Changes in soil carbon inputs and outputs along a tropical altitudinal gradient of volcanic soils under intensive agriculture
Volcanic soils contain a large stock of soil organic carbon (SOC) which is highly vulnerable to changes in land use and climate warming. In this study we examine the changes of SOC stocks along a tropical elevation gradient (100 m–700 m; +437 mm yr−1 of rainfall and −0.7 °C every 100 m), which is su...
Saved in:
Published in | Geoderma Vol. 320; pp. 95 - 104 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Volcanic soils contain a large stock of soil organic carbon (SOC) which is highly vulnerable to changes in land use and climate warming. In this study we examine the changes of SOC stocks along a tropical elevation gradient (100 m–700 m; +437 mm yr−1 of rainfall and −0.7 °C every 100 m), which is subject to two intensive agricultural systems (banana monoculture and vegetable crops) characterised by the heavy use of fertilisers and pesticides. We hypothesise that in these systems SOC is mainly controlled by soil mineralogy, climatic factors and soil tillage. We used a process-based approach to determine soil C inputs and outputs along the elevation gradient. The banana monoculture systems (198 plots) are characterised by a temporal steady-state of SOC, and the vegetable crop systems (55 plots) present high annual SOC losses. The banana systems were used to determine for the first time the altitudinal change in the in situ rate constant of SOC mineralisation (kSOC). Under banana monoculture, SOC stock increased by 218%, C input from crop residues decreased by 44%, and kSOC decreased by 570% across the altitudinal gradient. These results indicated that the SOC gradient was mainly induced by changes in C outputs. Allophane content increased with altitude (R2 = 0.61; 8 g kg−1 every 100 m) and was positively correlated with SOC content (R2 = 0.51) and negatively correlated with kSOC (R2 = 0.53). We hypothesise that the physical protection of SOC within amorphous allophanic minerals was the main factor responsible for the kSOC and SOC stock gradients. Strictly, the effects of allophane content and rainfall cannot be separated because soil mineralogy in the studied area is mainly determined by the level of rainfall. Our process-based analysis indicated that changes in temperature along the elevation gradient could only explain 22% of the observed change in kSOC. SOC stocks under vegetable crops also increased with altitude; they were 57% lower than under banana at low altitude but only 9% lower at high altitude. This reflected simultaneously the higher C outputs under vegetable crops due to more intensive soil tillage, and the greater resilience to soil disturbance of protected SOC in altitude. The results suggested that neither soil nutrient content nor soil biological properties contributed to the SOC and kSOC gradients under the intensive cropping systems analysed during this study. Overall, we conclude that SOC might be more vulnerable to soil tillage and warming in low-altitude soils.
•Soil organic carbon (SOC) increased by 220% from 100 m to 700 m of altitude.•SOC gradient was linked to the steep decrease of C outputs from mineralisation (kSOC).•Allophane content explained 53% of the variability of kSOC.•Decreasing temperature with altitude explained 22% of the kSOC gradient.•SOC in lowlands may be more vulnerable to changes in land use and warming. |
---|---|
AbstractList | Volcanic soils contain a large stock of soil organic carbon (SOC) which is highly vulnerable to changes in land use and climate warming. In this study we examine the changes of SOC stocks along a tropical elevation gradient (100 m–700 m; +437 mm yr−1 of rainfall and −0.7 °C every 100 m), which is subject to two intensive agricultural systems (banana monoculture and vegetable crops) characterised by the heavy use of fertilisers and pesticides. We hypothesise that in these systems SOC is mainly controlled by soil mineralogy, climatic factors and soil tillage. We used a process-based approach to determine soil C inputs and outputs along the elevation gradient. The banana monoculture systems (198 plots) are characterised by a temporal steady-state of SOC, and the vegetable crop systems (55 plots) present high annual SOC losses. The banana systems were used to determine for the first time the altitudinal change in the in situ rate constant of SOC mineralisation (kSOC). Under banana monoculture, SOC stock increased by 218%, C input from crop residues decreased by 44%, and kSOC decreased by 570% across the altitudinal gradient. These results indicated that the SOC gradient was mainly induced by changes in C outputs. Allophane content increased with altitude (R2 = 0.61; 8 g kg−1 every 100 m) and was positively correlated with SOC content (R2 = 0.51) and negatively correlated with kSOC (R2 = 0.53). We hypothesise that the physical protection of SOC within amorphous allophanic minerals was the main factor responsible for the kSOC and SOC stock gradients. Strictly, the effects of allophane content and rainfall cannot be separated because soil mineralogy in the studied area is mainly determined by the level of rainfall. Our process-based analysis indicated that changes in temperature along the elevation gradient could only explain 22% of the observed change in kSOC. SOC stocks under vegetable crops also increased with altitude; they were 57% lower than under banana at low altitude but only 9% lower at high altitude. This reflected simultaneously the higher C outputs under vegetable crops due to more intensive soil tillage, and the greater resilience to soil disturbance of protected SOC in altitude. The results suggested that neither soil nutrient content nor soil biological properties contributed to the SOC and kSOC gradients under the intensive cropping systems analysed during this study. Overall, we conclude that SOC might be more vulnerable to soil tillage and warming in low-altitude soils. Volcanic soils contain a large stock of soil organic carbon (SOC) which is highly vulnerable to changes in land use and climate warming. In this study we examine the changes of SOC stocks along a tropical elevation gradient (100m–700 m; +437mmyr−1 of rainfall and −0.7 °C every 100 m), which is subject to two intensive agricultural systems (banana monoculture and vegetable crops) characterised by the heavy use of fertilisers and pesticides. We hypothesise that in these systems SOC is mainly controlled by soil mineralogy, climatic factors and soil tillage. We used a process-based approach to determine soil C inputs and outputs along the elevation gradient. The banana monoculture systems (198 plots) are characterised by a temporal steady-state of SOC, and the vegetable crop systems (55 plots) present high annual SOC losses. The banana systems were used to determine for the first time the altitudinal change in the in situ rate constant of SOC mineralisation (kSOC). Under banana monoculture, SOC stock increased by 218%, C input from crop residues decreased by 44%, and kSOC decreased by 570% across the altitudinal gradient. These results indicated that the SOC gradient was mainly induced by changes in C outputs. Allophane content increased with altitude (R²=0.61; 8 g kg−1 every 100 m) and was positively correlated with SOC content (R²=0.51) and negatively correlated with kSOC (R²=0.53). We hypothesise that the physical protection of SOC within amorphous allophanic minerals was the main factor responsible for the kSOC and SOC stock gradients. Strictly, the effects of allophane content and rainfall cannot be separated because soil mineralogy in the studied area is mainly determined by the level of rainfall. Our processbased analysis indicated that changes in temperature along the elevation gradient could only explain 22% of the observed change in kSOC. SOC stocks under vegetable crops also increased with altitude; they were 57% lower than under banana at low altitude but only 9% lower at high altitude. This reflected simultaneously the higher C outputs under vegetable crops due to more intensive soil tillage, and the greater resilience to soil disturbance of protected SOC in altitude. The results suggested that neither soil nutrient content nor soil biological properties contributed to the SOC and kSOC gradients under the intensive cropping systems analysed during this study. Overall, we conclude that SOC might be more vulnerable to soil tillage and warming in low-altitude soils. Volcanic soils contain a large stock of soil organic carbon (SOC) which is highly vulnerable to changes in land use and climate warming. In this study we examine the changes of SOC stocks along a tropical elevation gradient (100 m–700 m; +437 mm yr−1 of rainfall and −0.7 °C every 100 m), which is subject to two intensive agricultural systems (banana monoculture and vegetable crops) characterised by the heavy use of fertilisers and pesticides. We hypothesise that in these systems SOC is mainly controlled by soil mineralogy, climatic factors and soil tillage. We used a process-based approach to determine soil C inputs and outputs along the elevation gradient. The banana monoculture systems (198 plots) are characterised by a temporal steady-state of SOC, and the vegetable crop systems (55 plots) present high annual SOC losses. The banana systems were used to determine for the first time the altitudinal change in the in situ rate constant of SOC mineralisation (kSOC). Under banana monoculture, SOC stock increased by 218%, C input from crop residues decreased by 44%, and kSOC decreased by 570% across the altitudinal gradient. These results indicated that the SOC gradient was mainly induced by changes in C outputs. Allophane content increased with altitude (R2 = 0.61; 8 g kg−1 every 100 m) and was positively correlated with SOC content (R2 = 0.51) and negatively correlated with kSOC (R2 = 0.53). We hypothesise that the physical protection of SOC within amorphous allophanic minerals was the main factor responsible for the kSOC and SOC stock gradients. Strictly, the effects of allophane content and rainfall cannot be separated because soil mineralogy in the studied area is mainly determined by the level of rainfall. Our process-based analysis indicated that changes in temperature along the elevation gradient could only explain 22% of the observed change in kSOC. SOC stocks under vegetable crops also increased with altitude; they were 57% lower than under banana at low altitude but only 9% lower at high altitude. This reflected simultaneously the higher C outputs under vegetable crops due to more intensive soil tillage, and the greater resilience to soil disturbance of protected SOC in altitude. The results suggested that neither soil nutrient content nor soil biological properties contributed to the SOC and kSOC gradients under the intensive cropping systems analysed during this study. Overall, we conclude that SOC might be more vulnerable to soil tillage and warming in low-altitude soils. •Soil organic carbon (SOC) increased by 220% from 100 m to 700 m of altitude.•SOC gradient was linked to the steep decrease of C outputs from mineralisation (kSOC).•Allophane content explained 53% of the variability of kSOC.•Decreasing temperature with altitude explained 22% of the kSOC gradient.•SOC in lowlands may be more vulnerable to changes in land use and warming. |
Author | Causeret, François Sierra, Jorge |
Author_xml | – sequence: 1 givenname: Jorge surname: Sierra fullname: Sierra, Jorge email: jorge.sierra@inra.fr – sequence: 2 givenname: François surname: Causeret fullname: Causeret, François |
BackLink | https://hal.inrae.fr/hal-02628286$$DView record in HAL |
BookMark | eNqFkUFv1DAQhSNUJLaFv4B8hEOC7WwcR-JAtSoUaSUucLYm9iT1ymsvtrMSh_53vIReeunJM6PvPY_mXVdXPnisqveMNowy8enQzBgMxiM0nDLZUNZQ3r2qNkz2vBa8G66qDS1k3VPB3lTXKR1K21NON9Xj7gH8jIlYT1KwjmiIY_ClPS05EfCGhCWvtQt-JkByDCerwZVBtnkx1pd6jmAs-kzCRM7BafBW_zNMZPFluWKY0Sd7RgJztHpxeYn4tno9gUv47v97U_36evdzd1_vf3z7vrvd17DtaK7F2MJW4ygNN4IC62EwE-sFHzUFjdMwoRw63fdTK7oepq3s2Gg0RypAtpK2N9XH1fcBnDpFe4T4RwWw6v52ry4zygWXXIozK-yHlT3F8HvBlNXRJo3OgcewJMVp10rRCj4U9POK6hhSijgpbTNkG3yOYJ1iVF0SUgf1lJC6JKQoKx92RS6eyZ9We1H4ZRViudnZYlRJl-NrNDaizsoE-5LFX_AWtEE |
CitedBy_id | crossref_primary_10_1016_j_catena_2023_107520 crossref_primary_10_3389_fmicb_2021_660603 crossref_primary_10_1016_j_geodrs_2024_e00830 crossref_primary_10_1016_j_jhazmat_2019_03_135 crossref_primary_10_17221_136_2019_JFS crossref_primary_10_1016_j_ecoser_2022_101435 crossref_primary_10_1016_j_agee_2019_05_005 crossref_primary_10_1016_j_scitotenv_2023_164815 crossref_primary_10_1071_SR18331 crossref_primary_10_3390_f11010066 |
Cites_doi | 10.1007/s10533-015-0176-2 10.1016/j.catena.2011.12.003 10.1016/j.agsy.2017.02.004 10.1111/j.1365-2389.2009.01175.x 10.1016/j.geoderma.2004.02.004 10.1002/jpln.200900027 10.1016/j.geoderma.2013.04.005 10.1007/s11284-016-1369-4 10.1016/S0016-7061(02)00147-7 10.1002/ldr.2353 10.1111/j.1365-2389.2007.00925.x 10.1079/SUM2003231 10.2134/agronj2016.03.0166 10.1002/ldr.2406 10.1016/j.soilbio.2003.10.005 10.1016/j.ecolmodel.2010.08.031 10.3832/ifor0895-007 10.1093/biosci/biv109 10.1111/gcb.13234 10.1016/j.eja.2011.07.005 10.1016/j.agee.2015.08.015 10.1038/nature04514 10.1002/ecy.1467 10.1016/S0341-8162(03)00123-1 10.1007/s11104-009-9966-4 10.1038/srep34875 10.2489/jswc.66.4.213 10.1016/j.geoderma.2008.10.004 10.1016/j.soilbio.2007.08.022 10.1016/j.geoderma.2012.04.015 10.17660/ActaHortic.1998.490.23 10.1016/j.gca.2016.02.033 10.1016/j.soilbio.2012.11.012 10.1016/j.tree.2007.09.006 10.1016/j.apsoil.2015.10.018 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.geoderma.2018.01.025 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Environmental Sciences |
EISSN | 1872-6259 |
EndPage | 104 |
ExternalDocumentID | oai_HAL_hal_02628286v1 10_1016_j_geoderma_2018_01_025 S0016706117320074 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-a450t-6b3a4ceb8d2d60a17a9df1762bc0acef9fe895c77f3657af4851bdc2e06a83803 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri May 09 12:23:25 EDT 2025 Fri Jul 11 14:18:25 EDT 2025 Tue Jul 01 04:04:46 EDT 2025 Thu Apr 24 23:05:11 EDT 2025 Fri Feb 23 02:30:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SOC decomposition Temperature sensitivity Soil tillage Allophane Vegetable crops Banana allophane, banana, SOC decomposition, soil tillage, temperature sensitivity, vegetable crops |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a450t-6b3a4ceb8d2d60a17a9df1762bc0acef9fe895c77f3657af4851bdc2e06a83803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6973-7148 |
OpenAccessLink | https://hal.inrae.fr/hal-02628286 |
PQID | 2053863629 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_02628286v1 proquest_miscellaneous_2053863629 crossref_citationtrail_10_1016_j_geoderma_2018_01_025 crossref_primary_10_1016_j_geoderma_2018_01_025 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_01_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-15 |
PublicationDateYYYYMMDD | 2018-06-15 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zimmermann, Bird (bb0215) 2012; 187-188 Pabst, Gerschlauer, Kiese, Kuzyakov (bb0155) 2013; 27 Justes, Mary, Nicolardot (bb0080) 2009; 325 Wang, Chou, Chiou, Tian, Chiu (bb0210) 2016; 11 de Oliveira Aparecido, de Souza Rolim, Camargo Lamparelli, de Souza, dos Santos (bb0045) 2017; 109 Lemenih, Itanna (bb0110) 2004; 123 Brisson, Ozier-Lafontaine, Dorel (bb0005) 1998 Dahlgren, Saigusa, Ugolini (bb0035) 2004; 82 Klimek, Jelonkiewicz, Niklińska (bb0085) 2016; 31 Sierra, Brisson, Ripoche, Déqué (bb0185) 2010; 221 Chang, Chen, Tian, Chiu (bb0015) 2016; 98 Clermont-Dauphin, Cabidoche, Meynard (bb0020) 2004; 20 Segnini, Posadas, Quiroz, Milori, Vaz, Martin-Neto (bb0180) 2011; 66 Legros (bb0105) 2012 Luo, Liu, Li, Hu, Gong, Wang, Hu (bb0120) 2014; 8 Cleveland, Townsend, Constance (bb0025) 2004; 36 Filimonova, Kaufhold, Wagner, Häusler, Kögel-Knabner (bb0065) 2016; 180 Djukic, Zehetner, Tatzber, Gerzabek (bb0055) 2010; 173 Sierra, Causeret, Diman, Publicol, Desfontaines, Cavalier, Chopin (bb0190) 2015; 213 Naafs, van Bergen, Boogert, de Leeuw (bb0130) 2004; 36 Tashi, Singh, Keitel, Adams (bb0205) 2016; 22 Hamdi, Moyano, Sall, Bernoux, Chevallier (bb0075) 2013; 58 Raphael, Sierra, Recous, Ozier-Lafontaine, Desfontaines (bb0165) 2012; 38 Lassoudière (bb0100) 2007 Zimmermann, Meir, Bird, Malhi, Ccahuana (bb0220) 2009; 60 Körner (bb0090) 2007; 22 Saffih-Hdadi, Mary (bb0170) 2008; 40 Sierra, Causeret, Chopin (bb0195) 2017; 153 Buurman, Peterse, Almendros Martin (bb0010) 2007; 58 Powers, Schlesinger (bb0160) 2002; 109 Li, Vogel, He, Zou, Ruan, Huang, Wang, Bianchi (bb0115) 2016; 11 Tan, Wang (bb0200) 2016; 6 Nottingham, Turner, Whitaker, Ostle, Bardgett, McNamara, Salinas, Meir (bb0140) 2016; 127 Ozalp, Yuksel, Yuksek (bb0150) 2016; 27 Garrido, Matus (bb0070) 2012; 92 Nottingham, Whitaker, Turner, Salinas, Zimmermann, Malhi, Meir (bb0135) 2015; 65 Kramer, Chadwick (bb0095) 2016; 97 Matus, Garrido, Sepúlveda, Cárcamo, Panichini, Zagal (bb0125) 2008; 148 NRCS (bb0145) 2014 Dieleman, Venter, Ramachandra, Krockenberger, Bird (bb0050) 2013; 204-205 Sedov, Solleiro-Rebolledo, Gama-Castro (bb0175) 2003; 54 Colmet-Daage, Lagache (bb0030) 1965 Davidson, Janssens (bb0040) 2006; 440 Dorel, Lombard, Oliver (bb0060) 2005; 12 Djukic (10.1016/j.geoderma.2018.01.025_bb0055) 2010; 173 Sedov (10.1016/j.geoderma.2018.01.025_bb0175) 2003; 54 Powers (10.1016/j.geoderma.2018.01.025_bb0160) 2002; 109 Tashi (10.1016/j.geoderma.2018.01.025_bb0205) 2016; 22 Li (10.1016/j.geoderma.2018.01.025_bb0115) 2016; 11 Zimmermann (10.1016/j.geoderma.2018.01.025_bb0220) 2009; 60 Buurman (10.1016/j.geoderma.2018.01.025_bb0010) 2007; 58 Raphael (10.1016/j.geoderma.2018.01.025_bb0165) 2012; 38 Segnini (10.1016/j.geoderma.2018.01.025_bb0180) 2011; 66 Justes (10.1016/j.geoderma.2018.01.025_bb0080) 2009; 325 Ozalp (10.1016/j.geoderma.2018.01.025_bb0150) 2016; 27 Clermont-Dauphin (10.1016/j.geoderma.2018.01.025_bb0020) 2004; 20 Kramer (10.1016/j.geoderma.2018.01.025_bb0095) 2016; 97 Naafs (10.1016/j.geoderma.2018.01.025_bb0130) 2004; 36 NRCS (10.1016/j.geoderma.2018.01.025_bb0145) Klimek (10.1016/j.geoderma.2018.01.025_bb0085) 2016; 31 Körner (10.1016/j.geoderma.2018.01.025_bb0090) 2007; 22 Hamdi (10.1016/j.geoderma.2018.01.025_bb0075) 2013; 58 Dorel (10.1016/j.geoderma.2018.01.025_bb0060) 2005; 12 Chang (10.1016/j.geoderma.2018.01.025_bb0015) 2016; 98 Sierra (10.1016/j.geoderma.2018.01.025_bb0190) 2015; 213 de Oliveira Aparecido (10.1016/j.geoderma.2018.01.025_bb0045) 2017; 109 Luo (10.1016/j.geoderma.2018.01.025_bb0120) 2014; 8 Nottingham (10.1016/j.geoderma.2018.01.025_bb0140) 2016; 127 Brisson (10.1016/j.geoderma.2018.01.025_bb0005) 1998 Sierra (10.1016/j.geoderma.2018.01.025_bb0195) 2017; 153 Legros (10.1016/j.geoderma.2018.01.025_bb0105) 2012 Tan (10.1016/j.geoderma.2018.01.025_bb0200) 2016; 6 Matus (10.1016/j.geoderma.2018.01.025_bb0125) 2008; 148 Pabst (10.1016/j.geoderma.2018.01.025_bb0155) 2013; 27 Saffih-Hdadi (10.1016/j.geoderma.2018.01.025_bb0170) 2008; 40 Garrido (10.1016/j.geoderma.2018.01.025_bb0070) 2012; 92 Dahlgren (10.1016/j.geoderma.2018.01.025_bb0035) 2004; 82 Colmet-Daage (10.1016/j.geoderma.2018.01.025_bb0030) 1965 Dieleman (10.1016/j.geoderma.2018.01.025_bb0050) 2013; 204-205 Lassoudière (10.1016/j.geoderma.2018.01.025_bb0100) 2007 Filimonova (10.1016/j.geoderma.2018.01.025_bb0065) 2016; 180 Nottingham (10.1016/j.geoderma.2018.01.025_bb0135) 2015; 65 Cleveland (10.1016/j.geoderma.2018.01.025_bb0025) 2004; 36 Davidson (10.1016/j.geoderma.2018.01.025_bb0040) 2006; 440 Lemenih (10.1016/j.geoderma.2018.01.025_bb0110) 2004; 123 Wang (10.1016/j.geoderma.2018.01.025_bb0210) 2016; 11 Sierra (10.1016/j.geoderma.2018.01.025_bb0185) 2010; 221 Zimmermann (10.1016/j.geoderma.2018.01.025_bb0215) 2012; 187-188 |
References_xml | – volume: 82 start-page: 114 year: 2004 end-page: 183 ident: bb0035 article-title: The nature, properties and management of volcanic soils publication-title: Adv. Agron. – start-page: 229 year: 1998 end-page: 238 ident: bb0005 article-title: Effects of soil management and water regime on banana growth between planting and flowering. Simulation using the STICS model publication-title: Acta Hortic. – volume: 325 start-page: 171 year: 2009 end-page: 185 ident: bb0080 article-title: Quantifying and modelling C and N mineralization kinetics of catch crop residues in soil: parameterization of the residue decomposition module of STICS model for mature and nonmature residues publication-title: Plant Soil – volume: 97 start-page: 2384 year: 2016 end-page: 2395 ident: bb0095 article-title: Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii publication-title: Ecology – volume: 31 start-page: 609 year: 2016 end-page: 615 ident: bb0085 article-title: Drivers of temperature sensitivity of decomposition of soil organic matter along a mountain altitudinal gradient in the Western Carpathians publication-title: Ecol. Res. – volume: 123 start-page: 177 year: 2004 end-page: 188 ident: bb0110 article-title: Soil carbon stocks and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia publication-title: Geoderma – volume: 20 start-page: 105 year: 2004 end-page: 113 ident: bb0020 article-title: Effects of intensive monocropping of bananas on properties of volcanic soils in the uplands of the French West Indies publication-title: Soil Use Manag. – volume: 22 start-page: 569 year: 2007 end-page: 574 ident: bb0090 article-title: The use of “altitude” in ecological research publication-title: Trends Ecol. Evol. – volume: 6 year: 2016 ident: bb0200 article-title: Decoupling of nutrient element cycles in soil and plants across an altitude gradient publication-title: Sci. Rep. – year: 2007 ident: bb0100 article-title: Le bananier et sa culture – volume: 11 year: 2016 ident: bb0210 article-title: Humic acid composition and characteristics of soil organic matter in relation to the elevation gradient of Moso bamboo plantations publication-title: PLoS ONE – volume: 58 start-page: 1330 year: 2007 end-page: 1347 ident: bb0010 article-title: Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena publication-title: Eur. J. Soil Sci. – volume: 54 start-page: 495 year: 2003 end-page: 513 ident: bb0175 article-title: Andosol to Luvisol evolution in Central Mexico: timing, mechanisms and environmental setting publication-title: Catena – volume: 204-205 start-page: 59 year: 2013 end-page: 67 ident: bb0050 article-title: Soil carbon stocks vary predictably with altitude in tropical forests: implications for soil carbon storage publication-title: Geoderma – volume: 40 start-page: 594 year: 2008 end-page: 607 ident: bb0170 article-title: Modeling consequences of straw residues export on soil organic carbon publication-title: Soil Biol. Biochem. – volume: 440 start-page: 165 year: 2006 end-page: 173 ident: bb0040 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – year: 2014 ident: bb0145 article-title: Kellogg soil survey laboratory methods manual. Soil survey investigations report no. 42 version 5.0 – volume: 8 start-page: 526 year: 2014 end-page: 532 ident: bb0120 article-title: Soil respiration along an altitudinal gradient in a subalpine secondary forest in China publication-title: iForest – volume: 36 start-page: 297 year: 2004 end-page: 308 ident: bb0130 article-title: Solvent-extractable lipids in an acid andic forest soil; variations with depth and season publication-title: Soil Biol. Biochem. – volume: 38 start-page: 117 year: 2012 end-page: 123 ident: bb0165 article-title: Soil turnover of crop residues from the banana (Musa AAA cv. Petite-Naine) mother plant and simultaneous uptake by the daughter plant of released nitrogen publication-title: Eur. J. Agron. – volume: 213 start-page: 252 year: 2015 end-page: 264 ident: bb0190 article-title: Observed and predicted changes in soil carbon stocks under export and diversified agriculture in the Caribbean. The case study of Guadeloupe publication-title: Agric. Ecosyst. Environ. – volume: 36 start-page: 184 year: 2004 end-page: 195 ident: bb0025 article-title: Soil microbial dynamics in Costa Rica: seasonal and biogeochemical constraints publication-title: Biotropica – volume: 109 start-page: 249 year: 2017 end-page: 258 ident: bb0045 article-title: Agrometeorological models for forecasting coffee yield publication-title: Agron. J. – volume: 11 year: 2016 ident: bb0115 article-title: Association of soil aggregation with the distribution and quality of organic carbon in soil along an elevation gradient on Wuyi Mountain in China publication-title: PLoS ONE – volume: 92 start-page: 106 year: 2012 end-page: 112 ident: bb0070 article-title: Are organo-mineral complexes and allophane content determinant factors for the carbon level in Chilean volcanic soils? publication-title: Catena – volume: 58 start-page: 115 year: 2013 end-page: 126 ident: bb0075 article-title: Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions publication-title: Soil Biol. Biochem. – year: 2012 ident: bb0105 article-title: Major Soil Groups of the World: Ecology, Genesis, Properties and Classification – volume: 173 start-page: 30 year: 2010 end-page: 38 ident: bb0055 article-title: Soil organic-matter stocks and characteristics along an Alpine elevation gradient publication-title: J. Plant Nutr. Soil Sci. – volume: 65 start-page: 906 year: 2015 end-page: 921 ident: bb0135 article-title: Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes publication-title: Bioscience – volume: 187-188 start-page: 8 year: 2012 end-page: 15 ident: bb0215 article-title: Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with ongoing decomposition publication-title: Geoderma – volume: 27 start-page: 592 year: 2013 end-page: 602 ident: bb0155 article-title: Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania publication-title: Land Degrad. Dev. – volume: 27 start-page: 1007 year: 2016 end-page: 1017 ident: bb0150 article-title: Soil property changes after conversion from forest to pasture in mount Sacinka, Artvin, Turkey publication-title: Land Degrad. Dev. – volume: 109 start-page: 165 year: 2002 end-page: 190 ident: bb0160 article-title: Relationships among soil carbon distributions and biophysical factors at nested spatial scales in rain forests of northeastern Costa Rica publication-title: Geoderma – volume: 153 start-page: 172 year: 2017 end-page: 180 ident: bb0195 article-title: A framework coupling farm typology and biophysical modelling to assess the impact of vegetable crop-based systems on soil carbon stocks. Application in the Caribbean publication-title: Agric. Syst. – volume: 66 start-page: 213 year: 2011 end-page: 220 ident: bb0180 article-title: Soil carbon stocks and stability across an altitudinal gradient in southern Peru publication-title: J. Soil Water Conserv. – volume: 127 start-page: 217 year: 2016 end-page: 230 ident: bb0140 article-title: Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes publication-title: Biogeochemistry – volume: 180 start-page: 284 year: 2016 end-page: 302 ident: bb0065 article-title: The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic andosol publication-title: Geochim. Cosmochim. Acta – volume: 22 start-page: 2255 year: 2016 end-page: 2268 ident: bb0205 article-title: Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data publication-title: Glob. Chang. Biol. – volume: 148 start-page: 180 year: 2008 end-page: 188 ident: bb0125 article-title: Relationship between extractable Al and organic C in volcanic soils of Chile publication-title: Geoderma – start-page: 91 year: 1965 end-page: 121 ident: bb0030 article-title: Caractéristiques de quelques groupes de sols dérivés de roches volcaniques aux Antilles françaises publication-title: Cahiers ORSTOM Série Pédologie 3 – volume: 12 start-page: 267 year: 2005 end-page: 280 ident: bb0060 article-title: Mineralisable nitrogen and organic status of andosols in Guadeloupe: climatic and edaphic determinants, influence of soil management publication-title: Étude et Gestion des Sols – volume: 60 start-page: 895 year: 2009 end-page: 906 ident: bb0220 article-title: Climate dependence of heterotrophic soil respiration from a soil-translocation experiment along a 3000 m tropical forest altitudinal gradient publication-title: Eur. J. Soil Sci. – volume: 98 start-page: 213 year: 2016 end-page: 220 ident: bb0015 article-title: The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations publication-title: Appl. Soil Ecol. – volume: 221 start-page: 2850 year: 2010 end-page: 2858 ident: bb0185 article-title: Modelling the impact of thermal adaptation of soil microorganisms and crop system on the dynamics of organic matter in a tropical soil under a climate change scenario publication-title: Ecol. Model. – volume: 127 start-page: 217 year: 2016 ident: 10.1016/j.geoderma.2018.01.025_bb0140 article-title: Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes publication-title: Biogeochemistry doi: 10.1007/s10533-015-0176-2 – volume: 92 start-page: 106 year: 2012 ident: 10.1016/j.geoderma.2018.01.025_bb0070 article-title: Are organo-mineral complexes and allophane content determinant factors for the carbon level in Chilean volcanic soils? publication-title: Catena doi: 10.1016/j.catena.2011.12.003 – volume: 153 start-page: 172 year: 2017 ident: 10.1016/j.geoderma.2018.01.025_bb0195 article-title: A framework coupling farm typology and biophysical modelling to assess the impact of vegetable crop-based systems on soil carbon stocks. Application in the Caribbean publication-title: Agric. Syst. doi: 10.1016/j.agsy.2017.02.004 – volume: 11 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2018.01.025_bb0115 article-title: Association of soil aggregation with the distribution and quality of organic carbon in soil along an elevation gradient on Wuyi Mountain in China publication-title: PLoS ONE – volume: 60 start-page: 895 year: 2009 ident: 10.1016/j.geoderma.2018.01.025_bb0220 article-title: Climate dependence of heterotrophic soil respiration from a soil-translocation experiment along a 3000 m tropical forest altitudinal gradient publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01175.x – volume: 123 start-page: 177 year: 2004 ident: 10.1016/j.geoderma.2018.01.025_bb0110 article-title: Soil carbon stocks and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia publication-title: Geoderma doi: 10.1016/j.geoderma.2004.02.004 – volume: 173 start-page: 30 year: 2010 ident: 10.1016/j.geoderma.2018.01.025_bb0055 article-title: Soil organic-matter stocks and characteristics along an Alpine elevation gradient publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200900027 – volume: 204-205 start-page: 59 year: 2013 ident: 10.1016/j.geoderma.2018.01.025_bb0050 article-title: Soil carbon stocks vary predictably with altitude in tropical forests: implications for soil carbon storage publication-title: Geoderma doi: 10.1016/j.geoderma.2013.04.005 – volume: 31 start-page: 609 year: 2016 ident: 10.1016/j.geoderma.2018.01.025_bb0085 article-title: Drivers of temperature sensitivity of decomposition of soil organic matter along a mountain altitudinal gradient in the Western Carpathians publication-title: Ecol. Res. doi: 10.1007/s11284-016-1369-4 – start-page: 91 year: 1965 ident: 10.1016/j.geoderma.2018.01.025_bb0030 article-title: Caractéristiques de quelques groupes de sols dérivés de roches volcaniques aux Antilles françaises – volume: 109 start-page: 165 year: 2002 ident: 10.1016/j.geoderma.2018.01.025_bb0160 article-title: Relationships among soil carbon distributions and biophysical factors at nested spatial scales in rain forests of northeastern Costa Rica publication-title: Geoderma doi: 10.1016/S0016-7061(02)00147-7 – volume: 82 start-page: 114 year: 2004 ident: 10.1016/j.geoderma.2018.01.025_bb0035 article-title: The nature, properties and management of volcanic soils publication-title: Adv. Agron. – year: 2012 ident: 10.1016/j.geoderma.2018.01.025_bb0105 – volume: 27 start-page: 1007 year: 2016 ident: 10.1016/j.geoderma.2018.01.025_bb0150 article-title: Soil property changes after conversion from forest to pasture in mount Sacinka, Artvin, Turkey publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2353 – volume: 58 start-page: 1330 year: 2007 ident: 10.1016/j.geoderma.2018.01.025_bb0010 article-title: Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2007.00925.x – volume: 20 start-page: 105 year: 2004 ident: 10.1016/j.geoderma.2018.01.025_bb0020 article-title: Effects of intensive monocropping of bananas on properties of volcanic soils in the uplands of the French West Indies publication-title: Soil Use Manag. doi: 10.1079/SUM2003231 – volume: 109 start-page: 249 year: 2017 ident: 10.1016/j.geoderma.2018.01.025_bb0045 article-title: Agrometeorological models for forecasting coffee yield publication-title: Agron. J. doi: 10.2134/agronj2016.03.0166 – volume: 12 start-page: 267 year: 2005 ident: 10.1016/j.geoderma.2018.01.025_bb0060 article-title: Mineralisable nitrogen and organic status of andosols in Guadeloupe: climatic and edaphic determinants, influence of soil management publication-title: Étude et Gestion des Sols – volume: 27 start-page: 592 year: 2013 ident: 10.1016/j.geoderma.2018.01.025_bb0155 article-title: Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2406 – volume: 36 start-page: 297 year: 2004 ident: 10.1016/j.geoderma.2018.01.025_bb0130 article-title: Solvent-extractable lipids in an acid andic forest soil; variations with depth and season publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.10.005 – volume: 221 start-page: 2850 year: 2010 ident: 10.1016/j.geoderma.2018.01.025_bb0185 article-title: Modelling the impact of thermal adaptation of soil microorganisms and crop system on the dynamics of organic matter in a tropical soil under a climate change scenario publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2010.08.031 – volume: 8 start-page: 526 year: 2014 ident: 10.1016/j.geoderma.2018.01.025_bb0120 article-title: Soil respiration along an altitudinal gradient in a subalpine secondary forest in China publication-title: iForest doi: 10.3832/ifor0895-007 – volume: 65 start-page: 906 year: 2015 ident: 10.1016/j.geoderma.2018.01.025_bb0135 article-title: Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes publication-title: Bioscience doi: 10.1093/biosci/biv109 – volume: 22 start-page: 2255 year: 2016 ident: 10.1016/j.geoderma.2018.01.025_bb0205 article-title: Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13234 – volume: 38 start-page: 117 year: 2012 ident: 10.1016/j.geoderma.2018.01.025_bb0165 article-title: Soil turnover of crop residues from the banana (Musa AAA cv. Petite-Naine) mother plant and simultaneous uptake by the daughter plant of released nitrogen publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2011.07.005 – volume: 213 start-page: 252 year: 2015 ident: 10.1016/j.geoderma.2018.01.025_bb0190 article-title: Observed and predicted changes in soil carbon stocks under export and diversified agriculture in the Caribbean. The case study of Guadeloupe publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.08.015 – volume: 440 start-page: 165 year: 2006 ident: 10.1016/j.geoderma.2018.01.025_bb0040 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature doi: 10.1038/nature04514 – volume: 11 issue: 9 year: 2016 ident: 10.1016/j.geoderma.2018.01.025_bb0210 article-title: Humic acid composition and characteristics of soil organic matter in relation to the elevation gradient of Moso bamboo plantations publication-title: PLoS ONE – volume: 97 start-page: 2384 year: 2016 ident: 10.1016/j.geoderma.2018.01.025_bb0095 article-title: Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii publication-title: Ecology doi: 10.1002/ecy.1467 – volume: 54 start-page: 495 year: 2003 ident: 10.1016/j.geoderma.2018.01.025_bb0175 article-title: Andosol to Luvisol evolution in Central Mexico: timing, mechanisms and environmental setting publication-title: Catena doi: 10.1016/S0341-8162(03)00123-1 – volume: 325 start-page: 171 year: 2009 ident: 10.1016/j.geoderma.2018.01.025_bb0080 article-title: Quantifying and modelling C and N mineralization kinetics of catch crop residues in soil: parameterization of the residue decomposition module of STICS model for mature and nonmature residues publication-title: Plant Soil doi: 10.1007/s11104-009-9966-4 – volume: 6 year: 2016 ident: 10.1016/j.geoderma.2018.01.025_bb0200 article-title: Decoupling of nutrient element cycles in soil and plants across an altitude gradient publication-title: Sci. Rep. doi: 10.1038/srep34875 – ident: 10.1016/j.geoderma.2018.01.025_bb0145 – volume: 66 start-page: 213 year: 2011 ident: 10.1016/j.geoderma.2018.01.025_bb0180 article-title: Soil carbon stocks and stability across an altitudinal gradient in southern Peru publication-title: J. Soil Water Conserv. doi: 10.2489/jswc.66.4.213 – volume: 148 start-page: 180 year: 2008 ident: 10.1016/j.geoderma.2018.01.025_bb0125 article-title: Relationship between extractable Al and organic C in volcanic soils of Chile publication-title: Geoderma doi: 10.1016/j.geoderma.2008.10.004 – volume: 40 start-page: 594 year: 2008 ident: 10.1016/j.geoderma.2018.01.025_bb0170 article-title: Modeling consequences of straw residues export on soil organic carbon publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.08.022 – volume: 187-188 start-page: 8 year: 2012 ident: 10.1016/j.geoderma.2018.01.025_bb0215 article-title: Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with ongoing decomposition publication-title: Geoderma doi: 10.1016/j.geoderma.2012.04.015 – start-page: 229 issue: 490 year: 1998 ident: 10.1016/j.geoderma.2018.01.025_bb0005 article-title: Effects of soil management and water regime on banana growth between planting and flowering. Simulation using the STICS model publication-title: Acta Hortic. doi: 10.17660/ActaHortic.1998.490.23 – volume: 180 start-page: 284 year: 2016 ident: 10.1016/j.geoderma.2018.01.025_bb0065 article-title: The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic andosol publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2016.02.033 – year: 2007 ident: 10.1016/j.geoderma.2018.01.025_bb0100 – volume: 36 start-page: 184 year: 2004 ident: 10.1016/j.geoderma.2018.01.025_bb0025 article-title: Soil microbial dynamics in Costa Rica: seasonal and biogeochemical constraints publication-title: Biotropica – volume: 58 start-page: 115 year: 2013 ident: 10.1016/j.geoderma.2018.01.025_bb0075 article-title: Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.11.012 – volume: 22 start-page: 569 year: 2007 ident: 10.1016/j.geoderma.2018.01.025_bb0090 article-title: The use of “altitude” in ecological research publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2007.09.006 – volume: 98 start-page: 213 year: 2016 ident: 10.1016/j.geoderma.2018.01.025_bb0015 article-title: The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.10.018 |
SSID | ssj0017020 |
Score | 2.3016045 |
Snippet | Volcanic soils contain a large stock of soil organic carbon (SOC) which is highly vulnerable to changes in land use and climate warming. In this study we... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 95 |
SubjectTerms | Allophane altitude Banana bananas climatic factors correlation crop residues cropping systems disturbed soils Environmental Sciences fertilizers global warming intensive cropping land use Life Sciences mineralization nutrient content pesticides rain SOC decomposition soil biological properties soil mineralogy soil nutrients soil organic carbon Soil tillage temperature Temperature sensitivity tillage Vegetable crops Vegetal Biology volcanic soils |
Title | Changes in soil carbon inputs and outputs along a tropical altitudinal gradient of volcanic soils under intensive agriculture |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.01.025 https://www.proquest.com/docview/2053863629 https://hal.inrae.fr/hal-02628286 |
Volume | 320 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYovbSHCvpQtzzkVr2ma28SP44rBFr64FQkbpbtONugVbJKstzgtzOTx7YgIQ69xVbsWJ7JzDj55htCvuZSSO8Vj7gNLEqc5pFjLkRIJRVib9M4wQTnXxdicZl8v0qvdsjJmAuDsMrB9vc2vbPWQ8902M3puigwx5cLCe6Iyxg_uCEnaJJI1PJvd1uYB5dsoGbkIsK7_8kSvgYZYcGxjn-Iq56-M33KQb34g0jJRwa780Jne-TNED7Seb_CfbITyrfk9XxZDxQa4R257RMGGlqUtKmKFfW2dlUJzfWmbagtM1pt2v56VZVLamlbV2sUFnQgciDDSll0WXdosJZWOQUbBiIofDdhQzHxrKbFiH6n9u_z35PLs9PfJ4toKLIQ2SRlbSRcbBMfnMpmmWCWS6uznIOJdJ5ZH3KdB6VTL2Uei1TaPIEQzWV-FpiwKlYs_kB2y6oMHwnlNtZqpgUXyqNvdEo6qxxGmFwHrSckHXfW-IGBHAthrMwINbs2o0QMSsQwbkAiEzLdjlv3HBzPjtCj4MwDbTLgKJ4d-wUkvX0Q0m8v5j8N9sF5FU-o4oZPyOdREQy8j_iTxZah2jQwE7gQAWGB_vQfizggr7CFmDSeHpLdtt6EI4h-WnfcqfcxeTk__7G4uAdMEQbH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5wwELaSzaHtIUpf6iZN61a9orUX8OO4ihqRZrOnRMrNso3ZEq1gBWxv_e_xgNk-pCqH3sBojOXPzIzxzDcIfSk449YKGlHtSJQYSSNDjIuASsrFVqdxAgnONyuW3SXf7tP7A3Qx5sJAWGXQ_YNO77V1aJmF2ZxtyxJyfCnj3hxRHsMPt-QQHQE7VTpBR4ur62y1P0zgJLAzUhaBwG-Jwg8eJqg51lMQUTEweKb_slGH3yFY8i-d3RuiyxN0HDxIvBgG-RIduOoVerFYN4FFw71GP4ecgRaXFW7rcoOtbkxd-dvtrmuxrnJc77rhelNXa6xx19RbwMs3QPBADsWy8LrpA8I6XBfYqzGPQmn7DlsMuWcNLscAeKx_vf8Nurv8enuRRaHOQqSTlHQRM7FOrDMin-eMaMq1zAvqtaSxRFtXyMIJmVrOi5ilXBeJ99JMbueOMC1iQeK3aFLVlXuHMNWxFHPJKBMWzKMR3GhhwMmk0kk5Rek4s8oGEnKohbFRY7TZgxoRUYCIIlR5RKZotpfbDjQcT0rIETj1x4JS3lY8KfvZI71_ETBwZ4ulgja_ZYVNKvtBp-jTuBCU_yThnEVXrt61vidvRZj3DOTpfwziI3qW3d4s1fJqdX2GnsMTCFGj6Xs06ZqdO_fOUGc-hMX-CD5aCXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+soil+carbon+inputs+and+outputs+along+a+tropical+altitudinal+gradient+of+volcanic+soils+under+intensive+agriculture&rft.jtitle=Geoderma&rft.au=Sierra%2C+Jorge&rft.au=Causeret%2C+Fran%C3%A7ois&rft.date=2018-06-15&rft.pub=Elsevier&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=320&rft.spage=95&rft.epage=104&rft_id=info:doi/10.1016%2Fj.geoderma.2018.01.025&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02628286v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |