Exciton Dissociation and Suppressed Charge Recombination at 2D Perovskite Edges: Key Roles of Unsaturated Halide Bonds and Thermal Disorder

Two-dimensional (2D) Ruddlesden–Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron–hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states i...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 141; no. 39; pp. 15557 - 15566
Main Authors Zhang, Zhaosheng, Fang, Wei-Hai, Long, Run, Prezhdo, Oleg V
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.10.2019
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) Ruddlesden–Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron–hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states in 2D halide perovskites accelerate exciton dissociation into long-lived charge carriers, improving performance. Using a combination of nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that unsaturated chemical bonds of iodine atoms at perovskite edges is the main driving force for hole localization. Chemically unsaturated Pb atoms confine electrons to a much lesser extent, because they more easily support different oxidation states and heal chemical defects. This difference between defects associated with metals and nonmetals is general to many nanoscale systems. Thermal atomic fluctuations play important roles in charge localization, even in the bulk region of 2D perovskite films, a phenomenon that is different from polaron formation. Charge localization at edges is robust to thermal excitation at ambient conditions. The separated charges live a long time, because the nonadiabatic coupling between the excited and ground states is small, under 1 meV, and quantum coherence is short, less than 10 fs. The calculations agree very well with the time-resolved optical measurements on both luminescence lifetime and line width. The detailed understanding of the excited state dynamics in the 2D halide perovskites generated by the simulations highlights the unique chemical properties of these materials, and provides guidelines for design of efficient and inexpensive solar energy materials.
AbstractList Two-dimensional (2D) Ruddlesden–Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron–hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states in 2D halide perovskites accelerate exciton dissociation into long-lived charge carriers, improving performance. Using a combination of nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that unsaturated chemical bonds of iodine atoms at perovskite edges is the main driving force for hole localization. Chemically unsaturated Pb atoms confine electrons to a much lesser extent, because they more easily support different oxidation states and heal chemical defects. This difference between defects associated with metals and nonmetals is general to many nanoscale systems. Thermal atomic fluctuations play important roles in charge localization, even in the bulk region of 2D perovskite films, a phenomenon that is different from polaron formation. Charge localization at edges is robust to thermal excitation at ambient conditions. The separated charges live a long time, because the nonadiabatic coupling between the excited and ground states is small, under 1 meV, and quantum coherence is short, less than 10 fs. The calculations agree very well with the time-resolved optical measurements on both luminescence lifetime and line width. The detailed understanding of the excited state dynamics in the 2D halide perovskites generated by the simulations highlights the unique chemical properties of these materials, and provides guidelines for design of efficient and inexpensive solar energy materials.
Two-dimensional (2D) Ruddlesden-Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron-hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states in 2D halide perovskites accelerate exciton dissociation into long-lived charge carriers, improving performance. Using a combination of nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that unsaturated chemical bonds of iodine atoms at perovskite edges is the main driving force for hole localization. Chemically unsaturated Pb atoms confine electrons to a much lesser extent, because they more easily support different oxidation states and heal chemical defects. This difference between defects associated with metals and nonmetals is general to many nanoscale systems. Thermal atomic fluctuations play important roles in charge localization, even in the bulk region of 2D perovskite films, a phenomenon that is different from polaron formation. Charge localization at edges is robust to thermal excitation at ambient conditions. The separated charges live a long time, because the nonadiabatic coupling between the excited and ground states is small, under 1 meV, and quantum coherence is short, less than 10 fs. The calculations agree very well with the time-resolved optical measurements on both luminescence lifetime and line width. The detailed understanding of the excited state dynamics in the 2D halide perovskites generated by the simulations highlights the unique chemical properties of these materials, and provides guidelines for design of efficient and inexpensive solar energy materials.Two-dimensional (2D) Ruddlesden-Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron-hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states in 2D halide perovskites accelerate exciton dissociation into long-lived charge carriers, improving performance. Using a combination of nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that unsaturated chemical bonds of iodine atoms at perovskite edges is the main driving force for hole localization. Chemically unsaturated Pb atoms confine electrons to a much lesser extent, because they more easily support different oxidation states and heal chemical defects. This difference between defects associated with metals and nonmetals is general to many nanoscale systems. Thermal atomic fluctuations play important roles in charge localization, even in the bulk region of 2D perovskite films, a phenomenon that is different from polaron formation. Charge localization at edges is robust to thermal excitation at ambient conditions. The separated charges live a long time, because the nonadiabatic coupling between the excited and ground states is small, under 1 meV, and quantum coherence is short, less than 10 fs. The calculations agree very well with the time-resolved optical measurements on both luminescence lifetime and line width. The detailed understanding of the excited state dynamics in the 2D halide perovskites generated by the simulations highlights the unique chemical properties of these materials, and provides guidelines for design of efficient and inexpensive solar energy materials.
Not provided.
Author Zhang, Zhaosheng
Prezhdo, Oleg V
Fang, Wei-Hai
Long, Run
AuthorAffiliation Department of Chemistry
College of Chemistry
AuthorAffiliation_xml – name: College of Chemistry
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Zhaosheng
  surname: Zhang
  fullname: Zhang, Zhaosheng
  organization: College of Chemistry
– sequence: 2
  givenname: Wei-Hai
  orcidid: 0000-0002-1668-465X
  surname: Fang
  fullname: Fang, Wei-Hai
  organization: College of Chemistry
– sequence: 3
  givenname: Run
  orcidid: 0000-0003-3912-8899
  surname: Long
  fullname: Long, Run
  email: runlong@bnu.edu.cn
  organization: College of Chemistry
– sequence: 4
  givenname: Oleg V
  orcidid: 0000-0002-5140-7500
  surname: Prezhdo
  fullname: Prezhdo, Oleg V
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31525977$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1802653$$D View this record in Osti.gov
BookMark eNqFkUFv1DAQhS1URLeFG2dkceLQFNtJnJhb2S4UUQlU2rPl2JOul8RebAe1v4E_jbebXhCIkzXWN29m3jtCB847QOglJaeUMPp2o3Q8FR3hpOJP0ILWjBQ1ZfwALQghrGhaXh6ioxg3uaxYS5-hwzJTtWiaBfq1utM2eYfPbYxeW5VsLpQz-Nu03QaIEQxerlW4BXwF2o-ddTOTMDvHXyH4n_G7TYBX5hbiO_wZ7vGVHyBi3-MbF1WagkpZ5UIN1gB-752JDxOu1xBGNexG-2AgPEdPezVEeDG_x-jmw-p6eVFcfvn4aXl2WaiqJqnoWNtVLamJoBy4MA1pdNtraPum4R0FYTQryxYE7wTVDQGW3TCCsUpQpbgqj9Hrva6PycqY7we91t450EnSljBelxl6s4e2wf-YICY52qhhGJQDP0XJStYIUbKa_R9loiSUipZm9NWMTt0IRm6DHVW4l4-BZIDtAR18jAF6mdd7MDwFZQdJidylLnepyzn13HTyR9Oj7j_wed_d58ZPwWW3_47-Bmxyutc
CitedBy_id crossref_primary_10_1039_D2CP04707A
crossref_primary_10_1016_j_cej_2024_149506
crossref_primary_10_1021_acsenergylett_2c02742
crossref_primary_10_1021_acsnano_1c06158
crossref_primary_10_1021_acs_jpclett_0c00392
crossref_primary_10_1016_j_optmat_2023_114102
crossref_primary_10_1007_s10854_020_04531_z
crossref_primary_10_1039_D4NR01481B
crossref_primary_10_1038_s41565_020_00811_1
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1021_acs_jpclett_3c01088
crossref_primary_10_1039_D0TA01944E
crossref_primary_10_1021_acs_jpcc_0c04467
crossref_primary_10_1021_jacs_2c12903
crossref_primary_10_1002_ange_202418708
crossref_primary_10_1016_j_mattod_2021_02_007
crossref_primary_10_1021_acs_nanolett_0c03468
crossref_primary_10_1039_D0TA11510J
crossref_primary_10_1063_5_0176763
crossref_primary_10_1021_acsenergylett_4c02099
crossref_primary_10_1021_acs_jpclett_9b03884
crossref_primary_10_1155_2021_8822703
crossref_primary_10_1021_acsenergylett_2c02080
crossref_primary_10_1021_acs_jpclett_2c02739
crossref_primary_10_1021_acs_jpclett_0c02838
crossref_primary_10_1021_acs_jpclett_2c03825
crossref_primary_10_1039_D4CP02010C
crossref_primary_10_1021_acsaem_2c04112
crossref_primary_10_1021_acs_jpclett_3c01231
crossref_primary_10_1021_acsenergylett_1c01186
crossref_primary_10_1039_D0CP06579J
crossref_primary_10_1021_acs_jpclett_3c03357
crossref_primary_10_1002_adma_202201666
crossref_primary_10_1021_jacs_1c04442
crossref_primary_10_1039_D3TA06755F
crossref_primary_10_1021_acs_jpclett_3c02826
crossref_primary_10_1021_acs_nanolett_4c05369
crossref_primary_10_1039_D4NR03424D
crossref_primary_10_1021_acs_jpclett_0c03799
crossref_primary_10_1002_solr_202000452
crossref_primary_10_1039_D3CP04573K
crossref_primary_10_1039_D1NR01990B
crossref_primary_10_1103_PRXEnergy_1_013001
crossref_primary_10_1021_acsaem_2c01036
crossref_primary_10_1021_acs_jpcc_0c11119
crossref_primary_10_1021_jacs_3c04412
crossref_primary_10_1021_acsnano_1c02022
crossref_primary_10_1016_j_apsusc_2024_161057
crossref_primary_10_1039_D1TA09549H
crossref_primary_10_1021_acs_jpclett_4c01952
crossref_primary_10_1063_5_0067656
crossref_primary_10_1021_acsenergylett_0c00899
crossref_primary_10_1016_j_physb_2025_416952
crossref_primary_10_1039_D0TA07205B
crossref_primary_10_1021_acs_jctc_2c00130
crossref_primary_10_1021_acs_jpclett_2c03649
crossref_primary_10_1021_jacs_2c08627
crossref_primary_10_1021_jacs_3c05533
crossref_primary_10_1021_acs_jctc_3c00904
crossref_primary_10_1021_acs_jpclett_3c02923
crossref_primary_10_1002_advs_202201046
crossref_primary_10_1021_acs_jpclett_0c00594
crossref_primary_10_1021_acs_chemmater_0c01287
crossref_primary_10_1063_5_0077928
crossref_primary_10_1021_acs_jpclett_0c02800
crossref_primary_10_1021_jacs_1c08900
crossref_primary_10_1063_5_0061908
crossref_primary_10_1039_D1TC00422K
crossref_primary_10_1063_5_0037800
crossref_primary_10_1021_acs_jpclett_2c01452
crossref_primary_10_1002_pssr_202300221
crossref_primary_10_1007_s10853_021_06294_2
crossref_primary_10_1021_acs_jpclett_2c03072
crossref_primary_10_1021_acsenergylett_0c02136
crossref_primary_10_1021_acsomega_1c00767
crossref_primary_10_1021_acs_jpclett_4c02586
crossref_primary_10_1103_PhysRevApplied_16_054019
crossref_primary_10_1002_adfm_202006166
crossref_primary_10_1021_jacs_0c06769
crossref_primary_10_1039_D0TC05063F
crossref_primary_10_1109_JPHOTOV_2022_3223235
crossref_primary_10_1039_D3MH01773G
crossref_primary_10_1016_j_apcatb_2021_120179
crossref_primary_10_1021_acs_jpclett_2c03742
crossref_primary_10_1021_jacs_4c05191
crossref_primary_10_1021_acs_chemmater_0c00419
crossref_primary_10_1002_adom_202400617
crossref_primary_10_1021_acsenergylett_3c02738
crossref_primary_10_1039_D3TC00331K
crossref_primary_10_1002_anie_202418708
crossref_primary_10_1021_acs_jpclett_0c01463
crossref_primary_10_1021_acs_jpclett_0c00376
crossref_primary_10_1021_acs_jpclett_0c03522
crossref_primary_10_1016_j_chempr_2022_01_008
crossref_primary_10_1016_j_isci_2022_104420
crossref_primary_10_1007_s13391_023_00428_1
crossref_primary_10_1021_acs_jpclett_3c02850
crossref_primary_10_1039_C9NH00717B
crossref_primary_10_1021_acs_jpclett_1c04038
crossref_primary_10_1021_acs_jpclett_3c03304
crossref_primary_10_1002_solr_202200795
crossref_primary_10_1021_jacsau_1c00192
crossref_primary_10_1021_acs_jpclett_0c01687
crossref_primary_10_1021_acs_jpclett_9b03465
crossref_primary_10_1038_s41467_023_39831_5
crossref_primary_10_1007_s12274_021_3840_y
crossref_primary_10_1021_acs_jpclett_2c00575
crossref_primary_10_1021_acs_jpclett_9b03105
crossref_primary_10_1103_PhysRevMaterials_8_084004
Cites_doi 10.1021/acs.chemmater.6b00847
10.1021/jacs.5b03796
10.1021/ja906599b
10.1126/science.aal4211
10.1021/jacs.6b00645
10.1021/ja408936j
10.1073/pnas.1811006115
10.1021/acsenergylett.7b00202
10.1021/ct400641n
10.1002/anie.201301954
10.1021/jacs.8b06046
10.1007/s40820-019-0254-4
10.1021/acsami.6b09489
10.1038/s41467-018-04659-x
10.1016/j.stam.2003.09.019
10.1021/acs.inorgchem.7b01094
10.1002/adma.201703487
10.1021/jacs.8b04604
10.1107/S0108768107031758
10.1021/acs.jpclett.7b00008
10.1002/aelm.201900216
10.1021/acs.nanolett.7b01475
10.1021/ja4029395
10.1021/acs.nanolett.8b02078
10.1021/acsenergylett.8b01608
10.1103/PhysRevB.42.11099
10.1038/s41467-019-08768-z
10.1126/sciadv.aau3241
10.1103/PhysRevLett.95.163001
10.1021/acsami.7b12535
10.1021/jacs.7b06401
10.1002/ange.201406466
10.1021/jacs.9b01327
10.1021/acs.nanolett.7b03150
10.1021/jacs.7b01312
10.1038/s41467-018-07656-2
10.1021/acs.jpclett.5b02355
10.1021/jacs.7b02121
10.1016/j.chemphys.2015.09.010
10.1021/acs.nanolett.7b00167
10.1021/jacs.8b08448
10.1149/MA2016-02/15/1432
10.1016/j.chempr.2018.09.001
10.1021/acs.jpclett.6b02713
10.1021/acs.jpclett.6b00001
10.1021/nl5046268
10.1021/acsenergylett.7b00862
10.1021/ja411800n
10.1063/1.3526297
10.1021/acsnano.6b04265
10.1149/MA2017-02/15/877
10.1021/acs.nanolett.8b00035
10.1021/acs.nanolett.6b03114
10.1021/acs.nanolett.7b04374
10.1021/acs.nanolett.5b05264
10.1021/acs.jpcc.7b10705
10.1021/acs.jpclett.9b01855
10.1016/j.jechem.2017.10.010
10.1021/acs.jpca.6b05607
10.1016/j.jphotochem.2007.02.017
10.1021/ct400934c
10.1021/acs.nanolett.6b01218
10.1038/nature18306
10.1021/acs.chemmater.6b03054
10.1021/acs.jpclett.8b01654
10.1021/acs.nanolett.8b01501
10.1021/acsnano.5b05843
10.1021/acs.nanolett.7b02980
10.1021/acsenergylett.7b00183
10.1021/acs.nanolett.7b02146
10.1021/acs.jpclett.8b00177
10.1021/acs.jpclett.9b00042
10.1103/PhysRevLett.110.180404
10.1038/nphys3357
10.1021/jacs.6b08082
10.1021/nl3012962
10.1021/acsnano.6b04210
10.1002/wcms.1305
10.1039/C7QM00472A
10.1103/PhysRevLett.100.197402
10.1126/sciadv.1701217
10.1016/j.chempr.2017.02.004
10.1021/acs.jpclett.8b00446
10.1038/s41467-017-00788-x
10.1021/nl500792a
10.1021/acsnano.8b07631
10.1103/PhysRevB.92.045414
10.1002/adma.201900767
10.1038/s41467-017-01517-0
ContentType Journal Article
CorporateAuthor Univ. of Southern California, Los Angeles, CA (United States)
CorporateAuthor_xml – name: Univ. of Southern California, Los Angeles, CA (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OTOTI
DOI 10.1021/jacs.9b06046
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 15566
ExternalDocumentID 1802653
31525977
10_1021_jacs_9b06046
a02144694
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
AAYWT
L.6
ABFRP
OTOTI
TAF
ID FETCH-LOGICAL-a450t-b28b48050916e69d707c8fce8f776b1e9dc2338e96b91c70e2126d922491aa6a3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri May 19 02:02:36 EDT 2023
Tue Aug 05 10:22:04 EDT 2025
Fri Jul 11 01:06:10 EDT 2025
Wed Feb 19 02:30:39 EST 2025
Tue Jul 01 03:21:51 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Thu Aug 27 13:44:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a450t-b28b48050916e69d707c8fce8f776b1e9dc2338e96b91c70e2126d922491aa6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SC0014429
USDOE Office of Science (SC)
ORCID 0000-0003-3912-8899
0000-0002-5140-7500
0000-0002-1668-465X
0000000339128899
000000021668465X
0000000251407500
PMID 31525977
PQID 2293011981
PQPubID 23479
PageCount 10
ParticipantIDs osti_scitechconnect_1802653
proquest_miscellaneous_2327993252
proquest_miscellaneous_2293011981
pubmed_primary_31525977
crossref_citationtrail_10_1021_jacs_9b06046
crossref_primary_10_1021_jacs_9b06046
acs_journals_10_1021_jacs_9b06046
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-02
PublicationDateYYYYMMDD 2019-10-02
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2019
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
Mukamel S. (ref89/cit89) 1999
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref17/cit17
  doi: 10.1021/acs.chemmater.6b00847
– ident: ref9/cit9
  doi: 10.1021/jacs.5b03796
– ident: ref45/cit45
  doi: 10.1021/ja906599b
– ident: ref6/cit6
  doi: 10.1126/science.aal4211
– ident: ref73/cit73
  doi: 10.1021/jacs.6b00645
– ident: ref47/cit47
  doi: 10.1021/ja408936j
– ident: ref21/cit21
  doi: 10.1073/pnas.1811006115
– ident: ref22/cit22
  doi: 10.1021/acsenergylett.7b00202
– ident: ref67/cit67
  doi: 10.1021/ct400641n
– ident: ref76/cit76
  doi: 10.1002/anie.201301954
– ident: ref3/cit3
  doi: 10.1021/jacs.8b06046
– ident: ref33/cit33
  doi: 10.1007/s40820-019-0254-4
– ident: ref12/cit12
  doi: 10.1021/acsami.6b09489
– ident: ref20/cit20
  doi: 10.1038/s41467-018-04659-x
– ident: ref31/cit31
  doi: 10.1016/j.stam.2003.09.019
– ident: ref27/cit27
  doi: 10.1021/acs.inorgchem.7b01094
– ident: ref29/cit29
  doi: 10.1002/adma.201703487
– ident: ref2/cit2
  doi: 10.1021/jacs.8b04604
– ident: ref72/cit72
  doi: 10.1107/S0108768107031758
– ident: ref54/cit54
  doi: 10.1021/acs.jpclett.7b00008
– ident: ref90/cit90
  doi: 10.1002/aelm.201900216
– ident: ref4/cit4
  doi: 10.1021/acs.nanolett.7b01475
– ident: ref44/cit44
  doi: 10.1021/ja4029395
– ident: ref36/cit36
  doi: 10.1021/acs.nanolett.8b02078
– ident: ref87/cit87
  doi: 10.1021/acsenergylett.8b01608
– ident: ref13/cit13
  doi: 10.1103/PhysRevB.42.11099
– ident: ref35/cit35
  doi: 10.1038/s41467-019-08768-z
– ident: ref37/cit37
  doi: 10.1126/sciadv.aau3241
– ident: ref38/cit38
  doi: 10.1103/PhysRevLett.95.163001
– ident: ref60/cit60
  doi: 10.1021/acsami.7b12535
– ident: ref82/cit82
  doi: 10.1021/jacs.7b06401
– ident: ref8/cit8
  doi: 10.1002/ange.201406466
– ident: ref1/cit1
  doi: 10.1021/jacs.9b01327
– ident: ref58/cit58
  doi: 10.1021/acs.nanolett.7b03150
– ident: ref26/cit26
  doi: 10.1021/jacs.7b01312
– ident: ref34/cit34
  doi: 10.1038/s41467-018-07656-2
– ident: ref51/cit51
  doi: 10.1021/acs.jpclett.5b02355
– ident: ref62/cit62
  doi: 10.1021/jacs.7b02121
– ident: ref70/cit70
  doi: 10.1016/j.chemphys.2015.09.010
– ident: ref61/cit61
  doi: 10.1021/acs.nanolett.7b00167
– ident: ref75/cit75
  doi: 10.1021/jacs.8b08448
– ident: ref24/cit24
  doi: 10.1149/MA2016-02/15/1432
– ident: ref85/cit85
  doi: 10.1016/j.chempr.2018.09.001
– ident: ref48/cit48
  doi: 10.1021/acs.jpclett.6b02713
– ident: ref79/cit79
  doi: 10.1021/acs.jpclett.6b00001
– ident: ref41/cit41
  doi: 10.1021/nl5046268
– ident: ref81/cit81
  doi: 10.1021/acsenergylett.7b00862
– ident: ref43/cit43
  doi: 10.1021/ja411800n
– ident: ref68/cit68
  doi: 10.1063/1.3526297
– ident: ref74/cit74
  doi: 10.1021/acsnano.6b04265
– ident: ref25/cit25
  doi: 10.1149/MA2017-02/15/877
– ident: ref57/cit57
  doi: 10.1021/acs.nanolett.8b00035
– ident: ref14/cit14
  doi: 10.1021/acs.nanolett.6b03114
– ident: ref59/cit59
  doi: 10.1021/acs.nanolett.7b04374
– ident: ref42/cit42
  doi: 10.1021/acs.nanolett.5b05264
– ident: ref19/cit19
  doi: 10.1021/acs.jpcc.7b10705
– ident: ref86/cit86
  doi: 10.1021/acs.jpclett.9b01855
– ident: ref55/cit55
  doi: 10.1016/j.jechem.2017.10.010
– ident: ref65/cit65
  doi: 10.1021/acs.jpca.6b05607
– ident: ref46/cit46
  doi: 10.1016/j.jphotochem.2007.02.017
– ident: ref66/cit66
  doi: 10.1021/ct400934c
– ident: ref83/cit83
  doi: 10.1021/acs.nanolett.6b01218
– ident: ref10/cit10
  doi: 10.1038/nature18306
– ident: ref16/cit16
  doi: 10.1021/acs.chemmater.6b03054
– ident: ref80/cit80
  doi: 10.1021/acs.jpclett.8b01654
– ident: ref78/cit78
  doi: 10.1021/acs.nanolett.8b01501
– ident: ref53/cit53
  doi: 10.1021/acsnano.5b05843
– volume-title: Principles of Nonlinear Optical Spectroscopy
  year: 1999
  ident: ref89/cit89
– ident: ref5/cit5
  doi: 10.1021/acs.nanolett.7b02980
– ident: ref50/cit50
  doi: 10.1021/acsenergylett.7b00183
– ident: ref23/cit23
  doi: 10.1021/acs.nanolett.7b02146
– ident: ref56/cit56
  doi: 10.1021/acs.jpclett.8b00177
– ident: ref77/cit77
  doi: 10.1021/acs.jpclett.9b00042
– ident: ref88/cit88
  doi: 10.1103/PhysRevLett.110.180404
– ident: ref28/cit28
  doi: 10.1038/nphys3357
– ident: ref63/cit63
  doi: 10.1021/jacs.6b08082
– ident: ref71/cit71
  doi: 10.1021/nl3012962
– ident: ref64/cit64
  doi: 10.1021/acsnano.6b04210
– ident: ref49/cit49
  doi: 10.1002/wcms.1305
– ident: ref11/cit11
  doi: 10.1039/C7QM00472A
– ident: ref39/cit39
  doi: 10.1103/PhysRevLett.100.197402
– ident: ref84/cit84
  doi: 10.1126/sciadv.1701217
– ident: ref7/cit7
  doi: 10.1016/j.chempr.2017.02.004
– ident: ref52/cit52
  doi: 10.1021/acs.jpclett.8b00446
– ident: ref15/cit15
  doi: 10.1038/s41467-017-00788-x
– ident: ref40/cit40
  doi: 10.1021/nl500792a
– ident: ref32/cit32
  doi: 10.1021/acsnano.8b07631
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.92.045414
– ident: ref69/cit69
  doi: 10.1002/adma.201900767
– ident: ref18/cit18
  doi: 10.1038/s41467-017-01517-0
SSID ssj0004281
Score 2.5931797
Snippet Two-dimensional (2D) Ruddlesden–Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative...
Two-dimensional (2D) Ruddlesden-Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative...
Not provided.
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15557
SubjectTerms chemical bonding
Chemistry
density functional theory
dissociation
electrons
energy
guidelines
iodine
lead
luminescence
molecular dynamics
oxidation
physicochemical properties
quantum mechanics
solar energy
Title Exciton Dissociation and Suppressed Charge Recombination at 2D Perovskite Edges: Key Roles of Unsaturated Halide Bonds and Thermal Disorder
URI http://dx.doi.org/10.1021/jacs.9b06046
https://www.ncbi.nlm.nih.gov/pubmed/31525977
https://www.proquest.com/docview/2293011981
https://www.proquest.com/docview/2327993252
https://www.osti.gov/biblio/1802653
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9NADB5BOcBlebNlARkJTihVMkkmM9xQt0sFEkJApb1F83BWiCVBmxQBf4E_jZ0mW7GowDVylMnYjj_Hns9CPMmM1pgbH8XO6SirbBLZFJELjjakmaMo1Xf5vlHLVfbqOD_eNsherOBL5gfy7cw4JnlRl8UVqch_GQLN32_PP0qdjDC30CodGtwv3s0ByLe_BaBJQ460G1z2Qeboung5HtXZ9JZ8mq07N_M__mRu_Mf6b4i9AWfCi41h3BSXsL4lrs7H8W63xc_FN0_eXMPhx62GwNYBeNBnTykegIvxJwico36mFHqQ6UAewls8a762_O8XFkwU8Rxe43d4x_xQ0FSwqlumDCUkG2BJWD8g8ATjtn8C2SbFg1MYqT_viNXR4sN8GQ2TGSKb5XEXOaldppk6JlGoTCjiwuvKo66KQrkETfCScl80ypnEFzFSgFTBEFwwibXKpnfFpG5q3BcQx_TpZ1Y-Qh4ZonOyyr3Pg4plSGQVT8Vj2sBy8Ky27IvmkpIWvjps61Q8G1Va-oHanCdsnO6Qfnou_WVD6bFD7oCtoyQowny6nhuPfFcyZZ7KU1rXaDQlaY7LLLbGZt2WkhAUM-np5C8yqSwIGcpcTsW9jcWdryXlkVQEy-__x5sfiGuE4EzfXSgfiEl3tsaHhJI696h3kV_HHAsk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgOZQLb8pSHkaCE0qVOIljc6u2Wy20rBB0pd4iPyYIURLUZBHwF_jTzHiTXVFpUa_WJBnbM5rPmfE3jL3MtFKQaxfF1qooq0wSmRSAEo7Gp5nFKBWqfOdytsjeneVn_WV1uguDSrT4pjYk8TfsAkQThIPaEteLvM5uIA4RZNAHk0-ba5BCJQPaLZRM-zr3y09THHLtP3Fo1KA_bceYIdYc3WbztZahxOTr_rKz--73JQLHK0_jDrvVo05-sDKTu-wa1PfYzmRo9naf_Zn-dOjbNT_8stkvbmrPqe1nIBj3nFLzn4HTifUbHqh7mY6LQ_4BLpofLf0J5lOijXjDj-EX_0hsUbyp-KJuiUAUca3nM0T-Hjj1M27DF9BSMTqc84EI9AFbHE1PJ7Oo79MQmSyPu8gKZTNFRDKJBKl9ERdOVQ5UVRTSJqC9E3gSBi2tTlwRA4ZL6TWCB50YI036kI3qpoZHjMcxBgLi6EMckgFYK6rcudzLWPhEVPGYvcAFLHs_a8uQQhd4hKHRflnH7PWws6Xric6p38b5FulXa-nvK4KPLXJ7ZCQlAhNi13VUhuS6kgj0ZJ6iXoPtlLhzlHQxNTTLthSIp4hXTyX_kUlFgThR5GLMdleGt9YlpQZVCNIfX2Hmz9nO7PT9SXnydn68x24ittOh7lA8YaPuYglPET919lnwmr8SxROF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9RADB6VRQJeuI-lHIMETyhVMkkmM7xVe2ihqKoKK_UtmsNBiJJUTRYBf4E_jT2bbEWlRfCaOMkctvw59nxm7GWmlYJcuyi2VkVZZZLIpACUcDQ-zSx6qVDleygXy-zdSX6yw5LhLAwOosU3tSGJT1Z95queYYCogvCGtsT3Iq-wq5SxI6Xen3y4OAopVDIg3kLJtK91v_w0-SLX_uGLRg3a1HacGfzN_BY73ow0lJl82Vt1ds_9vETi-F9Tuc1u9uiT76_V5Q7bgfouuz4Zmr7dY79m3x3aeM2nny_2jZvac2r_GYjGPacU_SfgFLl-xcC6l-m4mPIjOG--tfRHmM-IPuINP4Af_JhYo3hT8WXdEpEo4lvPFxgBeODU17gNX0CNRS9xygdC0PtsOZ99nCyivl9DZLI87iIrlM0UEcokEqT2RVw4VTlQVVFIm4D2TmBEDFpanbgiBnSb0msEEToxRpr0ARvVTQ2PGI9jdAjE1Yd4JAOwVlS5c7mXsfCJqOIxe4ELWPb21pYhlS4wlKGr_bKO2ethd0vXE55T343TLdKvNtJna6KPLXK7pCglAhRi2XVUjuS6koj0ZJ7iuAb9KXHnKPliamhWbSkQVxG_nkr-IpOKAvGiyMWYPVwr32YsKTWqQrD--B9m_pxdO5rOy_dvDw922Q2EeDqUH4onbNSdr-ApwqjOPguG8xv_SBYI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exciton+Dissociation+and+Suppressed+Charge+Recombination+at+2D+Perovskite+Edges%3A+Key+Roles+of+Unsaturated+Halide+Bonds+and+Thermal+Disorder&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhang%2C+Zhaosheng&rft.au=Fang%2C+Wei-Hai&rft.au=Long%2C+Run&rft.au=Prezhdo%2C+Oleg+V.&rft.date=2019-10-02&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=39&rft_id=info:doi/10.1021%2Fjacs.9b06046&rft.externalDocID=1802653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon