pH- and Calcium-Dependent Aromatic Network in the SARS-CoV‑2 Envelope Protein
The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, E...
Saved in:
Published in | Journal of the American Chemical Society Vol. 144; no. 15; pp. 6839 - 6850 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses. |
---|---|
AbstractList | The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to allow cation transport is unclear. Here we use
13
C and
19
F solid-state NMR to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by E in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide.
19
F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact and dynamics. Channel opening by acidic pH and Ca
2+
increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses. The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses. The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses. The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use ¹³C and ¹⁹F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. ¹⁹F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca²⁺ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses. The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use C and F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses. |
Author | Medeiros-Silva, João Somberg, Noah H Dregni, Aurelio J Hong, Mei Wang, Harrison K Mandala, Venkata S McKay, Matthew J |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: João orcidid: 0000-0003-3532-4390 surname: Medeiros-Silva fullname: Medeiros-Silva, João – sequence: 2 givenname: Noah H surname: Somberg fullname: Somberg, Noah H – sequence: 3 givenname: Harrison K surname: Wang fullname: Wang, Harrison K – sequence: 4 givenname: Matthew J surname: McKay fullname: McKay, Matthew J – sequence: 5 givenname: Venkata S orcidid: 0000-0002-6358-0642 surname: Mandala fullname: Mandala, Venkata S – sequence: 6 givenname: Aurelio J surname: Dregni fullname: Dregni, Aurelio J – sequence: 7 givenname: Mei orcidid: 0000-0001-5255-5858 surname: Hong fullname: Hong, Mei email: meihong@mit.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35380805$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKctO9bISxak-Cd2nA3SaCgUqaKIAlvLcW6oh8RO7aSou74Cr9gnqUcdKkCgrizbx58-37OHdnzwgNAzSg4pYfTV2th0yCwhdcUfoQUVjBSCMrmDFoQQVlRK8l20l9I6b0um6BO0ywVXRBGxQKfjcYGNb_HK9NbNQ_EGRvAt-AkvYxjM5Cz-ANOPEL9j5_F0Dvhs-emsWIWvN9c_GT7yl9CHEfDHGCZw_gA97kyf4Ol23Udf3h59Xh0XJ6fv3q-WJ4UpBZkK1XW1bBVwZZVlVlJp69ZYxS0ry7qVTWMYKEVJa6jpSMVtxxrCOqFEJbuG8n30-i53nJsBWpsLR9PrMbrBxCsdjNN_3nh3rr-FS11TpUouc8CLbUAMFzOkSQ8uWeh74yHMSTMpSa1Enaf6MFpWUghJRUaf_17rvs-vgWfg5R1gY0gpQnePUKI3PvXGp976zDj7C7duylLC5lOu_9-jbd_N4TrM0WcT_0ZvAXAMsWE |
CitedBy_id | crossref_primary_10_1021_acsomega_3c04100 crossref_primary_10_1007_s10735_025_10375_w crossref_primary_10_1007_s12020_023_03415_6 crossref_primary_10_1002_pro_4755 crossref_primary_10_1021_jacs_4c07686 crossref_primary_10_1016_j_jmb_2023_167966 crossref_primary_10_1016_j_csbj_2024_10_021 crossref_primary_10_1021_acs_biochem_3c00437 crossref_primary_10_1017_S0033583524000192 crossref_primary_10_1016_j_microc_2022_108329 crossref_primary_10_1039_D2CP02881F crossref_primary_10_3389_fmolb_2024_1334819 crossref_primary_10_1021_acs_jpcb_3c06839 crossref_primary_10_1016_j_str_2023_01_005 crossref_primary_10_1021_acs_accounts_4c00800 crossref_primary_10_1021_acs_biochem_2c00464 crossref_primary_10_1126_sciadv_adi9007 crossref_primary_10_1002_pro_4923 crossref_primary_10_1016_j_aca_2025_343684 crossref_primary_10_1002_chem_202300488 crossref_primary_10_1002_EXP_20230099 crossref_primary_10_1021_acs_jpcb_3c05295 crossref_primary_10_1021_acs_chemrev_4c00373 crossref_primary_10_1242_jcs_260685 crossref_primary_10_1128_jvi_00292_23 crossref_primary_10_1021_acs_biochem_3c00589 crossref_primary_10_1038_s42003_023_05490_x crossref_primary_10_1021_jacs_4c13229 crossref_primary_10_1128_jvi_02049_24 crossref_primary_10_1016_j_str_2024_09_008 |
Cites_doi | 10.1016/j.virol.2006.05.028 10.1006/viro.2001.0818 10.1128/jvi.67.9.5585-5594.1993 10.1038/nature08722 10.1021/bi9008837 10.1038/s41594-020-00536-8 10.1021/acs.jpcb.0c10631 10.1016/0092-8674(92)90452-I 10.1016/j.jmb.2019.05.009 10.1016/S0042-6822(03)00175-2 10.1371/journal.ppat.1004320 10.1016/j.cell.2020.10.039 10.1016/j.micinf.2020.08.006 10.1038/s41467-020-20468-7 10.1021/acs.biochem.0c00342 10.1016/S2213-2600(20)30076-X 10.1038/s41467-021-23533-x 10.1126/science.1191714 10.1074/jbc.M206582200 10.1128/JVI.00521-09 10.1007/s10858-009-9374-3 10.1002/pro.2158 10.1371/journal.ppat.1004077 10.1016/j.virol.2006.01.028 10.1128/JVI.72.11.8636-8643.1998 10.1007/s10858-013-9718-x 10.1073/pnas.94.21.11301 10.1007/s10858-020-00306-0 10.1080/00268979809483251 10.1016/j.genrep.2020.100997 10.1016/j.virol.2011.03.029 10.1038/s41594-019-0371-2 10.1016/j.jmb.2017.05.015 10.1021/acs.jpcb.8b00310 10.1128/JVI.00450-09 10.1038/s41467-018-03179-y 10.1016/j.virol.2012.07.005 10.1016/j.bbamem.2013.05.008 10.1371/journal.pone.0251955 10.1039/b517734k 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2 10.1016/j.jmr.2013.04.009 10.1021/bi9014488 10.1038/s41422-021-00519-4 10.1038/s42003-021-02866-9 10.1128/JVI.01467-06 10.1152/physiol.00005.2004 10.1371/journal.ppat.1000511 10.1016/j.jmb.2021.167091 10.1016/j.virol.2015.08.010 10.1371/journal.ppat.1009519 10.3390/v13020243 10.1186/s12985-019-1182-0 10.1016/j.virol.2015.02.005 10.1038/s41598-019-40217-1 10.1002/cbic.201300796 10.3389/fmicb.2021.692423 10.1021/jacs.6b03142 10.1074/jbc.RA120.016175 10.1039/b718519g 10.1242/jcs.03019 10.3389/fcell.2019.00093 10.1021/ja017001r 10.1113/JP281037 10.1128/JVI.00087-13 10.1038/nrmicro2820 10.1038/nrd.2015.37 10.1016/j.bbamem.2018.02.017 10.1038/nature06528 10.1371/journal.pone.0237300 10.3389/fimmu.2020.573339 10.1110/ps.062730007 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.2c00973 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 6850 |
ExternalDocumentID | PMC9188436 35380805 10_1021_jacs_2c00973 c333711631 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P41 GM132079 |
GroupedDBID | - 02 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AGXLV ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ET F5P GGK GNL IH2 IH9 JG K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -ET -~X .DC .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AHGAQ CITATION CUPRZ ED~ JG~ XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7X8 AAYWT 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a450t-8ff96d8e38c8c2c616c9dac83c2449d6bba2e8810da1af073cf2b02f58576fb13 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 18:31:51 EDT 2025 Fri Jul 11 03:51:09 EDT 2025 Mon Jul 21 09:43:46 EDT 2025 Wed Feb 19 02:25:48 EST 2025 Tue Jul 01 03:54:07 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Sun Apr 24 16:59:09 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a450t-8ff96d8e38c8c2c616c9dac83c2449d6bba2e8810da1af073cf2b02f58576fb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3532-4390 0000-0002-6358-0642 0000-0001-5255-5858 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9188436 |
PMID | 35380805 |
PQID | 2647655615 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9188436 proquest_miscellaneous_2660985997 proquest_miscellaneous_2647655615 pubmed_primary_35380805 crossref_primary_10_1021_jacs_2c00973 crossref_citationtrail_10_1021_jacs_2c00973 acs_journals_10_1021_jacs_2c00973 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-20 |
PublicationDateYYYYMMDD | 2022-04-20 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref35/cit35 doi: 10.1016/j.virol.2006.05.028 – ident: ref73/cit73 doi: 10.1006/viro.2001.0818 – ident: ref38/cit38 doi: 10.1128/jvi.67.9.5585-5594.1993 – ident: ref40/cit40 doi: 10.1038/nature08722 – ident: ref34/cit34 doi: 10.1021/bi9008837 – ident: ref42/cit42 doi: 10.1038/s41594-020-00536-8 – ident: ref56/cit56 doi: 10.1021/acs.jpcb.0c10631 – ident: ref31/cit31 doi: 10.1016/0092-8674(92)90452-I – ident: ref65/cit65 doi: 10.1016/j.jmb.2019.05.009 – ident: ref4/cit4 doi: 10.1016/S0042-6822(03)00175-2 – ident: ref6/cit6 doi: 10.1371/journal.ppat.1004320 – ident: ref19/cit19 doi: 10.1016/j.cell.2020.10.039 – ident: ref8/cit8 doi: 10.1016/j.micinf.2020.08.006 – ident: ref57/cit57 doi: 10.1038/s41467-020-20468-7 – ident: ref47/cit47 doi: 10.1021/acs.biochem.0c00342 – ident: ref21/cit21 doi: 10.1016/S2213-2600(20)30076-X – ident: ref7/cit7 doi: 10.1038/s41467-021-23533-x – ident: ref63/cit63 doi: 10.1126/science.1191714 – ident: ref61/cit61 doi: 10.1074/jbc.M206582200 – ident: ref67/cit67 doi: 10.1128/JVI.00521-09 – ident: ref44/cit44 doi: 10.1007/s10858-009-9374-3 – ident: ref32/cit32 doi: 10.1002/pro.2158 – ident: ref20/cit20 doi: 10.1371/journal.ppat.1004077 – ident: ref27/cit27 doi: 10.1016/j.virol.2006.01.028 – ident: ref5/cit5 doi: 10.1128/JVI.72.11.8636-8643.1998 – ident: ref49/cit49 doi: 10.1007/s10858-013-9718-x – ident: ref62/cit62 doi: 10.1073/pnas.94.21.11301 – ident: ref58/cit58 doi: 10.1007/s10858-020-00306-0 – ident: ref45/cit45 doi: 10.1080/00268979809483251 – ident: ref28/cit28 doi: 10.1016/j.genrep.2020.100997 – ident: ref72/cit72 doi: 10.1016/j.virol.2011.03.029 – ident: ref48/cit48 doi: 10.1038/s41594-019-0371-2 – ident: ref64/cit64 doi: 10.1016/j.jmb.2017.05.015 – ident: ref50/cit50 doi: 10.1021/acs.jpcb.8b00310 – ident: ref26/cit26 doi: 10.1128/JVI.00450-09 – ident: ref69/cit69 doi: 10.1038/s41467-018-03179-y – ident: ref10/cit10 doi: 10.1016/j.virol.2012.07.005 – ident: ref17/cit17 doi: 10.1016/j.bbamem.2013.05.008 – ident: ref9/cit9 doi: 10.1371/journal.pone.0251955 – ident: ref33/cit33 doi: 10.1039/b517734k – ident: ref60/cit60 doi: 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2 – ident: ref46/cit46 doi: 10.1016/j.jmr.2013.04.009 – ident: ref39/cit39 doi: 10.1021/bi9014488 – ident: ref13/cit13 doi: 10.1038/s41422-021-00519-4 – ident: ref15/cit15 doi: 10.1038/s42003-021-02866-9 – ident: ref24/cit24 doi: 10.1128/JVI.01467-06 – ident: ref18/cit18 doi: 10.1152/physiol.00005.2004 – ident: ref37/cit37 doi: 10.1371/journal.ppat.1000511 – ident: ref70/cit70 doi: 10.1016/j.jmb.2021.167091 – ident: ref11/cit11 doi: 10.1016/j.virol.2015.08.010 – ident: ref36/cit36 doi: 10.1371/journal.ppat.1009519 – ident: ref29/cit29 doi: 10.3390/v13020243 – ident: ref3/cit3 doi: 10.1186/s12985-019-1182-0 – ident: ref51/cit51 doi: 10.1016/j.virol.2015.02.005 – ident: ref66/cit66 doi: 10.1038/s41598-019-40217-1 – ident: ref43/cit43 doi: 10.1002/cbic.201300796 – ident: ref14/cit14 doi: 10.3389/fmicb.2021.692423 – ident: ref54/cit54 doi: 10.1021/jacs.6b03142 – ident: ref1/cit1 doi: 10.1074/jbc.RA120.016175 – ident: ref59/cit59 doi: 10.1039/b718519g – ident: ref53/cit53 doi: 10.1242/jcs.03019 – ident: ref52/cit52 doi: 10.3389/fcell.2019.00093 – ident: ref55/cit55 doi: 10.1021/ja017001r – ident: ref12/cit12 doi: 10.1113/JP281037 – ident: ref25/cit25 doi: 10.1128/JVI.00087-13 – ident: ref2/cit2 doi: 10.1038/nrmicro2820 – ident: ref23/cit23 doi: 10.1038/nrd.2015.37 – ident: ref68/cit68 doi: 10.1016/j.bbamem.2018.02.017 – ident: ref41/cit41 doi: 10.1038/nature06528 – ident: ref22/cit22 doi: 10.1371/journal.pone.0237300 – ident: ref71/cit71 doi: 10.3389/fimmu.2020.573339 – ident: ref16/cit16 doi: 10.1110/ps.062730007 – ident: ref30/cit30 |
SSID | ssj0004281 |
Score | 2.4535472 |
Snippet | The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6839 |
SubjectTerms | calcium Calcium - metabolism cations COVID-19 endoplasmic reticulum Humans Hydrogen-Ion Concentration Ions Lipids nuclear magnetic resonance spectroscopy pathogenicity peptides phenylalanine Protein Conformation SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 viruses Water |
Title | pH- and Calcium-Dependent Aromatic Network in the SARS-CoV‑2 Envelope Protein |
URI | http://dx.doi.org/10.1021/jacs.2c00973 https://www.ncbi.nlm.nih.gov/pubmed/35380805 https://www.proquest.com/docview/2647655615 https://www.proquest.com/docview/2660985997 https://pubmed.ncbi.nlm.nih.gov/PMC9188436 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHODC-xFeciU4IUd-rdc-VktLhERBhKLeIttrqxHFqcjmwom_wF_klzDeR0pSFbjujrXaGY_nG3nmG4ReWBGFDAHSkrqgRHrpiA7aE166oLUpI20Z-N4dqsmRfHtcHJ8XyG7f4PPMD-SXY-5bXpmr6BpX4L8ZAlXT8_5HrtkAc0utRF_gvr06ByC_3AxAF1DldnHkH9Hm4BZ6M_TsdEUmX8arxo3994sUjv_4kdvoZg848V63Q-6gKyHdRderYc7bPfT-bEKwTTWu7Kmfr76S1_1c3AYWLVpGV3zYFYvjecIAGPF07-OUVIvPv3785Hg_tWVHAX_IlA_zdB8dHex_qiakH7NArCxoQ3SMRtU6CO21514x5U1tvRYeQr-plXOWg90YrS2zEY4EH7mjPEKiUaromHiAdtIihUcIu0IZ5mpNA4vSmsJ5sLvgtVDUeeblCO2CEma9myxn7Q04hwwkP-1VM0KvBvvMfM9TnsdlnF4i_XItfdbxc1witzuYegb6zbciNoXFCgSULFUeElr8TUZRowtjyhF62G2P9dcEhAyA3bC63Ng4a4FM4L35Js1PWiJvw7SWQj3-D608QTd4brygEs61p2in-bYKzwAONe556wu_ARarBZ8 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbhMxELagHMoFyl8JFHAlOCFXu7bXax-jpVWANiDSot5WttcWEcWpyObCiVfgFfskHTublAQV9eod73rHY89neeYbhF5r5hl3Do4lTZERbrkh0klLaGmclKr0WWLgOxqKwQn_cFqcdsnqMRcGBjGFN03TJf4Vu0CkCYJGahO9zG10B3AIjQbdr0ZXaZBU5gu0W0rBujj39d7RD9npqh_6B1yux0j-5XQO7qPhcrgp1uT73qw1e_bXGpPjjf9nC93r4Cfuz-3lAbrlwkO0WS2qvj1Cn84HBOvQ4Eqf2fHsB3nXVcltodMk8bvi4Tx0HI8DBviIR_0vI1JNvl78_kPxfkhBSA5_jgQQ4_AYnRzsH1cD0hVdIJoXWUuk90o00jFppaVW5MKqRlvJLAAB1QhjNIVZzLNG59rDBmE9NRn1cOwohTc5e4I2wiS4pwibQqjcNDJzuedaFcaCFTDaMJEZm1veQ7ughLpbNNM63YdTOI_E1k41PfR2MU217VjLY_GMs2uk3yylz-dsHdfI7S5mvAb9xjsSHdxkBgKClyKWDC3-JyMyJQulyh7anlvJ8msMHAiAcOhdrtjPUiDSea8-CeNvidZb5VJyJp7dQCuv0Obg-OiwPnw__Pgc3aUxJSPjsOPtoI3258y9AKDUmpdpeVwCo9UOAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkYAL5VVYysOV4IRS-RXHPq7SrpbXUnUp6i2yHVusKNkVm71w4i_wF_tLOs4mC7uoCK7xOHHGY89nzfgbhF4YHrjwHo4lZUoS4YRNlFcuYZn1SukskIaB7_1IDk_Fm7P0bAvR7i4MDGIOb5o3Qfy4qmdlaBkGIlUQNDDXUMxcQ9djxC4adT8f_7oKyRTtEG-mJG9z3Td7R1_k5uu-6A-AuZkn-ZvjGeygk9WQm3yTLweL2h647xtsjv_1T3fQ7RaG4v7Sbu6iLV_dQzfzrvrbffRhNkywqUqcm3M3WXxNDttquTV0mjY8r3i0TCHHkwoDjMTj_sk4yaefLn78ZPioapKRPD6ORBCT6gE6HRx9zIdJW3whMSIldaJC0LJUniunHHOSSqdL4xR3AAh0Ka01DGaTktJQE2CjcIFZwgIcPzIZLOW7aLuaVv4RwjaVmtpSEU-DMDq1DqyBs5JLYh11oof2QQlFu3jmRRMXZ3AuiU9b1fTQq26qCteyl8ciGudXSL9cSc-WrB1XyO13s16AfmOsxFR-ugABKTIZS4emf5ORRKtU66yHHi4tZfU1Do4EwDj0ztZsaCUQab3XW6rJ54beW1OlBJeP_0Erz9GN48NB8e716O0eusXizQwiYON7grbrbwv_FPBSbZ81K-QSVfMQgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pH-+and+Calcium-Dependent+Aromatic+Network+in+the+SARS-CoV-2+Envelope+Protein&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Medeiros-Silva%2C+Jo%C3%A3o&rft.au=Somberg%2C+Noah+H&rft.au=Wang%2C+Harrison+K.&rft.au=McKay%2C+Matthew+J.&rft.date=2022-04-20&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=144&rft.issue=15&rft.spage=6839&rft.epage=6850&rft_id=info:doi/10.1021%2Fjacs.2c00973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_2c00973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |