Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M‑BTT Metal–Organic Frameworks

Microporous metal–organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M3[(M4Cl)3(BTT)8]2 (M-BTT; BTT3– = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interes...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 135; no. 3; pp. 1083 - 1091
Main Authors Sumida, Kenji, Stück, David, Mino, Lorenzo, Chai, Jeng-Da, Bloch, Eric D, Zavorotynska, Olena, Murray, Leslie J, Dincă, Mircea, Chavan, Sachin, Bordiga, Silvia, Head-Gordon, Martin, Long, Jeffrey R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microporous metal–organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M3[(M4Cl)3(BTT)8]2 (M-BTT; BTT3– = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q st) approaching the optimal value for ambient storage applications. However, the Q st parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H2 adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H2 adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H2. Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H2 storage applications.
AbstractList Microporous metal–organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M₃[(M₄Cl)₃(BTT)₈]₂ (M-BTT; BTT³– = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Qₛₜ) approaching the optimal value for ambient storage applications. However, the Qₛₜ parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H₂ adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H₂ adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H₂. Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H₂ storage applications.
Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M(3)[(M(4)Cl)(3)(BTT)(8)](2) (M-BTT; BTT(3-) = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q(st)) approaching the optimal value for ambient storage applications. However, the Q(st) parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H(2) adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H(2) adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H(2). Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H(2) storage applications.
Microporous metal–organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M3[(M4Cl)3(BTT)8]2 (M-BTT; BTT3– = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q st) approaching the optimal value for ambient storage applications. However, the Q st parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H2 adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H2 adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H2. Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H2 storage applications.
Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M(3)[(M(4)Cl)(3)(BTT)(8)](2) (M-BTT; BTT(3-) = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q(st)) approaching the optimal value for ambient storage applications. However, the Q(st) parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H(2) adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H(2) adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H(2). Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H(2) storage applications.Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M(3)[(M(4)Cl)(3)(BTT)(8)](2) (M-BTT; BTT(3-) = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q(st)) approaching the optimal value for ambient storage applications. However, the Q(st) parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H(2) adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H(2) adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H(2). Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H(2) storage applications.
Author Sumida, Kenji
Murray, Leslie J
Head-Gordon, Martin
Stück, David
Mino, Lorenzo
Bordiga, Silvia
Dincă, Mircea
Chai, Jeng-Da
Zavorotynska, Olena
Chavan, Sachin
Long, Jeffrey R
Bloch, Eric D
AuthorAffiliation Lawrence Berkeley National Laboratory
University of California
Chemical Sciences Division
University of Torino
Materials Sciences Division
AuthorAffiliation_xml – name: University of California
– name: Chemical Sciences Division
– name: University of Torino
– name: Lawrence Berkeley National Laboratory
– name: Materials Sciences Division
Author_xml – sequence: 1
  givenname: Kenji
  surname: Sumida
  fullname: Sumida, Kenji
– sequence: 2
  givenname: David
  surname: Stück
  fullname: Stück, David
– sequence: 3
  givenname: Lorenzo
  surname: Mino
  fullname: Mino, Lorenzo
– sequence: 4
  givenname: Jeng-Da
  surname: Chai
  fullname: Chai, Jeng-Da
– sequence: 5
  givenname: Eric D
  surname: Bloch
  fullname: Bloch, Eric D
– sequence: 6
  givenname: Olena
  surname: Zavorotynska
  fullname: Zavorotynska, Olena
– sequence: 7
  givenname: Leslie J
  surname: Murray
  fullname: Murray, Leslie J
– sequence: 8
  givenname: Mircea
  surname: Dincă
  fullname: Dincă, Mircea
– sequence: 9
  givenname: Sachin
  surname: Chavan
  fullname: Chavan, Sachin
– sequence: 10
  givenname: Silvia
  surname: Bordiga
  fullname: Bordiga, Silvia
  email: silvia.bordiga@unito.it, mhg@cchem.berkeley.edu, jrlong@berkeley.edu
– sequence: 11
  givenname: Martin
  surname: Head-Gordon
  fullname: Head-Gordon, Martin
  email: silvia.bordiga@unito.it, mhg@cchem.berkeley.edu, jrlong@berkeley.edu
– sequence: 12
  givenname: Jeffrey R
  surname: Long
  fullname: Long, Jeffrey R
  email: silvia.bordiga@unito.it, mhg@cchem.berkeley.edu, jrlong@berkeley.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23244036$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUhS0EguFnwQtU3lSii3T8kzj2ElApSCCQGNaW49xMMyRxsB2h2c0rVH1DnqShM7BASF1dnXu_cxbn7qPtznWA0DEl3ylhdLownBKac9hCE5oxkmSUiW00IYSwJJeC76H9EBajTJmku2iPcZamhIsJ6q_a3tiIXYVvIJoGm67Ep13tOnw_FCHWcYijCHhcxF-AL5eld3MYr9F5Mwd8510PPtYQ_mW8rH6fzWbrrJfVn1s_N11t8YU3LTw7_xgO0U5lmgBHm3mAHi5-zM4vk-vbn1fnp9eJSVMVkzKXVLGCWJlWmWGFlTYjFSOyBC4KxatSUaJKyaEgqeBK5VmRm6qsCGQis4IfoJN1bu_d0wAh6rYOFprGdOCGoJmSQkguRP5flLKcS5IpRUf0ywYdihZK3fu6NX6p3wodgekasN6F4KHSto7mtcLoTd1oSvTry_T7y0bHtw-Ot9DP2K9r1tigF27w3VjhJ9xfpgKjBg
CitedBy_id crossref_primary_10_1080_15533174_2016_1186093
crossref_primary_10_1016_j_poly_2013_06_003
crossref_primary_10_1002_anie_202004458
crossref_primary_10_1039_C4CC05265J
crossref_primary_10_1039_C6CC02494G
crossref_primary_10_1021_acsami_8b15946
crossref_primary_10_1021_acs_chemmater_5b04538
crossref_primary_10_1016_j_ccr_2014_12_009
crossref_primary_10_1021_cg401036e
crossref_primary_10_1021_la404540j
crossref_primary_10_1021_acs_cgd_1c00808
crossref_primary_10_1016_j_ica_2020_119801
crossref_primary_10_1039_C6RA22905K
crossref_primary_10_1039_C4CS00003J
crossref_primary_10_1039_D3TC04492K
crossref_primary_10_1016_j_jssc_2014_03_025
crossref_primary_10_1016_j_molstruc_2018_07_025
crossref_primary_10_1016_j_inoche_2019_04_021
crossref_primary_10_1021_acs_inorgchem_5b00689
crossref_primary_10_1021_acs_langmuir_3c00455
crossref_primary_10_1016_j_cej_2016_05_106
crossref_primary_10_1039_C9CP00754G
crossref_primary_10_1038_srep33081
crossref_primary_10_1016_j_commatsci_2022_111202
crossref_primary_10_1038_s41598_017_05202_6
crossref_primary_10_1021_acs_jctc_0c00292
crossref_primary_10_1016_j_electacta_2018_11_135
crossref_primary_10_1021_acs_inorgchem_5b00271
crossref_primary_10_1021_jacs_4c08039
crossref_primary_10_1002_slct_201903918
crossref_primary_10_1021_acs_jpca_5b10029
crossref_primary_10_1039_c3ra44559c
crossref_primary_10_1039_C7CS00033B
crossref_primary_10_1021_ja5101323
crossref_primary_10_1021_ja4050828
crossref_primary_10_1002_anie_201602950
crossref_primary_10_1021_acs_cgd_7b00086
crossref_primary_10_5714_CL_2015_16_4_281
crossref_primary_10_1002_ange_202004458
crossref_primary_10_1016_j_mtcomm_2024_110049
crossref_primary_10_1039_C4CC03729D
crossref_primary_10_1016_j_jcou_2019_08_012
crossref_primary_10_1039_C8SC00971F
crossref_primary_10_1038_s41598_018_31947_9
crossref_primary_10_1016_j_ccr_2017_11_015
crossref_primary_10_1039_c4ta01133c
crossref_primary_10_1016_j_micromeso_2015_02_017
crossref_primary_10_1016_j_commatsci_2014_08_038
crossref_primary_10_1039_C9NJ02566A
crossref_primary_10_1021_acs_inorgchem_5b02046
crossref_primary_10_1007_s12039_022_02130_5
crossref_primary_10_1039_C4QI00032C
crossref_primary_10_1007_s10853_015_9237_0
crossref_primary_10_1002_anie_201404265
crossref_primary_10_1002_ange_201602950
crossref_primary_10_1039_C5NR06116D
crossref_primary_10_1007_s11705_023_2355_3
crossref_primary_10_1021_ja403571z
crossref_primary_10_1039_D0CE00475H
crossref_primary_10_1016_j_cej_2015_05_103
crossref_primary_10_1039_C6CP00412A
crossref_primary_10_3390_ma8063442
crossref_primary_10_1016_j_cplett_2016_06_037
crossref_primary_10_1063_1_5026637
crossref_primary_10_1039_c4ce00647j
crossref_primary_10_1039_C4CE02457E
crossref_primary_10_1039_C9CC04555D
crossref_primary_10_1039_C4RA16350H
crossref_primary_10_1021_acs_jpcc_4c07631
crossref_primary_10_1039_C6DT04719J
crossref_primary_10_1002_ange_201404265
crossref_primary_10_1016_j_ccr_2015_05_002
crossref_primary_10_1039_c3dt32944e
crossref_primary_10_1039_C8EE01085D
crossref_primary_10_1002_adma_202008784
crossref_primary_10_1103_PhysRevLett_111_066102
crossref_primary_10_1039_C9CS00609E
crossref_primary_10_1016_j_ccr_2017_10_026
crossref_primary_10_1039_C8DT00512E
crossref_primary_10_1021_acs_jpcc_6b08729
crossref_primary_10_1021_ja504992g
crossref_primary_10_1039_C8CP07467D
crossref_primary_10_1016_j_ica_2014_07_041
crossref_primary_10_1039_C3CC47777K
crossref_primary_10_1039_D0QI00537A
crossref_primary_10_1039_C4TA02535K
crossref_primary_10_1039_C6DT01697A
crossref_primary_10_1021_acs_jpcc_6b07115
crossref_primary_10_1021_acs_chemrev_0c00487
crossref_primary_10_1002_chem_201504666
crossref_primary_10_1016_j_electacta_2013_10_190
crossref_primary_10_1016_j_ccr_2018_11_006
crossref_primary_10_1016_j_jorganchem_2018_02_024
crossref_primary_10_1021_acs_energyfuels_9b01872
crossref_primary_10_1039_C3RA47136E
crossref_primary_10_1039_C4CC00426D
crossref_primary_10_1021_acs_chemmater_6b02817
crossref_primary_10_1021_cm4020942
crossref_primary_10_3390_pr6080122
crossref_primary_10_1080_00268976_2020_1757169
crossref_primary_10_1515_psr_2017_0196
crossref_primary_10_1021_acs_energyfuels_1c01642
crossref_primary_10_1021_acs_inorgchem_2c01456
crossref_primary_10_1021_ic5030058
crossref_primary_10_1021_acsami_5b07953
crossref_primary_10_1016_j_ica_2013_09_007
crossref_primary_10_1039_C4CS00002A
crossref_primary_10_1016_j_ijhydene_2019_08_016
crossref_primary_10_1016_j_ccr_2019_05_022
crossref_primary_10_1016_j_inoche_2014_07_014
crossref_primary_10_1016_j_jallcom_2020_157177
crossref_primary_10_1039_C6CY01239F
crossref_primary_10_1016_j_aca_2017_08_048
crossref_primary_10_1039_C8DT04766A
crossref_primary_10_1021_jacs_5b12515
crossref_primary_10_1021_acs_jpcc_6b03333
crossref_primary_10_1063_1_4867698
crossref_primary_10_1021_acs_cgd_0c01617
crossref_primary_10_1039_D1CY01876K
crossref_primary_10_1107_S2052252518015749
crossref_primary_10_1021_acs_inorgchem_6b02746
crossref_primary_10_1021_acs_cgd_8b01628
crossref_primary_10_1021_ja506230r
crossref_primary_10_1002_admt_202200238
crossref_primary_10_1039_c3dt51312b
Cites_doi 10.1039/c0cs00117a
10.1039/c1ee01720a
10.1038/nchem.834
10.1021/ja0523082
10.1021/ja809985t
10.1039/b703608f
10.1103/PhysRevB.23.5048
10.1021/ja807023q
10.1021/jp960669l
10.1126/science.1192160
10.1016/j.ijhydene.2006.02.019
10.1039/c2jm15592c
10.1021/ja8007159
10.1039/c0sc00179a
10.1039/B308903G
10.1002/anie.200600105
10.1002/anie.200801163
10.1016/j.cplett.2008.03.014
10.1002/anie.200353494
10.1063/1.1412004
10.1063/1.438955
10.1002/ejic.200701284
10.1002/chem.201101341
10.1021/cr200274s
10.1039/B517914A
10.1021/la0523816
10.1021/ja058777l
10.1039/c2sc20601c
10.1039/c0cp02984j
10.1039/b802256a
10.1021/ic0611948
10.1021/jp200638n
10.1039/b810189b
10.1126/science.1172246
10.1002/anie.200601991
10.1039/b515434k
10.1038/35104634
10.1080/00268977000101561
10.1039/c1sc00136a
10.1021/ja076877g
10.1021/ja0570032
10.1021/ja045123o
10.1016/j.ijhydene.2009.05.025
10.1039/C0CC03453C
10.1126/science.1067208
10.1021/ja056639q
10.1002/anie.201001009
10.1002/cphc.201000523
10.1002/anie.200501508
10.1021/cr200217c
10.1063/1.452110
10.1021/ja058213h
10.1016/j.ijhydene.2006.11.022
10.1021/ja0771639
10.1021/ja066098k
10.1021/ja056906s
10.1016/j.cplett.2006.02.025
10.1038/nature03852
10.1063/1.438980
10.1021/jp302356q
10.1039/c1ee01240a
10.1021/ja0656853
10.1039/b900085b
10.1002/anie.200703934
10.1002/anie.200604362
10.1002/chem.201003376
10.1021/la703864a
10.1021/ja8036096
10.1021/ja9072707
10.1063/1.1424928
10.1126/science.1181637
10.1021/la800227x
10.1039/b911242a
10.1126/science.1083440
10.1021/ja049408c
10.1016/0009-2614(94)01027-7
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/ja310173e
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 1091
ExternalDocumentID 23244036
10_1021_ja310173e
b021210615
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a449t-d78192b0c84f5a2bc8c50f208de36b93fd9109d83eb04639975b7afdf0e565c63
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 04:45:38 EDT 2025
Thu Jul 10 18:17:42 EDT 2025
Thu Apr 03 07:04:22 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Tue Jul 01 02:08:38 EDT 2025
Thu Aug 27 13:41:55 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a449t-d78192b0c84f5a2bc8c50f208de36b93fd9109d83eb04639975b7afdf0e565c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/2318/138400
PMID 23244036
PQID 1273805991
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2986683667
proquest_miscellaneous_1273805991
pubmed_primary_23244036
crossref_citationtrail_10_1021_ja310173e
crossref_primary_10_1021_ja310173e
acs_journals_10_1021_ja310173e
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-23
PublicationDateYYYYMMDD 2013-01-23
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Farha O. K. (ref10/cit10o) 2010; 2
Zhou W. (ref11/cit11j) 2008; 130
ref3/cit3
Dincă M. (ref11/cit11b) 2005; 127
Dutoi A. D. (ref15/cit15c) 2006; 422
Kristyán S. (ref15/cit15a) 1994; 229
Latroche M. (ref10/cit10i) 2006; 45
Vitillo J. G. (ref12/cit12) 2008; 130
Wu Q. (ref17/cit17) 2002; 116
Dolg M. (ref28/cit28) 1987; 86
Goerigk L. (ref19/cit19) 2011; 13
Dietzel P. D. C. (ref11/cit11f) 2006
Tranchemontagne D. J. (ref10/cit10r) 2012; 116
Yuan D. (ref11/cit11m) 2010; 49
Lee E. Y. (ref10/cit10d) 2004; 43
Moon H. R. (ref11/cit11e) 2006; 45
Furukawa H. (ref10/cit10k) 2007; 17
Suh M. P. (ref6/cit6e) 2012; 112
Morris R. E. (ref9/cit9f) 2008; 47
Matsuda R. (ref9/cit9b) 2005; 436
Otero Areán C. (ref8/cit8b) 2010; 11
Dietzel P. D. C. (ref11/cit11a) 2005; 44
Rowsell J. L. C. (ref10/cit10f) 2006; 128
Garrone E. (ref8/cit8a) 2008; 456
Dietzel P. D. C. (ref11/cit11h) 2008
Dincă M. (ref6/cit6a) 2008; 47
Llewellyn P. L. (ref9/cit9g) 2008; 24
Wong-Foy A. G. (ref10/cit10g) 2006; 128
Chai J.-D. (ref18/cit18) 2008; 10
Xiao B. (ref10/cit10j) 2007; 129
Liu Y. (ref11/cit11i) 2008; 24
Shao. Y. (ref25/cit25) 2006; 8
Cheon Y. E. (ref11/cit11l) 2009
Eddaoudi M. (ref9/cit9a) 2002; 295
Wu X. (ref16/cit16) 2001; 115
Liu D. (ref10/cit10q) 2012; 3
Yan Y. (ref11/cit11n) 2011; 17
Férey G. (ref10/cit10b) 2003
Kohn W. (ref14/cit14) 1996; 100
Colombo V. (ref31/cit31) 2011; 2
Rosi N. L. (ref10/cit10a) 2003; 300
Biswas S. (ref23/cit23) 2012; 22
Sumida K. (ref11/cit11o) 2011; 50
Krishnan R. (ref26/cit26) 1980; 72
McLean A. D. (ref27/cit27) 1980; 72
Haszeldine R. S. (ref1/cit1c) 2009; 325
Furukawa H. (ref9/cit9d) 2007; 17
Ma S. (ref9/cit9e) 2008; 130
Rosi N. L. (ref11/cit11c) 2005; 127
Kumar V. S. (ref4/cit4b) 2009; 34
Sumida K. (ref21/cit21) 2010; 1
Aceves S. M. (ref4/cit4a) 2006; 31
Dincă M. (ref22/cit22) 2007; 46
Millward A. R. (ref9/cit9c) 2005; 127
Perdew J. P. (ref15/cit15b) 1981; 23
Mason J. A. (ref24/cit24) 2011; 4
Bhatia S. K. (ref7/cit7) 2006; 22
Rowsell J. L. (ref10/cit10c) 2004; 126
Metz B. (ref1/cit1a) 2005
Chu S. (ref1/cit1b) 2009; 325
Murray L. J. (ref6/cit6b) 2009; 38
Sakituna B. (ref5/cit5) 2007; 32
Sculley J. (ref6/cit6c) 2011; 4
Lin X. (ref10/cit10h) 2006; 45
Sumida K. (ref11/cit11p) 2011; 115
Caskey S. R. (ref11/cit11g) 2008; 130
Furukawa H. (ref9/cit9h) 2010; 329
Koh K. (ref10/cit10m) 2009; 131
Parr R. G. (ref13/cit13) 1989
ref6/cit6d
Lamberti C. (ref30/cit30) 2010; 39
Kaye S. S. (ref10/cit10l) 2007; 129
Dincă M. (ref20/cit20) 2006; 128
Dietzel P. D. C. (ref11/cit11k) 2009; 19
Boys S. (ref29/cit29) 1970; 19
Schlapbach L. (ref2/cit2) 2001; 414
Vimont A. (ref11/cit11d) 2006; 128
Park H. J. (ref10/cit10p) 2011; 17
Sumida K. (ref10/cit10n) 2009; 131
Sun D. (ref10/cit10e) 2006; 128
References_xml – volume: 39
  start-page: 4951
  year: 2010
  ident: ref30/cit30
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00117a
– volume: 4
  start-page: 3030
  year: 2011
  ident: ref24/cit24
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01720a
– volume: 2
  start-page: 944
  year: 2010
  ident: ref10/cit10o
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.834
– volume: 127
  start-page: 9376
  year: 2005
  ident: ref11/cit11b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0523082
– volume: 131
  start-page: 4184
  year: 2009
  ident: ref10/cit10m
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809985t
– volume: 17
  start-page: 3197
  year: 2007
  ident: ref9/cit9d
  publication-title: J. Mater. Chem.
  doi: 10.1039/b703608f
– volume: 23
  start-page: 5048
  year: 1981
  ident: ref15/cit15b
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5048
– volume: 130
  start-page: 15268
  year: 2008
  ident: ref11/cit11j
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807023q
– volume: 100
  start-page: 12974
  year: 1996
  ident: ref14/cit14
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960669l
– volume: 329
  start-page: 424
  year: 2010
  ident: ref9/cit9h
  publication-title: Science
  doi: 10.1126/science.1192160
– volume: 31
  start-page: 2274
  year: 2006
  ident: ref4/cit4a
  publication-title: Int. J. Hydrogen Storage
  doi: 10.1016/j.ijhydene.2006.02.019
– volume-title: Density-Functional Theory of Atoms and Molecules
  year: 1989
  ident: ref13/cit13
– volume: 22
  start-page: 10200
  year: 2012
  ident: ref23/cit23
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15592c
– volume: 130
  start-page: 8386
  year: 2008
  ident: ref12/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8007159
– volume: 1
  start-page: 184
  year: 2010
  ident: ref21/cit21
  publication-title: Chem. Sci.
  doi: 10.1039/c0sc00179a
– volume-title: Special Report on Carbon Dioxide Capture and Storage
  year: 2005
  ident: ref1/cit1a
– start-page: 2976
  year: 2003
  ident: ref10/cit10b
  publication-title: Chem. Commun.
  doi: 10.1039/B308903G
– volume: 45
  start-page: 8227
  year: 2006
  ident: ref10/cit10i
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200600105
– volume: 47
  start-page: 6766
  year: 2008
  ident: ref6/cit6a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801163
– volume: 456
  start-page: 68
  year: 2008
  ident: ref8/cit8a
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2008.03.014
– volume: 43
  start-page: 2798
  year: 2004
  ident: ref10/cit10d
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200353494
– volume: 115
  start-page: 8748
  year: 2001
  ident: ref16/cit16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1412004
– volume: 72
  start-page: 650
  year: 1980
  ident: ref26/cit26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438955
– start-page: 3624
  year: 2008
  ident: ref11/cit11h
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200701284
– volume: 17
  start-page: 11162
  year: 2011
  ident: ref11/cit11n
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201101341
– volume: 112
  start-page: 782
  year: 2012
  ident: ref6/cit6e
  publication-title: Chem. Rev.
  doi: 10.1021/cr200274s
– volume: 8
  start-page: 3172
  year: 2006
  ident: ref25/cit25
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B517914A
– volume: 22
  start-page: 1688
  year: 2006
  ident: ref7/cit7
  publication-title: Langmuir
  doi: 10.1021/la0523816
– volume: 128
  start-page: 3896
  year: 2006
  ident: ref10/cit10e
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058777l
– volume: 3
  start-page: 3032
  year: 2012
  ident: ref10/cit10q
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20601c
– volume: 13
  start-page: 6670
  year: 2011
  ident: ref19/cit19
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02984j
– volume: 38
  start-page: 1294
  year: 2009
  ident: ref6/cit6b
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802256a
– volume: 45
  start-page: 8672
  year: 2006
  ident: ref11/cit11e
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0611948
– volume: 115
  start-page: 8414
  year: 2011
  ident: ref11/cit11p
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200638n
– volume: 10
  start-page: 6615
  year: 2008
  ident: ref18/cit18
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b810189b
– volume: 325
  start-page: 1647
  year: 2009
  ident: ref1/cit1c
  publication-title: Science
  doi: 10.1126/science.1172246
– volume: 45
  start-page: 7358
  year: 2006
  ident: ref10/cit10h
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200601991
– start-page: 959
  year: 2006
  ident: ref11/cit11f
  publication-title: Chem. Commun.
  doi: 10.1039/b515434k
– volume: 414
  start-page: 353
  year: 2001
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/35104634
– volume: 19
  start-page: 553
  year: 1970
  ident: ref29/cit29
  publication-title: Mol. Phys.
  doi: 10.1080/00268977000101561
– volume: 2
  start-page: 1311
  year: 2011
  ident: ref31/cit31
  publication-title: Chem. Sci.
  doi: 10.1039/c1sc00136a
– volume: 129
  start-page: 14176
  year: 2007
  ident: ref10/cit10l
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076877g
– volume: 127
  start-page: 17998
  year: 2005
  ident: ref9/cit9c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0570032
– volume: 17
  start-page: 3197
  year: 2007
  ident: ref10/cit10k
  publication-title: J. Mater. Chem.
  doi: 10.1039/b703608f
– volume: 127
  start-page: 1504
  year: 2005
  ident: ref11/cit11c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja045123o
– volume: 34
  start-page: 5466
  year: 2009
  ident: ref4/cit4b
  publication-title: Int. J. Hydrogen Storage
  doi: 10.1016/j.ijhydene.2009.05.025
– volume: 50
  start-page: 1157
  year: 2011
  ident: ref11/cit11o
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC03453C
– volume: 295
  start-page: 469
  year: 2002
  ident: ref9/cit9a
  publication-title: Science
  doi: 10.1126/science.1067208
– volume: 128
  start-page: 1304
  year: 2006
  ident: ref10/cit10f
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056639q
– volume: 49
  start-page: 5357
  year: 2010
  ident: ref11/cit11m
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001009
– volume: 11
  start-page: 3237
  year: 2010
  ident: ref8/cit8b
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201000523
– volume: 44
  start-page: 6354
  year: 2005
  ident: ref11/cit11a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200501508
– ident: ref6/cit6d
  doi: 10.1021/cr200217c
– volume: 86
  start-page: 2123
  year: 1987
  ident: ref28/cit28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.452110
– volume: 128
  start-page: 3494
  year: 2006
  ident: ref10/cit10g
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058213h
– volume: 32
  start-page: 1121
  year: 2007
  ident: ref5/cit5
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.11.022
– volume: 130
  start-page: 1012
  year: 2008
  ident: ref9/cit9e
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0771639
– volume: 129
  start-page: 1203
  year: 2007
  ident: ref10/cit10j
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja066098k
– volume: 128
  start-page: 3218
  year: 2006
  ident: ref11/cit11d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056906s
– volume: 422
  start-page: 230
  year: 2006
  ident: ref15/cit15c
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.02.025
– volume: 436
  start-page: 238
  year: 2005
  ident: ref9/cit9b
  publication-title: Nature
  doi: 10.1038/nature03852
– volume: 72
  start-page: 5639
  year: 1980
  ident: ref27/cit27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438980
– volume: 116
  start-page: 13143
  year: 2012
  ident: ref10/cit10r
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp302356q
– volume: 4
  start-page: 2721
  year: 2011
  ident: ref6/cit6c
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01240a
– volume: 128
  start-page: 16876
  year: 2006
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0656853
– ident: ref3/cit3
– start-page: 2296
  year: 2009
  ident: ref11/cit11l
  publication-title: Chem. Commun.
  doi: 10.1039/b900085b
– volume: 47
  start-page: 4966
  year: 2008
  ident: ref9/cit9f
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200703934
– volume: 46
  start-page: 1419
  year: 2007
  ident: ref22/cit22
  publication-title: Angew Chem., Int. Ed.
  doi: 10.1002/anie.200604362
– volume: 17
  start-page: 7251
  year: 2011
  ident: ref10/cit10p
  publication-title: Chem, Eur. J.
  doi: 10.1002/chem.201003376
– volume: 24
  start-page: 4772
  year: 2008
  ident: ref11/cit11i
  publication-title: Langmuir
  doi: 10.1021/la703864a
– volume: 130
  start-page: 10870
  year: 2008
  ident: ref11/cit11g
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8036096
– volume: 131
  start-page: 15120
  year: 2009
  ident: ref10/cit10n
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9072707
– volume: 116
  start-page: 515
  year: 2002
  ident: ref17/cit17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1424928
– volume: 325
  start-page: 1599
  year: 2009
  ident: ref1/cit1b
  publication-title: Science
  doi: 10.1126/science.1181637
– volume: 24
  start-page: 7245
  year: 2008
  ident: ref9/cit9g
  publication-title: Langmuir
  doi: 10.1021/la800227x
– volume: 19
  start-page: 7362
  year: 2009
  ident: ref11/cit11k
  publication-title: J. Mater. Chem.
  doi: 10.1039/b911242a
– volume: 300
  start-page: 1127
  year: 2003
  ident: ref10/cit10a
  publication-title: Science
  doi: 10.1126/science.1083440
– volume: 126
  start-page: 5666
  year: 2004
  ident: ref10/cit10c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049408c
– volume: 229
  start-page: 175
  year: 1994
  ident: ref15/cit15a
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)01027-7
SSID ssj0004281
Score 2.4562113
Snippet Microporous metal–organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage...
Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1083
SubjectTerms Adsorption
ambient temperature
Anions - chemistry
binding sites
cations
coordination polymers
Copper - chemistry
Electric Power Supplies
hydrogen
Hydrogen - chemistry
infrared spectroscopy
iron
Iron - chemistry
manganese
Manganese - chemistry
Organometallic Compounds - chemistry
porous media
Quantum Theory
Surface Properties
Tetrazoles - chemistry
thermodynamics
Title Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M‑BTT Metal–Organic Frameworks
URI http://dx.doi.org/10.1021/ja310173e
https://www.ncbi.nlm.nih.gov/pubmed/23244036
https://www.proquest.com/docview/1273805991
https://www.proquest.com/docview/2986683667
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB615UAvPEoL4VEthQMXV_auvY9jCEQBqQipidRb5H1dipwoj0N7yl9A_MP-EmbsOKWigas93rV3Zne_8c58A_Be5BZBqDWJJQbC3BubaG9k4tANy4qoojaUjXz2TQ5G-deL4mIH3m05wefEDyTIbETYhQdcakUeVrd3fpv8yHXWYlylpWjpg_58lLYeN7-79WzBk_W-0n8Mn9rsnCac5PJ0ubCn7vpvssZ_vfITeLTGlazbGMJT2AnVATzsteXcnsH0S50PySaRnQVE3KysPOtWqBZGi0cdMUAmyPACgkI2uPKzCVoXO0evHBcd9p1-28-If7Vu42b18-Nw2LR1s_rV5HQ61m-DveaHMOp_HvYGybrcQlLmuVkkXhE5mk2dzmNRcuu0K9LIU-2DkNaI6BFaGK9FsEQzZowqrCqjj2lAVOikOIK9alKFF8AQ5gQnPd53aR6F05nyOB29wg4ctt-BY9THeD1d5uP6JJyjJ9IOXAc-tKoauzVZOdXM-HGf6MlGdNowdNwn9LbV9xjHnQ5FyipMltg15SYRSU22XYYbLaUWUqoOPG-MZdMVIdIcYcDL_33SK9jndSmNLOHiNewtZsvwBgHNwh7XBv0bVnnvVg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELYoHOgFSvlbKNRFPfQSlMSJYx-XFaulsKgSi8Qtiv8urbKrze4BTrwC4g15EmacBGgFKtdkMnY84_ib2PMNId9ZogCEKhkoZCBMjFSBMJIHGsKwKHWZExKzkYfnfHCZ_LxKrxqaHMyFgU5UoKnym_jP7AJIE8TQe5j9QJYAhMQYaHV7F885kLGIWqibCc5aFqGXj-IKpKu_V6A3YKVfXvqrdZ0i3zF_quT34XymDvXNP5yN7-v5J7LSoEzard1ijSzY8jNZ7rXF3dbJ5MRnR9Kxo0ML-JsWpaHdEoxE8VPizw-gQ1K4ABCRDq7NdAy-Ri8gRodPEP2FP_GnyMbqdTzc3h2NRrWuh9v7OsNT03579KvaIJf941FvEDTFF4IiSeQsMBlSpalQi8SlRay00Gno4lAYy7iSzBkAGtIIZhWSjkmZpSornHGhBfNozjbJYjku7TahAHqs5gbu6zBxTIsoMzA5TQYNaNDfIfswbnkzearc74vHEJe0A9chP1qL5bqhLscKGn9eEz14Ep3UfB2vCX1rzZ7DuOMWSVHa8RyaxkwlpKyJ3paJpeBcMM6zDtmqfeapKcSnCYCCnf-90leyPBgNz_Kzk_PTXfIx9kU2oiBmX8jibDq3ewB1Zmrf-_gjiJX3tw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAXyqtlWygGceCSKokTxz4uC6st0FKpW6m3KH5dQNnVZvcAp_4FxD_sL-mMkywPtYJr4owdzzj-JuP5BuA1zzSCUK0iTQyEmVU6klaJyKAbluS-8FJRNvLRsZicZR_O8_POUaRcGBxEg5KaEMSnVT23vmMYIKogThbE3W24Q-E6craGo9NfeZCpTHq4W0jBeyah3x-lXcg0f-5CN0DLsMWMt-DzenDhZMmXg9VSH5jvf_E2_v_oH8D9Dm2yYWseD-GWqx_BvVFf5O0xzA9DliSbeXbkEIezqrZsWKOyGH1SwjkCMkyGFxAqssk3u5ihzbFT9NXxU8RO6Gf-glhZg4zLix9vp9NW1uXFzzbT07BxfwSseQJn4_fT0STqijBEVZapZWQLokzTsZGZz6tUG2ny2KextI4Lrbi3CDiUldxpIh9Tqsh1UXnrY4cqMoJvw0Y9q91TYAh-nBEW75s489zIpLC4SG2BHRiUP4B9nLuyW0RNGeLjKfon_cQN4E2vtdJ0FOZUSePrdU1frZvOW96O6xq97FVf4rxTqKSq3WyFXVPGElHXJDe3SZUUQnIhigHstHaz7opwaobgYPdfr_QC7p68G5efDo8_7sFmGmptJFHKn8HGcrFyzxHxLPV-MPMrnVX6Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+metal+and+anion+substitutions+on+the+hydrogen+storage+properties+of+M-BTT+metal-organic+frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sumida%2C+Kenji&rft.au=St%C3%BCck%2C+David&rft.au=Mino%2C+Lorenzo&rft.au=Chai%2C+Jeng-Da&rft.date=2013-01-23&rft.eissn=1520-5126&rft.volume=135&rft.issue=3&rft.spage=1083&rft_id=info:doi/10.1021%2Fja310173e&rft_id=info%3Apmid%2F23244036&rft.externalDocID=23244036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon