A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode

Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 144; no. 21; pp. 9434 - 9442
Main Authors Gao, Hui, Neale, Alex R., Zhu, Qiang, Bahri, Mounib, Wang, Xue, Yang, Haofan, Xu, Yongjie, Clowes, Rob, Browning, Nigel D., Little, Marc A., Hardwick, Laurence J., Cooper, Andrew I.
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 01.06.2022
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g–1 as normalized to the active COF material at a current density of 200 mA g–1, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g–1 at 5000 mA g–1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e–/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.
AbstractList Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g–1 as normalized to the active COF material at a current density of 200 mA g–1, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g–1 at 5000 mA g–1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e–/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.
Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g–¹ as normalized to the active COF material at a current density of 200 mA g–¹, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g–¹ at 5000 mA g–¹ (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e–/4 Li⁺ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.
Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g-1 as normalized to the active COF material at a current density of 200 mA g-1, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g-1 at 5000 mA g-1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e-/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g-1 as normalized to the active COF material at a current density of 200 mA g-1, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g-1 at 5000 mA g-1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e-/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.
Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g(-1) as normalized to the active COF material at a current density of 200 mA g(-1), which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PTCOF-50 exhibited excellent rate performance, delivering a capacity of 229 mAh g(-1) at 5000 mA g(-1) (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e(-)/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.
Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g as normalized to the active COF material at a current density of 200 mA g , which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g at 5000 mA g (18.5C). Using Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e /4 Li redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.
Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g –1 as normalized to the active COF material at a current density of 200 mA g –1 , which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g –1 at 5000 mA g –1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e – /4 Li + redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.
Author Bahri, Mounib
Wang, Xue
Cooper, Andrew I.
Gao, Hui
Yang, Haofan
Hardwick, Laurence J.
Browning, Nigel D.
Zhu, Qiang
Neale, Alex R.
Little, Marc A.
Xu, Yongjie
Clowes, Rob
AuthorAffiliation Stephenson Institute for Renewable Energy, Department of Chemistry
Materials Innovation Factory and Department of Chemistry
Leverhulme Research Centre for Functional Materials Design
Albert Crewe Centre
AuthorAffiliation_xml – name: Stephenson Institute for Renewable Energy, Department of Chemistry
– name: Materials Innovation Factory and Department of Chemistry
– name: Leverhulme Research Centre for Functional Materials Design
– name: Albert Crewe Centre
Author_xml – sequence: 1
  givenname: Hui
  surname: Gao
  fullname: Gao, Hui
  organization: Stephenson Institute for Renewable Energy, Department of Chemistry
– sequence: 2
  givenname: Alex R.
  surname: Neale
  fullname: Neale, Alex R.
  email: alex.neale@liverpool.ac.uk
  organization: Stephenson Institute for Renewable Energy, Department of Chemistry
– sequence: 3
  givenname: Qiang
  surname: Zhu
  fullname: Zhu, Qiang
  organization: Leverhulme Research Centre for Functional Materials Design
– sequence: 4
  givenname: Mounib
  surname: Bahri
  fullname: Bahri, Mounib
  organization: Albert Crewe Centre
– sequence: 5
  givenname: Xue
  surname: Wang
  fullname: Wang, Xue
  organization: Leverhulme Research Centre for Functional Materials Design
– sequence: 6
  givenname: Haofan
  surname: Yang
  fullname: Yang, Haofan
  organization: Leverhulme Research Centre for Functional Materials Design
– sequence: 7
  givenname: Yongjie
  surname: Xu
  fullname: Xu, Yongjie
  organization: Leverhulme Research Centre for Functional Materials Design
– sequence: 8
  givenname: Rob
  surname: Clowes
  fullname: Clowes, Rob
  organization: Materials Innovation Factory and Department of Chemistry
– sequence: 9
  givenname: Nigel D.
  orcidid: 0000-0003-0491-251X
  surname: Browning
  fullname: Browning, Nigel D.
  organization: Albert Crewe Centre
– sequence: 10
  givenname: Marc A.
  orcidid: 0000-0002-1994-0591
  surname: Little
  fullname: Little, Marc A.
  email: malittle@liverpool.ac.uk
  organization: Materials Innovation Factory and Department of Chemistry
– sequence: 11
  givenname: Laurence J.
  orcidid: 0000-0001-8796-685X
  surname: Hardwick
  fullname: Hardwick, Laurence J.
  email: hardwick@liverpool.ac.uk
  organization: Stephenson Institute for Renewable Energy, Department of Chemistry
– sequence: 12
  givenname: Andrew I.
  orcidid: 0000-0003-0201-1021
  surname: Cooper
  fullname: Cooper, Andrew I.
  email: aicooper@liverpool.ac.uk
  organization: Leverhulme Research Centre for Functional Materials Design
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35588159$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gxhn5iMSm-CNxkgtSCS2ttFIrUc7WxJlsvWTtrZ3davn1eLXbChAITh7bz_t6xjPH5MB5h4S85uyUM8Hfz8HEU2FSWKtn5IgXgmUFF-qAHDHGRFZWSh6S4xjnaZuLir8gh7IoqooX9RH5fkZvNgEdZvmkmNQTzrJbHAOkN7KPELGjjV_DgG6k12EGzhp6EWCBDz58o59wsGsMkV7a2R39skRj-wQ0sARjxw2FSIFObXblHb3x0Y6JpucDmjH4Dl-S5z0MEV_t1xPy9eL8trnMptefr5qzaQZ5wcasRyj7tmx72SkllWgN1MARUm2K9x2WshPSdB2HPIcKC8WhrFtpQLYyL2sjT8iHne9y1S6wM6mWAINeBruAsNEerP71xtk7PfNrXXOVCymSwdu9QfD3K4yjXthocBjAoV9FLUpeCZlS4_9GlSrLmsu8SOibn9N6yuexNwmodsADtr6PxqIz-ISlZla8lozVKWK8sSOM1rvGr9yYpO_-X5posaNN8DEG7LXZu6XvsIPmTG8nTW8nTe8nLYkmv4ke7f-C7z9mezj3q-BSy_-M_gBHpeBI
CitedBy_id crossref_primary_10_1021_jacs_3c01131
crossref_primary_10_1002_anie_202414566
crossref_primary_10_1021_acs_macromol_3c02001
crossref_primary_10_1021_acs_macromol_4c02970
crossref_primary_10_1002_batt_202200406
crossref_primary_10_1016_j_ijhydene_2025_02_101
crossref_primary_10_1016_j_cej_2024_149986
crossref_primary_10_1002_smll_202405118
crossref_primary_10_1039_D3SC07013A
crossref_primary_10_1002_anie_202306091
crossref_primary_10_1002_sus2_180
crossref_primary_10_1016_j_nanoen_2024_110073
crossref_primary_10_1007_s40843_024_3255_y
crossref_primary_10_1039_D3TA07403J
crossref_primary_10_1039_D4LP00276H
crossref_primary_10_1016_j_ijoes_2024_100684
crossref_primary_10_1002_advs_202310239
crossref_primary_10_1002_aenm_202304210
crossref_primary_10_1002_cssc_202401975
crossref_primary_10_1007_s11426_023_1853_x
crossref_primary_10_1016_j_electacta_2024_145257
crossref_primary_10_1002_anie_202416874
crossref_primary_10_1039_D4SC07210C
crossref_primary_10_1002_ange_202311460
crossref_primary_10_1021_acsami_4c06012
crossref_primary_10_1016_j_jpowsour_2024_235733
crossref_primary_10_1039_D3TA02363J
crossref_primary_10_1039_D4LP00320A
crossref_primary_10_1002_ange_202310937
crossref_primary_10_1002_ange_202412334
crossref_primary_10_1002_anie_202300892
crossref_primary_10_1002_ange_202305131
crossref_primary_10_3390_batteries9010026
crossref_primary_10_1002_ange_202501743
crossref_primary_10_1016_j_ensm_2024_103674
crossref_primary_10_1002_anie_202416845
crossref_primary_10_1016_j_cej_2023_147305
crossref_primary_10_1002_adfm_202419764
crossref_primary_10_1016_j_cej_2023_142658
crossref_primary_10_1002_anie_202311460
crossref_primary_10_1002_ange_202401253
crossref_primary_10_1007_s11581_024_05607_0
crossref_primary_10_1002_ange_202409421
crossref_primary_10_1002_smll_202305978
crossref_primary_10_1021_jacs_3c13863
crossref_primary_10_1002_ange_202304036
crossref_primary_10_1021_acsapm_2c02047
crossref_primary_10_1002_adma_202305037
crossref_primary_10_1002_ange_202414566
crossref_primary_10_1002_anie_202310937
crossref_primary_10_1016_j_cej_2024_152628
crossref_primary_10_1007_s40242_022_2219_2
crossref_primary_10_1021_acsami_2c18869
crossref_primary_10_1002_anie_202501743
crossref_primary_10_1002_anie_202305131
crossref_primary_10_1016_j_cej_2025_161061
crossref_primary_10_1021_jacs_3c04657
crossref_primary_10_1002_cssc_202301809
crossref_primary_10_1016_j_apsusc_2023_157871
crossref_primary_10_1007_s11426_022_1391_0
crossref_primary_10_1016_j_nanoen_2024_110161
crossref_primary_10_1002_anie_202409421
crossref_primary_10_1016_j_cej_2024_155289
crossref_primary_10_1016_j_est_2025_115746
crossref_primary_10_1002_anie_202401253
crossref_primary_10_3866_PKU_WHXB202303060
crossref_primary_10_1002_adma_202306491
crossref_primary_10_1002_adma_202416661
crossref_primary_10_1039_D4NJ01478B
crossref_primary_10_1002_smll_202308953
crossref_primary_10_1007_s11426_024_2456_x
crossref_primary_10_1002_anie_202418086
crossref_primary_10_1002_marc_202200782
crossref_primary_10_1016_j_seppur_2024_127941
crossref_primary_10_1002_ange_202416874
crossref_primary_10_1002_anie_202304036
crossref_primary_10_1016_j_cej_2022_140283
crossref_primary_10_1038_s41467_023_40969_5
crossref_primary_10_1039_D3CC00700F
crossref_primary_10_1002_smm2_1309
crossref_primary_10_1002_macp_202300427
crossref_primary_10_1016_j_cej_2024_151103
crossref_primary_10_1002_adma_202314050
crossref_primary_10_1016_j_ensm_2023_103014
crossref_primary_10_1039_D3TA05190K
crossref_primary_10_1002_anie_202423992
crossref_primary_10_1021_acsami_4c05191
crossref_primary_10_1002_cssc_202301118
crossref_primary_10_1039_D2TA08032J
crossref_primary_10_1016_j_cclet_2024_109803
crossref_primary_10_1016_j_cej_2024_154743
crossref_primary_10_1002_ange_202416845
crossref_primary_10_1021_jacs_2c10509
crossref_primary_10_1002_ange_202418086
crossref_primary_10_1002_ange_202300892
crossref_primary_10_1002_adma_202405747
crossref_primary_10_1021_jacs_3c08755
crossref_primary_10_1016_j_mtener_2025_101849
crossref_primary_10_1002_adma_202415676
crossref_primary_10_1039_D2TA05185K
crossref_primary_10_1021_acs_jpcc_3c01387
crossref_primary_10_1038_s44160_025_00741_7
crossref_primary_10_1002_ange_202306091
crossref_primary_10_1016_j_cej_2023_142229
crossref_primary_10_1021_acsaem_3c01307
crossref_primary_10_1016_j_ensm_2023_103143
crossref_primary_10_1021_acsnano_3c07743
crossref_primary_10_1002_adfm_202310668
crossref_primary_10_1039_D3CC04322C
crossref_primary_10_1002_pol_20230164
crossref_primary_10_1039_D3TA05152H
crossref_primary_10_1016_j_cej_2023_147870
crossref_primary_10_1021_acsami_4c09728
crossref_primary_10_1016_j_ensm_2024_103199
crossref_primary_10_1016_j_nanoen_2024_110534
crossref_primary_10_1039_D3CC05493D
crossref_primary_10_1002_aenm_202201347
crossref_primary_10_1002_ange_202500336
crossref_primary_10_1021_jacs_4c03223
crossref_primary_10_1039_D3CC03735E
crossref_primary_10_3390_catal15010012
crossref_primary_10_1002_smll_202405974
crossref_primary_10_1039_D4TA05466K
crossref_primary_10_1016_j_mser_2025_100974
crossref_primary_10_1016_j_scib_2024_08_010
crossref_primary_10_1002_aenm_202203253
crossref_primary_10_1021_acs_jpcc_4c02998
crossref_primary_10_1002_adma_202415882
crossref_primary_10_1002_anie_202500336
crossref_primary_10_1021_jacs_2c10501
crossref_primary_10_1002_anie_202412334
crossref_primary_10_1016_j_cej_2024_149535
crossref_primary_10_1039_D2TA04581H
crossref_primary_10_1002_ange_202423992
crossref_primary_10_1039_D4NR01092B
crossref_primary_10_1016_j_ensm_2023_103046
crossref_primary_10_1002_cssc_202301725
crossref_primary_10_1021_acsnano_3c11780
crossref_primary_10_1021_jacs_2c11037
crossref_primary_10_1016_j_joule_2024_11_007
crossref_primary_10_1002_adfm_202421858
crossref_primary_10_1016_j_ensm_2023_103164
crossref_primary_10_1021_jacs_3c13032
crossref_primary_10_1039_D3RA02269B
crossref_primary_10_1002_smll_202407756
crossref_primary_10_1021_acsnano_4c06737
crossref_primary_10_1038_s41467_024_47377_3
Cites_doi 10.1002/aenm.202001445
10.1002/adma.201901478
10.1002/aenm.202003735
10.1039/D0TA11648C
10.1002/anie.201805540
10.1016/j.joule.2017.08.018
10.1149/2.0031514jes
10.1038/srep08225
10.31635/ccschem.020.202000257
10.1002/ange.201002439
10.1021/ja409421d
10.1038/s41570-020-0160-9
10.1021/acs.chemrev.6b00070
10.1021/ja306663g
10.1002/aenm.202100177
10.1002/adfm.202101019
10.1002/aenm.202101880
10.1021/ja507852t
10.1016/j.jpowsour.2011.07.071
10.1039/c3ee40709h
10.1039/D0TA03321A
10.1021/acs.chemmater.8b01304
10.1021/ja308278w
10.1002/anie.201812685
10.1039/C6TA09754E
10.1002/cssc.202001389
10.1039/D1TA04943G
10.1039/C4FD00079J
10.1038/s41586-021-04139-1
10.1126/science.1120411
10.1021/jacs.9b08147
10.1002/anie.201601119
10.1038/s41467-018-02889-7
10.1021/jacs.0c03418
10.1021/nl2039666
10.1038/451652a
10.1039/C9NR00088G
10.1016/j.carbon.2019.10.106
10.1002/advs.201500018
10.1039/C5CC09350C
10.1002/cssc.201903007
10.1039/c9nr00088g
10.1039/d0ta03321a
10.1039/d0ta11648c
10.1039/c5cc09350c
10.1039/c4fd00079j
10.1039/d1ta04943g
10.1039/c6ta09754e
10.1002/anie.201002439
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID AAYXX
CITATION
17B
1KM
1KN
AHQBO
BLEPL
DTL
EGQ
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/jacs.2c02196
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Web of Science
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
Web of Science
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 9442
ExternalDocumentID PMC9164232
35588159
000819300900001
10_1021_jacs_2c02196
c011000761
Genre Journal Article
GrantInformation_xml – fundername: UUI; UK Research & Innovation (UKRI)
  grantid: EP/R020744/1
– fundername: Leverhulme Trust via the Leverhulme Research Centre for Functional Materials Design; Leverhulme Trust
– fundername: EPSRC; UK Research & Innovation (UKRI); Engineering & Physical Sciences Research Council (EPSRC)
  grantid: EP/R020744/1; EP/V026887/1; EP/N004884/1
– fundername: China Scholarship Council (CSC); China Scholarship Council
– fundername: EPSRC; UK Research & Innovation (UKRI); Engineering & Physical Sciences Research Council (EPSRC)
  grantid: EP/V026887/1; EP/N004884/1
– fundername: University of Liverpool Graduate Association (Hong Kong)
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: EP/V026887/1
– fundername: ;
  grantid: EP/R020744/1
– fundername: ;
  grantid: EP/N004884/1
GroupedDBID -
02
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AGXLV
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DC
DU5
DZ
EBS
ED
ET
F5P
GGK
GNL
IH2
IH9
JG
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XSW
YQT
YZZ
ZCA
ZHY
---
-DZ
-ET
-~X
.DC
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
ED~
JG~
~02
17B
1KM
1KN
AAYWT
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a450t-fea7fb7bf3d66362bca9a1ea00261fde73d23cdd1a44a8e561a79b3ca3b3479c3
IEDL.DBID ACS
ISICitedReferencesCount 151
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000819300900001
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 14:07:46 EDT 2025
Fri Jul 11 10:36:00 EDT 2025
Fri Jul 11 03:33:14 EDT 2025
Mon Jul 21 06:03:22 EDT 2025
Fri Aug 29 15:55:20 EDT 2025
Wed Aug 06 11:37:36 EDT 2025
Tue Jul 01 03:54:10 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Fri Jun 03 04:15:14 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a450t-fea7fb7bf3d66362bca9a1ea00261fde73d23cdd1a44a8e561a79b3ca3b3479c3
Notes UKRI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8796-685X
0000-0003-0491-251X
0000-0002-1994-0591
0000-0003-0201-1021
0000-0002-8336-9158
0000-0001-7675-5432
0000-0001-8239-3693
0000-0002-1338-7705
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9164232
PMID 35588159
PQID 2667791345
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9164232
acs_journals_10_1021_jacs_2c02196
crossref_citationtrail_10_1021_jacs_2c02196
webofscience_primary_000819300900001
crossref_primary_10_1021_jacs_2c02196
pubmed_primary_35588159
webofscience_primary_000819300900001CitationCount
proquest_miscellaneous_2718233621
proquest_miscellaneous_2667791345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAbbrev J AM CHEM SOC
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2022
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
Nokami, T (WOS:000311869600037) 2012; 134
Côté, AP (WOS:000233437300040) 2005; 310
Li, M (WOS:000794136000003) 2021; 3
Singh, V (WOS:000630216900001) 2021; 11
Kandambeth, S (WOS:000647192300001) 2022; 12
Armand, M (WOS:000252929500029) 2008; 451
Zhao, GF (WOS:000648487700001) 2021; 31
Yao, CJ (WOS:000504755900001) 2020; 13
Zhu, ZQ (WOS:000366069300004) 2015; 162
Lu, Y (WOS:000513106500001) 2020; 4
Muench, S (WOS:000382179100007) 2016; 116
Kim, J (WOS:000425302500011) 2017; 1
Shi, Y (WOS:000433403800037) 2018; 30
Sui, D (WOS:000502548500074) 2020; 157
Wang, ZL (WOS:000465361800021) 2019; 11
Luo, ZQ (WOS:000438712600039) 2018; 57
Gao, H (WOS:000567230900001) 2020; 13
Song, ZP (WOS:000284015600028) 2010; 49
Wang, KW (WOS:000543780500030) 2020; 142
Xu, SQ (WOS:000455033700034) 2019; 58
Kandambeth, S (WOS:000311869600007) 2012; 134
Jeon, T (WOS:000709039800001) 2021; 9
Viswanathan, V (WOS:000749546400017) 2022; 601
Huang, YS (WOS:000395075600034) 2017; 5
Ma, T (WOS:000377921200010) 2016; 55
Zhu, ZQ (WOS:000345720500001) 2014; 136
Zheng, SB (WOS:000616679700012) 2021; 9
Wang, H (WOS:000542473000027) 2020; 8
Lei, ZD (WOS:000424451600004) 2018; 9
Vitaku, E (WOS:000507144400002) 2020; 142
Gao, H (WOS:000696346800001) 2021; 11
Dahbi, M (WOS:000295602400085) 2011; 196
Wang, G (WOS:000477972300021) 2019; 31
Song, ZP (WOS:000303696400005) 2012; 12
Cabo-Fernandez, L (WOS:000371598900025) 2016; 52
Zhang, K (WOS:000368943300004) 2015; 2
Sole, C (WOS:000345578300013) 2014; 172
Xu, F (WOS:000348767600001) 2015; 5
Lee, S (WOS:000540436700001) 2020; 10
DeBlase, CR (WOS:000327103600020) 2013; 135
Song, ZP (WOS:000321983800004) 2013; 6
References_xml – ident: ref9/cit9
  doi: 10.1002/aenm.202001445
– ident: ref13/cit13
  doi: 10.1002/adma.201901478
– ident: ref36/cit36
  doi: 10.1002/aenm.202003735
– ident: ref40/cit40
  doi: 10.1039/D0TA11648C
– ident: ref33/cit33
  doi: 10.1002/anie.201805540
– ident: ref7/cit7
  doi: 10.1016/j.joule.2017.08.018
– ident: ref22/cit22
  doi: 10.1149/2.0031514jes
– ident: ref17/cit17
  doi: 10.1038/srep08225
– ident: ref27/cit27
  doi: 10.31635/ccschem.020.202000257
– ident: ref25/cit25
  doi: 10.1002/ange.201002439
– ident: ref29/cit29
  doi: 10.1021/ja409421d
– ident: ref1/cit1
  doi: 10.1038/s41570-020-0160-9
– ident: ref8/cit8
  doi: 10.1021/acs.chemrev.6b00070
– ident: ref19/cit19
  doi: 10.1021/ja306663g
– ident: ref15/cit15
  doi: 10.1002/aenm.202100177
– ident: ref16/cit16
  doi: 10.1002/adfm.202101019
– ident: ref26/cit26
  doi: 10.1002/aenm.202101880
– ident: ref6/cit6
  doi: 10.1021/ja507852t
– ident: ref30/cit30
  doi: 10.1016/j.jpowsour.2011.07.071
– ident: ref2/cit2
  doi: 10.1039/c3ee40709h
– ident: ref35/cit35
  doi: 10.1039/D0TA03321A
– ident: ref31/cit31
  doi: 10.1021/acs.chemmater.8b01304
– ident: ref28/cit28
  doi: 10.1021/ja308278w
– ident: ref14/cit14
  doi: 10.1002/anie.201812685
– ident: ref20/cit20
  doi: 10.1039/C6TA09754E
– ident: ref24/cit24
  doi: 10.1002/cssc.202001389
– ident: ref41/cit41
  doi: 10.1039/D1TA04943G
– ident: ref38/cit38
  doi: 10.1039/C4FD00079J
– ident: ref3/cit3
  doi: 10.1038/s41586-021-04139-1
– ident: ref10/cit10
  doi: 10.1126/science.1120411
– ident: ref32/cit32
  doi: 10.1021/jacs.9b08147
– ident: ref5/cit5
  doi: 10.1002/anie.201601119
– ident: ref11/cit11
  doi: 10.1038/s41467-018-02889-7
– ident: ref18/cit18
  doi: 10.1021/jacs.0c03418
– ident: ref23/cit23
  doi: 10.1021/nl2039666
– ident: ref4/cit4
  doi: 10.1038/451652a
– ident: ref12/cit12
  doi: 10.1039/C9NR00088G
– ident: ref21/cit21
  doi: 10.1016/j.carbon.2019.10.106
– ident: ref34/cit34
  doi: 10.1002/advs.201500018
– ident: ref39/cit39
  doi: 10.1039/C5CC09350C
– ident: ref37/cit37
  doi: 10.1002/cssc.201903007
– volume: 55
  start-page: 6428
  year: 2016
  ident: WOS:000377921200010
  article-title: A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201601119
– volume: 4
  start-page: 127
  year: 2020
  ident: WOS:000513106500001
  article-title: Prospects of organic electrode materials for practical lithium batteries
  publication-title: NATURE REVIEWS CHEMISTRY
  doi: 10.1038/s41570-020-0160-9
– volume: 11
  start-page: 5330
  year: 2019
  ident: WOS:000465361800021
  article-title: Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries
  publication-title: NANOSCALE
  doi: 10.1039/c9nr00088g
– volume: 58
  start-page: 849
  year: 2019
  ident: WOS:000455033700034
  article-title: A Nitrogen-Rich 2D sp2-Carbon-Linked Conjugated Polymer Framework as a High-Performance Cathode for Lithium-Ion Batteries
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201812685
– volume: 6
  start-page: 2280
  year: 2013
  ident: WOS:000321983800004
  article-title: Towards sustainable and versatile energy storage devices: an overview of organic electrode materials
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/c3ee40709h
– volume: 12
  start-page: ARTN 2100177
  year: 2022
  ident: WOS:000647192300001
  article-title: 2D Covalent-Organic Framework Electrodes for Supercapacitors and Rechargeable Metal-Ion Batteries
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202100177
– volume: 136
  start-page: 16461
  year: 2014
  ident: WOS:000345720500001
  article-title: All-Solid-State Lithium Organic Battery with Composite Polymer Electrolyte and Pillar[5]quinone Cathode
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja507852t
– volume: 11
  start-page: ARTN 2101880
  year: 2021
  ident: WOS:000696346800001
  article-title: Integrated Covalent Organic Framework/Carbon Nanotube Composite as Li-Ion Positive Electrode with Ultra-High Rate Performance
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202101880
– volume: 8
  start-page: 11906
  year: 2020
  ident: WOS:000542473000027
  article-title: Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs)
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/d0ta03321a
– volume: 9
  start-page: 2700
  year: 2021
  ident: WOS:000616679700012
  article-title: An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/d0ta11648c
– volume: 12
  start-page: 2205
  year: 2012
  ident: WOS:000303696400005
  article-title: Polymer-Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries
  publication-title: NANO LETTERS
  doi: 10.1021/nl2039666
– volume: 10
  start-page: ARTN 2001445
  year: 2020
  ident: WOS:000540436700001
  article-title: Redox-Active Organic Compounds for Future Sustainable Energy Storage System
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202001445
– volume: 134
  start-page: 19694
  year: 2012
  ident: WOS:000311869600037
  article-title: Polymer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja306663g
– volume: 52
  start-page: 3970
  year: 2016
  ident: WOS:000371598900025
  article-title: In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries - investigation of SEI growth
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c5cc09350c
– volume: 9
  start-page: ARTN 576
  year: 2018
  ident: WOS:000424451600004
  article-title: Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-018-02889-7
– volume: 13
  start-page: 2457
  year: 2020
  ident: WOS:000504755900001
  article-title: Two-Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binder-free Lithium-Ion Battery
  publication-title: CHEMSUSCHEM
  doi: 10.1002/cssc.201903007
– volume: 172
  start-page: 223
  year: 2014
  ident: WOS:000345578300013
  article-title: In situ Raman study of lithium-ion intercalation into microcrystalline graphite
  publication-title: FARADAY DISCUSSIONS
  doi: 10.1039/c4fd00079j
– volume: 9
  start-page: 23929
  year: 2021
  ident: WOS:000709039800001
  article-title: The molecular sieving mechanism of a polysulfide-blocking metal-organic framework separator for lithium-sulfur batteries
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/d1ta04943g
– volume: 142
  start-page: 16
  year: 2020
  ident: WOS:000507144400002
  article-title: Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b08147
– volume: 162
  start-page: A2393
  year: 2015
  ident: WOS:000366069300004
  article-title: Review-Advanced Carbon-Supported Organic Electrode Materials for Lithium (Sodium)-Ion Batteries
  publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY
  doi: 10.1149/2.0031514jes
– volume: 116
  start-page: 9438
  year: 2016
  ident: WOS:000382179100007
  article-title: Polymer-Based Organic Batteries
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00070
– volume: 31
  start-page: ARTN 1901478
  year: 2019
  ident: WOS:000477972300021
  article-title: A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201901478
– volume: 11
  start-page: ARTN 2003735
  year: 2021
  ident: WOS:000630216900001
  article-title: Thiazole-Linked Covalent Organic Framework Promoting Fast Two-Electron Transfer for Lithium-Organic Batteries
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202003735
– volume: 5
  start-page: 2710
  year: 2017
  ident: WOS:000395075600034
  article-title: Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/c6ta09754e
– volume: 135
  start-page: 16821
  year: 2013
  ident: WOS:000327103600020
  article-title: β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja409421d
– volume: 196
  start-page: 9743
  year: 2011
  ident: WOS:000295602400085
  article-title: Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage
  publication-title: JOURNAL OF POWER SOURCES
  doi: 10.1016/j.jpowsour.2011.07.071
– volume: 601
  start-page: 519
  year: 2022
  ident: WOS:000749546400017
  article-title: The challenges and opportunities of battery-powered flight
  publication-title: NATURE
  doi: 10.1038/s41586-021-04139-1
– volume: 310
  start-page: 1166
  year: 2005
  ident: WOS:000233437300040
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: SCIENCE
  doi: 10.1126/science.1120411
– volume: 57
  start-page: 9443
  year: 2018
  ident: WOS:000438712600039
  article-title: A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201805540
– volume: 3
  start-page: 696
  year: 2021
  ident: WOS:000794136000003
  article-title: Skeleton Engineering of Isostructural 2D Covalent Organic Frameworks: Orthoquinone Redox-Active Sites Enhanced Energy Storage
  publication-title: CCS CHEMISTRY
  doi: 10.31635/ccschem.020.202000257
– volume: 5
  start-page: ARTN 8225
  year: 2015
  ident: WOS:000348767600001
  article-title: Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage
  publication-title: SCIENTIFIC REPORTS
  doi: 10.1038/srep08225
– volume: 31
  start-page: ARTN 2101019
  year: 2021
  ident: WOS:000648487700001
  article-title: Dual-Active-Center of Polyimide and Triazine Modified Atomic-Layer Covalent Organic Frameworks for High-Performance Li Storage
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202101019
– volume: 13
  start-page: 5571
  year: 2020
  ident: WOS:000567230900001
  article-title: Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithium-Ion Cells
  publication-title: CHEMSUSCHEM
  doi: 10.1002/cssc.202001389
– volume: 157
  start-page: 656
  year: 2020
  ident: WOS:000502548500074
  article-title: A 3D cross-linked graphene-based honeycomb carbon composite with excellent confinement effect of organic cathode material for lithium-ion batteries
  publication-title: CARBON
  doi: 10.1016/j.carbon.2019.10.106
– volume: 2
  start-page: ARTN 1500018
  year: 2015
  ident: WOS:000368943300004
  article-title: High-Performance Organic Lithium Batteries with an Ether-Based Electrolyte and 9,10-Anthraquinone (AQ)/CMK-3 Cathode
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.201500018
– volume: 134
  start-page: 19524
  year: 2012
  ident: WOS:000311869600007
  article-title: Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja308278w
– volume: 142
  start-page: 11131
  year: 2020
  ident: WOS:000543780500030
  article-title: Synthesis of Stable Thiazole-Linked Covalent Organic Frameworks via a Multicomponent Reaction
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c03418
– volume: 49
  start-page: 8444
  year: 2010
  ident: WOS:000284015600028
  article-title: Polyimides: Promising Energy-Storage Materials
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201002439
– volume: 30
  start-page: 3508
  year: 2018
  ident: WOS:000433403800037
  article-title: Understanding the Electrochemical Properties of Naphthalene Diimide: Implication for Stable and High-Rate Lithium-Ion Battery Electrodes
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/acs.chemmater.8b01304
– volume: 451
  start-page: 652
  year: 2008
  ident: WOS:000252929500029
  article-title: Building better batteries
  publication-title: NATURE
  doi: 10.1038/451652a
– volume: 1
  start-page: 739
  year: 2017
  ident: WOS:000425302500011
  article-title: Redox-Active Polymers for Energy Storage Nanoarchitectonics
  publication-title: JOULE
  doi: 10.1016/j.joule.2017.08.018
SSID ssj0004281
Score 2.6660986
Snippet Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities...
Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities...
Source Web of Science
SourceID pubmedcentral
proquest
pubmed
webofscience
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9434
SubjectTerms carbon nanotubes
cathodes
Chemistry
Chemistry, Multidisciplinary
electrochemistry
lithium batteries
microscopy
Physical Sciences
Science & Technology
Title A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode
URI http://dx.doi.org/10.1021/jacs.2c02196
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000819300900001
https://www.ncbi.nlm.nih.gov/pubmed/35588159
https://www.proquest.com/docview/2667791345
https://www.proquest.com/docview/2718233621
https://pubmed.ncbi.nlm.nih.gov/PMC9164232
Volume 144
WOS 000819300900001
WOSCitedRecordID wos000819300900001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOcCF98O8tJXKiTiyd9de-xhMQ0EIVaKVeotmH1YrKqdqHCT665ld2ylJKfQWOWNlMx57vvV88w3ADkqtikSr2KlSx9JmWVxoAnLaasTSJoV1Qe3zW753KL8cZUeXBNnNCj73-kBmMeaGPpb5bbjD80L5Tdak-n7Z_8iLdIC5qshFT3DfPNsnILNYT0BXUOXfyZEbCSkkn-kD-DS08HSckx_jZavH5uKqouN__tdDuN_jTzbpAuYR3HLNY7hbDWPfnsDFhO3_8jqXsRxlo3JED9ADR0uc05EPlPIsq-YUnbRs1vVxGjYdCF7sozsNPA_m6SMszLavyaCijGwI7jNcMGRfT-LP84btB7rYT8d2u0k81j2Fw-nuQbUX9wMaYpRZ0sa1Q1VrpWthCbjkXBssMXUYNna1dUpYLoy1KUqJhSOohhQRwqDQvoHViGew1dDyXwAjGKR5LZAQh5WJQ3pI087IOql1KRKbRbBN_pr1N9hiFmrnnPYu_mjvxQjeD1d2ZnqFcz9o4_Qa63cr67NO2eMau-0hSGZ0KXw9BRs3X5JBnivlmQvZP2wo93NBvkkjeN4F1urXvLJ9QXAyArUWcisDL_29_k1zchwkwAnU-wp7BDt_BufqxA7pCcLPoXoTQXoTs6r3mVdDaF_ewOGv4B733SDhpdRr2GrPl-4NYbRWvw036G8YiDX7
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOZRLebfmuZXKibiyd22vfQymUQohqkQq9Wbty6KichB2kOivZ3b9KAkU5RZtxvZkPPZ8m5n5BuBIRJKngeS-4Zn0Ix3HfioRyEkthch0kGrj2D7nyfQ8-ngRX3TN6rYXBpWo8Uy1S-LfsAtYmiBcpAo_ZslduIc4hNq91jj_ctMGSdOwR7s8TVhX5755tI1Dql6PQ3-By3_XSG7EJReDJg9gPmjvSk--Ha8aeayuN4gdt_55D2GvQ6Nk3LrPI7hjqsewm_dD4J7A9Zic_bKsl340ikfZCF-nC4OaLnHlPQZATfIl-ipqT9quTkUmfbkX-WCuXNUHscUkxE26L1Egx_isEPwTURNBZpf-6bIiZ6547KchJ-1cHm2ewvnkZJFP_W5cgy-iOGj80gheSi5LphHGJFQqkYnQCLfNK7XhTFOmtA5FFInUIHAT6B9MCSZtO6tiz2CnQvUPgCAokrRkAvGHjgIj8JWN-yRtIikzFujYg0O0V9E9bnXhMukUdzJ2tbOiB-_6G1yoju_cjt24ukX67SD9veX5uEXusPeVAm-Fza6IyixXKJAknNs6hvg_MogEKEPbhB7st_41XM3y3KcILj3ga543CFgi8PVvqsuvjhAcIb7Nt3tw9KePDge2uI8hmna5HA_CbcTyzmaWG6F5voXB38DudPF5VsxO559ewH1q-0Tc31UvYaf5sTKvEL018rV7Zn8DGi4-XA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwEB5RkNq-9D5CLyPRp25QEjtx8rgNrLiEVi1IvEW-oqKiLGqylcqvZ-wcdLeA6FuUTDb2ZJz5Zmf8DcCmYJKngeS-4Zn0mY5jP5UI5KSWQmQ6SLVxbJ9Hye4J2z-NT1cg7PfC4CBq_KXaJfHtqr7QZccwYKmC8EKk8DBLHsCazdjZeGucf7_eChmlYY94eZrQrtZ9-W7ri1S96Iv-AZg310ku-SbnhyZP4dswA1d-8nNr3sgtdblE7vhfU3wGTzpUSsatGT2HFVO9gEd53wzuJVyOyfSPZb_02SgeZSP8rB4bHO0Mz3xFR6hJPkObxRmQdnenIpO-7Itsm3NX_UFsUQlxHe9LFMjRTysMAoioiSCHZ_7erCJTV0T225Cdtj-PNq_gZLJznO_6XdsGX7A4aPzSCF5KLkuqEc4kkVQiE6ERLtwrteFUR1RpHQrGRGoQwAm0E6oElXZbq6KvYbXC4b8FguBIRiUViEM0C4zATzfGS9owKTMa6NiDDdRX0S27unAZ9QgjGnu206IHX_qXXKiO99y23zi_RfrzIH3R8n3cIrfR20uBr8JmWURlZnMUSBLObT1DfIcMIoKIom5CD960NjY8zfLdpwgyPeAL1jcIWELwxSvV2Q9HDI5Q3-bdPdj8206HG1v8RxFVu5yOB-F9xPJOZ5YjoVm_h8I_wcPp9qQ43Ds6eAePI7tdxP1r9R5Wm19z8wFBXCM_umV7BUrUQN8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pyrene-4%2C5%2C9%2C10-Tetraone-Based+Covalent+Organic+Framework+Delivers+High+Specific+Capacity+as+a+Li-Ion+Positive+Electrode&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gao%2C+Hui&rft.au=Neale%2C+Alex+R&rft.au=Zhu%2C+Qiang&rft.au=Bahri%2C+Mounib&rft.date=2022-06-01&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=144&rft.issue=21&rft.spage=9434&rft_id=info:doi/10.1021%2Fjacs.2c02196&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon