Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation

Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectl...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 144; no. 18; pp. 8129 - 8137
Main Authors Yang, Wenjun, Kalavalapalli, Tejas Y., Krieger, Annika M., Khvorost, Taras A., Chernyshov, Ivan Yu, Weber, Manuela, Uslamin, Evgeny A., Pidko, Evgeny A., Filonenko, Georgy A.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.05.2022
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.2c00548

Cover

Loading…
Abstract Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation.
AbstractList Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation.
Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation.Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation.
Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation.
Author Chernyshov, Ivan Yu
Kalavalapalli, Tejas Y.
Krieger, Annika M.
Uslamin, Evgeny A.
Filonenko, Georgy A.
Pidko, Evgeny A.
Yang, Wenjun
Weber, Manuela
Khvorost, Taras A.
AuthorAffiliation Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences
TheoMAT Group, ChemBio Cluster
AuthorAffiliation_xml – name: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences
– name: TheoMAT Group, ChemBio Cluster
Author_xml – sequence: 1
  givenname: Wenjun
  orcidid: 0000-0002-4410-6398
  surname: Yang
  fullname: Yang, Wenjun
  organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences
– sequence: 2
  givenname: Tejas Y.
  surname: Kalavalapalli
  fullname: Kalavalapalli, Tejas Y.
  organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences
– sequence: 3
  givenname: Annika M.
  orcidid: 0000-0002-6178-7041
  surname: Krieger
  fullname: Krieger, Annika M.
  organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences
– sequence: 4
  givenname: Taras A.
  surname: Khvorost
  fullname: Khvorost, Taras A.
  organization: TheoMAT Group, ChemBio Cluster
– sequence: 5
  givenname: Ivan Yu
  surname: Chernyshov
  fullname: Chernyshov, Ivan Yu
  organization: TheoMAT Group, ChemBio Cluster
– sequence: 6
  givenname: Manuela
  surname: Weber
  fullname: Weber, Manuela
– sequence: 7
  givenname: Evgeny A.
  orcidid: 0000-0001-5454-9582
  surname: Uslamin
  fullname: Uslamin, Evgeny A.
  organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences
– sequence: 8
  givenname: Evgeny A.
  orcidid: 0000-0001-9242-9901
  surname: Pidko
  fullname: Pidko, Evgeny A.
  email: E.A.Pidko@tudelft.nl
  organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences
– sequence: 9
  givenname: Georgy A.
  orcidid: 0000-0001-8025-9968
  surname: Filonenko
  fullname: Filonenko, Georgy A.
  email: G.A.Filonenko@tudelft.nl
  organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35476423$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1PGzEQxa0KVAL0xhn5yKFLba8_di9IbdQSJCSQgLM1cbzgaNcOtlNp__s6IaC2aiVOoxn_5umN3yHa88FbhE4oOaeE0S9LMOmcGUIEbz6gCRWMVIIyuYcmhBBWqUbWB-gwpWVpOWvoR3RQC64kZ_UEmW-QnMG3MQwhh5jw1bACk_H9k41DWIweBmcSBr_AU8jQjynju5U1DrILHjuPZ2Xz0Xob1qkgcR782OPZuIib6ZY6Rvsd9Ml-2tUj9PDj-_10Vl3fXF5Nv15XwAXJlQVJqWk7qVgHXKmGAmVzPq8bJmzddIRJYkXbCSJUZ43irK0lMw3jnFNJSX2ELl50V-v5YBfG-hyh16voBoijDuD0ny_ePenH8FO3lBCpaBE42wnE8Ly2KevBJWP7HrbnaSaVEMVXK9-BCql4Lago6Onvtt78vIZQgM8vgIkhpWi7N4QSvclYbzLWu4wLzv7Cjcvbjy5Huf5_Szu_m-EyrKMvSfwb_QUWRLhs
CitedBy_id crossref_primary_10_1021_acscatal_4c00019
crossref_primary_10_1039_D2DT03600B
crossref_primary_10_1039_D3DD00016H
crossref_primary_10_1002_anie_202301042
crossref_primary_10_1002_anie_202307987
crossref_primary_10_1002_cplu_202300702
crossref_primary_10_1021_jacs_4c00493
crossref_primary_10_1038_s41557_022_01051_7
crossref_primary_10_1021_acs_jctc_3c01313
crossref_primary_10_1021_acs_organomet_3c00137
crossref_primary_10_1002_ange_202318763
crossref_primary_10_1002_anie_202502923
crossref_primary_10_1016_j_jcat_2023_115252
crossref_primary_10_1021_acs_organomet_3c00399
crossref_primary_10_1002_anie_202318763
crossref_primary_10_1039_D2DT02597C
crossref_primary_10_1039_D4DT02496F
crossref_primary_10_1016_j_jcat_2024_115334
crossref_primary_10_1016_j_jcat_2025_115998
crossref_primary_10_1002_ange_202307987
crossref_primary_10_1021_acs_chemrev_2c00888
crossref_primary_10_1021_jacs_4c02096
crossref_primary_10_1002_ange_202301042
crossref_primary_10_1002_cctc_202300004
crossref_primary_10_1002_chem_202304201
crossref_primary_10_1021_acs_organomet_4c00214
crossref_primary_10_1021_acscatal_2c06405
crossref_primary_10_1021_acs_jcim_3c00660
crossref_primary_10_1002_cctc_202401237
crossref_primary_10_1002_ange_202502923
crossref_primary_10_1021_acs_jctc_2c00404
crossref_primary_10_1021_acs_joc_4c02731
crossref_primary_10_1039_D4OB01044B
crossref_primary_10_1002_cssc_202301138
crossref_primary_10_1016_j_cej_2024_154375
crossref_primary_10_6023_cjoc202403024
crossref_primary_10_1002_cctc_202400901
crossref_primary_10_1021_acs_jpcc_3c08224
crossref_primary_10_1039_D2CC05625A
Cites_doi 10.1080/01614940.2020.1762367
10.1021/jacs.6b03709
10.1002/anie.201912055
10.1021/acscatal.6b02324
10.1021/cs300619q
10.1039/D0CY00992J
10.1002/anie.201901169
10.1021/jacs.9b09038
10.1002/wcms.1338
10.1002/anie.201606218
10.1021/cs500720y
10.1021/acs.chemrev.5b00676
10.1002/adsc.201901040
10.1039/D1CY00446H
10.1021/acs.organomet.8b00774
10.1039/C9CY01601E
10.1021/acs.oprd.9b00559
10.1007/3418_2020_66
10.1002/chem.201200603
10.1021/jacs.6b05692
10.1002/9783527619382
10.1039/C9FD00145J
10.1021/om300670r
10.1002/anie.201209218
10.1002/anie.201607233
10.1002/cctc.201402421
10.1039/C9CC05076K
10.1021/op4003278
10.1021/acscatal.6b03554
10.1021/ja016817p
10.1146/annurev-chembioeng-073009-100903
10.1016/j.jcat.2018.04.018
10.1002/adsc.200390000
10.1021/acscatal.6b00263
10.1021/acs.orglett.8b03132
10.1002/ajoc.201900148
10.1039/C6CY02413K
10.1021/ja065460s
10.1021/acscatal.8b02902
10.1002/adsc.201900671
10.1021/ja512868a
10.1021/acs.accounts.8b00149
10.1021/om200437n
10.1021/acs.chemrev.8b00555
10.1002/anie.202013540
10.1016/j.cattod.2020.09.008
10.1021/jacs.5b04237
10.1039/C7CS00334J
10.1002/anie.201705471
10.1021/ol503456j
10.1002/chem.201604991
10.1021/acscatal.9b03963
10.1021/acscatal.8b03530
10.1002/anie.201814751
10.1002/chem.201504058
10.1021/ja512389y
10.1038/s41929-019-0404-6
10.1002/anie.201701365
10.1002/anie.201806289
10.1126/science.abh3418
10.1021/op200234j
10.1021/acscatal.8b03899
10.1039/C5CS00038F
10.1016/j.checat.2021.05.007
10.1039/c2cy20601c
10.1002/anie.201709010
10.1021/jacs.9b09326
10.1021/acs.chemrev.8b00306
10.1002/anie.201808676
10.1021/ja8034812
10.1021/acs.orglett.0c01783
10.1002/anie.201702406
10.1021/acs.accounts.5b00027
10.1039/C7SC00138J
10.1039/D1SC00703C
10.1016/j.chempr.2020.11.013
10.1021/jacs.9b06760
10.1021/acscatal.8b00153
10.1055/s-0036-1590818
10.1016/j.chempr.2019.03.010
10.1002/adsc.201701115
10.1038/s41467-020-20168-2
10.1039/C9FD00060G
10.1021/jacs.9b05024
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/jacs.2c00548
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 8137
ExternalDocumentID PMC9100671
35476423
10_1021_jacs_2c00548
a72888985
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 016.Veni.192.032
– fundername: ;
  grantid: 725686
GroupedDBID -
02
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AGXLV
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ET
F5P
GGK
GNL
IH2
IH9
JG
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
CITATION
CUPRZ
ED~
JG~
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a450t-ea611c9f672fa47781a12b4b3825e38f0260e59f5057fec7429362c8244416103
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 13:46:15 EDT 2025
Tue Aug 05 10:23:04 EDT 2025
Fri Jul 11 04:41:55 EDT 2025
Mon Jul 21 06:08:41 EDT 2025
Tue Jul 01 03:54:08 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Fri May 13 03:17:27 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a450t-ea611c9f672fa47781a12b4b3825e38f0260e59f5057fec7429362c8244416103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5454-9582
0000-0002-6178-7041
0000-0002-4410-6398
0000-0001-8025-9968
0000-0001-9242-9901
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9100671
PMID 35476423
PQID 2656743515
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9100671
proquest_miscellaneous_2675578196
proquest_miscellaneous_2656743515
pubmed_primary_35476423
crossref_primary_10_1021_jacs_2c00548
crossref_citationtrail_10_1021_jacs_2c00548
acs_journals_10_1021_jacs_2c00548
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-11
PublicationDateYYYYMMDD 2022-05-11
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref1/cit1d
ref12/cit12l
ref12/cit12k
ref12/cit12j
ref12/cit12i
ref12/cit12h
ref12/cit12g
ref12/cit12f
ref12/cit12e
Rylander P. N. (ref3/cit3a) 1979
ref12/cit12d
ref12/cit12c
ref12/cit12b
ref12/cit12a
ref2/cit2
Elangovan S. (ref8/cit8a) 2016; 49
ref1/cit1a
ref7/cit7w
ref7/cit7v
ref1/cit1c
ref7/cit7u
ref1/cit1b
ref7/cit7t
ref5/cit5b
ref7/cit7o
ref5/cit5c
ref7/cit7n
ref7/cit7m
ref5/cit5a
ref7/cit7l
ref7/cit7s
ref7/cit7r
ref7/cit7q
ref7/cit7p
ref7/cit7g
ref7/cit7e
ref7/cit7d
ref3/cit3b
ref7/cit7k
ref3/cit3c
ref7/cit7j
ref7/cit7i
ref7/cit7h
ref13/cit13
ref7/cit7c
ref7/cit7b
ref7/cit7a
ref5/cit5j
ref5/cit5k
ref5/cit5h
ref5/cit5i
ref5/cit5f
ref5/cit5g
ref5/cit5d
ref5/cit5e
ref15/cit15a
ref10/cit10d
ref10/cit10e
ref10/cit10f
ref11/cit11
ref15/cit15b
ref10/cit10a
ref8/cit8c
ref10/cit10b
ref8/cit8b
ref10/cit10c
ref8/cit8e
ref8/cit8d
ref6/cit6h
ref6/cit6d
ref4/cit4a
ref6/cit6e
ref4/cit4b
ref6/cit6f
ref4/cit4c
ref6/cit6g
ref14/cit14a
ref14/cit14b
Alig L. (ref6/cit6c) 2018; 119
Garduño J. A. (ref7/cit7f) 2018; 9
McQuillin F. J. (ref3/cit3d) 2012; 1
Seo C. S. (ref3/cit3f) 2018; 38
ref4/cit4d
ref6/cit6a
ref6/cit6b
Chaloner P. A. (ref3/cit3e) 2013; 15
References_xml – ident: ref1/cit1c
  doi: 10.1080/01614940.2020.1762367
– ident: ref7/cit7a
  doi: 10.1021/jacs.6b03709
– ident: ref14/cit14a
  doi: 10.1002/anie.201912055
– ident: ref12/cit12f
  doi: 10.1021/acscatal.6b02324
– ident: ref13/cit13
  doi: 10.1021/cs300619q
– ident: ref7/cit7s
  doi: 10.1039/D0CY00992J
– ident: ref7/cit7m
  doi: 10.1002/anie.201901169
– ident: ref7/cit7o
  doi: 10.1021/jacs.9b09038
– volume: 1
  volume-title: Homogeneous hydrogenation in organic chemistry
  year: 2012
  ident: ref3/cit3d
– ident: ref15/cit15b
  doi: 10.1002/wcms.1338
– volume: 15
  volume-title: Homogeneous hydrogenation
  year: 2013
  ident: ref3/cit3e
– ident: ref7/cit7b
  doi: 10.1002/anie.201606218
– ident: ref5/cit5d
  doi: 10.1021/cs500720y
– ident: ref1/cit1a
  doi: 10.1021/acs.chemrev.5b00676
– ident: ref7/cit7q
  doi: 10.1002/adsc.201901040
– ident: ref12/cit12j
  doi: 10.1039/D1CY00446H
– volume: 38
  start-page: 47
  year: 2018
  ident: ref3/cit3f
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.8b00774
– ident: ref8/cit8d
  doi: 10.1039/C9CY01601E
– ident: ref4/cit4d
  doi: 10.1021/acs.oprd.9b00559
– ident: ref8/cit8e
  doi: 10.1007/3418_2020_66
– ident: ref10/cit10a
  doi: 10.1002/chem.201200603
– ident: ref12/cit12e
  doi: 10.1021/jacs.6b05692
– ident: ref3/cit3c
  doi: 10.1002/9783527619382
– ident: ref10/cit10f
  doi: 10.1039/C9FD00145J
– ident: ref5/cit5b
  doi: 10.1021/om300670r
– ident: ref5/cit5c
  doi: 10.1002/anie.201209218
– volume: 49
  start-page: 15364
  year: 2016
  ident: ref8/cit8a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201607233
– ident: ref5/cit5e
  doi: 10.1002/cctc.201402421
– ident: ref10/cit10e
  doi: 10.1039/C9CC05076K
– ident: ref4/cit4b
  doi: 10.1021/op4003278
– ident: ref12/cit12g
  doi: 10.1021/acscatal.6b03554
– ident: ref12/cit12a
  doi: 10.1021/ja016817p
– ident: ref15/cit15a
  doi: 10.1146/annurev-chembioeng-073009-100903
– ident: ref9/cit9
  doi: 10.1016/j.jcat.2018.04.018
– ident: ref3/cit3b
  doi: 10.1002/adsc.200390000
– ident: ref5/cit5i
  doi: 10.1021/acscatal.6b00263
– ident: ref7/cit7j
  doi: 10.1021/acs.orglett.8b03132
– ident: ref1/cit1b
  doi: 10.1002/ajoc.201900148
– ident: ref5/cit5j
  doi: 10.1039/C6CY02413K
– ident: ref12/cit12b
  doi: 10.1021/ja065460s
– ident: ref7/cit7l
  doi: 10.1021/acscatal.8b02902
– ident: ref12/cit12i
  doi: 10.1002/adsc.201900671
– ident: ref10/cit10b
  doi: 10.1021/ja512868a
– ident: ref6/cit6e
  doi: 10.1021/acs.accounts.8b00149
– ident: ref12/cit12d
  doi: 10.1021/om200437n
– volume: 119
  start-page: 2681
  year: 2018
  ident: ref6/cit6c
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00555
– ident: ref7/cit7v
  doi: 10.1002/anie.202013540
– ident: ref1/cit1d
  doi: 10.1016/j.cattod.2020.09.008
– ident: ref5/cit5f
  doi: 10.1021/jacs.5b04237
– ident: ref6/cit6d
  doi: 10.1039/C7CS00334J
– ident: ref7/cit7d
  doi: 10.1002/anie.201705471
– ident: ref5/cit5h
  doi: 10.1021/ol503456j
– ident: ref7/cit7c
  doi: 10.1002/chem.201604991
– ident: ref7/cit7p
  doi: 10.1021/acscatal.9b03963
– ident: ref10/cit10d
  doi: 10.1021/acscatal.8b03530
– ident: ref7/cit7r
  doi: 10.1002/anie.201814751
– ident: ref12/cit12k
  doi: 10.1002/chem.201504058
– ident: ref5/cit5g
  doi: 10.1021/ja512389y
– ident: ref7/cit7t
  doi: 10.1038/s41929-019-0404-6
– ident: ref8/cit8b
  doi: 10.1002/anie.201701365
– ident: ref7/cit7i
  doi: 10.1002/anie.201806289
– ident: ref2/cit2
  doi: 10.1126/science.abh3418
– ident: ref5/cit5a
  doi: 10.1021/op200234j
– volume: 9
  start-page: 392
  year: 2018
  ident: ref7/cit7f
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03899
– ident: ref4/cit4c
  doi: 10.1039/C5CS00038F
– ident: ref14/cit14b
  doi: 10.1016/j.checat.2021.05.007
– ident: ref4/cit4a
  doi: 10.1039/c2cy20601c
– ident: ref6/cit6g
  doi: 10.1002/anie.201709010
– volume-title: Catalytic Hydrogenation in Organic Syntheses: Paul Rylander
  year: 1979
  ident: ref3/cit3a
– ident: ref5/cit5k
  doi: 10.1021/jacs.9b09326
– ident: ref6/cit6f
  doi: 10.1021/acs.chemrev.8b00306
– ident: ref7/cit7h
  doi: 10.1002/anie.201808676
– ident: ref12/cit12c
  doi: 10.1021/ja8034812
– ident: ref7/cit7u
  doi: 10.1021/acs.orglett.0c01783
– ident: ref8/cit8c
  doi: 10.1002/anie.201702406
– ident: ref6/cit6a
  doi: 10.1021/acs.accounts.5b00027
– ident: ref7/cit7e
  doi: 10.1039/C7SC00138J
– ident: ref12/cit12l
  doi: 10.1039/D1SC00703C
– ident: ref6/cit6h
  doi: 10.1016/j.chempr.2020.11.013
– ident: ref12/cit12h
  doi: 10.1021/jacs.9b06760
– ident: ref7/cit7g
  doi: 10.1021/acscatal.8b00153
– ident: ref6/cit6b
  doi: 10.1055/s-0036-1590818
– ident: ref11/cit11
  doi: 10.1016/j.chempr.2019.03.010
– ident: ref7/cit7k
  doi: 10.1002/adsc.201701115
– ident: ref7/cit7w
  doi: 10.1038/s41467-020-20168-2
– ident: ref10/cit10c
  doi: 10.1039/C9FD00060G
– ident: ref7/cit7n
  doi: 10.1021/jacs.9b05024
SSID ssj0004281
Score 2.5535486
Snippet Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role...
Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8129
SubjectTerms catalysts
catalytic activity
hydrogenation
thermodynamics
Title Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation
URI http://dx.doi.org/10.1021/jacs.2c00548
https://www.ncbi.nlm.nih.gov/pubmed/35476423
https://www.proquest.com/docview/2656743515
https://www.proquest.com/docview/2675578196
https://pubmed.ncbi.nlm.nih.gov/PMC9100671
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8oPuCLoIieiFkSeSK9sNvt7vYRLsBJgjFREt6adj8CUXum7T3gX-9MPw7vCOJrO5tNZ2Z3ftP5AviYWi-54zISwZtIBiui1GkVCeUSJVWRxI4iuhef1fRSnl8lV3cJsqsRfEH9gWw9FpawhXkKz4RChE0QaPL1rv5RGD7AXG1U3Ce4r64mA2TrZQN0D1WuJkf-ZW1ON-BsqNnpkky-j-dNMba_77dwfORDNuFFDzjZUachL-GJL1_B-mSY87YF9jhHSbEvbV7erKrZp7ZwkqECVT9nrptYX7O8dGxC_3pu64Z1U-tJpuymZFNciXroZ_MaSaqCkt3Z9NZV9LSleg2XpyffJtOoH70Q5TI5bCKfK85tGpQWIZdaG55zUcgiRofSxyZQJzKfpIHcm-At-tcpWkJrECyQx3QYb8NaOSv9W2BC2lQY61UagpQ6mCJ3Ctkb40ZOBT2CPWRM1h-dOmuj4gK9Enras2sEB4PMMtv3LqcRGj8eoN5fUP_qenY8QLc3iD9DnlOkJG95lQlEuQitEOv9i0YneN3hDTaCN53KLHaLE6nRsYtHoJeUaUFATb2X35Q3121zb4RvCCD4u__gyg48F1SMQb1k-XtYa6q530WI1BQf2vPxBxFcDJg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOZQL78fydCU4oVS149jOsayoUmhXSLRSb1Hih1oBWZRkD-XXM-Nkt-yiol6dcR7jsf1NPPMNwLvceskdl4kI3iQyWJHkTqtEKJcpqeosdXSiezxTxan8fJadjcnqlAuDL9Hhnbp4iH_FLkA0QdgoLEEMcxvuIA4RFMG3P_12lQYpDF-iXW1UOsa5b_amfch26_vQP-ByM0byr03n4D7MVq8bY02-7y76etf-3mByvPH3PIB7I_xk-4O9PIRbvnkE29Nl1bfHYD9WOG7sa4zSm7cdO4xplAzNqf05d0P9-o5VjWNT-vNz2fVsqGFPI8wuGlZgT7RKP190KNLWFPrOikvXUmuUegKnB59OpkUyFmJIKpnt9YmvFOc2D0qLUEmtDa-4qGWdonvpUxOIl8xneSBnJ3iL3naO-6I1CB3If9pLn8JWM2_8c2BC2lwY61UegpQ6mLpyCrWc4oOcCnoCO6iYcpxIXRnPyAX6KNQ6qmsCH5ZDV9qRyZwKavy4Rvr9SvrXwOBxjdzO0gpK1Dmdm1RRV6VAzItAC5Hf_2R0hosfrmcTeDZYzuppaSY1unnpBPSaTa0EiOJ7_UpzcR6pvhHMIZzgL26glbewXZwcH5VHh7MvL-GuoDQNYpnlr2Crbxf-NYKnvn4Tp8wfXRIU-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3o_l6UpwQqlqx7GdY1lYbXlUFVCptyjxQ1RAtkqyh_LrmXGShV1UBNdkHCfjsf1NZvwNwPPceskdl4kI3iQyWJHkTqtEKJcpqaosdRTR_XCo5sfy7Ul2sgV8PAuDL9Hik9oYxKdZfebCwDBAVEF4Q1iCGeYSXKaIHWXx7U8__ToKKQwfEa82Kh1y3Tdb015k2_W96A-AuZkn-dvGM7sBH1evHPNNvu4uu2rX_thgc_yvb7oJ1wcYyvZ7u7kFW76-DVenY_W3O2BflTh-7Chm6y2alh3E45QMzar5vnB9HfuWlbVjU_oDdN52rK9lTyPNTms2x5ZonX6xbFGkqSgFns3PXUNXo9RdOJ69-TydJ0NBhqSU2V6X-FJxbvOgtAil1NrwkotKVim6mT41gfjJfJYHcnqCt-h157g_WoMQgvyovfQebNeL2j8AJqTNhbFe5SFIqYOpSqdQ0yl25FTQE9hBxRTDhGqLGCsX6KvQ1UFdE3g5Dl9hB0ZzKqzx7QLpFyvps57J4wK5ndESCtQ5xU_KqKtCIPZFwIUI8G8yOsNFENe1CdzvrWfVW5pJje5eOgG9ZlcrAaL6Xr9Tn36JlN8I6hBW8If_oJVncOXo9ax4f3D47hFcE3Rag8hm-WPY7pqlf4IYqquexlnzE0BAF3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basic+Promotors+Impact+Thermodynamics+and+Catalyst+Speciation+in+Homogeneous+Carbonyl+Hydrogenation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yang%2C+Wenjun&rft.au=Kalavalapalli%2C+Tejas+Y.&rft.au=Krieger%2C+Annika+M.&rft.au=Khvorost%2C+Taras+A.&rft.date=2022-05-11&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=144&rft.issue=18&rft.spage=8129&rft.epage=8137&rft_id=info:doi/10.1021%2Fjacs.2c00548&rft.externalDocID=a72888985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon