pH- and Calcium-Dependent Aromatic Network in the SARS-CoV‑2 Envelope Protein

The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, E...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 144; no. 15; pp. 6839 - 6850
Main Authors Medeiros-Silva, João, Somberg, Noah H, Wang, Harrison K, McKay, Matthew J, Mandala, Venkata S, Dregni, Aurelio J, Hong, Mei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.
AbstractList The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to allow cation transport is unclear. Here we use 13 C and 19 F solid-state NMR to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by E in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19 F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact and dynamics. Channel opening by acidic pH and Ca 2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.
The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.
The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.
The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use ¹³C and ¹⁹F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. ¹⁹F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca²⁺ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.
The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use C and F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.
Author Medeiros-Silva, João
Somberg, Noah H
Dregni, Aurelio J
Hong, Mei
Wang, Harrison K
Mandala, Venkata S
McKay, Matthew J
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: João
  orcidid: 0000-0003-3532-4390
  surname: Medeiros-Silva
  fullname: Medeiros-Silva, João
– sequence: 2
  givenname: Noah H
  surname: Somberg
  fullname: Somberg, Noah H
– sequence: 3
  givenname: Harrison K
  surname: Wang
  fullname: Wang, Harrison K
– sequence: 4
  givenname: Matthew J
  surname: McKay
  fullname: McKay, Matthew J
– sequence: 5
  givenname: Venkata S
  orcidid: 0000-0002-6358-0642
  surname: Mandala
  fullname: Mandala, Venkata S
– sequence: 6
  givenname: Aurelio J
  surname: Dregni
  fullname: Dregni, Aurelio J
– sequence: 7
  givenname: Mei
  orcidid: 0000-0001-5255-5858
  surname: Hong
  fullname: Hong, Mei
  email: meihong@mit.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35380805$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKctO9bISxak-Cd2nA3SaCgUqaKIAlvLcW6oh8RO7aSou74Cr9gnqUcdKkCgrizbx58-37OHdnzwgNAzSg4pYfTV2th0yCwhdcUfoQUVjBSCMrmDFoQQVlRK8l20l9I6b0um6BO0ywVXRBGxQKfjcYGNb_HK9NbNQ_EGRvAt-AkvYxjM5Cz-ANOPEL9j5_F0Dvhs-emsWIWvN9c_GT7yl9CHEfDHGCZw_gA97kyf4Ol23Udf3h59Xh0XJ6fv3q-WJ4UpBZkK1XW1bBVwZZVlVlJp69ZYxS0ry7qVTWMYKEVJa6jpSMVtxxrCOqFEJbuG8n30-i53nJsBWpsLR9PrMbrBxCsdjNN_3nh3rr-FS11TpUouc8CLbUAMFzOkSQ8uWeh74yHMSTMpSa1Enaf6MFpWUghJRUaf_17rvs-vgWfg5R1gY0gpQnePUKI3PvXGp976zDj7C7duylLC5lOu_9-jbd_N4TrM0WcT_0ZvAXAMsWE
CitedBy_id crossref_primary_10_1021_acsomega_3c04100
crossref_primary_10_1007_s10735_025_10375_w
crossref_primary_10_1007_s12020_023_03415_6
crossref_primary_10_1002_pro_4755
crossref_primary_10_1021_jacs_4c07686
crossref_primary_10_1016_j_jmb_2023_167966
crossref_primary_10_1016_j_csbj_2024_10_021
crossref_primary_10_1021_acs_biochem_3c00437
crossref_primary_10_1017_S0033583524000192
crossref_primary_10_1016_j_microc_2022_108329
crossref_primary_10_1039_D2CP02881F
crossref_primary_10_3389_fmolb_2024_1334819
crossref_primary_10_1021_acs_jpcb_3c06839
crossref_primary_10_1016_j_str_2023_01_005
crossref_primary_10_1021_acs_accounts_4c00800
crossref_primary_10_1021_acs_biochem_2c00464
crossref_primary_10_1126_sciadv_adi9007
crossref_primary_10_1002_pro_4923
crossref_primary_10_1016_j_aca_2025_343684
crossref_primary_10_1002_chem_202300488
crossref_primary_10_1002_EXP_20230099
crossref_primary_10_1021_acs_jpcb_3c05295
crossref_primary_10_1021_acs_chemrev_4c00373
crossref_primary_10_1242_jcs_260685
crossref_primary_10_1128_jvi_00292_23
crossref_primary_10_1021_acs_biochem_3c00589
crossref_primary_10_1038_s42003_023_05490_x
crossref_primary_10_1021_jacs_4c13229
crossref_primary_10_1128_jvi_02049_24
crossref_primary_10_1016_j_str_2024_09_008
Cites_doi 10.1016/j.virol.2006.05.028
10.1006/viro.2001.0818
10.1128/jvi.67.9.5585-5594.1993
10.1038/nature08722
10.1021/bi9008837
10.1038/s41594-020-00536-8
10.1021/acs.jpcb.0c10631
10.1016/0092-8674(92)90452-I
10.1016/j.jmb.2019.05.009
10.1016/S0042-6822(03)00175-2
10.1371/journal.ppat.1004320
10.1016/j.cell.2020.10.039
10.1016/j.micinf.2020.08.006
10.1038/s41467-020-20468-7
10.1021/acs.biochem.0c00342
10.1016/S2213-2600(20)30076-X
10.1038/s41467-021-23533-x
10.1126/science.1191714
10.1074/jbc.M206582200
10.1128/JVI.00521-09
10.1007/s10858-009-9374-3
10.1002/pro.2158
10.1371/journal.ppat.1004077
10.1016/j.virol.2006.01.028
10.1128/JVI.72.11.8636-8643.1998
10.1007/s10858-013-9718-x
10.1073/pnas.94.21.11301
10.1007/s10858-020-00306-0
10.1080/00268979809483251
10.1016/j.genrep.2020.100997
10.1016/j.virol.2011.03.029
10.1038/s41594-019-0371-2
10.1016/j.jmb.2017.05.015
10.1021/acs.jpcb.8b00310
10.1128/JVI.00450-09
10.1038/s41467-018-03179-y
10.1016/j.virol.2012.07.005
10.1016/j.bbamem.2013.05.008
10.1371/journal.pone.0251955
10.1039/b517734k
10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2
10.1016/j.jmr.2013.04.009
10.1021/bi9014488
10.1038/s41422-021-00519-4
10.1038/s42003-021-02866-9
10.1128/JVI.01467-06
10.1152/physiol.00005.2004
10.1371/journal.ppat.1000511
10.1016/j.jmb.2021.167091
10.1016/j.virol.2015.08.010
10.1371/journal.ppat.1009519
10.3390/v13020243
10.1186/s12985-019-1182-0
10.1016/j.virol.2015.02.005
10.1038/s41598-019-40217-1
10.1002/cbic.201300796
10.3389/fmicb.2021.692423
10.1021/jacs.6b03142
10.1074/jbc.RA120.016175
10.1039/b718519g
10.1242/jcs.03019
10.3389/fcell.2019.00093
10.1021/ja017001r
10.1113/JP281037
10.1128/JVI.00087-13
10.1038/nrmicro2820
10.1038/nrd.2015.37
10.1016/j.bbamem.2018.02.017
10.1038/nature06528
10.1371/journal.pone.0237300
10.3389/fimmu.2020.573339
10.1110/ps.062730007
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/jacs.2c00973
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 6850
ExternalDocumentID PMC9188436
35380805
10_1021_jacs_2c00973
c333711631
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM132079
GroupedDBID -
02
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AGXLV
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ET
F5P
GGK
GNL
IH2
IH9
JG
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
CITATION
CUPRZ
ED~
JG~
XSW
YQT
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
AAYWT
7S9
L.6
5PM
ID FETCH-LOGICAL-a450t-8ff96d8e38c8c2c616c9dac83c2449d6bba2e8810da1af073cf2b02f58576fb13
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 18:31:51 EDT 2025
Fri Jul 11 03:51:09 EDT 2025
Mon Jul 21 09:43:46 EDT 2025
Wed Feb 19 02:25:48 EST 2025
Tue Jul 01 03:54:07 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Sun Apr 24 16:59:09 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a450t-8ff96d8e38c8c2c616c9dac83c2449d6bba2e8810da1af073cf2b02f58576fb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3532-4390
0000-0002-6358-0642
0000-0001-5255-5858
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9188436
PMID 35380805
PQID 2647655615
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9188436
proquest_miscellaneous_2660985997
proquest_miscellaneous_2647655615
pubmed_primary_35380805
crossref_primary_10_1021_jacs_2c00973
crossref_citationtrail_10_1021_jacs_2c00973
acs_journals_10_1021_jacs_2c00973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-20
PublicationDateYYYYMMDD 2022-04-20
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1016/j.virol.2006.05.028
– ident: ref73/cit73
  doi: 10.1006/viro.2001.0818
– ident: ref38/cit38
  doi: 10.1128/jvi.67.9.5585-5594.1993
– ident: ref40/cit40
  doi: 10.1038/nature08722
– ident: ref34/cit34
  doi: 10.1021/bi9008837
– ident: ref42/cit42
  doi: 10.1038/s41594-020-00536-8
– ident: ref56/cit56
  doi: 10.1021/acs.jpcb.0c10631
– ident: ref31/cit31
  doi: 10.1016/0092-8674(92)90452-I
– ident: ref65/cit65
  doi: 10.1016/j.jmb.2019.05.009
– ident: ref4/cit4
  doi: 10.1016/S0042-6822(03)00175-2
– ident: ref6/cit6
  doi: 10.1371/journal.ppat.1004320
– ident: ref19/cit19
  doi: 10.1016/j.cell.2020.10.039
– ident: ref8/cit8
  doi: 10.1016/j.micinf.2020.08.006
– ident: ref57/cit57
  doi: 10.1038/s41467-020-20468-7
– ident: ref47/cit47
  doi: 10.1021/acs.biochem.0c00342
– ident: ref21/cit21
  doi: 10.1016/S2213-2600(20)30076-X
– ident: ref7/cit7
  doi: 10.1038/s41467-021-23533-x
– ident: ref63/cit63
  doi: 10.1126/science.1191714
– ident: ref61/cit61
  doi: 10.1074/jbc.M206582200
– ident: ref67/cit67
  doi: 10.1128/JVI.00521-09
– ident: ref44/cit44
  doi: 10.1007/s10858-009-9374-3
– ident: ref32/cit32
  doi: 10.1002/pro.2158
– ident: ref20/cit20
  doi: 10.1371/journal.ppat.1004077
– ident: ref27/cit27
  doi: 10.1016/j.virol.2006.01.028
– ident: ref5/cit5
  doi: 10.1128/JVI.72.11.8636-8643.1998
– ident: ref49/cit49
  doi: 10.1007/s10858-013-9718-x
– ident: ref62/cit62
  doi: 10.1073/pnas.94.21.11301
– ident: ref58/cit58
  doi: 10.1007/s10858-020-00306-0
– ident: ref45/cit45
  doi: 10.1080/00268979809483251
– ident: ref28/cit28
  doi: 10.1016/j.genrep.2020.100997
– ident: ref72/cit72
  doi: 10.1016/j.virol.2011.03.029
– ident: ref48/cit48
  doi: 10.1038/s41594-019-0371-2
– ident: ref64/cit64
  doi: 10.1016/j.jmb.2017.05.015
– ident: ref50/cit50
  doi: 10.1021/acs.jpcb.8b00310
– ident: ref26/cit26
  doi: 10.1128/JVI.00450-09
– ident: ref69/cit69
  doi: 10.1038/s41467-018-03179-y
– ident: ref10/cit10
  doi: 10.1016/j.virol.2012.07.005
– ident: ref17/cit17
  doi: 10.1016/j.bbamem.2013.05.008
– ident: ref9/cit9
  doi: 10.1371/journal.pone.0251955
– ident: ref33/cit33
  doi: 10.1039/b517734k
– ident: ref60/cit60
  doi: 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2
– ident: ref46/cit46
  doi: 10.1016/j.jmr.2013.04.009
– ident: ref39/cit39
  doi: 10.1021/bi9014488
– ident: ref13/cit13
  doi: 10.1038/s41422-021-00519-4
– ident: ref15/cit15
  doi: 10.1038/s42003-021-02866-9
– ident: ref24/cit24
  doi: 10.1128/JVI.01467-06
– ident: ref18/cit18
  doi: 10.1152/physiol.00005.2004
– ident: ref37/cit37
  doi: 10.1371/journal.ppat.1000511
– ident: ref70/cit70
  doi: 10.1016/j.jmb.2021.167091
– ident: ref11/cit11
  doi: 10.1016/j.virol.2015.08.010
– ident: ref36/cit36
  doi: 10.1371/journal.ppat.1009519
– ident: ref29/cit29
  doi: 10.3390/v13020243
– ident: ref3/cit3
  doi: 10.1186/s12985-019-1182-0
– ident: ref51/cit51
  doi: 10.1016/j.virol.2015.02.005
– ident: ref66/cit66
  doi: 10.1038/s41598-019-40217-1
– ident: ref43/cit43
  doi: 10.1002/cbic.201300796
– ident: ref14/cit14
  doi: 10.3389/fmicb.2021.692423
– ident: ref54/cit54
  doi: 10.1021/jacs.6b03142
– ident: ref1/cit1
  doi: 10.1074/jbc.RA120.016175
– ident: ref59/cit59
  doi: 10.1039/b718519g
– ident: ref53/cit53
  doi: 10.1242/jcs.03019
– ident: ref52/cit52
  doi: 10.3389/fcell.2019.00093
– ident: ref55/cit55
  doi: 10.1021/ja017001r
– ident: ref12/cit12
  doi: 10.1113/JP281037
– ident: ref25/cit25
  doi: 10.1128/JVI.00087-13
– ident: ref2/cit2
  doi: 10.1038/nrmicro2820
– ident: ref23/cit23
  doi: 10.1038/nrd.2015.37
– ident: ref68/cit68
  doi: 10.1016/j.bbamem.2018.02.017
– ident: ref41/cit41
  doi: 10.1038/nature06528
– ident: ref22/cit22
  doi: 10.1371/journal.pone.0237300
– ident: ref71/cit71
  doi: 10.3389/fimmu.2020.573339
– ident: ref16/cit16
  doi: 10.1110/ps.062730007
– ident: ref30/cit30
SSID ssj0004281
Score 2.4535472
Snippet The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6839
SubjectTerms calcium
Calcium - metabolism
cations
COVID-19
endoplasmic reticulum
Humans
Hydrogen-Ion Concentration
Ions
Lipids
nuclear magnetic resonance spectroscopy
pathogenicity
peptides
phenylalanine
Protein Conformation
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
viruses
Water
Title pH- and Calcium-Dependent Aromatic Network in the SARS-CoV‑2 Envelope Protein
URI http://dx.doi.org/10.1021/jacs.2c00973
https://www.ncbi.nlm.nih.gov/pubmed/35380805
https://www.proquest.com/docview/2647655615
https://www.proquest.com/docview/2660985997
https://pubmed.ncbi.nlm.nih.gov/PMC9188436
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHODC-xFeciU4IUd-rdc-VktLhERBhKLeIttrqxHFqcjmwom_wF_klzDeR0pSFbjujrXaGY_nG3nmG4ReWBGFDAHSkrqgRHrpiA7aE166oLUpI20Z-N4dqsmRfHtcHJ8XyG7f4PPMD-SXY-5bXpmr6BpX4L8ZAlXT8_5HrtkAc0utRF_gvr06ByC_3AxAF1DldnHkH9Hm4BZ6M_TsdEUmX8arxo3994sUjv_4kdvoZg848V63Q-6gKyHdRderYc7bPfT-bEKwTTWu7Kmfr76S1_1c3AYWLVpGV3zYFYvjecIAGPF07-OUVIvPv3785Hg_tWVHAX_IlA_zdB8dHex_qiakH7NArCxoQ3SMRtU6CO21514x5U1tvRYeQr-plXOWg90YrS2zEY4EH7mjPEKiUaromHiAdtIihUcIu0IZ5mpNA4vSmsJ5sLvgtVDUeeblCO2CEma9myxn7Q04hwwkP-1VM0KvBvvMfM9TnsdlnF4i_XItfdbxc1witzuYegb6zbciNoXFCgSULFUeElr8TUZRowtjyhF62G2P9dcEhAyA3bC63Ng4a4FM4L35Js1PWiJvw7SWQj3-D608QTd4brygEs61p2in-bYKzwAONe556wu_ARarBZ8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbhMxELagHMoFyl8JFHAlOCFXu7bXax-jpVWANiDSot5WttcWEcWpyObCiVfgFfskHTublAQV9eod73rHY89neeYbhF5r5hl3Do4lTZERbrkh0klLaGmclKr0WWLgOxqKwQn_cFqcdsnqMRcGBjGFN03TJf4Vu0CkCYJGahO9zG10B3AIjQbdr0ZXaZBU5gu0W0rBujj39d7RD9npqh_6B1yux0j-5XQO7qPhcrgp1uT73qw1e_bXGpPjjf9nC93r4Cfuz-3lAbrlwkO0WS2qvj1Cn84HBOvQ4Eqf2fHsB3nXVcltodMk8bvi4Tx0HI8DBviIR_0vI1JNvl78_kPxfkhBSA5_jgQQ4_AYnRzsH1cD0hVdIJoXWUuk90o00jFppaVW5MKqRlvJLAAB1QhjNIVZzLNG59rDBmE9NRn1cOwohTc5e4I2wiS4pwibQqjcNDJzuedaFcaCFTDaMJEZm1veQ7ughLpbNNM63YdTOI_E1k41PfR2MU217VjLY_GMs2uk3yylz-dsHdfI7S5mvAb9xjsSHdxkBgKClyKWDC3-JyMyJQulyh7anlvJ8msMHAiAcOhdrtjPUiDSea8-CeNvidZb5VJyJp7dQCuv0Obg-OiwPnw__Pgc3aUxJSPjsOPtoI3258y9AKDUmpdpeVwCo9UOAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkYAL5VVYysOV4IRS-RXHPq7SrpbXUnUp6i2yHVusKNkVm71w4i_wF_tLOs4mC7uoCK7xOHHGY89nzfgbhF4YHrjwHo4lZUoS4YRNlFcuYZn1SukskIaB7_1IDk_Fm7P0bAvR7i4MDGIOb5o3Qfy4qmdlaBkGIlUQNDDXUMxcQ9djxC4adT8f_7oKyRTtEG-mJG9z3Td7R1_k5uu-6A-AuZkn-ZvjGeygk9WQm3yTLweL2h647xtsjv_1T3fQ7RaG4v7Sbu6iLV_dQzfzrvrbffRhNkywqUqcm3M3WXxNDttquTV0mjY8r3i0TCHHkwoDjMTj_sk4yaefLn78ZPioapKRPD6ORBCT6gE6HRx9zIdJW3whMSIldaJC0LJUniunHHOSSqdL4xR3AAh0Ka01DGaTktJQE2CjcIFZwgIcPzIZLOW7aLuaVv4RwjaVmtpSEU-DMDq1DqyBs5JLYh11oof2QQlFu3jmRRMXZ3AuiU9b1fTQq26qCteyl8ciGudXSL9cSc-WrB1XyO13s16AfmOsxFR-ugABKTIZS4emf5ORRKtU66yHHi4tZfU1Do4EwDj0ztZsaCUQab3XW6rJ54beW1OlBJeP_0Erz9GN48NB8e716O0eusXizQwiYON7grbrbwv_FPBSbZ81K-QSVfMQgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pH-+and+Calcium-Dependent+Aromatic+Network+in+the+SARS-CoV-2+Envelope+Protein&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Medeiros-Silva%2C+Jo%C3%A3o&rft.au=Somberg%2C+Noah+H&rft.au=Wang%2C+Harrison+K.&rft.au=McKay%2C+Matthew+J.&rft.date=2022-04-20&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=144&rft.issue=15&rft.spage=6839&rft.epage=6850&rft_id=info:doi/10.1021%2Fjacs.2c00973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_2c00973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon