The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery

Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1–10 μm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 38; no. 45; pp. 13943 - 13954
Main Authors Batchelor, Damien V. B., Armistead, Fern J., Ingram, Nicola, Peyman, Sally A., McLaughlan, James R., Coletta, P. Louise, Evans, Stephen D.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1–10 μm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced size of NBs (<1 μm) promotes increased uptake and accumulation in tumor interstitial space, which can enhance their diagnostic and therapeutic performance. However, accurate characterization of NB size and concentration is challenging and may limit their translation into clinical use. Their submicron nature limits accuracy of conventional microscopy techniques, while common light scattering techniques fail to distinguish between subpopulations present in NB samples (i.e., bubbles and liposomes). Due to the difficulty in the characterization of NBs, relatively little is known about the influence of size on their therapeutic performance. In this study, we describe a novel method of using a commercially available nanoparticle tracking analysis system, to distinguish between NBs and liposomes based on their differing optical properties. We used this technique to characterize three NB populations of varying size, isolated via centrifugation, and subsequently used this to assess their potential for enhancing localized delivery. Confocal fluorescence microscopy and image analysis were used to quantify the ultrasound enhanced uptake of fluorescent dextran into live colorectal cancer cells. Our results showed that the amount of localized uptake did not follow the expected trends, in which larger NB populations out-perform smaller NBs, at matched concentration. To understand this observed behavior, the stability of each NB population was assessed. It was found that dilution of the NB samples from their stock concentration influences their stability, and it is hypothesized that both the total free lipid and interbubble distance play a role in NB lifetime, in agreement with previously proposed theories and models.
AbstractList Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1-10 μm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced size of NBs (<1 μm) promotes increased uptake and accumulation in tumor interstitial space, which can enhance their diagnostic and therapeutic performance. However, accurate characterization of NB size and concentration is challenging and may limit their translation into clinical use. Their submicron nature limits accuracy of conventional microscopy techniques, while common light scattering techniques fail to distinguish between subpopulations present in NB samples (i.e., bubbles and liposomes). Due to the difficulty in the characterization of NBs, relatively little is known about the influence of size on their therapeutic performance. In this study, we describe a novel method of using a commercially available nanoparticle tracking analysis system, to distinguish between NBs and liposomes based on their differing optical properties. We used this technique to characterize three NB populations of varying size, isolated via centrifugation, and subsequently used this to assess their potential for enhancing localized delivery. Confocal fluorescence microscopy and image analysis were used to quantify the ultrasound enhanced uptake of fluorescent dextran into live colorectal cancer cells. Our results showed that the amount of localized uptake did not follow the expected trends, in which larger NB populations out-perform smaller NBs, at matched concentration. To understand this observed behavior, the stability of each NB population was assessed. It was found that dilution of the NB samples from their stock concentration influences their stability, and it is hypothesized that both the total free lipid and interbubble distance play a role in NB lifetime, in agreement with previously proposed theories and models.
Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1–10 μm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced size of NBs (<1 μm) promotes increased uptake and accumulation in tumor interstitial space, which can enhance their diagnostic and therapeutic performance. However, accurate characterization of NB size and concentration is challenging and may limit their translation into clinical use. Their submicron nature limits accuracy of conventional microscopy techniques, while common light scattering techniques fail to distinguish between subpopulations present in NB samples (i.e., bubbles and liposomes). Due to the difficulty in the characterization of NBs, relatively little is known about the influence of size on their therapeutic performance. In this study, we describe a novel method of using a commercially available nanoparticle tracking analysis system, to distinguish between NBs and liposomes based on their differing optical properties. We used this technique to characterize three NB populations of varying size, isolated via centrifugation, and subsequently used this to assess their potential for enhancing localized delivery. Confocal fluorescence microscopy and image analysis were used to quantify the ultrasound enhanced uptake of fluorescent dextran into live colorectal cancer cells. Our results showed that the amount of localized uptake did not follow the expected trends, in which larger NB populations out-perform smaller NBs, at matched concentration. To understand this observed behavior, the stability of each NB population was assessed. It was found that dilution of the NB samples from their stock concentration influences their stability, and it is hypothesized that both the total free lipid and interbubble distance play a role in NB lifetime, in agreement with previously proposed theories and models.
Author Batchelor, Damien V. B.
Ingram, Nicola
Evans, Stephen D.
McLaughlan, James R.
Peyman, Sally A.
Coletta, P. Louise
Armistead, Fern J.
AuthorAffiliation Molecular and Nanoscale Physics Group, School of Physics and Astronomy
Faculty of Electronic and Electrical Engineering
Leeds Institute of Medical Research, Wellcome Trust Brenner Building
AuthorAffiliation_xml – name: Leeds Institute of Medical Research, Wellcome Trust Brenner Building
– name: Faculty of Electronic and Electrical Engineering
– name: Molecular and Nanoscale Physics Group, School of Physics and Astronomy
Author_xml – sequence: 1
  givenname: Damien V. B.
  orcidid: 0000-0001-6489-9578
  surname: Batchelor
  fullname: Batchelor, Damien V. B.
  organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy
– sequence: 2
  givenname: Fern J.
  surname: Armistead
  fullname: Armistead, Fern J.
  organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy
– sequence: 3
  givenname: Nicola
  orcidid: 0000-0001-5274-8502
  surname: Ingram
  fullname: Ingram, Nicola
  organization: Faculty of Electronic and Electrical Engineering
– sequence: 4
  givenname: Sally A.
  orcidid: 0000-0002-1600-5100
  surname: Peyman
  fullname: Peyman, Sally A.
  organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy
– sequence: 5
  givenname: James R.
  surname: McLaughlan
  fullname: McLaughlan, James R.
  organization: Faculty of Electronic and Electrical Engineering
– sequence: 6
  givenname: P. Louise
  surname: Coletta
  fullname: Coletta, P. Louise
  organization: Leeds Institute of Medical Research, Wellcome Trust Brenner Building
– sequence: 7
  givenname: Stephen D.
  orcidid: 0000-0001-8342-5335
  surname: Evans
  fullname: Evans, Stephen D.
  email: s.d.evans@leeds.ac.uk
  organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36322191$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaZyPf1CKjr2sO_rwrvdSKEnaBkJ6cHIWWu3IVpClVFoF3F9fBTuhveQ0oHnfd0bznJCjEAMS8pHBnAFnX7TJc6_DeltcmnMDXIB4R2ZswaFZLHl3RGbQSdF0shXH5CTnBwDohew_kGPRCs5Zz2ZkdbdBeh2sLxgM0mjprQ5xKMPgka7cH6Q6jHQ16cF5N-1oDPTeT0nnWOr7VdjoahvpZSpreonePWHanZH3VvuM54d6Su6_X91d_Gxufv24vvh202gp-6mxwJjseS-YsVyMMPKWgzU9AkJnJDBtAUXb2vqZhTHacDBdbVm5ZLzFQZySr_vcxzJscTQY6mJePSa31Wmnonbq_05wG7WOT6pvOwayrwGfDwEp_i6YJ7V12aCvZ8VYsuKdYJJ3fCmqVO6lJsWcE9rXMQzUMw9VeagXHurAo9o-_bviq-kFQBXAXvBsf4glhXqxtzP_AnYOnSg
CitedBy_id crossref_primary_10_1038_s41598_024_56614_0
crossref_primary_10_1007_s40477_023_00809_0
crossref_primary_10_1039_D3NR03226D
crossref_primary_10_1109_TBME_2023_3321743
crossref_primary_10_1016_j_ultras_2023_107089
crossref_primary_10_1134_S0015462823602413
crossref_primary_10_1021_acs_jpcb_2c07256
crossref_primary_10_1016_j_addr_2024_115200
crossref_primary_10_1021_acs_jpcc_3c04206
crossref_primary_10_1080_13510002_2024_2333619
crossref_primary_10_1016_j_biortech_2024_130455
Cites_doi 10.1063/1.1747520
10.1016/j.jconrel.2018.04.018
10.1088/0034-4885/73/10/106501
10.1002/jrs.5010
10.1046/j.1540-8175.2002.00229.x
10.7150/thno.49670
10.1021/acs.analchem.9b04101
10.1063/5.0040213
10.1016/j.ultrasmedbio.2019.05.025
10.1016/j.cocis.2021.101463
10.1039/D0NR05390B
10.1039/c2lc40634a
10.1021/acs.langmuir.6b00616
10.1021/acs.langmuir.6b01004
10.1002/cphc.201100807
10.1088/1755-1315/472/1/012021
10.1016/j.jconrel.2020.06.011
10.1109/ULTSYM.2018.8580221
10.3390/pharmaceutics12030208
10.1371/journal.pone.0065339
10.1039/C5LC01394A
10.1038/s41563-019-0566-2
10.1021/acsami.0c07022
10.2147/IJN.S28830
10.2166/ws.2020.121
10.1021/acs.langmuir.7b04214
10.1021/acsnano.8b03900
10.1016/S0168-3659(99)00248-5
10.1021/acs.langmuir.7b02547
10.1103/PhysRevLett.124.134503
10.1021/acsnano.0c09701
10.1016/j.biomaterials.2013.02.067
10.1021/acs.langmuir.6b02489
10.1021/la2011259
10.1016/j.jconrel.2016.10.007
10.1121/1.3419775
10.1016/j.ultras.2009.10.002
10.1021/acs.nanolett.0c01310
10.3390/pharmaceutics14030622
10.1021/la026082h
10.7150/thno.51316
10.1016/j.wear.2006.01.020
10.1016/S0002-9440(10)65006-7
10.1016/j.colsurfa.2013.01.056
10.3389/fphar.2019.00610
10.1016/j.nano.2017.06.001
10.1016/j.nano.2016.08.020
10.1016/j.jconrel.2006.02.007
10.1016/j.nano.2021.102401
10.1016/j.ultrasmedbio.2013.10.010
10.1002/9783527618156
10.1016/j.xphs.2019.05.004
10.1016/j.cocis.2021.101456
10.1109/TUFFC.2013.2850
10.1186/s13568-021-01254-0
10.1017/S0022112071001058
10.1007/s11071-020-06163-8
10.1039/C8NR08763F
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acs.langmuir.2c02303
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 13954
ExternalDocumentID 10_1021_acs_langmuir_2c02303
36322191
a596328452
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/M009084/1
– fundername: ;
  grantid: MR/M009084/1
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: EP/P023266/1
– fundername: ;
  grantid: EP/S001069/1
GroupedDBID ---
-~X
.K2
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YQT
~02
53G
AAHBH
ABJNI
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a449t-f011492931cf23d0d2620fc9e0e07c401af0e366f8275ccac20c7e07f48126eb3
IEDL.DBID ACS
ISSN 0743-7463
IngestDate Tue Sep 17 21:35:10 EDT 2024
Fri Aug 16 01:27:50 EDT 2024
Fri Dec 06 01:56:54 EST 2024
Sat Sep 28 08:17:53 EDT 2024
Thu Nov 17 04:28:09 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a449t-f011492931cf23d0d2620fc9e0e07c401af0e366f8275ccac20c7e07f48126eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6489-9578
0000-0001-5274-8502
0000-0002-1600-5100
0000-0001-8342-5335
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9671049
PMID 36322191
PQID 2731427283
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9671049
proquest_miscellaneous_2731427283
crossref_primary_10_1021_acs_langmuir_2c02303
pubmed_primary_36322191
acs_journals_10_1021_acs_langmuir_2c02303
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
Murthi S. (ref60/cit60) 2010
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref64/cit64
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
Bohren C. F. (ref54/cit54) 1998
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
Murthi S. B. (ref52/cit52) 2010
Matsumura Y. (ref24/cit24) 1986; 46
ref51/cit51
ref43/cit43
Meyer P. A. (ref50/cit50) 2000; 2
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref44/cit44
  doi: 10.1063/1.1747520
– ident: ref13/cit13
  doi: 10.1016/j.jconrel.2018.04.018
– ident: ref10/cit10
  doi: 10.1088/0034-4885/73/10/106501
– ident: ref53/cit53
  doi: 10.1002/jrs.5010
– ident: ref12/cit12
  doi: 10.1046/j.1540-8175.2002.00229.x
– ident: ref11/cit11
  doi: 10.1046/j.1540-8175.2002.00229.x
– ident: ref15/cit15
  doi: 10.7150/thno.49670
– ident: ref47/cit47
  doi: 10.1021/acs.analchem.9b04101
– ident: ref49/cit49
  doi: 10.1063/5.0040213
– ident: ref7/cit7
  doi: 10.1016/j.ultrasmedbio.2019.05.025
– ident: ref22/cit22
  doi: 10.1016/j.cocis.2021.101463
– ident: ref48/cit48
  doi: 10.1039/D0NR05390B
– ident: ref19/cit19
  doi: 10.1039/c2lc40634a
– ident: ref63/cit63
  doi: 10.1021/acs.langmuir.6b00616
– ident: ref5/cit5
  doi: 10.1021/acs.langmuir.6b01004
– ident: ref64/cit64
  doi: 10.1002/cphc.201100807
– ident: ref2/cit2
  doi: 10.1088/1755-1315/472/1/012021
– ident: ref14/cit14
  doi: 10.1016/j.jconrel.2020.06.011
– ident: ref30/cit30
  doi: 10.1109/ULTSYM.2018.8580221
– ident: ref51/cit51
– ident: ref57/cit57
  doi: 10.3390/pharmaceutics12030208
– ident: ref1/cit1
  doi: 10.1371/journal.pone.0065339
– volume: 46
  start-page: 6387
  issue: 8
  year: 1986
  ident: ref24/cit24
  publication-title: Cancer Res.
  contributor:
    fullname: Matsumura Y.
– ident: ref6/cit6
  doi: 10.1039/C5LC01394A
– ident: ref26/cit26
  doi: 10.1038/s41563-019-0566-2
– ident: ref36/cit36
  doi: 10.1021/acsami.0c07022
– ident: ref29/cit29
  doi: 10.2147/IJN.S28830
– ident: ref4/cit4
  doi: 10.2166/ws.2020.121
– ident: ref55/cit55
  doi: 10.1021/acs.langmuir.7b04214
– ident: ref27/cit27
  doi: 10.1021/acsnano.8b03900
– ident: ref23/cit23
  doi: 10.1016/S0168-3659(99)00248-5
– ident: ref62/cit62
  doi: 10.1021/acs.langmuir.7b02547
– ident: ref67/cit67
  doi: 10.1103/PhysRevLett.124.134503
– ident: ref40/cit40
  doi: 10.1021/acsnano.0c09701
– volume: 2
  year: 2000
  ident: ref50/cit50
  publication-title: Int. Pipeline Conf.
  contributor:
    fullname: Meyer P. A.
– ident: ref58/cit58
  doi: 10.1016/j.biomaterials.2013.02.067
– ident: ref46/cit46
  doi: 10.1021/acs.langmuir.6b02489
– ident: ref37/cit37
  doi: 10.1021/la2011259
– ident: ref61/cit61
  doi: 10.1016/j.jconrel.2016.10.007
– ident: ref41/cit41
  doi: 10.1121/1.3419775
– ident: ref16/cit16
  doi: 10.1016/j.ultras.2009.10.002
– ident: ref33/cit33
  doi: 10.1021/acs.nanolett.0c01310
– ident: ref35/cit35
– ident: ref59/cit59
  doi: 10.3390/pharmaceutics14030622
– ident: ref45/cit45
  doi: 10.1021/la026082h
– ident: ref32/cit32
  doi: 10.7150/thno.51316
– ident: ref43/cit43
  doi: 10.1016/j.wear.2006.01.020
– ident: ref21/cit21
  doi: 10.1016/S0002-9440(10)65006-7
– ident: ref39/cit39
  doi: 10.1016/j.colsurfa.2013.01.056
– ident: ref28/cit28
  doi: 10.3389/fphar.2019.00610
– ident: ref31/cit31
  doi: 10.1016/j.nano.2017.06.001
– ident: ref65/cit65
  doi: 10.1016/j.nano.2016.08.020
– ident: ref17/cit17
  doi: 10.1016/j.jconrel.2006.02.007
– start-page: 15
  volume-title: Bedside Procedures for the Intensivist
  year: 2010
  ident: ref60/cit60
  contributor:
    fullname: Murthi S.
– ident: ref20/cit20
  doi: 10.1016/j.nano.2021.102401
– ident: ref34/cit34
  doi: 10.1016/j.ultrasmedbio.2013.10.010
– volume-title: Diagnostic Ultrasound - Physics and Equipment
  year: 2010
  ident: ref52/cit52
  contributor:
    fullname: Murthi S. B.
– volume-title: Absorption and Scattering of Light by Small Particles
  year: 1998
  ident: ref54/cit54
  doi: 10.1002/9783527618156
  contributor:
    fullname: Bohren C. F.
– ident: ref25/cit25
  doi: 10.1016/j.xphs.2019.05.004
– ident: ref8/cit8
  doi: 10.1016/j.cocis.2021.101456
– ident: ref18/cit18
  doi: 10.1109/TUFFC.2013.2850
– ident: ref3/cit3
  doi: 10.1186/s13568-021-01254-0
– ident: ref42/cit42
  doi: 10.1017/S0022112071001058
– ident: ref38/cit38
  doi: 10.1007/s11071-020-06163-8
– ident: ref56/cit56
  doi: 10.1039/C8NR08763F
SSID ssj0009349
Score 2.5466397
Snippet Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles...
Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 13943
SubjectTerms Contrast Media
Drug Delivery Systems - methods
Lipids
Liposomes
Microbubbles
Ultrasonography - methods
Title The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery
URI http://dx.doi.org/10.1021/acs.langmuir.2c02303
https://www.ncbi.nlm.nih.gov/pubmed/36322191
https://search.proquest.com/docview/2731427283
https://pubmed.ncbi.nlm.nih.gov/PMC9671049
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOMCF96O85JX2soeUxHbs5ohKESDt7qFU4hbFjr1UlAQ1zQF-PeOkKRSEFq6xZcXjsf199ucZgJ8KOUGQMutJE2mPm0DglDLCU1oFVqaRUMqdd_z-Iy4H_Po2vH0liu9v8Glwmuii7c7uHsrhuE21w8xsEZapRAbuoFC3_xpkl9Vw14XdlFyw5qncJ624DUkX8xvSB5T5Xiz5Zve5WIe_zRueWnRy3y4nqq2fP4Z0_GLHNmBtCkTJWe05m7Bgsi1Y6Tb537ahjx5ErpocJiS3BFfiXJVKjQzpD58NSbKUIFit5LVPJM_IYIT_XrhETaSX3VXaAnI-Lv-RczNy-o-nHRhc9G66l940BYOXcB5NPOv4EiIoFmhLWeqnLn691ZHxjS81crPE-oYJYTtUhugMmvpaYpHlCBwEEvVdWMryzOwDocwEPAlpIjjScd92wrQTOZGcCantKN2CX2iReDqFiri6HadB7D42ZoqnZmqB14xZ_FhH5fhP_R_NwMZoRXcnkmQmL4sY0VvAqUSQ1YK9eqBnLTKBqx3y2RbIOReYVXChuedLsuFdFaI7EojceHTwjT4dwip1TyucxDA8gqXJuDTHCHgm6qTy8hfQBf3o
link.rule.ids 230,314,780,784,885,2765,27076,27924,27925,56738,56788
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LU9swEN4BeoALtDzTllad6YWDgy3JcnzsBJhQHpcQhpvHkiXIEOxOHB_g17PrxIHQ6XS4ShqNtLuSvpVW3wL81OgTBJlwXmRj40kbKFxSVnna6MBFWay0pvuOi0vVG8jfN-HNEoTNXxgcRIk9lfUj_gu7QHBIZXSF91ANx21uCDqLZfgQUtZKQkTd_gvXrpiiXmLfjKQSzY-5f_RC55IpF8-lv8Dm25jJV4fQyQZcz4dfx57ct6uJbpunN8yO757fR1ifwVL2a2pHn2DJ5puw2m2ywW1BH-2JnTYZTVjhGO7Lha60HlnWHz5ZluYZQ-haB9s-siJngxFOoaS0Tew4v6sjDdjRuLplR3ZE0SCP2zA4Ob7q9rxZQgYvlTKeeI68J8RTIjCOi8zPiM3emdj61o8Memqp861QynV4FKJpGO6bCKucRBih0G3fgZW8yO0eMC5sINOQp0qic-67Tph1YgqZsyF3HW1acIASSWYLqkzqt3IeJFTYiCmZiakFXqO65M-Uo-M_7X80-k1QivRCkua2qMoEsVwgeYSQqwW7U33PexQK9z70blsQLVjCvAERdS_W5MO7mrA7VojjZPz5HXP6Dqu9q4vz5Pz08uwLrHH6dEHBh-FXWJmMK7uPUGiiv9WG_wyHQAZk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5iIG1cGPsF3WDzpF12SElsx2mOqKWC_UCTukpolyh27FFREtQ0B_jr916aFAqa0Ha1IyvPfra_Z3_-HsAnjTFBkAnnRTY2nrSBwilllaeNDlyUxUprOu_4fqqOx_LLWXh2J9UX_kSJLZX1JT7N6qvMNQoDwQGV0zHeZTWZdbkh-CyewEaICy6xuQ77o1u9XbFAvqTAGUkl2ldzf2mF9iZTru5NDwDnfd7knY1o-Bx-LU2o-ScX3Wquu-bmnrrjf9m4DVsNPGWHC396AWs2fwnP-m1WuFcwQr9iJ21mE1Y4hutzoSutp5aNJjeWpXnGEMLWpNtrVuRsPEUzSkrfxI7y85pxwAaz6jcb2CmxQq5fw3h49LN_7DWJGbxUynjuOYqiEFeJwDguMj8jVXtnYutbPzIYsaXOt0Ip1-NRiC5iuG8irHIS4YTC8P0NrOdFbneBcWEDmYY8VRKDdN_1wqwXE3XOhtz1tOnAZ-yRpJlYZVLfmfMgocK2m5KmmzrgtcOXXC20Oh75_mM7xgn2It2UpLktqjJBTBdIHiH06sDOYsyXLQqFayBGuR2IVrxh-QEJdq_W5JPzWrg7VojnZPz2H2z6AE9_DIbJt5PTr-9gk9PbC-IghnuwPp9Vdh8R0Vy_r33_D_BfCOc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Influence+of+Nanobubble+Size+and+Stability+on+Ultrasound+Enhanced+Drug+Delivery&rft.jtitle=Langmuir&rft.au=Batchelor%2C+Damien+V.+B.&rft.au=Armistead%2C+Fern+J.&rft.au=Ingram%2C+Nicola&rft.au=Peyman%2C+Sally+A.&rft.date=2022-11-15&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=38&rft.issue=45&rft.spage=13943&rft.epage=13954&rft_id=info:doi/10.1021%2Facs.langmuir.2c02303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_2c02303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon