Exciton Dissociation and Suppressed Charge Recombination at 2D Perovskite Edges: Key Roles of Unsaturated Halide Bonds and Thermal Disorder
Two-dimensional (2D) Ruddlesden–Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron–hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states i...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 39; pp. 15557 - 15566 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.10.2019
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) Ruddlesden–Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron–hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states in 2D halide perovskites accelerate exciton dissociation into long-lived charge carriers, improving performance. Using a combination of nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that unsaturated chemical bonds of iodine atoms at perovskite edges is the main driving force for hole localization. Chemically unsaturated Pb atoms confine electrons to a much lesser extent, because they more easily support different oxidation states and heal chemical defects. This difference between defects associated with metals and nonmetals is general to many nanoscale systems. Thermal atomic fluctuations play important roles in charge localization, even in the bulk region of 2D perovskite films, a phenomenon that is different from polaron formation. Charge localization at edges is robust to thermal excitation at ambient conditions. The separated charges live a long time, because the nonadiabatic coupling between the excited and ground states is small, under 1 meV, and quantum coherence is short, less than 10 fs. The calculations agree very well with the time-resolved optical measurements on both luminescence lifetime and line width. The detailed understanding of the excited state dynamics in the 2D halide perovskites generated by the simulations highlights the unique chemical properties of these materials, and provides guidelines for design of efficient and inexpensive solar energy materials. |
---|---|
AbstractList | Two-dimensional (2D) Ruddlesden–Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron–hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states in 2D halide perovskites accelerate exciton dissociation into long-lived charge carriers, improving performance. Using a combination of nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that unsaturated chemical bonds of iodine atoms at perovskite edges is the main driving force for hole localization. Chemically unsaturated Pb atoms confine electrons to a much lesser extent, because they more easily support different oxidation states and heal chemical defects. This difference between defects associated with metals and nonmetals is general to many nanoscale systems. Thermal atomic fluctuations play important roles in charge localization, even in the bulk region of 2D perovskite films, a phenomenon that is different from polaron formation. Charge localization at edges is robust to thermal excitation at ambient conditions. The separated charges live a long time, because the nonadiabatic coupling between the excited and ground states is small, under 1 meV, and quantum coherence is short, less than 10 fs. The calculations agree very well with the time-resolved optical measurements on both luminescence lifetime and line width. The detailed understanding of the excited state dynamics in the 2D halide perovskites generated by the simulations highlights the unique chemical properties of these materials, and provides guidelines for design of efficient and inexpensive solar energy materials. Two-dimensional (2D) Ruddlesden-Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron-hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states in 2D halide perovskites accelerate exciton dissociation into long-lived charge carriers, improving performance. Using a combination of nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that unsaturated chemical bonds of iodine atoms at perovskite edges is the main driving force for hole localization. Chemically unsaturated Pb atoms confine electrons to a much lesser extent, because they more easily support different oxidation states and heal chemical defects. This difference between defects associated with metals and nonmetals is general to many nanoscale systems. Thermal atomic fluctuations play important roles in charge localization, even in the bulk region of 2D perovskite films, a phenomenon that is different from polaron formation. Charge localization at edges is robust to thermal excitation at ambient conditions. The separated charges live a long time, because the nonadiabatic coupling between the excited and ground states is small, under 1 meV, and quantum coherence is short, less than 10 fs. The calculations agree very well with the time-resolved optical measurements on both luminescence lifetime and line width. The detailed understanding of the excited state dynamics in the 2D halide perovskites generated by the simulations highlights the unique chemical properties of these materials, and provides guidelines for design of efficient and inexpensive solar energy materials.Two-dimensional (2D) Ruddlesden-Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron-hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states in 2D halide perovskites accelerate exciton dissociation into long-lived charge carriers, improving performance. Using a combination of nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that unsaturated chemical bonds of iodine atoms at perovskite edges is the main driving force for hole localization. Chemically unsaturated Pb atoms confine electrons to a much lesser extent, because they more easily support different oxidation states and heal chemical defects. This difference between defects associated with metals and nonmetals is general to many nanoscale systems. Thermal atomic fluctuations play important roles in charge localization, even in the bulk region of 2D perovskite films, a phenomenon that is different from polaron formation. Charge localization at edges is robust to thermal excitation at ambient conditions. The separated charges live a long time, because the nonadiabatic coupling between the excited and ground states is small, under 1 meV, and quantum coherence is short, less than 10 fs. The calculations agree very well with the time-resolved optical measurements on both luminescence lifetime and line width. The detailed understanding of the excited state dynamics in the 2D halide perovskites generated by the simulations highlights the unique chemical properties of these materials, and provides guidelines for design of efficient and inexpensive solar energy materials. Not provided. |
Author | Zhang, Zhaosheng Prezhdo, Oleg V Fang, Wei-Hai Long, Run |
AuthorAffiliation | Department of Chemistry College of Chemistry |
AuthorAffiliation_xml | – name: College of Chemistry – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Zhaosheng surname: Zhang fullname: Zhang, Zhaosheng organization: College of Chemistry – sequence: 2 givenname: Wei-Hai orcidid: 0000-0002-1668-465X surname: Fang fullname: Fang, Wei-Hai organization: College of Chemistry – sequence: 3 givenname: Run orcidid: 0000-0003-3912-8899 surname: Long fullname: Long, Run email: runlong@bnu.edu.cn organization: College of Chemistry – sequence: 4 givenname: Oleg V orcidid: 0000-0002-5140-7500 surname: Prezhdo fullname: Prezhdo, Oleg V organization: Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31525977$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1802653$$D View this record in Osti.gov |
BookMark | eNqFkUFv1DAQhS1URLeFG2dkceLQFNtJnJhb2S4UUQlU2rPl2JOul8RebAe1v4E_jbebXhCIkzXWN29m3jtCB847QOglJaeUMPp2o3Q8FR3hpOJP0ILWjBQ1ZfwALQghrGhaXh6ioxg3uaxYS5-hwzJTtWiaBfq1utM2eYfPbYxeW5VsLpQz-Nu03QaIEQxerlW4BXwF2o-ddTOTMDvHXyH4n_G7TYBX5hbiO_wZ7vGVHyBi3-MbF1WagkpZ5UIN1gB-752JDxOu1xBGNexG-2AgPEdPezVEeDG_x-jmw-p6eVFcfvn4aXl2WaiqJqnoWNtVLamJoBy4MA1pdNtraPum4R0FYTQryxYE7wTVDQGW3TCCsUpQpbgqj9Hrva6PycqY7we91t450EnSljBelxl6s4e2wf-YICY52qhhGJQDP0XJStYIUbKa_R9loiSUipZm9NWMTt0IRm6DHVW4l4-BZIDtAR18jAF6mdd7MDwFZQdJidylLnepyzn13HTyR9Oj7j_wed_d58ZPwWW3_47-Bmxyutc |
CitedBy_id | crossref_primary_10_1039_D2CP04707A crossref_primary_10_1016_j_cej_2024_149506 crossref_primary_10_1021_acsenergylett_2c02742 crossref_primary_10_1021_acsnano_1c06158 crossref_primary_10_1021_acs_jpclett_0c00392 crossref_primary_10_1016_j_optmat_2023_114102 crossref_primary_10_1007_s10854_020_04531_z crossref_primary_10_1039_D4NR01481B crossref_primary_10_1038_s41565_020_00811_1 crossref_primary_10_1021_acs_chemrev_2c00048 crossref_primary_10_1021_acs_jpclett_3c01088 crossref_primary_10_1039_D0TA01944E crossref_primary_10_1021_acs_jpcc_0c04467 crossref_primary_10_1021_jacs_2c12903 crossref_primary_10_1002_ange_202418708 crossref_primary_10_1016_j_mattod_2021_02_007 crossref_primary_10_1021_acs_nanolett_0c03468 crossref_primary_10_1039_D0TA11510J crossref_primary_10_1063_5_0176763 crossref_primary_10_1021_acsenergylett_4c02099 crossref_primary_10_1021_acs_jpclett_9b03884 crossref_primary_10_1155_2021_8822703 crossref_primary_10_1021_acsenergylett_2c02080 crossref_primary_10_1021_acs_jpclett_2c02739 crossref_primary_10_1021_acs_jpclett_0c02838 crossref_primary_10_1021_acs_jpclett_2c03825 crossref_primary_10_1039_D4CP02010C crossref_primary_10_1021_acsaem_2c04112 crossref_primary_10_1021_acs_jpclett_3c01231 crossref_primary_10_1021_acsenergylett_1c01186 crossref_primary_10_1039_D0CP06579J crossref_primary_10_1021_acs_jpclett_3c03357 crossref_primary_10_1002_adma_202201666 crossref_primary_10_1021_jacs_1c04442 crossref_primary_10_1039_D3TA06755F crossref_primary_10_1021_acs_jpclett_3c02826 crossref_primary_10_1021_acs_nanolett_4c05369 crossref_primary_10_1039_D4NR03424D crossref_primary_10_1021_acs_jpclett_0c03799 crossref_primary_10_1002_solr_202000452 crossref_primary_10_1039_D3CP04573K crossref_primary_10_1039_D1NR01990B crossref_primary_10_1103_PRXEnergy_1_013001 crossref_primary_10_1021_acsaem_2c01036 crossref_primary_10_1021_acs_jpcc_0c11119 crossref_primary_10_1021_jacs_3c04412 crossref_primary_10_1021_acsnano_1c02022 crossref_primary_10_1016_j_apsusc_2024_161057 crossref_primary_10_1039_D1TA09549H crossref_primary_10_1021_acs_jpclett_4c01952 crossref_primary_10_1063_5_0067656 crossref_primary_10_1021_acsenergylett_0c00899 crossref_primary_10_1016_j_physb_2025_416952 crossref_primary_10_1039_D0TA07205B crossref_primary_10_1021_acs_jctc_2c00130 crossref_primary_10_1021_acs_jpclett_2c03649 crossref_primary_10_1021_jacs_2c08627 crossref_primary_10_1021_jacs_3c05533 crossref_primary_10_1021_acs_jctc_3c00904 crossref_primary_10_1021_acs_jpclett_3c02923 crossref_primary_10_1002_advs_202201046 crossref_primary_10_1021_acs_jpclett_0c00594 crossref_primary_10_1021_acs_chemmater_0c01287 crossref_primary_10_1063_5_0077928 crossref_primary_10_1021_acs_jpclett_0c02800 crossref_primary_10_1021_jacs_1c08900 crossref_primary_10_1063_5_0061908 crossref_primary_10_1039_D1TC00422K crossref_primary_10_1063_5_0037800 crossref_primary_10_1021_acs_jpclett_2c01452 crossref_primary_10_1002_pssr_202300221 crossref_primary_10_1007_s10853_021_06294_2 crossref_primary_10_1021_acs_jpclett_2c03072 crossref_primary_10_1021_acsenergylett_0c02136 crossref_primary_10_1021_acsomega_1c00767 crossref_primary_10_1021_acs_jpclett_4c02586 crossref_primary_10_1103_PhysRevApplied_16_054019 crossref_primary_10_1002_adfm_202006166 crossref_primary_10_1021_jacs_0c06769 crossref_primary_10_1039_D0TC05063F crossref_primary_10_1109_JPHOTOV_2022_3223235 crossref_primary_10_1039_D3MH01773G crossref_primary_10_1016_j_apcatb_2021_120179 crossref_primary_10_1021_acs_jpclett_2c03742 crossref_primary_10_1021_jacs_4c05191 crossref_primary_10_1021_acs_chemmater_0c00419 crossref_primary_10_1002_adom_202400617 crossref_primary_10_1021_acsenergylett_3c02738 crossref_primary_10_1039_D3TC00331K crossref_primary_10_1002_anie_202418708 crossref_primary_10_1021_acs_jpclett_0c01463 crossref_primary_10_1021_acs_jpclett_0c00376 crossref_primary_10_1021_acs_jpclett_0c03522 crossref_primary_10_1016_j_chempr_2022_01_008 crossref_primary_10_1016_j_isci_2022_104420 crossref_primary_10_1007_s13391_023_00428_1 crossref_primary_10_1021_acs_jpclett_3c02850 crossref_primary_10_1039_C9NH00717B crossref_primary_10_1021_acs_jpclett_1c04038 crossref_primary_10_1021_acs_jpclett_3c03304 crossref_primary_10_1002_solr_202200795 crossref_primary_10_1021_jacsau_1c00192 crossref_primary_10_1021_acs_jpclett_0c01687 crossref_primary_10_1021_acs_jpclett_9b03465 crossref_primary_10_1038_s41467_023_39831_5 crossref_primary_10_1007_s12274_021_3840_y crossref_primary_10_1021_acs_jpclett_2c00575 crossref_primary_10_1021_acs_jpclett_9b03105 crossref_primary_10_1103_PhysRevMaterials_8_084004 |
Cites_doi | 10.1021/acs.chemmater.6b00847 10.1021/jacs.5b03796 10.1021/ja906599b 10.1126/science.aal4211 10.1021/jacs.6b00645 10.1021/ja408936j 10.1073/pnas.1811006115 10.1021/acsenergylett.7b00202 10.1021/ct400641n 10.1002/anie.201301954 10.1021/jacs.8b06046 10.1007/s40820-019-0254-4 10.1021/acsami.6b09489 10.1038/s41467-018-04659-x 10.1016/j.stam.2003.09.019 10.1021/acs.inorgchem.7b01094 10.1002/adma.201703487 10.1021/jacs.8b04604 10.1107/S0108768107031758 10.1021/acs.jpclett.7b00008 10.1002/aelm.201900216 10.1021/acs.nanolett.7b01475 10.1021/ja4029395 10.1021/acs.nanolett.8b02078 10.1021/acsenergylett.8b01608 10.1103/PhysRevB.42.11099 10.1038/s41467-019-08768-z 10.1126/sciadv.aau3241 10.1103/PhysRevLett.95.163001 10.1021/acsami.7b12535 10.1021/jacs.7b06401 10.1002/ange.201406466 10.1021/jacs.9b01327 10.1021/acs.nanolett.7b03150 10.1021/jacs.7b01312 10.1038/s41467-018-07656-2 10.1021/acs.jpclett.5b02355 10.1021/jacs.7b02121 10.1016/j.chemphys.2015.09.010 10.1021/acs.nanolett.7b00167 10.1021/jacs.8b08448 10.1149/MA2016-02/15/1432 10.1016/j.chempr.2018.09.001 10.1021/acs.jpclett.6b02713 10.1021/acs.jpclett.6b00001 10.1021/nl5046268 10.1021/acsenergylett.7b00862 10.1021/ja411800n 10.1063/1.3526297 10.1021/acsnano.6b04265 10.1149/MA2017-02/15/877 10.1021/acs.nanolett.8b00035 10.1021/acs.nanolett.6b03114 10.1021/acs.nanolett.7b04374 10.1021/acs.nanolett.5b05264 10.1021/acs.jpcc.7b10705 10.1021/acs.jpclett.9b01855 10.1016/j.jechem.2017.10.010 10.1021/acs.jpca.6b05607 10.1016/j.jphotochem.2007.02.017 10.1021/ct400934c 10.1021/acs.nanolett.6b01218 10.1038/nature18306 10.1021/acs.chemmater.6b03054 10.1021/acs.jpclett.8b01654 10.1021/acs.nanolett.8b01501 10.1021/acsnano.5b05843 10.1021/acs.nanolett.7b02980 10.1021/acsenergylett.7b00183 10.1021/acs.nanolett.7b02146 10.1021/acs.jpclett.8b00177 10.1021/acs.jpclett.9b00042 10.1103/PhysRevLett.110.180404 10.1038/nphys3357 10.1021/jacs.6b08082 10.1021/nl3012962 10.1021/acsnano.6b04210 10.1002/wcms.1305 10.1039/C7QM00472A 10.1103/PhysRevLett.100.197402 10.1126/sciadv.1701217 10.1016/j.chempr.2017.02.004 10.1021/acs.jpclett.8b00446 10.1038/s41467-017-00788-x 10.1021/nl500792a 10.1021/acsnano.8b07631 10.1103/PhysRevB.92.045414 10.1002/adma.201900767 10.1038/s41467-017-01517-0 |
ContentType | Journal Article |
CorporateAuthor | Univ. of Southern California, Los Angeles, CA (United States) |
CorporateAuthor_xml | – name: Univ. of Southern California, Los Angeles, CA (United States) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OTOTI |
DOI | 10.1021/jacs.9b06046 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 15566 |
ExternalDocumentID | 1802653 31525977 10_1021_jacs_9b06046 a02144694 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 AAYWT L.6 ABFRP OTOTI TAF |
ID | FETCH-LOGICAL-a450t-b28b48050916e69d707c8fce8f776b1e9dc2338e96b91c70e2126d922491aa6a3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri May 19 02:02:36 EDT 2023 Tue Aug 05 10:22:04 EDT 2025 Fri Jul 11 01:06:10 EDT 2025 Wed Feb 19 02:30:39 EST 2025 Tue Jul 01 03:21:51 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Thu Aug 27 13:44:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a450t-b28b48050916e69d707c8fce8f776b1e9dc2338e96b91c70e2126d922491aa6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SC0014429 USDOE Office of Science (SC) |
ORCID | 0000-0003-3912-8899 0000-0002-5140-7500 0000-0002-1668-465X 0000000339128899 000000021668465X 0000000251407500 |
PMID | 31525977 |
PQID | 2293011981 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1802653 proquest_miscellaneous_2327993252 proquest_miscellaneous_2293011981 pubmed_primary_31525977 crossref_citationtrail_10_1021_jacs_9b06046 crossref_primary_10_1021_jacs_9b06046 acs_journals_10_1021_jacs_9b06046 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-02 |
PublicationDateYYYYMMDD | 2019-10-02 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2019 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref88/cit88 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref90/cit90 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 Mukamel S. (ref89/cit89) 1999 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref17/cit17 doi: 10.1021/acs.chemmater.6b00847 – ident: ref9/cit9 doi: 10.1021/jacs.5b03796 – ident: ref45/cit45 doi: 10.1021/ja906599b – ident: ref6/cit6 doi: 10.1126/science.aal4211 – ident: ref73/cit73 doi: 10.1021/jacs.6b00645 – ident: ref47/cit47 doi: 10.1021/ja408936j – ident: ref21/cit21 doi: 10.1073/pnas.1811006115 – ident: ref22/cit22 doi: 10.1021/acsenergylett.7b00202 – ident: ref67/cit67 doi: 10.1021/ct400641n – ident: ref76/cit76 doi: 10.1002/anie.201301954 – ident: ref3/cit3 doi: 10.1021/jacs.8b06046 – ident: ref33/cit33 doi: 10.1007/s40820-019-0254-4 – ident: ref12/cit12 doi: 10.1021/acsami.6b09489 – ident: ref20/cit20 doi: 10.1038/s41467-018-04659-x – ident: ref31/cit31 doi: 10.1016/j.stam.2003.09.019 – ident: ref27/cit27 doi: 10.1021/acs.inorgchem.7b01094 – ident: ref29/cit29 doi: 10.1002/adma.201703487 – ident: ref2/cit2 doi: 10.1021/jacs.8b04604 – ident: ref72/cit72 doi: 10.1107/S0108768107031758 – ident: ref54/cit54 doi: 10.1021/acs.jpclett.7b00008 – ident: ref90/cit90 doi: 10.1002/aelm.201900216 – ident: ref4/cit4 doi: 10.1021/acs.nanolett.7b01475 – ident: ref44/cit44 doi: 10.1021/ja4029395 – ident: ref36/cit36 doi: 10.1021/acs.nanolett.8b02078 – ident: ref87/cit87 doi: 10.1021/acsenergylett.8b01608 – ident: ref13/cit13 doi: 10.1103/PhysRevB.42.11099 – ident: ref35/cit35 doi: 10.1038/s41467-019-08768-z – ident: ref37/cit37 doi: 10.1126/sciadv.aau3241 – ident: ref38/cit38 doi: 10.1103/PhysRevLett.95.163001 – ident: ref60/cit60 doi: 10.1021/acsami.7b12535 – ident: ref82/cit82 doi: 10.1021/jacs.7b06401 – ident: ref8/cit8 doi: 10.1002/ange.201406466 – ident: ref1/cit1 doi: 10.1021/jacs.9b01327 – ident: ref58/cit58 doi: 10.1021/acs.nanolett.7b03150 – ident: ref26/cit26 doi: 10.1021/jacs.7b01312 – ident: ref34/cit34 doi: 10.1038/s41467-018-07656-2 – ident: ref51/cit51 doi: 10.1021/acs.jpclett.5b02355 – ident: ref62/cit62 doi: 10.1021/jacs.7b02121 – ident: ref70/cit70 doi: 10.1016/j.chemphys.2015.09.010 – ident: ref61/cit61 doi: 10.1021/acs.nanolett.7b00167 – ident: ref75/cit75 doi: 10.1021/jacs.8b08448 – ident: ref24/cit24 doi: 10.1149/MA2016-02/15/1432 – ident: ref85/cit85 doi: 10.1016/j.chempr.2018.09.001 – ident: ref48/cit48 doi: 10.1021/acs.jpclett.6b02713 – ident: ref79/cit79 doi: 10.1021/acs.jpclett.6b00001 – ident: ref41/cit41 doi: 10.1021/nl5046268 – ident: ref81/cit81 doi: 10.1021/acsenergylett.7b00862 – ident: ref43/cit43 doi: 10.1021/ja411800n – ident: ref68/cit68 doi: 10.1063/1.3526297 – ident: ref74/cit74 doi: 10.1021/acsnano.6b04265 – ident: ref25/cit25 doi: 10.1149/MA2017-02/15/877 – ident: ref57/cit57 doi: 10.1021/acs.nanolett.8b00035 – ident: ref14/cit14 doi: 10.1021/acs.nanolett.6b03114 – ident: ref59/cit59 doi: 10.1021/acs.nanolett.7b04374 – ident: ref42/cit42 doi: 10.1021/acs.nanolett.5b05264 – ident: ref19/cit19 doi: 10.1021/acs.jpcc.7b10705 – ident: ref86/cit86 doi: 10.1021/acs.jpclett.9b01855 – ident: ref55/cit55 doi: 10.1016/j.jechem.2017.10.010 – ident: ref65/cit65 doi: 10.1021/acs.jpca.6b05607 – ident: ref46/cit46 doi: 10.1016/j.jphotochem.2007.02.017 – ident: ref66/cit66 doi: 10.1021/ct400934c – ident: ref83/cit83 doi: 10.1021/acs.nanolett.6b01218 – ident: ref10/cit10 doi: 10.1038/nature18306 – ident: ref16/cit16 doi: 10.1021/acs.chemmater.6b03054 – ident: ref80/cit80 doi: 10.1021/acs.jpclett.8b01654 – ident: ref78/cit78 doi: 10.1021/acs.nanolett.8b01501 – ident: ref53/cit53 doi: 10.1021/acsnano.5b05843 – volume-title: Principles of Nonlinear Optical Spectroscopy year: 1999 ident: ref89/cit89 – ident: ref5/cit5 doi: 10.1021/acs.nanolett.7b02980 – ident: ref50/cit50 doi: 10.1021/acsenergylett.7b00183 – ident: ref23/cit23 doi: 10.1021/acs.nanolett.7b02146 – ident: ref56/cit56 doi: 10.1021/acs.jpclett.8b00177 – ident: ref77/cit77 doi: 10.1021/acs.jpclett.9b00042 – ident: ref88/cit88 doi: 10.1103/PhysRevLett.110.180404 – ident: ref28/cit28 doi: 10.1038/nphys3357 – ident: ref63/cit63 doi: 10.1021/jacs.6b08082 – ident: ref71/cit71 doi: 10.1021/nl3012962 – ident: ref64/cit64 doi: 10.1021/acsnano.6b04210 – ident: ref49/cit49 doi: 10.1002/wcms.1305 – ident: ref11/cit11 doi: 10.1039/C7QM00472A – ident: ref39/cit39 doi: 10.1103/PhysRevLett.100.197402 – ident: ref84/cit84 doi: 10.1126/sciadv.1701217 – ident: ref7/cit7 doi: 10.1016/j.chempr.2017.02.004 – ident: ref52/cit52 doi: 10.1021/acs.jpclett.8b00446 – ident: ref15/cit15 doi: 10.1038/s41467-017-00788-x – ident: ref40/cit40 doi: 10.1021/nl500792a – ident: ref32/cit32 doi: 10.1021/acsnano.8b07631 – ident: ref30/cit30 doi: 10.1103/PhysRevB.92.045414 – ident: ref69/cit69 doi: 10.1002/adma.201900767 – ident: ref18/cit18 doi: 10.1038/s41467-017-01517-0 |
SSID | ssj0004281 |
Score | 2.5931797 |
Snippet | Two-dimensional (2D) Ruddlesden–Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative... Two-dimensional (2D) Ruddlesden-Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative... Not provided. |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15557 |
SubjectTerms | chemical bonding Chemistry density functional theory dissociation electrons energy guidelines iodine lead luminescence molecular dynamics oxidation physicochemical properties quantum mechanics solar energy |
Title | Exciton Dissociation and Suppressed Charge Recombination at 2D Perovskite Edges: Key Roles of Unsaturated Halide Bonds and Thermal Disorder |
URI | http://dx.doi.org/10.1021/jacs.9b06046 https://www.ncbi.nlm.nih.gov/pubmed/31525977 https://www.proquest.com/docview/2293011981 https://www.proquest.com/docview/2327993252 https://www.osti.gov/biblio/1802653 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9NADB5BOcBlebNlARkJTihVMkkmM9xQt0sFEkJApb1F83BWiCVBmxQBf4E_jZ0mW7GowDVylMnYjj_Hns9CPMmM1pgbH8XO6SirbBLZFJELjjakmaMo1Xf5vlHLVfbqOD_eNsherOBL5gfy7cw4JnlRl8UVqch_GQLN32_PP0qdjDC30CodGtwv3s0ByLe_BaBJQ460G1z2Qeboung5HtXZ9JZ8mq07N_M__mRu_Mf6b4i9AWfCi41h3BSXsL4lrs7H8W63xc_FN0_eXMPhx62GwNYBeNBnTykegIvxJwico36mFHqQ6UAewls8a762_O8XFkwU8Rxe43d4x_xQ0FSwqlumDCUkG2BJWD8g8ATjtn8C2SbFg1MYqT_viNXR4sN8GQ2TGSKb5XEXOaldppk6JlGoTCjiwuvKo66KQrkETfCScl80ypnEFzFSgFTBEFwwibXKpnfFpG5q3BcQx_TpZ1Y-Qh4ZonOyyr3Pg4plSGQVT8Vj2sBy8Ky27IvmkpIWvjps61Q8G1Va-oHanCdsnO6Qfnou_WVD6bFD7oCtoyQowny6nhuPfFcyZZ7KU1rXaDQlaY7LLLbGZt2WkhAUM-np5C8yqSwIGcpcTsW9jcWdryXlkVQEy-__x5sfiGuE4EzfXSgfiEl3tsaHhJI696h3kV_HHAsk |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgOZQLb8pSHkaCE0qVOIljc6u2Wy20rBB0pd4iPyYIURLUZBHwF_jTzHiTXVFpUa_WJBnbM5rPmfE3jL3MtFKQaxfF1qooq0wSmRSAEo7Gp5nFKBWqfOdytsjeneVn_WV1uguDSrT4pjYk8TfsAkQThIPaEteLvM5uIA4RZNAHk0-ba5BCJQPaLZRM-zr3y09THHLtP3Fo1KA_bceYIdYc3WbztZahxOTr_rKz--73JQLHK0_jDrvVo05-sDKTu-wa1PfYzmRo9naf_Zn-dOjbNT_8stkvbmrPqe1nIBj3nFLzn4HTifUbHqh7mY6LQ_4BLpofLf0J5lOijXjDj-EX_0hsUbyp-KJuiUAUca3nM0T-Hjj1M27DF9BSMTqc84EI9AFbHE1PJ7Oo79MQmSyPu8gKZTNFRDKJBKl9ERdOVQ5UVRTSJqC9E3gSBi2tTlwRA4ZL6TWCB50YI036kI3qpoZHjMcxBgLi6EMckgFYK6rcudzLWPhEVPGYvcAFLHs_a8uQQhd4hKHRflnH7PWws6Xric6p38b5FulXa-nvK4KPLXJ7ZCQlAhNi13VUhuS6kgj0ZJ6iXoPtlLhzlHQxNTTLthSIp4hXTyX_kUlFgThR5GLMdleGt9YlpQZVCNIfX2Hmz9nO7PT9SXnydn68x24ittOh7lA8YaPuYglPET919lnwmr8SxROF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9RADB6VRQJeuI-lHIMETyhVMkkmM7xVe2ihqKoKK_UtmsNBiJJUTRYBf4E_jT2bbEWlRfCaOMkctvw59nxm7GWmlYJcuyi2VkVZZZLIpACUcDQ-zSx6qVDleygXy-zdSX6yw5LhLAwOosU3tSGJT1Z95queYYCogvCGtsT3Iq-wq5SxI6Xen3y4OAopVDIg3kLJtK91v_w0-SLX_uGLRg3a1HacGfzN_BY73ow0lJl82Vt1ds_9vETi-F9Tuc1u9uiT76_V5Q7bgfouuz4Zmr7dY79m3x3aeM2nny_2jZvac2r_GYjGPacU_SfgFLl-xcC6l-m4mPIjOG--tfRHmM-IPuINP4Af_JhYo3hT8WXdEpEo4lvPFxgBeODU17gNX0CNRS9xygdC0PtsOZ99nCyivl9DZLI87iIrlM0UEcokEqT2RVw4VTlQVVFIm4D2TmBEDFpanbgiBnSb0msEEToxRpr0ARvVTQ2PGI9jdAjE1Yd4JAOwVlS5c7mXsfCJqOIxe4ELWPb21pYhlS4wlKGr_bKO2ethd0vXE55T343TLdKvNtJna6KPLXK7pCglAhRi2XVUjuS6koj0ZJ7iuAb9KXHnKPliamhWbSkQVxG_nkr-IpOKAvGiyMWYPVwr32YsKTWqQrD--B9m_pxdO5rOy_dvDw922Q2EeDqUH4onbNSdr-ApwqjOPguG8xv_SBYI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exciton+Dissociation+and+Suppressed+Charge+Recombination+at+2D+Perovskite+Edges%3A+Key+Roles+of+Unsaturated+Halide+Bonds+and+Thermal+Disorder&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhang%2C+Zhaosheng&rft.au=Fang%2C+Wei-Hai&rft.au=Long%2C+Run&rft.au=Prezhdo%2C+Oleg+V.&rft.date=2019-10-02&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=39&rft_id=info:doi/10.1021%2Fjacs.9b06046&rft.externalDocID=1802653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |