Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation
Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectl...
Saved in:
Published in | Journal of the American Chemical Society Vol. 144; no. 18; pp. 8129 - 8137 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.2c00548 |
Cover
Loading…
Abstract | Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation. |
---|---|
AbstractList | Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation. Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation.Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation. Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation. |
Author | Chernyshov, Ivan Yu Kalavalapalli, Tejas Y. Krieger, Annika M. Uslamin, Evgeny A. Filonenko, Georgy A. Pidko, Evgeny A. Yang, Wenjun Weber, Manuela Khvorost, Taras A. |
AuthorAffiliation | Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences TheoMAT Group, ChemBio Cluster |
AuthorAffiliation_xml | – name: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences – name: TheoMAT Group, ChemBio Cluster |
Author_xml | – sequence: 1 givenname: Wenjun orcidid: 0000-0002-4410-6398 surname: Yang fullname: Yang, Wenjun organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences – sequence: 2 givenname: Tejas Y. surname: Kalavalapalli fullname: Kalavalapalli, Tejas Y. organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences – sequence: 3 givenname: Annika M. orcidid: 0000-0002-6178-7041 surname: Krieger fullname: Krieger, Annika M. organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences – sequence: 4 givenname: Taras A. surname: Khvorost fullname: Khvorost, Taras A. organization: TheoMAT Group, ChemBio Cluster – sequence: 5 givenname: Ivan Yu surname: Chernyshov fullname: Chernyshov, Ivan Yu organization: TheoMAT Group, ChemBio Cluster – sequence: 6 givenname: Manuela surname: Weber fullname: Weber, Manuela – sequence: 7 givenname: Evgeny A. orcidid: 0000-0001-5454-9582 surname: Uslamin fullname: Uslamin, Evgeny A. organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences – sequence: 8 givenname: Evgeny A. orcidid: 0000-0001-9242-9901 surname: Pidko fullname: Pidko, Evgeny A. email: E.A.Pidko@tudelft.nl organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences – sequence: 9 givenname: Georgy A. orcidid: 0000-0001-8025-9968 surname: Filonenko fullname: Filonenko, Georgy A. email: G.A.Filonenko@tudelft.nl organization: Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35476423$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1PGzEQxa0KVAL0xhn5yKFLba8_di9IbdQSJCSQgLM1cbzgaNcOtlNp__s6IaC2aiVOoxn_5umN3yHa88FbhE4oOaeE0S9LMOmcGUIEbz6gCRWMVIIyuYcmhBBWqUbWB-gwpWVpOWvoR3RQC64kZ_UEmW-QnMG3MQwhh5jw1bACk_H9k41DWIweBmcSBr_AU8jQjynju5U1DrILHjuPZ2Xz0Xob1qkgcR782OPZuIib6ZY6Rvsd9Ml-2tUj9PDj-_10Vl3fXF5Nv15XwAXJlQVJqWk7qVgHXKmGAmVzPq8bJmzddIRJYkXbCSJUZ43irK0lMw3jnFNJSX2ELl50V-v5YBfG-hyh16voBoijDuD0ny_ePenH8FO3lBCpaBE42wnE8Ly2KevBJWP7HrbnaSaVEMVXK9-BCql4Lago6Onvtt78vIZQgM8vgIkhpWi7N4QSvclYbzLWu4wLzv7Cjcvbjy5Huf5_Szu_m-EyrKMvSfwb_QUWRLhs |
CitedBy_id | crossref_primary_10_1021_acscatal_4c00019 crossref_primary_10_1039_D2DT03600B crossref_primary_10_1039_D3DD00016H crossref_primary_10_1002_anie_202301042 crossref_primary_10_1002_anie_202307987 crossref_primary_10_1002_cplu_202300702 crossref_primary_10_1021_jacs_4c00493 crossref_primary_10_1038_s41557_022_01051_7 crossref_primary_10_1021_acs_jctc_3c01313 crossref_primary_10_1021_acs_organomet_3c00137 crossref_primary_10_1002_ange_202318763 crossref_primary_10_1002_anie_202502923 crossref_primary_10_1016_j_jcat_2023_115252 crossref_primary_10_1021_acs_organomet_3c00399 crossref_primary_10_1002_anie_202318763 crossref_primary_10_1039_D2DT02597C crossref_primary_10_1039_D4DT02496F crossref_primary_10_1016_j_jcat_2024_115334 crossref_primary_10_1016_j_jcat_2025_115998 crossref_primary_10_1002_ange_202307987 crossref_primary_10_1021_acs_chemrev_2c00888 crossref_primary_10_1021_jacs_4c02096 crossref_primary_10_1002_ange_202301042 crossref_primary_10_1002_cctc_202300004 crossref_primary_10_1002_chem_202304201 crossref_primary_10_1021_acs_organomet_4c00214 crossref_primary_10_1021_acscatal_2c06405 crossref_primary_10_1021_acs_jcim_3c00660 crossref_primary_10_1002_cctc_202401237 crossref_primary_10_1002_ange_202502923 crossref_primary_10_1021_acs_jctc_2c00404 crossref_primary_10_1021_acs_joc_4c02731 crossref_primary_10_1039_D4OB01044B crossref_primary_10_1002_cssc_202301138 crossref_primary_10_1016_j_cej_2024_154375 crossref_primary_10_6023_cjoc202403024 crossref_primary_10_1002_cctc_202400901 crossref_primary_10_1021_acs_jpcc_3c08224 crossref_primary_10_1039_D2CC05625A |
Cites_doi | 10.1080/01614940.2020.1762367 10.1021/jacs.6b03709 10.1002/anie.201912055 10.1021/acscatal.6b02324 10.1021/cs300619q 10.1039/D0CY00992J 10.1002/anie.201901169 10.1021/jacs.9b09038 10.1002/wcms.1338 10.1002/anie.201606218 10.1021/cs500720y 10.1021/acs.chemrev.5b00676 10.1002/adsc.201901040 10.1039/D1CY00446H 10.1021/acs.organomet.8b00774 10.1039/C9CY01601E 10.1021/acs.oprd.9b00559 10.1007/3418_2020_66 10.1002/chem.201200603 10.1021/jacs.6b05692 10.1002/9783527619382 10.1039/C9FD00145J 10.1021/om300670r 10.1002/anie.201209218 10.1002/anie.201607233 10.1002/cctc.201402421 10.1039/C9CC05076K 10.1021/op4003278 10.1021/acscatal.6b03554 10.1021/ja016817p 10.1146/annurev-chembioeng-073009-100903 10.1016/j.jcat.2018.04.018 10.1002/adsc.200390000 10.1021/acscatal.6b00263 10.1021/acs.orglett.8b03132 10.1002/ajoc.201900148 10.1039/C6CY02413K 10.1021/ja065460s 10.1021/acscatal.8b02902 10.1002/adsc.201900671 10.1021/ja512868a 10.1021/acs.accounts.8b00149 10.1021/om200437n 10.1021/acs.chemrev.8b00555 10.1002/anie.202013540 10.1016/j.cattod.2020.09.008 10.1021/jacs.5b04237 10.1039/C7CS00334J 10.1002/anie.201705471 10.1021/ol503456j 10.1002/chem.201604991 10.1021/acscatal.9b03963 10.1021/acscatal.8b03530 10.1002/anie.201814751 10.1002/chem.201504058 10.1021/ja512389y 10.1038/s41929-019-0404-6 10.1002/anie.201701365 10.1002/anie.201806289 10.1126/science.abh3418 10.1021/op200234j 10.1021/acscatal.8b03899 10.1039/C5CS00038F 10.1016/j.checat.2021.05.007 10.1039/c2cy20601c 10.1002/anie.201709010 10.1021/jacs.9b09326 10.1021/acs.chemrev.8b00306 10.1002/anie.201808676 10.1021/ja8034812 10.1021/acs.orglett.0c01783 10.1002/anie.201702406 10.1021/acs.accounts.5b00027 10.1039/C7SC00138J 10.1039/D1SC00703C 10.1016/j.chempr.2020.11.013 10.1021/jacs.9b06760 10.1021/acscatal.8b00153 10.1055/s-0036-1590818 10.1016/j.chempr.2019.03.010 10.1002/adsc.201701115 10.1038/s41467-020-20168-2 10.1039/C9FD00060G 10.1021/jacs.9b05024 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.2c00548 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 8137 |
ExternalDocumentID | PMC9100671 35476423 10_1021_jacs_2c00548 a72888985 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 016.Veni.192.032 – fundername: ; grantid: 725686 |
GroupedDBID | - 02 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AGXLV ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ET F5P GGK GNL IH2 IH9 JG K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -ET -~X .DC .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AHGAQ CITATION CUPRZ ED~ JG~ XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a450t-ea611c9f672fa47781a12b4b3825e38f0260e59f5057fec7429362c8244416103 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 13:46:15 EDT 2025 Tue Aug 05 10:23:04 EDT 2025 Fri Jul 11 04:41:55 EDT 2025 Mon Jul 21 06:08:41 EDT 2025 Tue Jul 01 03:54:08 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Fri May 13 03:17:27 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a450t-ea611c9f672fa47781a12b4b3825e38f0260e59f5057fec7429362c8244416103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5454-9582 0000-0002-6178-7041 0000-0002-4410-6398 0000-0001-8025-9968 0000-0001-9242-9901 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9100671 |
PMID | 35476423 |
PQID | 2656743515 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9100671 proquest_miscellaneous_2675578196 proquest_miscellaneous_2656743515 pubmed_primary_35476423 crossref_primary_10_1021_jacs_2c00548 crossref_citationtrail_10_1021_jacs_2c00548 acs_journals_10_1021_jacs_2c00548 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-11 |
PublicationDateYYYYMMDD | 2022-05-11 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref1/cit1d ref12/cit12l ref12/cit12k ref12/cit12j ref12/cit12i ref12/cit12h ref12/cit12g ref12/cit12f ref12/cit12e Rylander P. N. (ref3/cit3a) 1979 ref12/cit12d ref12/cit12c ref12/cit12b ref12/cit12a ref2/cit2 Elangovan S. (ref8/cit8a) 2016; 49 ref1/cit1a ref7/cit7w ref7/cit7v ref1/cit1c ref7/cit7u ref1/cit1b ref7/cit7t ref5/cit5b ref7/cit7o ref5/cit5c ref7/cit7n ref7/cit7m ref5/cit5a ref7/cit7l ref7/cit7s ref7/cit7r ref7/cit7q ref7/cit7p ref7/cit7g ref7/cit7e ref7/cit7d ref3/cit3b ref7/cit7k ref3/cit3c ref7/cit7j ref7/cit7i ref7/cit7h ref13/cit13 ref7/cit7c ref7/cit7b ref7/cit7a ref5/cit5j ref5/cit5k ref5/cit5h ref5/cit5i ref5/cit5f ref5/cit5g ref5/cit5d ref5/cit5e ref15/cit15a ref10/cit10d ref10/cit10e ref10/cit10f ref11/cit11 ref15/cit15b ref10/cit10a ref8/cit8c ref10/cit10b ref8/cit8b ref10/cit10c ref8/cit8e ref8/cit8d ref6/cit6h ref6/cit6d ref4/cit4a ref6/cit6e ref4/cit4b ref6/cit6f ref4/cit4c ref6/cit6g ref14/cit14a ref14/cit14b Alig L. (ref6/cit6c) 2018; 119 Garduño J. A. (ref7/cit7f) 2018; 9 McQuillin F. J. (ref3/cit3d) 2012; 1 Seo C. S. (ref3/cit3f) 2018; 38 ref4/cit4d ref6/cit6a ref6/cit6b Chaloner P. A. (ref3/cit3e) 2013; 15 |
References_xml | – ident: ref1/cit1c doi: 10.1080/01614940.2020.1762367 – ident: ref7/cit7a doi: 10.1021/jacs.6b03709 – ident: ref14/cit14a doi: 10.1002/anie.201912055 – ident: ref12/cit12f doi: 10.1021/acscatal.6b02324 – ident: ref13/cit13 doi: 10.1021/cs300619q – ident: ref7/cit7s doi: 10.1039/D0CY00992J – ident: ref7/cit7m doi: 10.1002/anie.201901169 – ident: ref7/cit7o doi: 10.1021/jacs.9b09038 – volume: 1 volume-title: Homogeneous hydrogenation in organic chemistry year: 2012 ident: ref3/cit3d – ident: ref15/cit15b doi: 10.1002/wcms.1338 – volume: 15 volume-title: Homogeneous hydrogenation year: 2013 ident: ref3/cit3e – ident: ref7/cit7b doi: 10.1002/anie.201606218 – ident: ref5/cit5d doi: 10.1021/cs500720y – ident: ref1/cit1a doi: 10.1021/acs.chemrev.5b00676 – ident: ref7/cit7q doi: 10.1002/adsc.201901040 – ident: ref12/cit12j doi: 10.1039/D1CY00446H – volume: 38 start-page: 47 year: 2018 ident: ref3/cit3f publication-title: Organometallics doi: 10.1021/acs.organomet.8b00774 – ident: ref8/cit8d doi: 10.1039/C9CY01601E – ident: ref4/cit4d doi: 10.1021/acs.oprd.9b00559 – ident: ref8/cit8e doi: 10.1007/3418_2020_66 – ident: ref10/cit10a doi: 10.1002/chem.201200603 – ident: ref12/cit12e doi: 10.1021/jacs.6b05692 – ident: ref3/cit3c doi: 10.1002/9783527619382 – ident: ref10/cit10f doi: 10.1039/C9FD00145J – ident: ref5/cit5b doi: 10.1021/om300670r – ident: ref5/cit5c doi: 10.1002/anie.201209218 – volume: 49 start-page: 15364 year: 2016 ident: ref8/cit8a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201607233 – ident: ref5/cit5e doi: 10.1002/cctc.201402421 – ident: ref10/cit10e doi: 10.1039/C9CC05076K – ident: ref4/cit4b doi: 10.1021/op4003278 – ident: ref12/cit12g doi: 10.1021/acscatal.6b03554 – ident: ref12/cit12a doi: 10.1021/ja016817p – ident: ref15/cit15a doi: 10.1146/annurev-chembioeng-073009-100903 – ident: ref9/cit9 doi: 10.1016/j.jcat.2018.04.018 – ident: ref3/cit3b doi: 10.1002/adsc.200390000 – ident: ref5/cit5i doi: 10.1021/acscatal.6b00263 – ident: ref7/cit7j doi: 10.1021/acs.orglett.8b03132 – ident: ref1/cit1b doi: 10.1002/ajoc.201900148 – ident: ref5/cit5j doi: 10.1039/C6CY02413K – ident: ref12/cit12b doi: 10.1021/ja065460s – ident: ref7/cit7l doi: 10.1021/acscatal.8b02902 – ident: ref12/cit12i doi: 10.1002/adsc.201900671 – ident: ref10/cit10b doi: 10.1021/ja512868a – ident: ref6/cit6e doi: 10.1021/acs.accounts.8b00149 – ident: ref12/cit12d doi: 10.1021/om200437n – volume: 119 start-page: 2681 year: 2018 ident: ref6/cit6c publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00555 – ident: ref7/cit7v doi: 10.1002/anie.202013540 – ident: ref1/cit1d doi: 10.1016/j.cattod.2020.09.008 – ident: ref5/cit5f doi: 10.1021/jacs.5b04237 – ident: ref6/cit6d doi: 10.1039/C7CS00334J – ident: ref7/cit7d doi: 10.1002/anie.201705471 – ident: ref5/cit5h doi: 10.1021/ol503456j – ident: ref7/cit7c doi: 10.1002/chem.201604991 – ident: ref7/cit7p doi: 10.1021/acscatal.9b03963 – ident: ref10/cit10d doi: 10.1021/acscatal.8b03530 – ident: ref7/cit7r doi: 10.1002/anie.201814751 – ident: ref12/cit12k doi: 10.1002/chem.201504058 – ident: ref5/cit5g doi: 10.1021/ja512389y – ident: ref7/cit7t doi: 10.1038/s41929-019-0404-6 – ident: ref8/cit8b doi: 10.1002/anie.201701365 – ident: ref7/cit7i doi: 10.1002/anie.201806289 – ident: ref2/cit2 doi: 10.1126/science.abh3418 – ident: ref5/cit5a doi: 10.1021/op200234j – volume: 9 start-page: 392 year: 2018 ident: ref7/cit7f publication-title: ACS Catal. doi: 10.1021/acscatal.8b03899 – ident: ref4/cit4c doi: 10.1039/C5CS00038F – ident: ref14/cit14b doi: 10.1016/j.checat.2021.05.007 – ident: ref4/cit4a doi: 10.1039/c2cy20601c – ident: ref6/cit6g doi: 10.1002/anie.201709010 – volume-title: Catalytic Hydrogenation in Organic Syntheses: Paul Rylander year: 1979 ident: ref3/cit3a – ident: ref5/cit5k doi: 10.1021/jacs.9b09326 – ident: ref6/cit6f doi: 10.1021/acs.chemrev.8b00306 – ident: ref7/cit7h doi: 10.1002/anie.201808676 – ident: ref12/cit12c doi: 10.1021/ja8034812 – ident: ref7/cit7u doi: 10.1021/acs.orglett.0c01783 – ident: ref8/cit8c doi: 10.1002/anie.201702406 – ident: ref6/cit6a doi: 10.1021/acs.accounts.5b00027 – ident: ref7/cit7e doi: 10.1039/C7SC00138J – ident: ref12/cit12l doi: 10.1039/D1SC00703C – ident: ref6/cit6h doi: 10.1016/j.chempr.2020.11.013 – ident: ref12/cit12h doi: 10.1021/jacs.9b06760 – ident: ref7/cit7g doi: 10.1021/acscatal.8b00153 – ident: ref6/cit6b doi: 10.1055/s-0036-1590818 – ident: ref11/cit11 doi: 10.1016/j.chempr.2019.03.010 – ident: ref7/cit7k doi: 10.1002/adsc.201701115 – ident: ref7/cit7w doi: 10.1038/s41467-020-20168-2 – ident: ref10/cit10c doi: 10.1039/C9FD00060G – ident: ref7/cit7n doi: 10.1021/jacs.9b05024 |
SSID | ssj0004281 |
Score | 2.5535486 |
Snippet | Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role... Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8129 |
SubjectTerms | catalysts catalytic activity hydrogenation thermodynamics |
Title | Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation |
URI | http://dx.doi.org/10.1021/jacs.2c00548 https://www.ncbi.nlm.nih.gov/pubmed/35476423 https://www.proquest.com/docview/2656743515 https://www.proquest.com/docview/2675578196 https://pubmed.ncbi.nlm.nih.gov/PMC9100671 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8oPuCLoIieiFkSeSK9sNvt7vYRLsBJgjFREt6adj8CUXum7T3gX-9MPw7vCOJrO5tNZ2Z3ftP5AviYWi-54zISwZtIBiui1GkVCeUSJVWRxI4iuhef1fRSnl8lV3cJsqsRfEH9gWw9FpawhXkKz4RChE0QaPL1rv5RGD7AXG1U3Ce4r64mA2TrZQN0D1WuJkf-ZW1ON-BsqNnpkky-j-dNMba_77dwfORDNuFFDzjZUachL-GJL1_B-mSY87YF9jhHSbEvbV7erKrZp7ZwkqECVT9nrptYX7O8dGxC_3pu64Z1U-tJpuymZFNciXroZ_MaSaqCkt3Z9NZV9LSleg2XpyffJtOoH70Q5TI5bCKfK85tGpQWIZdaG55zUcgiRofSxyZQJzKfpIHcm-At-tcpWkJrECyQx3QYb8NaOSv9W2BC2lQY61UagpQ6mCJ3Ctkb40ZOBT2CPWRM1h-dOmuj4gK9Enras2sEB4PMMtv3LqcRGj8eoN5fUP_qenY8QLc3iD9DnlOkJG95lQlEuQitEOv9i0YneN3hDTaCN53KLHaLE6nRsYtHoJeUaUFATb2X35Q3121zb4RvCCD4u__gyg48F1SMQb1k-XtYa6q530WI1BQf2vPxBxFcDJg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOZQL78fydCU4oVS149jOsayoUmhXSLRSb1Hih1oBWZRkD-XXM-Nkt-yiol6dcR7jsf1NPPMNwLvceskdl4kI3iQyWJHkTqtEKJcpqeosdXSiezxTxan8fJadjcnqlAuDL9Hhnbp4iH_FLkA0QdgoLEEMcxvuIA4RFMG3P_12lQYpDF-iXW1UOsa5b_amfch26_vQP-ByM0byr03n4D7MVq8bY02-7y76etf-3mByvPH3PIB7I_xk-4O9PIRbvnkE29Nl1bfHYD9WOG7sa4zSm7cdO4xplAzNqf05d0P9-o5VjWNT-vNz2fVsqGFPI8wuGlZgT7RKP190KNLWFPrOikvXUmuUegKnB59OpkUyFmJIKpnt9YmvFOc2D0qLUEmtDa-4qGWdonvpUxOIl8xneSBnJ3iL3naO-6I1CB3If9pLn8JWM2_8c2BC2lwY61UegpQ6mLpyCrWc4oOcCnoCO6iYcpxIXRnPyAX6KNQ6qmsCH5ZDV9qRyZwKavy4Rvr9SvrXwOBxjdzO0gpK1Dmdm1RRV6VAzItAC5Hf_2R0hosfrmcTeDZYzuppaSY1unnpBPSaTa0EiOJ7_UpzcR6pvhHMIZzgL26glbewXZwcH5VHh7MvL-GuoDQNYpnlr2Crbxf-NYKnvn4Tp8wfXRIU-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3o_l6UpwQqlqx7GdY1lYbXlUFVCptyjxQ1RAtkqyh_LrmXGShV1UBNdkHCfjsf1NZvwNwPPceskdl4kI3iQyWJHkTqtEKJcpqaosdRTR_XCo5sfy7Ul2sgV8PAuDL9Hik9oYxKdZfebCwDBAVEF4Q1iCGeYSXKaIHWXx7U8__ToKKQwfEa82Kh1y3Tdb015k2_W96A-AuZkn-dvGM7sBH1evHPNNvu4uu2rX_thgc_yvb7oJ1wcYyvZ7u7kFW76-DVenY_W3O2BflTh-7Chm6y2alh3E45QMzar5vnB9HfuWlbVjU_oDdN52rK9lTyPNTms2x5ZonX6xbFGkqSgFns3PXUNXo9RdOJ69-TydJ0NBhqSU2V6X-FJxbvOgtAil1NrwkotKVim6mT41gfjJfJYHcnqCt-h157g_WoMQgvyovfQebNeL2j8AJqTNhbFe5SFIqYOpSqdQ0yl25FTQE9hBxRTDhGqLGCsX6KvQ1UFdE3g5Dl9hB0ZzKqzx7QLpFyvps57J4wK5ndESCtQ5xU_KqKtCIPZFwIUI8G8yOsNFENe1CdzvrWfVW5pJje5eOgG9ZlcrAaL6Xr9Tn36JlN8I6hBW8If_oJVncOXo9ax4f3D47hFcE3Rag8hm-WPY7pqlf4IYqquexlnzE0BAF3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basic+Promotors+Impact+Thermodynamics+and+Catalyst+Speciation+in+Homogeneous+Carbonyl+Hydrogenation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yang%2C+Wenjun&rft.au=Kalavalapalli%2C+Tejas+Y.&rft.au=Krieger%2C+Annika+M.&rft.au=Khvorost%2C+Taras+A.&rft.date=2022-05-11&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=144&rft.issue=18&rft.spage=8129&rft.epage=8137&rft_id=info:doi/10.1021%2Fjacs.2c00548&rft.externalDocID=a72888985 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |