrKqdqHCT665ld2ylJKfQWOWNlMx57vvV88w3ADkqtikSr2KlSx9JmWVxoAnLaasTSJoV1Qe3zW753KL8cZUeXBNnNCj73-kBmMeaGPpb5bbjD80L5Tdak-n7Z_8iLdIC5qshFT3DfPNsnILNYT0BXUOXfyZEbCSkkn-kD-DS08HSckx_jZavH5uKqouN__tdDuN_jTzbpAuYR3HLNY7hbDWPfnsDFhO3_8jqXsRxlo3JED9ADR0uc05EPlPIsq-YUnbRs1vVxGjYdCF7sozsNPA_m6SMszLavyaCijGwI7jNcMGRfT-LP84btB7rYT8d2u0k81j2Fw-nuQbUX9wMaYpRZ0sa1Q1VrpWthCbjkXBssMXUYNna1dUpYLoy1KUqJhSOohhQRwqDQvoHViGew1dDyXwAjGKR5LZAQh5WJQ3pI087IOql1KRKbRbBN_pr1N9hiFmrnnPYu_mjvxQjeD1d2ZnqFcz9o4_Qa63cr67NO2eMau-0hSGZ0KXw9BRs3X5JBnivlmQvZP2wo93NBvkkjeN4F1urXvLJ9QXAyArUWcisDL_29_k1zchwkwAnU-wp7BDt_BufqxA7pCcLPoXoTQXoTs6r3mVdDaF_ewOGv4B733SDhpdRr2GrPl-4NYbRWvw036G8YiDX7 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOZRLebfmuZXKibiyd22vfQymUQohqkQq9Wbty6KichB2kOivZ3b9KAkU5RZtxvZkPPZ8m5n5BuBIRJKngeS-4Zn0Ix3HfioRyEkthch0kGrj2D7nyfQ8-ngRX3TN6rYXBpWo8Uy1S-LfsAtYmiBcpAo_ZslduIc4hNq91jj_ctMGSdOwR7s8TVhX5755tI1Dql6PQ3-By3_XSG7EJReDJg9gPmjvSk--Ha8aeayuN4gdt_55D2GvQ6Nk3LrPI7hjqsewm_dD4J7A9Zic_bKsl340ikfZCF-nC4OaLnHlPQZATfIl-ipqT9quTkUmfbkX-WCuXNUHscUkxE26L1Egx_isEPwTURNBZpf-6bIiZ6547KchJ-1cHm2ewvnkZJFP_W5cgy-iOGj80gheSi5LphHGJFQqkYnQCLfNK7XhTFOmtA5FFInUIHAT6B9MCSZtO6tiz2CnQvUPgCAokrRkAvGHjgIj8JWN-yRtIikzFujYg0O0V9E9bnXhMukUdzJ2tbOiB-_6G1yoju_cjt24ukX67SD9veX5uEXusPeVAm-Fza6IyixXKJAknNs6hvg_MogEKEPbhB7st_41XM3y3KcILj3ga543CFgi8PVvqsuvjhAcIb7Nt3tw9KePDge2uI8hmna5HA_CbcTyzmaWG6F5voXB38DudPF5VsxO559ewH1q-0Tc31UvYaf5sTKvEL018rV7Zn8DGi4-XA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwEB5RkNq-9D5CLyPRp25QEjtx8rgNrLiEVi1IvEW-oqKiLGqylcqvZ-wcdLeA6FuUTDb2ZJz5Zmf8DcCmYJKngeS-4Zn0mY5jP5UI5KSWQmQ6SLVxbJ9Hye4J2z-NT1cg7PfC4CBq_KXaJfHtqr7QZccwYKmC8EKk8DBLHsCazdjZeGucf7_eChmlYY94eZrQrtZ9-W7ri1S96Iv-AZg310ku-SbnhyZP4dswA1d-8nNr3sgtdblE7vhfU3wGTzpUSsatGT2HFVO9gEd53wzuJVyOyfSPZb_02SgeZSP8rB4bHO0Mz3xFR6hJPkObxRmQdnenIpO-7Itsm3NX_UFsUQlxHe9LFMjRTysMAoioiSCHZ_7erCJTV0T225Cdtj-PNq_gZLJznO_6XdsGX7A4aPzSCF5KLkuqEc4kkVQiE6ERLtwrteFUR1RpHQrGRGoQwAm0E6oElXZbq6KvYbXC4b8FguBIRiUViEM0C4zATzfGS9owKTMa6NiDDdRX0S27unAZ9QgjGnu206IHX_qXXKiO99y23zi_RfrzIH3R8n3cIrfR20uBr8JmWURlZnMUSBLObT1DfIcMIoKIom5CD960NjY8zfLdpwgyPeAL1jcIWELwxSvV2Q9HDI5Q3-bdPdj8206HG1v8RxFVu5yOB-F9xPJOZ5YjoVm_h8I_wcPp9qQ43Ds6eAePI7tdxP1r9R5Wm19z8wFBXCM_umV7BUrUQN8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pyrene-4%2C5%2C9%2C10-Tetraone-Based+Covalent+Organic+Framework+Delivers+High+Specific+Capacity+as+a+Li-Ion+Positive+Electrode&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gao%2C+Hui&rft.au=Neale%2C+Alex+R&rft.au=Zhu%2C+Qiang&rft.au=Bahri%2C+Mounib&rft.date=2022-06-01&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=144&rft.issue=21&rft.spage=9434&rft_id=info:doi/10.1021%2Fjacs.2c02196&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |