RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messenger Cyclic di-AMP
Cyclic di-AMP (cdiA) is a second messenger predicted to be widespread in Gram-positive bacteria, some Gram-negative bacteria, and Archaea. In the human pathogen Listeria monocytogenes, cdiA is an essential molecule that regulates metabolic function and cell wall homeostasis, and decreased levels of...
Saved in:
Published in | Journal of the American Chemical Society Vol. 137; no. 20; pp. 6432 - 6435 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cyclic di-AMP (cdiA) is a second messenger predicted to be widespread in Gram-positive bacteria, some Gram-negative bacteria, and Archaea. In the human pathogen Listeria monocytogenes, cdiA is an essential molecule that regulates metabolic function and cell wall homeostasis, and decreased levels of cdiA result in increased antibiotic susceptibility. We have generated fluorescent biosensors for cdiA through fusion of the Spinach2 aptamer to ligand-binding domains of cdiA riboswitches. The biosensor was used to visualize intracellular cdiA levels in live L. monocytogenes strains and to determine the catalytic domain of the phosphodiesterase PdeA. Furthermore, a flow cytometry assay based on this biosensor was used to screen for diadenylate cyclase activity and confirmed the enzymatic activity of DisA-like proteins from Clostridium difficile and Methanocaldococcus jannaschii. Thus, we have expanded the development of RNA-based biosensors for in vivo metabolite imaging in Gram-positive bacteria and have validated the first dinucleotide cyclase from Archaea. |
---|---|
AbstractList | Cyclic di-AMP (cdiA) is a second messenger predicted to be widespread in Gram-positive bacteria, some Gram-negative bacteria, and Archaea. In the human pathogen Listeria monocytogenes, cdiA is an essential molecule that regulates metabolic function and cell wall homeostasis, and decreased levels of cdiA result in increased antibiotic susceptibility. We have generated fluorescent biosensors for cdiA through fusion of the Spinach2 aptamer to ligand-binding domains of cdiA riboswitches. The biosensor was used to visualize intracellular cdiA levels in live L. monocytogenes strains and to determine the catalytic domain of the phosphodiesterase PdeA. Furthermore, a flow cytometry assay based on this biosensor was used to screen for diadenylate cyclase activity and confirmed the enzymatic activity of DisA-like proteins from Clostridium difficile and Methanocaldococcus jannaschii. Thus, we have expanded the development of RNA-based biosensors for in vivo metabolite imaging in Gram-positive bacteria and have validated the first dinucleotide cyclase from Archaea. Cyclic di-AMP (cdiA) is a second messenger predicted to be widespread in Gram-positive bacteria, some Gram-negative bacteria, and Archaea. In the human pathogen Listeria monocytogenes, cdiA is an essential molecule that regulates metabolic function and cell wall homeostasis, and decreased levels of cdiA result in increased antibiotic susceptibility. We have generated fluorescent biosensors for cdiA through fusion of the Spinach2 aptamer to ligand-binding domains of cdiA riboswitches. The biosensor was used to visualize intracellular cdiA levels in live L. monocytogenes strains and to determine the catalytic domain of the phosphodiesterase PdeA. Furthermore, a flow cytometry assay based on this biosensor was used to screen for diadenylate cyclase activity and confirmed the enzymatic activity of DisA-like proteins from Clostridium difficile and Methanocaldococcus jannaschii. Thus, we have expanded the development of RNA-based biosensors for in vivo metabolite imaging in Gram-positive bacteria and have validated the first dinucleotide cyclase from Archaea.Cyclic di-AMP (cdiA) is a second messenger predicted to be widespread in Gram-positive bacteria, some Gram-negative bacteria, and Archaea. In the human pathogen Listeria monocytogenes, cdiA is an essential molecule that regulates metabolic function and cell wall homeostasis, and decreased levels of cdiA result in increased antibiotic susceptibility. We have generated fluorescent biosensors for cdiA through fusion of the Spinach2 aptamer to ligand-binding domains of cdiA riboswitches. The biosensor was used to visualize intracellular cdiA levels in live L. monocytogenes strains and to determine the catalytic domain of the phosphodiesterase PdeA. Furthermore, a flow cytometry assay based on this biosensor was used to screen for diadenylate cyclase activity and confirmed the enzymatic activity of DisA-like proteins from Clostridium difficile and Methanocaldococcus jannaschii. Thus, we have expanded the development of RNA-based biosensors for in vivo metabolite imaging in Gram-positive bacteria and have validated the first dinucleotide cyclase from Archaea. Cyclic di-AMP (cdiA) is a second messenger predicted to be widespread in Gram-positive bacteria, some Gram-negative bacteria, and Archaea. In the human pathogen Listeria monocytogenes , cdiA is an essential molecule that regulates metabolic function and cell wall homeostasis, and decreased levels of cdiA result in increased antibiotic susceptibility. We have generated fluorescent biosensors for cdiA through fusion of the Spinach2 aptamer to ligand-binding domains of cdiA riboswitches. The biosensor was used to visualize intracellular cdiA levels in live L. monocytogenes strains and to determine the catalytic domain of the phosphodiesterase PdeA. Furthermore, a flow cytometry assay based on this biosensor was used to screen for diadenylate cyclase activity and confirmed the enzymatic activity of DisA-like proteins from Clostridium difficile and Methanocaldococcus jannaschii . Thus, we have expanded the development of RNA-based biosensors for in vivo metabolite imaging in Gram-positive bacteria and have validated the first dinucleotide cyclase from Archaea. |
Author | Portnoy, Daniel A Kellenberger, Colleen A Chen, Chen Hammond, Ming C Whiteley, Aaron T |
AuthorAffiliation | Department of Chemistry University of California Department of Molecular & Cell Biology School of Public Health |
AuthorAffiliation_xml | – name: Department of Molecular & Cell Biology – name: University of California – name: Department of Chemistry – name: School of Public Health – name: 1 Department of Chemistry, University of California, Berkeley, CA 94720 – name: 2 Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720 – name: 3 School of Public Health, University of California, Berkeley, CA 94720 |
Author_xml | – sequence: 1 givenname: Colleen A surname: Kellenberger fullname: Kellenberger, Colleen A – sequence: 2 givenname: Chen surname: Chen fullname: Chen, Chen – sequence: 3 givenname: Aaron T surname: Whiteley fullname: Whiteley, Aaron T – sequence: 4 givenname: Daniel A surname: Portnoy fullname: Portnoy, Daniel A – sequence: 5 givenname: Ming C surname: Hammond fullname: Hammond, Ming C email: mingch@berkeley.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25965978$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYNU7Lb65rPk0Qen5mMyybwI26XVwlbFD_AtZDI3a5bZpCYzhf73zdCtaLH4FHLv7x4O5xyhgxADIPSSkhNKGH27NTafiI4QJsUTtKCCkUpQ1hygBSnDSqqGH6KjnLflWzNFn6FDJtpGtFIt0I8vH5fVqcnQ4_NhigmyhTDiUx8zhBxTxi4mvPbXgFcwDPhiZzY-bHB0-CvYGHp8CbmgG0h4dWMHb3Hvq-Xl5-foqTNDhhf79xh9Pz_7tvpQrT-9v1gt15WpBRmr3vGu5k4Jyay1tSQ9aYFAZ6yk1lHXCw6ysYQooRwoY4SlfdvL1spOQV3zY_TuTvdq6nbQz-6TGfRV8juTbnQ0Xv-9Cf6n3sRrXQtGRUuLwOu9QIq_Jsij3vkSwjCYAHHKmpXYeAmUiv-itFFcCi4aXtBXf9r67ec--QKwO8CmmHMCp60fzejj7NIPmhI916vnevW-3nL05sHRve4j-N7vPNzGKYXSxL_RW-oEtCw |
CitedBy_id | crossref_primary_10_1021_jacs_7b10724 crossref_primary_10_21769_BioProtoc_2753 crossref_primary_10_1039_C6CC03439J crossref_primary_10_1146_annurev_biochem_060815_014244 crossref_primary_10_1039_C8AY01880D crossref_primary_10_1016_j_bios_2015_07_078 crossref_primary_10_1016_j_jbiotec_2018_03_002 crossref_primary_10_1073_pnas_2417323121 crossref_primary_10_1039_C9OB00408D crossref_primary_10_1016_j_mib_2021_11_006 crossref_primary_10_1128_jb_00023_23 crossref_primary_10_1002_cbic_202000667 crossref_primary_10_1002_ange_201707795 crossref_primary_10_1093_nar_gkw465 crossref_primary_10_1002_anie_201806482 crossref_primary_10_1128_JB_00331_15 crossref_primary_10_3390_bios14080376 crossref_primary_10_1093_nar_gkw580 crossref_primary_10_1111_mmi_13736 crossref_primary_10_3390_ijms21093192 crossref_primary_10_1021_acssynbio_9b00142 crossref_primary_10_1080_15476286_2018_1534526 crossref_primary_10_1038_s41565_019_0517_8 crossref_primary_10_1016_j_ejps_2016_08_042 crossref_primary_10_1128_microbiolspec_RWR_0007_2017 crossref_primary_10_1261_rna_063008_117 crossref_primary_10_1002_bip_23394 crossref_primary_10_1021_jacs_0c02931 crossref_primary_10_1261_rna_078220_120 crossref_primary_10_1016_j_ymeth_2018_02_014 crossref_primary_10_1021_acssensors_6b00425 crossref_primary_10_3390_microorganisms8091269 crossref_primary_10_1088_1748_605X_abfd11 crossref_primary_10_1002_9780470559277_ch150174 crossref_primary_10_1016_j_biotechadv_2015_10_011 crossref_primary_10_1021_acs_nanolett_1c03970 crossref_primary_10_1002_anie_201707795 crossref_primary_10_1016_j_chembiol_2021_04_006 crossref_primary_10_1038_s41467_018_04691_x crossref_primary_10_1093_femsml_uqad005 crossref_primary_10_1039_C5NJ02311D crossref_primary_10_1021_acschembio_3c00510 crossref_primary_10_1093_nar_gkw151 crossref_primary_10_1016_j_mib_2018_02_004 crossref_primary_10_1002_smll_202304852 crossref_primary_10_1017_S0033583519000064 crossref_primary_10_1002_sstr_202000132 crossref_primary_10_1016_j_copbio_2020_01_001 crossref_primary_10_1080_10408347_2021_1907735 crossref_primary_10_1039_D1CC06582C crossref_primary_10_1016_j_ymeth_2019_03_008 crossref_primary_10_1021_acs_jpcb_6b03723 crossref_primary_10_1039_D0NR08301A crossref_primary_10_1038_nchembio_2278 crossref_primary_10_1007_s11705_017_1629_z crossref_primary_10_1016_j_bios_2023_115411 crossref_primary_10_1002_bit_26340 crossref_primary_10_1016_j_ymeth_2015_12_009 crossref_primary_10_1002_ange_201806482 crossref_primary_10_1021_acssynbio_0c00583 crossref_primary_10_1021_acsmacrolett_9b00747 crossref_primary_10_1016_j_bios_2021_113827 crossref_primary_10_1093_nar_gky543 crossref_primary_10_1021_jacs_6b01621 crossref_primary_10_1002_mbo3_829 crossref_primary_10_1021_acs_biochem_6b01218 crossref_primary_10_3390_antibiotics11091243 crossref_primary_10_3390_biom13050765 crossref_primary_10_1002_cplu_202000413 crossref_primary_10_3390_ijms20246142 crossref_primary_10_1021_acssensors_2c02213 crossref_primary_10_1016_j_trac_2019_115757 crossref_primary_10_1093_nar_gkaa112 crossref_primary_10_1146_annurev_biochem_060815_014628 crossref_primary_10_1016_j_bios_2017_02_030 crossref_primary_10_3390_nano9020233 crossref_primary_10_1128_msphere_00321_24 crossref_primary_10_1016_j_ymeth_2019_01_008 crossref_primary_10_1126_scisignal_abn8171 crossref_primary_10_3390_ijms19010044 crossref_primary_10_1007_s12010_016_2002_2 crossref_primary_10_1038_s41467_017_02435_x crossref_primary_10_1039_D0CB00187B crossref_primary_10_1002_cbic_202400772 crossref_primary_10_1111_mmi_13622 crossref_primary_10_1021_acsnano_3c10568 crossref_primary_10_1021_acsomega_2c04538 crossref_primary_10_1039_D3AN00320E crossref_primary_10_1093_femsml_uqad027 crossref_primary_10_1016_j_biotechadv_2023_108251 crossref_primary_10_1128_JB_00462_18 crossref_primary_10_1016_j_addr_2018_08_005 crossref_primary_10_1016_j_chembiol_2021_04_022 |
Cites_doi | 10.1002/iub.1212 10.1021/ja410819x 10.1126/scisignal.133pe39 10.1038/nchembio.1606 10.1016/j.cell.2013.08.014 10.1128/JB.00769-13 10.1021/ac403203x 10.1038/nmeth.2701 10.1074/jbc.M109.040238 10.1126/science.1218298 10.1371/journal.ppat.1002217 10.1038/embor.2011.77 10.1126/science.1189801 10.1016/j.cell.2014.07.046 10.1021/ja311960g 10.1038/nchembio.1363 10.1016/j.cell.2012.01.053 10.1038/nrmicro3069 10.1038/nchembio.1607 10.1073/pnas.1419328112 10.1016/j.chom.2015.05.006 10.15252/embj.201489209 10.1111/j.1751-7915.2011.00306.x |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.5b00275 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 6435 |
ExternalDocumentID | PMC4521591 25965978 10_1021_jacs_5b00275 a784309761 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI063302 – fundername: NIAID NIH HHS grantid: 1R01 AI27655 – fundername: NIAID NIH HHS grantid: R01 AI027655 – fundername: NIAID NIH HHS grantid: T32 AI100829 – fundername: NIAID NIH HHS grantid: 1P01 AI63302 – fundername: NIH HHS grantid: 1DP2 OD008677 – fundername: NIH HHS grantid: DP2 OD008677 |
GroupedDBID | - .K2 02 186 1WB 3EH 3O- 4.4 41 53G 55A 5GY 5RE 5VS 6XO 7~N 85S AABXI AAUPJ AAYJJ ABDEX ABDMP ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ABWLT ACBNA ACCAO ACGFS ACJ ACKIV ACNCT ACS ADKFC AEESW AENEX AETEA AFDAS AFEFF AFFDN AFFNX AFMIJ AGXLV AIDAL ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 D0S DU5 DZ EBS ED ED~ EJD ET F20 F5P GJ GNL HR IH9 IHE JG JG~ K2 K78 LG6 MVM NHB OHT P-O P2P RNS ROL RXW TAE TAF TN5 UBX UHB UI2 UKR UNC UPT UQL VF5 VG9 VH1 VQA W1F WH7 X X7L XFK YXA YXE YZZ ZCG ZE2 ZGI ZHY ZY4 --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7X8 7S9 AAYWT L.6 5PM |
ID | FETCH-LOGICAL-a450t-df3b43f8572ccc470d09e0ebac71cf1fd53e76c00858fe8aa5c1d9d79c7b8e443 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 18:40:29 EDT 2025 Mon Jul 21 11:15:36 EDT 2025 Fri Jul 11 06:55:20 EDT 2025 Wed Feb 19 02:00:20 EST 2025 Tue Jul 01 04:33:13 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Thu Aug 27 13:43:00 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a450t-df3b43f8572ccc470d09e0ebac71cf1fd53e76c00858fe8aa5c1d9d79c7b8e443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4521591 |
PMID | 25965978 |
PQID | 1683753563 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4521591 proquest_miscellaneous_2000351215 proquest_miscellaneous_1683753563 pubmed_primary_25965978 crossref_citationtrail_10_1021_jacs_5b00275 crossref_primary_10_1021_jacs_5b00275 acs_journals_10_1021_jacs_5b00275 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ AGXLV VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 1WB BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-27 |
PublicationDateYYYYMMDD | 2015-05-27 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Woodward J. J. (ref6/cit6) 2010; 328 Rao F. (ref21/cit21) 2010; 285 Schaap P. (ref13/cit13) 2013; 65 Oppenheimer-Shaanan Y. (ref8/cit8) 2011; 12 Corrigan R. M. (ref4/cit4) 2011; 7 Kellenberger C. A. (ref11/cit11) 2013; 135 Song W. (ref19/cit19) 2014; 136 Zhou J. (ref10/cit10) 2014; 86 Sureka K. (ref3/cit3) 2014; 158 Libanova R. (ref7/cit7) 2012; 5 Danilchanka O. (ref1/cit1) 2013; 154 Corrigan R. M. (ref2/cit2) 2013; 11 Nelson J. W. (ref14/cit14) 2013; 9 Romling U. (ref24/cit24) 2008; 1 Witte C. E. (ref5/cit5) 2013 Strack R. L. (ref15/cit15) 2013; 10 Gao A. (ref16/cit16) 2014; 10 Jones C. P. (ref18/cit18) 2014; 33 Bai Y. (ref9/cit9) 2013; 195 Davies B. W. (ref23/cit23) 2012; 149 Paige J. S. (ref12/cit12) 2012; 335 ref20/cit20 Ren A. (ref17/cit17) 2014; 10 Kellenberger C. A. (ref22/cit22) 2015; 112 21958423 - Microb Biotechnol. 2012 Mar;5(2):168-76 22500802 - Cell. 2012 Apr 13;149(2):358-70 24013631 - J Bacteriol. 2013 Nov;195(22):5123-32 25848022 - Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5383-8 23993090 - Cell. 2013 Aug 29;154(5):962-70 24141192 - Nat Chem Biol. 2013 Dec;9(12):834-9 23488798 - J Am Chem Soc. 2013 Apr 3;135(13):4906-9 22403384 - Science. 2012 Mar 9;335(6073):1194 21909268 - PLoS Pathog. 2011 Sep;7(9):e1002217 23812326 - Nat Rev Microbiol. 2013 Aug;11(8):513-24 25086507 - Nat Chem Biol. 2014 Sep;10(9):787-92 25215494 - Cell. 2014 Sep 11;158(6):1389-401 24393009 - J Am Chem Soc. 2014 Jan 29;136(4):1198-201 26028365 - Cell Host Microbe. 2015 Jun 10;17(6):788-98 24162923 - Nat Methods. 2013 Dec;10(12):1219-24 20508090 - Science. 2010 Jun 25;328(5986):1703-5 24494631 - Anal Chem. 2014 Mar 4;86(5):2412-20 25086509 - Nat Chem Biol. 2014 Sep;10(9):780-6 25271255 - EMBO J. 2014 Nov 18;33(22):2692-703 18714086 - Sci Signal. 2008;1(33):pe39 23716572 - MBio. 2013;4(3):e00282-13 21566650 - EMBO Rep. 2011 Jun;12(6):594-601 24136904 - IUBMB Life. 2013 Nov;65(11):897-903 19901023 - J Biol Chem. 2010 Jan 1;285(1):473-82 |
References_xml | – volume: 65 start-page: 897 year: 2013 ident: ref13/cit13 publication-title: IUBMB Life doi: 10.1002/iub.1212 – volume: 136 start-page: 1198 year: 2014 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410819x – volume: 1 start-page: pe39 year: 2008 ident: ref24/cit24 publication-title: Sci. Signal. doi: 10.1126/scisignal.133pe39 – volume: 10 start-page: 780 year: 2014 ident: ref17/cit17 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1606 – volume: 154 start-page: 962 year: 2013 ident: ref1/cit1 publication-title: Cell doi: 10.1016/j.cell.2013.08.014 – volume: 195 start-page: 5123 year: 2013 ident: ref9/cit9 publication-title: J. Bacteriol. doi: 10.1128/JB.00769-13 – volume: 86 start-page: 2412 year: 2014 ident: ref10/cit10 publication-title: Anal. Chem. doi: 10.1021/ac403203x – volume: 10 start-page: 1219 year: 2013 ident: ref15/cit15 publication-title: Nat. Methods doi: 10.1038/nmeth.2701 – volume: 285 start-page: 473 year: 2010 ident: ref21/cit21 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.040238 – volume: 335 start-page: 1194 year: 2012 ident: ref12/cit12 publication-title: Science doi: 10.1126/science.1218298 – volume: 7 start-page: e1002217 year: 2011 ident: ref4/cit4 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002217 – start-page: 4 year: 2013 ident: ref5/cit5 publication-title: MBio – volume: 12 start-page: 594 year: 2011 ident: ref8/cit8 publication-title: EMBO Rep. doi: 10.1038/embor.2011.77 – volume: 328 start-page: 1703 year: 2010 ident: ref6/cit6 publication-title: Science doi: 10.1126/science.1189801 – volume: 158 start-page: 1389 year: 2014 ident: ref3/cit3 publication-title: Cell doi: 10.1016/j.cell.2014.07.046 – volume: 135 start-page: 4906 year: 2013 ident: ref11/cit11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311960g – volume: 9 start-page: 834 year: 2013 ident: ref14/cit14 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1363 – volume: 149 start-page: 358 year: 2012 ident: ref23/cit23 publication-title: Cell doi: 10.1016/j.cell.2012.01.053 – volume: 11 start-page: 513 year: 2013 ident: ref2/cit2 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3069 – volume: 10 start-page: 787 year: 2014 ident: ref16/cit16 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1607 – volume: 112 start-page: 5383 year: 2015 ident: ref22/cit22 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1419328112 – ident: ref20/cit20 doi: 10.1016/j.chom.2015.05.006 – volume: 33 start-page: 2692 year: 2014 ident: ref18/cit18 publication-title: EMBO J. doi: 10.15252/embj.201489209 – volume: 5 start-page: 168 year: 2012 ident: ref7/cit7 publication-title: Microb. Biotechnol. doi: 10.1111/j.1751-7915.2011.00306.x – reference: 25848022 - Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5383-8 – reference: 24136904 - IUBMB Life. 2013 Nov;65(11):897-903 – reference: 22403384 - Science. 2012 Mar 9;335(6073):1194 – reference: 23716572 - MBio. 2013;4(3):e00282-13 – reference: 25215494 - Cell. 2014 Sep 11;158(6):1389-401 – reference: 25271255 - EMBO J. 2014 Nov 18;33(22):2692-703 – reference: 19901023 - J Biol Chem. 2010 Jan 1;285(1):473-82 – reference: 24013631 - J Bacteriol. 2013 Nov;195(22):5123-32 – reference: 21909268 - PLoS Pathog. 2011 Sep;7(9):e1002217 – reference: 24162923 - Nat Methods. 2013 Dec;10(12):1219-24 – reference: 26028365 - Cell Host Microbe. 2015 Jun 10;17(6):788-98 – reference: 21958423 - Microb Biotechnol. 2012 Mar;5(2):168-76 – reference: 23488798 - J Am Chem Soc. 2013 Apr 3;135(13):4906-9 – reference: 25086507 - Nat Chem Biol. 2014 Sep;10(9):787-92 – reference: 25086509 - Nat Chem Biol. 2014 Sep;10(9):780-6 – reference: 21566650 - EMBO Rep. 2011 Jun;12(6):594-601 – reference: 23993090 - Cell. 2013 Aug 29;154(5):962-70 – reference: 18714086 - Sci Signal. 2008;1(33):pe39 – reference: 24141192 - Nat Chem Biol. 2013 Dec;9(12):834-9 – reference: 24393009 - J Am Chem Soc. 2014 Jan 29;136(4):1198-201 – reference: 24494631 - Anal Chem. 2014 Mar 4;86(5):2412-20 – reference: 20508090 - Science. 2010 Jun 25;328(5986):1703-5 – reference: 23812326 - Nat Rev Microbiol. 2013 Aug;11(8):513-24 – reference: 22500802 - Cell. 2012 Apr 13;149(2):358-70 |
SSID | ssj0004281 |
Score | 2.4740598 |
Snippet | Cyclic di-AMP (cdiA) is a second messenger predicted to be widespread in Gram-positive bacteria, some Gram-negative bacteria, and Archaea. In the human... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6432 |
SubjectTerms | active sites antibiotic resistance Biosensing Techniques biosensors Cell Survival cell walls Clostridium difficile Clostridium difficile - enzymology Dinucleoside Phosphates - analysis Dinucleoside Phosphates - chemistry Enzyme Activation enzyme activity flow cytometry Fluorescence Gram-negative bacteria Gram-positive bacteria homeostasis humans image analysis Listeria monocytogenes Listeria monocytogenes - cytology Listeria monocytogenes - metabolism metabolites Methanocaldococcus - enzymology Methanocaldococcus jannaschii oligonucleotides pathogens Phosphoric Diester Hydrolases - metabolism Phosphorus-Oxygen Lyases - metabolism proteins Riboswitch RNA - chemistry Second Messenger Systems second messengers |
Title | RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messenger Cyclic di-AMP |
URI | http://dx.doi.org/10.1021/jacs.5b00275 https://www.ncbi.nlm.nih.gov/pubmed/25965978 https://www.proquest.com/docview/1683753563 https://www.proquest.com/docview/2000351215 https://pubmed.ncbi.nlm.nih.gov/PMC4521591 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9gAXSnmUFFptJTghR7b36WNqNbQVqRClUm7RPtWoxkZxcoBfz2xspyRVBFd7VrZnH_N9ntlvEfqguEm4B1qikkxHVPMs0gY6JGbaWMohYNqwd3h0zS9u6dWYjR8KZDcz-GnQBzJ1n4VgItgTtJdyKQLJGuQ3D_sfU5l0MFdITtoC983WIQCZej0APUKVm8WRf0Wb4T763O3ZaYpM7vuLue6b348lHP_xIS_Q8xZw4kEzQg7Qjitfoqd5d87bKzT-dj2IziCYWTwsFtWs0XfCZ9OqBopbzWoMuBZ_gVUR564o8OWP5cFGuPL4JrBpi0dBfzz8HcT5L1NMDbbTaDD6-hrdDs-_5xdRe95CpCiL55H1RFPiJROpMYaK2MaZi51WRiTGJ94y4gQ3AaVJ76RSzCQ2syIzQktHKXmDdsuqdG8RTpmjzGtitSTUMqVsohSsu9pDSyfjHjoFb0za-VJPlqnwFKhIuNr6qIc-dR01Ma1geTg3o9hi_XFl_bMR6thid9r1-QQcHdIjqnTVAt6BA1lnhHGy3SZtUq-Ak3rosBknq6cBkeRAz2QPibURtDIISt7rd8rp3VLRmwKIYlly9B9eeYeeAWZjoYAhFe_R7ny2cMeAi-b6ZDkp_gBBNwja |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOZQL70d4biU4IVe29-ljahGlkESItlJu1j7VCGOjODnAr2fWdlISFKlXe9Zezz7mG8_ONwh9UNwk3INbopJMR1TzLNIGBiRm2ljKwWDakDs8nfHxFf0yZ_M-WT3kwkAnGnhS0wbxb9gFAk0QXGTBpgh2F90DHJIGX2uYX9ykQaYy2aBdITnpz7nvtw52yDS7dug_cLl_RvIfozN6iGbb7rZnTX6crlf61PzZY3K89fc8Qg96-ImH3Xx5jO646gk6zjdV356i-ffZMDoD02bxqFzXy47tCZ8t6gYc3nrZYEC5eAJ7JM5dWeLzn22ZI1x7fBF8a4ungY08_CvE-W9TLgy2i2g4_fYMXY0-X-bjqK--ECnK4lVkPdGUeMlEaoyhIrZx5mKnlRGJ8Ym3jDjBTcBs0jupFDOJzazIjNDSUUqeo6OqrtxLhFPmKPOaWC0JtUwpmygFu7D20NLJeIBOQBtFv3qaog2Mp-CYhKu9jgbo02a8CtPTl4cqGuUB6Y9b6V8dbccBuZPN0Beg6BAsUZWr19AHDq47I4yTwzJpF4gF1DRAL7rpsn0buJUcnDU5QGJnIm0FAq_37p1qcd3ye1OAVCxLXt1CK-_R8fhyOikm57Ovr9F9QHMsHG1IxRt0tFqu3VtATCv9rl0nfwEnQhE7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB6VIkFfuI9wbiV4Qq587GE_poaohSaqWirlLdpTRLh2FScP8OuZ9RFIUCR49c7a69ldzzee2W8A3kmuI-7QLZFRpgKqeBYojRMSMqUN5WgwjT87PJ7wkyv6ecqmexD1Z2FwEDXeqW6C-H5X3xjXMQx4qiBsYN6uCHYLbvuInfe3hvnl76OQcRr1iFekPOly3bd7e1uk601b9BfA3M6T_MPwjO7DxXrITb7J96PVUh3pn1tsjv_1Tg_gXgdDybBdNw9hz5aP4G7eV397DNOLyTA4RhNnyKhYVYuW9Ykcz6saHd9qURNEu-QMv5Ukt0VBTq-bckekcuTS-9iGjD0ruf9nSPIfuphrYubBcHz-BK5Gn77mJ0FXhSGQlIXLwLhE0cSlTMRaaypCE2Y2tEpqEWkXOcMSK7j22C11NpWS6chkRmRaqNRSmjyF_bIq7XMgMbOUOZUYlSbUMClNJCV-jZXDnjYNB3CI2ph1u6ieNQHyGB0Uf7XT0QA-9HM20x2Nua-mUeyQfr-WvmnpO3bIHfbTP0NF-6CJLG21wjFwdOFZwniyWyZuA7KIngbwrF0y66ehe8nRaUsHIDYW01rA83tvtpTzbw3PN0VoxbLoxT9o5S3cOf84mp2dTr68hAMEdcxnOMTiFewvFyv7GoHTUr1ptsov8LsTvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA-Based+Fluorescent+Biosensors+for+Live+Cell+Imaging+of+Second+Messenger+Cyclic+di-AMP&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Kellenberger%2C+Colleen+A&rft.au=Chen%2C+Chen&rft.au=Whiteley%2C+Aaron+T&rft.au=Portnoy%2C+Daniel+A&rft.date=2015-05-27&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=137&rft.issue=20&rft.spage=6432&rft_id=info:doi/10.1021%2Fjacs.5b00275&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |