Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M‑BTT Metal–Organic Frameworks
Microporous metal–organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M3[(M4Cl)3(BTT)8]2 (M-BTT; BTT3– = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interes...
Saved in:
Published in | Journal of the American Chemical Society Vol. 135; no. 3; pp. 1083 - 1091 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microporous metal–organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M3[(M4Cl)3(BTT)8]2 (M-BTT; BTT3– = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q st) approaching the optimal value for ambient storage applications. However, the Q st parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H2 adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H2 adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H2. Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H2 storage applications. |
---|---|
AbstractList | Microporous metal–organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M₃[(M₄Cl)₃(BTT)₈]₂ (M-BTT; BTT³– = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Qₛₜ) approaching the optimal value for ambient storage applications. However, the Qₛₜ parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H₂ adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H₂ adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H₂. Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H₂ storage applications. Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M(3)[(M(4)Cl)(3)(BTT)(8)](2) (M-BTT; BTT(3-) = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q(st)) approaching the optimal value for ambient storage applications. However, the Q(st) parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H(2) adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H(2) adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H(2). Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H(2) storage applications. Microporous metal–organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M3[(M4Cl)3(BTT)8]2 (M-BTT; BTT3– = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q st) approaching the optimal value for ambient storage applications. However, the Q st parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H2 adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H2 adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H2. Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H2 storage applications. Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M(3)[(M(4)Cl)(3)(BTT)(8)](2) (M-BTT; BTT(3-) = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q(st)) approaching the optimal value for ambient storage applications. However, the Q(st) parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H(2) adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H(2) adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H(2). Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H(2) storage applications.Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M(3)[(M(4)Cl)(3)(BTT)(8)](2) (M-BTT; BTT(3-) = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q(st)) approaching the optimal value for ambient storage applications. However, the Q(st) parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H(2) adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H(2) adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H(2). Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H(2) storage applications. |
Author | Sumida, Kenji Murray, Leslie J Head-Gordon, Martin Stück, David Mino, Lorenzo Bordiga, Silvia Dincă, Mircea Chai, Jeng-Da Zavorotynska, Olena Chavan, Sachin Long, Jeffrey R Bloch, Eric D |
AuthorAffiliation | Lawrence Berkeley National Laboratory University of California Chemical Sciences Division University of Torino Materials Sciences Division |
AuthorAffiliation_xml | – name: University of California – name: Chemical Sciences Division – name: University of Torino – name: Lawrence Berkeley National Laboratory – name: Materials Sciences Division |
Author_xml | – sequence: 1 givenname: Kenji surname: Sumida fullname: Sumida, Kenji – sequence: 2 givenname: David surname: Stück fullname: Stück, David – sequence: 3 givenname: Lorenzo surname: Mino fullname: Mino, Lorenzo – sequence: 4 givenname: Jeng-Da surname: Chai fullname: Chai, Jeng-Da – sequence: 5 givenname: Eric D surname: Bloch fullname: Bloch, Eric D – sequence: 6 givenname: Olena surname: Zavorotynska fullname: Zavorotynska, Olena – sequence: 7 givenname: Leslie J surname: Murray fullname: Murray, Leslie J – sequence: 8 givenname: Mircea surname: Dincă fullname: Dincă, Mircea – sequence: 9 givenname: Sachin surname: Chavan fullname: Chavan, Sachin – sequence: 10 givenname: Silvia surname: Bordiga fullname: Bordiga, Silvia email: silvia.bordiga@unito.it, mhg@cchem.berkeley.edu, jrlong@berkeley.edu – sequence: 11 givenname: Martin surname: Head-Gordon fullname: Head-Gordon, Martin email: silvia.bordiga@unito.it, mhg@cchem.berkeley.edu, jrlong@berkeley.edu – sequence: 12 givenname: Jeffrey R surname: Long fullname: Long, Jeffrey R email: silvia.bordiga@unito.it, mhg@cchem.berkeley.edu, jrlong@berkeley.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23244036$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAUhS0EguFnwQtU3lSii3T8kzj2ElApSCCQGNaW49xMMyRxsB2h2c0rVH1DnqShM7BASF1dnXu_cxbn7qPtznWA0DEl3ylhdLownBKac9hCE5oxkmSUiW00IYSwJJeC76H9EBajTJmku2iPcZamhIsJ6q_a3tiIXYVvIJoGm67Ep13tOnw_FCHWcYijCHhcxF-AL5eld3MYr9F5Mwd8510PPtYQ_mW8rH6fzWbrrJfVn1s_N11t8YU3LTw7_xgO0U5lmgBHm3mAHi5-zM4vk-vbn1fnp9eJSVMVkzKXVLGCWJlWmWGFlTYjFSOyBC4KxatSUaJKyaEgqeBK5VmRm6qsCGQis4IfoJN1bu_d0wAh6rYOFprGdOCGoJmSQkguRP5flLKcS5IpRUf0ywYdihZK3fu6NX6p3wodgekasN6F4KHSto7mtcLoTd1oSvTry_T7y0bHtw-Ot9DP2K9r1tigF27w3VjhJ9xfpgKjBg |
CitedBy_id | crossref_primary_10_1080_15533174_2016_1186093 crossref_primary_10_1016_j_poly_2013_06_003 crossref_primary_10_1002_anie_202004458 crossref_primary_10_1039_C4CC05265J crossref_primary_10_1039_C6CC02494G crossref_primary_10_1021_acsami_8b15946 crossref_primary_10_1021_acs_chemmater_5b04538 crossref_primary_10_1016_j_ccr_2014_12_009 crossref_primary_10_1021_cg401036e crossref_primary_10_1021_la404540j crossref_primary_10_1021_acs_cgd_1c00808 crossref_primary_10_1016_j_ica_2020_119801 crossref_primary_10_1039_C6RA22905K crossref_primary_10_1039_C4CS00003J crossref_primary_10_1039_D3TC04492K crossref_primary_10_1016_j_jssc_2014_03_025 crossref_primary_10_1016_j_molstruc_2018_07_025 crossref_primary_10_1016_j_inoche_2019_04_021 crossref_primary_10_1021_acs_inorgchem_5b00689 crossref_primary_10_1021_acs_langmuir_3c00455 crossref_primary_10_1016_j_cej_2016_05_106 crossref_primary_10_1039_C9CP00754G crossref_primary_10_1038_srep33081 crossref_primary_10_1016_j_commatsci_2022_111202 crossref_primary_10_1038_s41598_017_05202_6 crossref_primary_10_1021_acs_jctc_0c00292 crossref_primary_10_1016_j_electacta_2018_11_135 crossref_primary_10_1021_acs_inorgchem_5b00271 crossref_primary_10_1021_jacs_4c08039 crossref_primary_10_1002_slct_201903918 crossref_primary_10_1021_acs_jpca_5b10029 crossref_primary_10_1039_c3ra44559c crossref_primary_10_1039_C7CS00033B crossref_primary_10_1021_ja5101323 crossref_primary_10_1021_ja4050828 crossref_primary_10_1002_anie_201602950 crossref_primary_10_1021_acs_cgd_7b00086 crossref_primary_10_5714_CL_2015_16_4_281 crossref_primary_10_1002_ange_202004458 crossref_primary_10_1016_j_mtcomm_2024_110049 crossref_primary_10_1039_C4CC03729D crossref_primary_10_1016_j_jcou_2019_08_012 crossref_primary_10_1039_C8SC00971F crossref_primary_10_1038_s41598_018_31947_9 crossref_primary_10_1016_j_ccr_2017_11_015 crossref_primary_10_1039_c4ta01133c crossref_primary_10_1016_j_micromeso_2015_02_017 crossref_primary_10_1016_j_commatsci_2014_08_038 crossref_primary_10_1039_C9NJ02566A crossref_primary_10_1021_acs_inorgchem_5b02046 crossref_primary_10_1007_s12039_022_02130_5 crossref_primary_10_1039_C4QI00032C crossref_primary_10_1007_s10853_015_9237_0 crossref_primary_10_1002_anie_201404265 crossref_primary_10_1002_ange_201602950 crossref_primary_10_1039_C5NR06116D crossref_primary_10_1007_s11705_023_2355_3 crossref_primary_10_1021_ja403571z crossref_primary_10_1039_D0CE00475H crossref_primary_10_1016_j_cej_2015_05_103 crossref_primary_10_1039_C6CP00412A crossref_primary_10_3390_ma8063442 crossref_primary_10_1016_j_cplett_2016_06_037 crossref_primary_10_1063_1_5026637 crossref_primary_10_1039_c4ce00647j crossref_primary_10_1039_C4CE02457E crossref_primary_10_1039_C9CC04555D crossref_primary_10_1039_C4RA16350H crossref_primary_10_1021_acs_jpcc_4c07631 crossref_primary_10_1039_C6DT04719J crossref_primary_10_1002_ange_201404265 crossref_primary_10_1016_j_ccr_2015_05_002 crossref_primary_10_1039_c3dt32944e crossref_primary_10_1039_C8EE01085D crossref_primary_10_1002_adma_202008784 crossref_primary_10_1103_PhysRevLett_111_066102 crossref_primary_10_1039_C9CS00609E crossref_primary_10_1016_j_ccr_2017_10_026 crossref_primary_10_1039_C8DT00512E crossref_primary_10_1021_acs_jpcc_6b08729 crossref_primary_10_1021_ja504992g crossref_primary_10_1039_C8CP07467D crossref_primary_10_1016_j_ica_2014_07_041 crossref_primary_10_1039_C3CC47777K crossref_primary_10_1039_D0QI00537A crossref_primary_10_1039_C4TA02535K crossref_primary_10_1039_C6DT01697A crossref_primary_10_1021_acs_jpcc_6b07115 crossref_primary_10_1021_acs_chemrev_0c00487 crossref_primary_10_1002_chem_201504666 crossref_primary_10_1016_j_electacta_2013_10_190 crossref_primary_10_1016_j_ccr_2018_11_006 crossref_primary_10_1016_j_jorganchem_2018_02_024 crossref_primary_10_1021_acs_energyfuels_9b01872 crossref_primary_10_1039_C3RA47136E crossref_primary_10_1039_C4CC00426D crossref_primary_10_1021_acs_chemmater_6b02817 crossref_primary_10_1021_cm4020942 crossref_primary_10_3390_pr6080122 crossref_primary_10_1080_00268976_2020_1757169 crossref_primary_10_1515_psr_2017_0196 crossref_primary_10_1021_acs_energyfuels_1c01642 crossref_primary_10_1021_acs_inorgchem_2c01456 crossref_primary_10_1021_ic5030058 crossref_primary_10_1021_acsami_5b07953 crossref_primary_10_1016_j_ica_2013_09_007 crossref_primary_10_1039_C4CS00002A crossref_primary_10_1016_j_ijhydene_2019_08_016 crossref_primary_10_1016_j_ccr_2019_05_022 crossref_primary_10_1016_j_inoche_2014_07_014 crossref_primary_10_1016_j_jallcom_2020_157177 crossref_primary_10_1039_C6CY01239F crossref_primary_10_1016_j_aca_2017_08_048 crossref_primary_10_1039_C8DT04766A crossref_primary_10_1021_jacs_5b12515 crossref_primary_10_1021_acs_jpcc_6b03333 crossref_primary_10_1063_1_4867698 crossref_primary_10_1021_acs_cgd_0c01617 crossref_primary_10_1039_D1CY01876K crossref_primary_10_1107_S2052252518015749 crossref_primary_10_1021_acs_inorgchem_6b02746 crossref_primary_10_1021_acs_cgd_8b01628 crossref_primary_10_1021_ja506230r crossref_primary_10_1002_admt_202200238 crossref_primary_10_1039_c3dt51312b |
Cites_doi | 10.1039/c0cs00117a 10.1039/c1ee01720a 10.1038/nchem.834 10.1021/ja0523082 10.1021/ja809985t 10.1039/b703608f 10.1103/PhysRevB.23.5048 10.1021/ja807023q 10.1021/jp960669l 10.1126/science.1192160 10.1016/j.ijhydene.2006.02.019 10.1039/c2jm15592c 10.1021/ja8007159 10.1039/c0sc00179a 10.1039/B308903G 10.1002/anie.200600105 10.1002/anie.200801163 10.1016/j.cplett.2008.03.014 10.1002/anie.200353494 10.1063/1.1412004 10.1063/1.438955 10.1002/ejic.200701284 10.1002/chem.201101341 10.1021/cr200274s 10.1039/B517914A 10.1021/la0523816 10.1021/ja058777l 10.1039/c2sc20601c 10.1039/c0cp02984j 10.1039/b802256a 10.1021/ic0611948 10.1021/jp200638n 10.1039/b810189b 10.1126/science.1172246 10.1002/anie.200601991 10.1039/b515434k 10.1038/35104634 10.1080/00268977000101561 10.1039/c1sc00136a 10.1021/ja076877g 10.1021/ja0570032 10.1021/ja045123o 10.1016/j.ijhydene.2009.05.025 10.1039/C0CC03453C 10.1126/science.1067208 10.1021/ja056639q 10.1002/anie.201001009 10.1002/cphc.201000523 10.1002/anie.200501508 10.1021/cr200217c 10.1063/1.452110 10.1021/ja058213h 10.1016/j.ijhydene.2006.11.022 10.1021/ja0771639 10.1021/ja066098k 10.1021/ja056906s 10.1016/j.cplett.2006.02.025 10.1038/nature03852 10.1063/1.438980 10.1021/jp302356q 10.1039/c1ee01240a 10.1021/ja0656853 10.1039/b900085b 10.1002/anie.200703934 10.1002/anie.200604362 10.1002/chem.201003376 10.1021/la703864a 10.1021/ja8036096 10.1021/ja9072707 10.1063/1.1424928 10.1126/science.1181637 10.1021/la800227x 10.1039/b911242a 10.1126/science.1083440 10.1021/ja049408c 10.1016/0009-2614(94)01027-7 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/ja310173e |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 1091 |
ExternalDocumentID | 23244036 10_1021_ja310173e b021210615 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a449t-d78192b0c84f5a2bc8c50f208de36b93fd9109d83eb04639975b7afdf0e565c63 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 04:45:38 EDT 2025 Thu Jul 10 18:17:42 EDT 2025 Thu Apr 03 07:04:22 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Tue Jul 01 02:08:38 EDT 2025 Thu Aug 27 13:41:55 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a449t-d78192b0c84f5a2bc8c50f208de36b93fd9109d83eb04639975b7afdf0e565c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/2318/138400 |
PMID | 23244036 |
PQID | 1273805991 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2986683667 proquest_miscellaneous_1273805991 pubmed_primary_23244036 crossref_citationtrail_10_1021_ja310173e crossref_primary_10_1021_ja310173e acs_journals_10_1021_ja310173e |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-23 |
PublicationDateYYYYMMDD | 2013-01-23 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Farha O. K. (ref10/cit10o) 2010; 2 Zhou W. (ref11/cit11j) 2008; 130 ref3/cit3 Dincă M. (ref11/cit11b) 2005; 127 Dutoi A. D. (ref15/cit15c) 2006; 422 Kristyán S. (ref15/cit15a) 1994; 229 Latroche M. (ref10/cit10i) 2006; 45 Vitillo J. G. (ref12/cit12) 2008; 130 Wu Q. (ref17/cit17) 2002; 116 Dolg M. (ref28/cit28) 1987; 86 Goerigk L. (ref19/cit19) 2011; 13 Dietzel P. D. C. (ref11/cit11f) 2006 Tranchemontagne D. J. (ref10/cit10r) 2012; 116 Yuan D. (ref11/cit11m) 2010; 49 Lee E. Y. (ref10/cit10d) 2004; 43 Moon H. R. (ref11/cit11e) 2006; 45 Furukawa H. (ref10/cit10k) 2007; 17 Suh M. P. (ref6/cit6e) 2012; 112 Morris R. E. (ref9/cit9f) 2008; 47 Matsuda R. (ref9/cit9b) 2005; 436 Otero Areán C. (ref8/cit8b) 2010; 11 Dietzel P. D. C. (ref11/cit11a) 2005; 44 Rowsell J. L. C. (ref10/cit10f) 2006; 128 Garrone E. (ref8/cit8a) 2008; 456 Dietzel P. D. C. (ref11/cit11h) 2008 Dincă M. (ref6/cit6a) 2008; 47 Llewellyn P. L. (ref9/cit9g) 2008; 24 Wong-Foy A. G. (ref10/cit10g) 2006; 128 Chai J.-D. (ref18/cit18) 2008; 10 Xiao B. (ref10/cit10j) 2007; 129 Liu Y. (ref11/cit11i) 2008; 24 Shao. Y. (ref25/cit25) 2006; 8 Cheon Y. E. (ref11/cit11l) 2009 Eddaoudi M. (ref9/cit9a) 2002; 295 Wu X. (ref16/cit16) 2001; 115 Liu D. (ref10/cit10q) 2012; 3 Yan Y. (ref11/cit11n) 2011; 17 Férey G. (ref10/cit10b) 2003 Kohn W. (ref14/cit14) 1996; 100 Colombo V. (ref31/cit31) 2011; 2 Rosi N. L. (ref10/cit10a) 2003; 300 Biswas S. (ref23/cit23) 2012; 22 Sumida K. (ref11/cit11o) 2011; 50 Krishnan R. (ref26/cit26) 1980; 72 McLean A. D. (ref27/cit27) 1980; 72 Haszeldine R. S. (ref1/cit1c) 2009; 325 Furukawa H. (ref9/cit9d) 2007; 17 Ma S. (ref9/cit9e) 2008; 130 Rosi N. L. (ref11/cit11c) 2005; 127 Kumar V. S. (ref4/cit4b) 2009; 34 Sumida K. (ref21/cit21) 2010; 1 Aceves S. M. (ref4/cit4a) 2006; 31 Dincă M. (ref22/cit22) 2007; 46 Millward A. R. (ref9/cit9c) 2005; 127 Perdew J. P. (ref15/cit15b) 1981; 23 Mason J. A. (ref24/cit24) 2011; 4 Bhatia S. K. (ref7/cit7) 2006; 22 Rowsell J. L. (ref10/cit10c) 2004; 126 Metz B. (ref1/cit1a) 2005 Chu S. (ref1/cit1b) 2009; 325 Murray L. J. (ref6/cit6b) 2009; 38 Sakituna B. (ref5/cit5) 2007; 32 Sculley J. (ref6/cit6c) 2011; 4 Lin X. (ref10/cit10h) 2006; 45 Sumida K. (ref11/cit11p) 2011; 115 Caskey S. R. (ref11/cit11g) 2008; 130 Furukawa H. (ref9/cit9h) 2010; 329 Koh K. (ref10/cit10m) 2009; 131 Parr R. G. (ref13/cit13) 1989 ref6/cit6d Lamberti C. (ref30/cit30) 2010; 39 Kaye S. S. (ref10/cit10l) 2007; 129 Dincă M. (ref20/cit20) 2006; 128 Dietzel P. D. C. (ref11/cit11k) 2009; 19 Boys S. (ref29/cit29) 1970; 19 Schlapbach L. (ref2/cit2) 2001; 414 Vimont A. (ref11/cit11d) 2006; 128 Park H. J. (ref10/cit10p) 2011; 17 Sumida K. (ref10/cit10n) 2009; 131 Sun D. (ref10/cit10e) 2006; 128 |
References_xml | – volume: 39 start-page: 4951 year: 2010 ident: ref30/cit30 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00117a – volume: 4 start-page: 3030 year: 2011 ident: ref24/cit24 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01720a – volume: 2 start-page: 944 year: 2010 ident: ref10/cit10o publication-title: Nat. Chem. doi: 10.1038/nchem.834 – volume: 127 start-page: 9376 year: 2005 ident: ref11/cit11b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0523082 – volume: 131 start-page: 4184 year: 2009 ident: ref10/cit10m publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809985t – volume: 17 start-page: 3197 year: 2007 ident: ref9/cit9d publication-title: J. Mater. Chem. doi: 10.1039/b703608f – volume: 23 start-page: 5048 year: 1981 ident: ref15/cit15b publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.5048 – volume: 130 start-page: 15268 year: 2008 ident: ref11/cit11j publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807023q – volume: 100 start-page: 12974 year: 1996 ident: ref14/cit14 publication-title: J. Phys. Chem. doi: 10.1021/jp960669l – volume: 329 start-page: 424 year: 2010 ident: ref9/cit9h publication-title: Science doi: 10.1126/science.1192160 – volume: 31 start-page: 2274 year: 2006 ident: ref4/cit4a publication-title: Int. J. Hydrogen Storage doi: 10.1016/j.ijhydene.2006.02.019 – volume-title: Density-Functional Theory of Atoms and Molecules year: 1989 ident: ref13/cit13 – volume: 22 start-page: 10200 year: 2012 ident: ref23/cit23 publication-title: J. Mater. Chem. doi: 10.1039/c2jm15592c – volume: 130 start-page: 8386 year: 2008 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8007159 – volume: 1 start-page: 184 year: 2010 ident: ref21/cit21 publication-title: Chem. Sci. doi: 10.1039/c0sc00179a – volume-title: Special Report on Carbon Dioxide Capture and Storage year: 2005 ident: ref1/cit1a – start-page: 2976 year: 2003 ident: ref10/cit10b publication-title: Chem. Commun. doi: 10.1039/B308903G – volume: 45 start-page: 8227 year: 2006 ident: ref10/cit10i publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200600105 – volume: 47 start-page: 6766 year: 2008 ident: ref6/cit6a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801163 – volume: 456 start-page: 68 year: 2008 ident: ref8/cit8a publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2008.03.014 – volume: 43 start-page: 2798 year: 2004 ident: ref10/cit10d publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200353494 – volume: 115 start-page: 8748 year: 2001 ident: ref16/cit16 publication-title: J. Chem. Phys. doi: 10.1063/1.1412004 – volume: 72 start-page: 650 year: 1980 ident: ref26/cit26 publication-title: J. Chem. Phys. doi: 10.1063/1.438955 – start-page: 3624 year: 2008 ident: ref11/cit11h publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200701284 – volume: 17 start-page: 11162 year: 2011 ident: ref11/cit11n publication-title: Chem.—Eur. J. doi: 10.1002/chem.201101341 – volume: 112 start-page: 782 year: 2012 ident: ref6/cit6e publication-title: Chem. Rev. doi: 10.1021/cr200274s – volume: 8 start-page: 3172 year: 2006 ident: ref25/cit25 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B517914A – volume: 22 start-page: 1688 year: 2006 ident: ref7/cit7 publication-title: Langmuir doi: 10.1021/la0523816 – volume: 128 start-page: 3896 year: 2006 ident: ref10/cit10e publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058777l – volume: 3 start-page: 3032 year: 2012 ident: ref10/cit10q publication-title: Chem. Sci. doi: 10.1039/c2sc20601c – volume: 13 start-page: 6670 year: 2011 ident: ref19/cit19 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02984j – volume: 38 start-page: 1294 year: 2009 ident: ref6/cit6b publication-title: Chem. Soc. Rev. doi: 10.1039/b802256a – volume: 45 start-page: 8672 year: 2006 ident: ref11/cit11e publication-title: Inorg. Chem. doi: 10.1021/ic0611948 – volume: 115 start-page: 8414 year: 2011 ident: ref11/cit11p publication-title: J. Phys. Chem. C doi: 10.1021/jp200638n – volume: 10 start-page: 6615 year: 2008 ident: ref18/cit18 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b810189b – volume: 325 start-page: 1647 year: 2009 ident: ref1/cit1c publication-title: Science doi: 10.1126/science.1172246 – volume: 45 start-page: 7358 year: 2006 ident: ref10/cit10h publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200601991 – start-page: 959 year: 2006 ident: ref11/cit11f publication-title: Chem. Commun. doi: 10.1039/b515434k – volume: 414 start-page: 353 year: 2001 ident: ref2/cit2 publication-title: Nature doi: 10.1038/35104634 – volume: 19 start-page: 553 year: 1970 ident: ref29/cit29 publication-title: Mol. Phys. doi: 10.1080/00268977000101561 – volume: 2 start-page: 1311 year: 2011 ident: ref31/cit31 publication-title: Chem. Sci. doi: 10.1039/c1sc00136a – volume: 129 start-page: 14176 year: 2007 ident: ref10/cit10l publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076877g – volume: 127 start-page: 17998 year: 2005 ident: ref9/cit9c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0570032 – volume: 17 start-page: 3197 year: 2007 ident: ref10/cit10k publication-title: J. Mater. Chem. doi: 10.1039/b703608f – volume: 127 start-page: 1504 year: 2005 ident: ref11/cit11c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja045123o – volume: 34 start-page: 5466 year: 2009 ident: ref4/cit4b publication-title: Int. J. Hydrogen Storage doi: 10.1016/j.ijhydene.2009.05.025 – volume: 50 start-page: 1157 year: 2011 ident: ref11/cit11o publication-title: Chem. Commun. doi: 10.1039/C0CC03453C – volume: 295 start-page: 469 year: 2002 ident: ref9/cit9a publication-title: Science doi: 10.1126/science.1067208 – volume: 128 start-page: 1304 year: 2006 ident: ref10/cit10f publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056639q – volume: 49 start-page: 5357 year: 2010 ident: ref11/cit11m publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201001009 – volume: 11 start-page: 3237 year: 2010 ident: ref8/cit8b publication-title: ChemPhysChem doi: 10.1002/cphc.201000523 – volume: 44 start-page: 6354 year: 2005 ident: ref11/cit11a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200501508 – ident: ref6/cit6d doi: 10.1021/cr200217c – volume: 86 start-page: 2123 year: 1987 ident: ref28/cit28 publication-title: J. Chem. Phys. doi: 10.1063/1.452110 – volume: 128 start-page: 3494 year: 2006 ident: ref10/cit10g publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058213h – volume: 32 start-page: 1121 year: 2007 ident: ref5/cit5 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.11.022 – volume: 130 start-page: 1012 year: 2008 ident: ref9/cit9e publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0771639 – volume: 129 start-page: 1203 year: 2007 ident: ref10/cit10j publication-title: J. Am. Chem. Soc. doi: 10.1021/ja066098k – volume: 128 start-page: 3218 year: 2006 ident: ref11/cit11d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056906s – volume: 422 start-page: 230 year: 2006 ident: ref15/cit15c publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.02.025 – volume: 436 start-page: 238 year: 2005 ident: ref9/cit9b publication-title: Nature doi: 10.1038/nature03852 – volume: 72 start-page: 5639 year: 1980 ident: ref27/cit27 publication-title: J. Chem. Phys. doi: 10.1063/1.438980 – volume: 116 start-page: 13143 year: 2012 ident: ref10/cit10r publication-title: J. Phys. Chem. C doi: 10.1021/jp302356q – volume: 4 start-page: 2721 year: 2011 ident: ref6/cit6c publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01240a – volume: 128 start-page: 16876 year: 2006 ident: ref20/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0656853 – ident: ref3/cit3 – start-page: 2296 year: 2009 ident: ref11/cit11l publication-title: Chem. Commun. doi: 10.1039/b900085b – volume: 47 start-page: 4966 year: 2008 ident: ref9/cit9f publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200703934 – volume: 46 start-page: 1419 year: 2007 ident: ref22/cit22 publication-title: Angew Chem., Int. Ed. doi: 10.1002/anie.200604362 – volume: 17 start-page: 7251 year: 2011 ident: ref10/cit10p publication-title: Chem, Eur. J. doi: 10.1002/chem.201003376 – volume: 24 start-page: 4772 year: 2008 ident: ref11/cit11i publication-title: Langmuir doi: 10.1021/la703864a – volume: 130 start-page: 10870 year: 2008 ident: ref11/cit11g publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8036096 – volume: 131 start-page: 15120 year: 2009 ident: ref10/cit10n publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9072707 – volume: 116 start-page: 515 year: 2002 ident: ref17/cit17 publication-title: J. Chem. Phys. doi: 10.1063/1.1424928 – volume: 325 start-page: 1599 year: 2009 ident: ref1/cit1b publication-title: Science doi: 10.1126/science.1181637 – volume: 24 start-page: 7245 year: 2008 ident: ref9/cit9g publication-title: Langmuir doi: 10.1021/la800227x – volume: 19 start-page: 7362 year: 2009 ident: ref11/cit11k publication-title: J. Mater. Chem. doi: 10.1039/b911242a – volume: 300 start-page: 1127 year: 2003 ident: ref10/cit10a publication-title: Science doi: 10.1126/science.1083440 – volume: 126 start-page: 5666 year: 2004 ident: ref10/cit10c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049408c – volume: 229 start-page: 175 year: 1994 ident: ref15/cit15a publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)01027-7 |
SSID | ssj0004281 |
Score | 2.4562113 |
Snippet | Microporous metal–organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage... Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1083 |
SubjectTerms | Adsorption ambient temperature Anions - chemistry binding sites cations coordination polymers Copper - chemistry Electric Power Supplies hydrogen Hydrogen - chemistry infrared spectroscopy iron Iron - chemistry manganese Manganese - chemistry Organometallic Compounds - chemistry porous media Quantum Theory Surface Properties Tetrazoles - chemistry thermodynamics |
Title | Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M‑BTT Metal–Organic Frameworks |
URI | http://dx.doi.org/10.1021/ja310173e https://www.ncbi.nlm.nih.gov/pubmed/23244036 https://www.proquest.com/docview/1273805991 https://www.proquest.com/docview/2986683667 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB615UAvPEoL4VEthQMXV_auvY9jCEQBqQipidRb5H1dipwoj0N7yl9A_MP-EmbsOKWigas93rV3Zne_8c58A_Be5BZBqDWJJQbC3BubaG9k4tANy4qoojaUjXz2TQ5G-deL4mIH3m05wefEDyTIbETYhQdcakUeVrd3fpv8yHXWYlylpWjpg_58lLYeN7-79WzBk_W-0n8Mn9rsnCac5PJ0ubCn7vpvssZ_vfITeLTGlazbGMJT2AnVATzsteXcnsH0S50PySaRnQVE3KysPOtWqBZGi0cdMUAmyPACgkI2uPKzCVoXO0evHBcd9p1-28-If7Vu42b18-Nw2LR1s_rV5HQ61m-DveaHMOp_HvYGybrcQlLmuVkkXhE5mk2dzmNRcuu0K9LIU-2DkNaI6BFaGK9FsEQzZowqrCqjj2lAVOikOIK9alKFF8AQ5gQnPd53aR6F05nyOB29wg4ctt-BY9THeD1d5uP6JJyjJ9IOXAc-tKoauzVZOdXM-HGf6MlGdNowdNwn9LbV9xjHnQ5FyipMltg15SYRSU22XYYbLaUWUqoOPG-MZdMVIdIcYcDL_33SK9jndSmNLOHiNewtZsvwBgHNwh7XBv0bVnnvVg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELYoHOgFSvlbKNRFPfQSlMSJYx-XFaulsKgSi8Qtiv8urbKrze4BTrwC4g15EmacBGgFKtdkMnY84_ib2PMNId9ZogCEKhkoZCBMjFSBMJIHGsKwKHWZExKzkYfnfHCZ_LxKrxqaHMyFgU5UoKnym_jP7AJIE8TQe5j9QJYAhMQYaHV7F885kLGIWqibCc5aFqGXj-IKpKu_V6A3YKVfXvqrdZ0i3zF_quT34XymDvXNP5yN7-v5J7LSoEzard1ijSzY8jNZ7rXF3dbJ5MRnR9Kxo0ML-JsWpaHdEoxE8VPizw-gQ1K4ABCRDq7NdAy-Ri8gRodPEP2FP_GnyMbqdTzc3h2NRrWuh9v7OsNT03579KvaIJf941FvEDTFF4IiSeQsMBlSpalQi8SlRay00Gno4lAYy7iSzBkAGtIIZhWSjkmZpSornHGhBfNozjbJYjku7TahAHqs5gbu6zBxTIsoMzA5TQYNaNDfIfswbnkzearc74vHEJe0A9chP1qL5bqhLscKGn9eEz14Ep3UfB2vCX1rzZ7DuOMWSVHa8RyaxkwlpKyJ3paJpeBcMM6zDtmqfeapKcSnCYCCnf-90leyPBgNz_Kzk_PTXfIx9kU2oiBmX8jibDq3ewB1Zmrf-_gjiJX3tw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAXyqtlWygGceCSKokTxz4uC6st0FKpW6m3KH5dQNnVZvcAp_4FxD_sL-mMkywPtYJr4owdzzj-JuP5BuA1zzSCUK0iTQyEmVU6klaJyKAbluS-8FJRNvLRsZicZR_O8_POUaRcGBxEg5KaEMSnVT23vmMYIKogThbE3W24Q-E6craGo9NfeZCpTHq4W0jBeyah3x-lXcg0f-5CN0DLsMWMt-DzenDhZMmXg9VSH5jvf_E2_v_oH8D9Dm2yYWseD-GWqx_BvVFf5O0xzA9DliSbeXbkEIezqrZsWKOyGH1SwjkCMkyGFxAqssk3u5ihzbFT9NXxU8RO6Gf-glhZg4zLix9vp9NW1uXFzzbT07BxfwSseQJn4_fT0STqijBEVZapZWQLokzTsZGZz6tUG2ny2KextI4Lrbi3CDiUldxpIh9Tqsh1UXnrY4cqMoJvw0Y9q91TYAh-nBEW75s489zIpLC4SG2BHRiUP4B9nLuyW0RNGeLjKfon_cQN4E2vtdJ0FOZUSePrdU1frZvOW96O6xq97FVf4rxTqKSq3WyFXVPGElHXJDe3SZUUQnIhigHstHaz7opwaobgYPdfr_QC7p68G5efDo8_7sFmGmptJFHKn8HGcrFyzxHxLPV-MPMrnVX6Og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+metal+and+anion+substitutions+on+the+hydrogen+storage+properties+of+M-BTT+metal-organic+frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sumida%2C+Kenji&rft.au=St%C3%BCck%2C+David&rft.au=Mino%2C+Lorenzo&rft.au=Chai%2C+Jeng-Da&rft.date=2013-01-23&rft.eissn=1520-5126&rft.volume=135&rft.issue=3&rft.spage=1083&rft_id=info:doi/10.1021%2Fja310173e&rft_id=info%3Apmid%2F23244036&rft.externalDocID=23244036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |