Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction
Non-Pt noble metal clusters like Au clusters are believed to be promising high performance catalysts for the oxygen reduction reaction (ORR) at the cathode of fuel cells, but they still suffer big problems during the catalysis reactions, such as a large amount of the capping agents being on the surf...
Saved in:
Published in | ACS nano Vol. 6; no. 9; pp. 8288 - 8297 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.09.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/nn302984x |
Cover
Loading…
Abstract | Non-Pt noble metal clusters like Au clusters are believed to be promising high performance catalysts for the oxygen reduction reaction (ORR) at the cathode of fuel cells, but they still suffer big problems during the catalysis reactions, such as a large amount of the capping agents being on the surface and easy occurrence of dissolution and aggregation. To overcome these obstacles, here, we present a novel and general strategy to grow ultrafine Au clusters and other metal (Pt, Pd) clusters on the reduced graphene oxide (rGO) sheets without any additional protecting molecule or reductant. Compared with the currently generally adopted nanocatalysts, including commercial Pt/C, rGO sheets, Au nanoparticle/rGO hybrids, and thiol-capped Au clusters of the same sizes, the as-synthesized Au cluster/rGO hybrids display an impressive eletrocatalytic performance toward ORR, for instance, high onset potential, superior methanol tolerance, and excellent stability. |
---|---|
AbstractList | Non-Pt noble metal clusters like Au clusters are believed to be promising high performance catalysts for the oxygen reduction reaction (ORR) at the cathode of fuel cells, but they still suffer big problems during the catalysis reactions, such as a large amount of the capping agents being on the surface and easy occurrence of dissolution and aggregation. To overcome these obstacles, here, we present a novel and general strategy to grow ultrafine Au clusters and other metal (Pt, Pd) clusters on the reduced graphene oxide (rGO) sheets without any additional protecting molecule or reductant. Compared with the currently generally adopted nanocatalysts, including commercial Pt/C, rGO sheets, Au nanoparticle/rGO hybrids, and thiol-capped Au clusters of the same sizes, the as-synthesized Au cluster/rGO hybrids display an impressive eletrocatalytic performance toward ORR, for instance, high onset potential, superior methanol tolerance, and excellent stability. Non-Pt noble metal clusters like Au clusters are believed to be promising high performance catalysts for the oxygen reduction reaction (ORR) at the cathode of fuel cells, but they still suffer big problems during the catalysis reactions, such as a large amount of the capping agents being on the surface and easy occurrence of dissolution and aggregation. To overcome these obstacles, here, we present a novel and general strategy to grow ultrafine Au clusters and other metal (Pt, Pd) clusters on the reduced graphene oxide (rGO) sheets without any additional protecting molecule or reductant. Compared with the currently generally adopted nanocatalysts, including commercial Pt/C, rGO sheets, Au nanoparticle/rGO hybrids, and thiol-capped Au clusters of the same sizes, the as-synthesized Au cluster/rGO hybrids display an impressive eletrocatalytic performance toward ORR, for instance, high onset potential, superior methanol tolerance, and excellent stability.Non-Pt noble metal clusters like Au clusters are believed to be promising high performance catalysts for the oxygen reduction reaction (ORR) at the cathode of fuel cells, but they still suffer big problems during the catalysis reactions, such as a large amount of the capping agents being on the surface and easy occurrence of dissolution and aggregation. To overcome these obstacles, here, we present a novel and general strategy to grow ultrafine Au clusters and other metal (Pt, Pd) clusters on the reduced graphene oxide (rGO) sheets without any additional protecting molecule or reductant. Compared with the currently generally adopted nanocatalysts, including commercial Pt/C, rGO sheets, Au nanoparticle/rGO hybrids, and thiol-capped Au clusters of the same sizes, the as-synthesized Au cluster/rGO hybrids display an impressive eletrocatalytic performance toward ORR, for instance, high onset potential, superior methanol tolerance, and excellent stability. |
Author | Tang, Zhiyong Gao, Yan Yin, Huajie Tang, Hongjie Wang, Dan |
AuthorAffiliation | National Center for Nanoscience and Technology Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: National Center for Nanoscience and Technology – name: Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Huajie surname: Yin fullname: Yin, Huajie – sequence: 2 givenname: Hongjie surname: Tang fullname: Tang, Hongjie – sequence: 3 givenname: Dan surname: Wang fullname: Wang, Dan – sequence: 4 givenname: Yan surname: Gao fullname: Gao, Yan email: zytang@nanoctr.cn, gaoyan@nanoctr.cn – sequence: 5 givenname: Zhiyong surname: Tang fullname: Tang, Zhiyong email: zytang@nanoctr.cn, gaoyan@nanoctr.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22931045$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0T1PIzEQBmALgfjIXXF_4OQGiSuW2Ov9sEsUEYKEBCKcdN1q1jsmRhtvsL1S8u9vQyAFoqCat3hminfOyKHrHBLyi7NLzlI-dk6wVMlsfUBOuRJFwmTx73Cfc35CzkJ4YSwvZVkck5M0VYKzLD8lbgratkjnGxcXGGygnaHz3hvQEVxMph6RXvV00vYhoh_feFgt0CGdbWpvm0BN5-nMPi-SB_RDXoLTSO_Xm2d09BGbXkfbbRO8hR_kyEAb8Of7HJG_0-unySy5u7-5nVzdJZBlKibamCatGyNBlwUqWaZ5xiXTjVQoBVdQ12WpawOi0RKFaZgwohhKEEpIMEKMyMXu7sp3rz2GWC1t0Ni24LDrQ8XLImU5Z8U3KJOsyIXM1EB_v9O-XmJTrbxdgt9UH3UO4M8OaN-F4NHsCWfV9lXV_lWDHX-y2kbYlhQ92PbLjfPdBuhQvXS9d0OFX7j_zu2ifA |
CitedBy_id | crossref_primary_10_1002_cssc_201500154 crossref_primary_10_1016_j_carbon_2013_11_064 crossref_primary_10_1016_j_electacta_2016_08_050 crossref_primary_10_1016_j_aca_2017_03_013 crossref_primary_10_1149_2_0181811jss crossref_primary_10_1016_j_ccr_2022_214970 crossref_primary_10_1007_s11581_017_2160_4 crossref_primary_10_1016_j_cis_2022_102667 crossref_primary_10_1039_C3DT52573B crossref_primary_10_1039_C9NA00583H crossref_primary_10_1016_j_jtice_2018_11_008 crossref_primary_10_1021_acsami_8b06722 crossref_primary_10_12677_japc_2017_63014 crossref_primary_10_1016_j_molliq_2019_111902 crossref_primary_10_1021_acs_jpcc_0c08826 crossref_primary_10_1021_acscatal_7b00053 crossref_primary_10_3390_catal8020065 crossref_primary_10_3390_su141912336 crossref_primary_10_1016_j_envpol_2018_10_009 crossref_primary_10_1016_j_apsusc_2018_04_163 crossref_primary_10_1016_j_ccr_2018_06_001 crossref_primary_10_1039_C6SC03356C crossref_primary_10_1021_acscatal_1c01200 crossref_primary_10_1007_s40097_022_00492_3 crossref_primary_10_1016_j_gee_2017_06_001 crossref_primary_10_1039_C5RA23151E crossref_primary_10_1016_j_clay_2018_02_012 crossref_primary_10_1016_j_carbon_2017_03_073 crossref_primary_10_1016_j_jelechem_2018_08_005 crossref_primary_10_1016_j_tetlet_2015_05_091 crossref_primary_10_1246_bcsj_20190035 crossref_primary_10_1016_j_jece_2015_02_004 crossref_primary_10_1016_j_mcat_2020_111203 crossref_primary_10_1021_acs_analchem_8b00118 crossref_primary_10_1021_acsomega_9b02362 crossref_primary_10_1021_am503689t crossref_primary_10_1021_acsami_5b08294 crossref_primary_10_7566_JPSJ_84_121012 crossref_primary_10_1021_acsami_8b02471 crossref_primary_10_3390_pharmaceutics16101244 crossref_primary_10_1002_cctc_201601207 crossref_primary_10_1016_j_nanoen_2017_02_042 crossref_primary_10_1016_j_bios_2015_11_035 crossref_primary_10_1002_slct_201904968 crossref_primary_10_1039_C7CP05378A crossref_primary_10_1039_C5NR08362A crossref_primary_10_1016_j_foodchem_2024_140120 crossref_primary_10_1016_j_nanoen_2015_12_002 crossref_primary_10_1002_aenm_201701416 crossref_primary_10_3390_nano9081123 crossref_primary_10_1016_j_comptc_2017_05_033 crossref_primary_10_1016_j_carbon_2021_12_070 crossref_primary_10_1021_acsami_7b17066 crossref_primary_10_1039_D3GC02281A crossref_primary_10_1002_ange_201407390 crossref_primary_10_1016_j_chphi_2021_100023 crossref_primary_10_1002_chem_201604078 crossref_primary_10_1007_s10854_021_05371_1 crossref_primary_10_1039_C8CP00173A crossref_primary_10_1039_c3ta14809b crossref_primary_10_1021_jacs_5b06550 crossref_primary_10_1039_C5RA12556A crossref_primary_10_1038_ncomms7430 crossref_primary_10_1021_la4048566 crossref_primary_10_1039_C4EE00324A crossref_primary_10_1002_admi_201802088 crossref_primary_10_1016_j_jallcom_2017_05_058 crossref_primary_10_1038_srep37731 crossref_primary_10_1016_j_gee_2020_06_022 crossref_primary_10_1039_D0NR03326J crossref_primary_10_1039_D0NR07341E crossref_primary_10_1016_j_flatc_2017_11_001 crossref_primary_10_1039_C8AY01020J crossref_primary_10_1039_C7EN01246B crossref_primary_10_1039_C7RA11188F crossref_primary_10_1002_ejic_201701108 crossref_primary_10_1039_c3ce40694f crossref_primary_10_1177_0967391119895743 crossref_primary_10_1007_s11244_017_0785_1 crossref_primary_10_1039_C4RA11231H crossref_primary_10_1039_D0NA00927J crossref_primary_10_1016_j_bios_2016_12_017 crossref_primary_10_1007_s10008_014_2628_3 crossref_primary_10_1016_j_synthmet_2020_116380 crossref_primary_10_1021_jacs_6b12217 crossref_primary_10_1007_s12678_018_0464_4 crossref_primary_10_1002_jbm_a_35294 crossref_primary_10_1021_acsnano_4c07442 crossref_primary_10_1002_adma_201703410 crossref_primary_10_1039_C8NJ01824C crossref_primary_10_1039_C7TA06182J crossref_primary_10_1021_cs401032p crossref_primary_10_1016_j_saa_2016_09_025 crossref_primary_10_1002_aenm_201702838 crossref_primary_10_1039_C6RA16533H crossref_primary_10_1002_advs_201500289 crossref_primary_10_1016_j_apsusc_2016_08_014 crossref_primary_10_1002_ange_201304122 crossref_primary_10_1016_j_tsf_2013_10_161 crossref_primary_10_1186_s11671_016_1552_0 crossref_primary_10_1038_srep21314 crossref_primary_10_1007_s10853_019_03394_y crossref_primary_10_1021_ja402955t crossref_primary_10_1016_j_coelec_2018_05_012 crossref_primary_10_1016_j_ejpb_2014_09_011 crossref_primary_10_1016_j_nanoen_2018_02_015 crossref_primary_10_1016_j_susc_2017_08_003 crossref_primary_10_1039_C6ME00016A crossref_primary_10_1039_c3nr01470c crossref_primary_10_1039_c3ta13351f crossref_primary_10_1002_app_44713 crossref_primary_10_1039_C6NR09300K crossref_primary_10_1021_am504664r crossref_primary_10_1016_j_jpowsour_2019_227248 crossref_primary_10_1016_j_nanoen_2015_12_015 crossref_primary_10_1039_C5RA18228J crossref_primary_10_1016_j_materresbull_2019_110674 crossref_primary_10_1007_s12274_017_1597_0 crossref_primary_10_1039_C4AY01838A crossref_primary_10_1063_5_0035999 crossref_primary_10_1039_C5RA06196B crossref_primary_10_1016_j_mcat_2023_113526 crossref_primary_10_1039_C5NR00759C crossref_primary_10_2139_ssrn_3937820 crossref_primary_10_1002_celc_201901546 crossref_primary_10_1016_S2095_4956_15_60295_9 crossref_primary_10_1002_cctc_201402038 crossref_primary_10_1039_c3cp51780b crossref_primary_10_1021_acsnano_5b05252 crossref_primary_10_1002_hlca_202100186 crossref_primary_10_1039_C6TA07519C crossref_primary_10_1039_C5RA22528K crossref_primary_10_1016_j_jece_2025_116071 crossref_primary_10_1016_j_apsusc_2014_07_099 crossref_primary_10_1021_acs_jpcc_7b04419 crossref_primary_10_1007_s11706_013_0192_x crossref_primary_10_1039_C5RA07175E crossref_primary_10_1515_pac_2018_0715 crossref_primary_10_1016_j_elecom_2013_08_024 crossref_primary_10_1016_j_electacta_2017_09_153 crossref_primary_10_1016_S1872_2067_20_63636_1 crossref_primary_10_3390_nano8090688 crossref_primary_10_1002_adma_201205168 crossref_primary_10_3390_en11010167 crossref_primary_10_1002_adma_201304964 crossref_primary_10_1016_j_jelechem_2019_01_023 crossref_primary_10_1039_C6RA27207J crossref_primary_10_3934_matersci_2016_4_1410 crossref_primary_10_1016_j_electacta_2013_12_153 crossref_primary_10_1016_j_molcata_2016_07_047 crossref_primary_10_1016_j_colsurfb_2023_113640 crossref_primary_10_1016_j_ijhydene_2016_04_216 crossref_primary_10_1021_am402669y crossref_primary_10_1016_j_aca_2014_07_031 crossref_primary_10_1016_j_mtener_2019_04_007 crossref_primary_10_3390_catal10010053 crossref_primary_10_1016_j_matdes_2016_02_082 crossref_primary_10_1039_C5CS00811E crossref_primary_10_1007_s10876_013_0569_0 crossref_primary_10_3390_catal10060689 crossref_primary_10_1007_s12274_016_1214_7 crossref_primary_10_1039_C8NR00658J crossref_primary_10_1002_admi_202001557 crossref_primary_10_1021_am403954r crossref_primary_10_1021_acs_chemmater_0c03425 crossref_primary_10_1016_j_electacta_2017_03_002 crossref_primary_10_1039_C9DT04605D crossref_primary_10_1007_s11431_014_5455_y crossref_primary_10_1016_j_fuel_2021_121800 crossref_primary_10_1016_j_jcis_2020_01_097 crossref_primary_10_1021_ja500275r crossref_primary_10_1039_c3cc44735a crossref_primary_10_1016_j_aca_2014_04_062 crossref_primary_10_1039_C3TA15141G crossref_primary_10_1016_j_matlet_2012_12_052 crossref_primary_10_2139_ssrn_4199930 crossref_primary_10_1039_C6RA10989F crossref_primary_10_1002_macp_201800223 crossref_primary_10_1021_acsami_6b15085 crossref_primary_10_1016_S1872_5805_18_60322_1 crossref_primary_10_1039_C7CY02101A crossref_primary_10_1007_s00604_023_05900_1 crossref_primary_10_1038_srep28052 crossref_primary_10_1002_adma_201800696 crossref_primary_10_1021_jacs_3c06372 crossref_primary_10_1002_cjoc_202400503 crossref_primary_10_1021_la501052m crossref_primary_10_1039_C6RA11205F crossref_primary_10_1016_j_elecom_2012_11_016 crossref_primary_10_1016_j_matchemphys_2023_127654 crossref_primary_10_1016_j_apsusc_2018_01_240 crossref_primary_10_1007_s12274_016_1300_x crossref_primary_10_1103_PhysRevB_89_144110 crossref_primary_10_1039_c3ta11155e crossref_primary_10_1016_j_electacta_2014_05_138 crossref_primary_10_1109_JSEN_2023_3236068 crossref_primary_10_1002_advs_201500101 crossref_primary_10_1039_D3RA00793F crossref_primary_10_1039_C4CP04683H crossref_primary_10_1016_j_ijhydene_2015_02_101 crossref_primary_10_1021_acsanm_8b00446 crossref_primary_10_1038_s41598_017_15129_7 crossref_primary_10_1039_C5NJ02095F crossref_primary_10_1021_am501334j crossref_primary_10_3390_nano10050866 crossref_primary_10_1039_C5TA02260F crossref_primary_10_1021_acs_langmuir_0c02613 crossref_primary_10_1002_celc_201500174 crossref_primary_10_1002_celc_201500295 crossref_primary_10_1002_admi_202202219 crossref_primary_10_1002_smll_202200744 crossref_primary_10_1016_j_apcatb_2014_05_042 crossref_primary_10_1016_j_jcat_2019_06_009 crossref_primary_10_1016_j_jcis_2014_04_003 crossref_primary_10_1021_acsapm_1c00793 crossref_primary_10_1016_j_snb_2016_03_127 crossref_primary_10_1016_j_carbon_2015_09_067 crossref_primary_10_1039_C5NR06669G crossref_primary_10_1021_am4004655 crossref_primary_10_1088_2043_6262_ad010a crossref_primary_10_55713_jmmm_v34i2_2008 crossref_primary_10_1039_c3cc44813d crossref_primary_10_1016_j_electacta_2014_10_102 crossref_primary_10_1038_srep02527 crossref_primary_10_1039_C3CC47712F crossref_primary_10_1002_cnma_202200122 crossref_primary_10_1039_C9TA09104A crossref_primary_10_1016_j_jpowsour_2014_10_115 crossref_primary_10_1021_am508476d crossref_primary_10_1002_cctc_201901371 crossref_primary_10_1021_acsami_7b19584 crossref_primary_10_1021_nn505582e crossref_primary_10_1021_acsanm_8b01357 crossref_primary_10_1016_j_jechem_2021_12_050 crossref_primary_10_2174_1385272826666220621141128 crossref_primary_10_1021_acsnano_7b02148 crossref_primary_10_1021_am402546p crossref_primary_10_1007_s00604_016_1936_y crossref_primary_10_1021_acs_langmuir_4c00643 crossref_primary_10_1039_C5RA12865J crossref_primary_10_1016_j_ijhydene_2017_07_199 crossref_primary_10_1016_j_foodchem_2024_138781 crossref_primary_10_1016_j_jelechem_2012_12_013 crossref_primary_10_1016_j_pmatsci_2018_01_003 crossref_primary_10_1002_elan_201600408 crossref_primary_10_1021_jacs_7b07918 crossref_primary_10_1002_smll_201302648 crossref_primary_10_1002_celc_201701311 crossref_primary_10_1016_j_jpowsour_2014_11_021 crossref_primary_10_1039_C5TA03900B crossref_primary_10_1088_2053_1591_1_4_045049 crossref_primary_10_1002_smtd_201700331 crossref_primary_10_1039_C5RA20955B crossref_primary_10_1039_C8NJ00716K crossref_primary_10_1039_D0NR00702A crossref_primary_10_1016_j_ceramint_2022_12_154 crossref_primary_10_1021_acsami_1c14009 crossref_primary_10_3390_nano9030328 crossref_primary_10_1002_ppsc_201300177 crossref_primary_10_1016_j_snb_2013_12_113 crossref_primary_10_1021_acsami_5b03907 crossref_primary_10_1021_ja4069134 crossref_primary_10_1002_adma_201604837 crossref_primary_10_1002_cnma_202000051 crossref_primary_10_1016_j_jcis_2019_11_113 crossref_primary_10_1002_ejic_201403054 crossref_primary_10_1039_D1RA09064J crossref_primary_10_1016_j_cclet_2019_08_008 crossref_primary_10_1021_es503003y crossref_primary_10_1002_anie_201300711 crossref_primary_10_20964_2017_06_28 crossref_primary_10_1002_celc_202300293 crossref_primary_10_1002_slct_202002200 crossref_primary_10_1002_admi_201600632 crossref_primary_10_1016_j_coco_2018_10_008 crossref_primary_10_1007_s10008_015_2924_6 crossref_primary_10_1016_j_carbon_2016_09_042 crossref_primary_10_1016_j_compositesb_2015_09_018 crossref_primary_10_1007_s40843_016_5038_1 crossref_primary_10_1002_anie_201602627 crossref_primary_10_1016_j_ijhydene_2019_08_005 crossref_primary_10_1039_C3TA14276K crossref_primary_10_1039_c4nr00116h crossref_primary_10_1039_C6RA24893D crossref_primary_10_1016_j_electacta_2014_11_104 crossref_primary_10_1016_j_jallcom_2024_175712 crossref_primary_10_1007_s11270_018_3877_z crossref_primary_10_1021_acs_langmuir_6b01073 crossref_primary_10_1039_c3cp44312d crossref_primary_10_1039_C5NR01376C crossref_primary_10_1039_C3RA47829G crossref_primary_10_1021_acs_jpcc_1c08924 crossref_primary_10_1007_s10853_012_7047_1 crossref_primary_10_1016_j_jechem_2018_01_019 crossref_primary_10_1021_acsami_2c04033 crossref_primary_10_1039_c3ta12118f crossref_primary_10_1002_celc_201402013 crossref_primary_10_1039_C4RA16694A crossref_primary_10_1039_D0MH01947J crossref_primary_10_1039_C5RA27490G crossref_primary_10_1016_j_apsusc_2018_09_096 crossref_primary_10_1021_acs_langmuir_8b02005 crossref_primary_10_1002_ppsc_201400039 crossref_primary_10_1038_srep05441 crossref_primary_10_1039_C7NJ00832E crossref_primary_10_1039_C5RA01864A crossref_primary_10_1016_j_biomaterials_2015_02_046 crossref_primary_10_1039_C6RA06416G crossref_primary_10_1016_j_ijhydene_2016_01_070 crossref_primary_10_1016_j_jpowsour_2013_05_015 crossref_primary_10_1016_j_electacta_2015_10_151 crossref_primary_10_1021_acscatal_5b00524 crossref_primary_10_1038_ncomms11941 crossref_primary_10_1039_C2NR33290F crossref_primary_10_1002_cctc_201501243 crossref_primary_10_1016_j_commatsci_2018_03_030 crossref_primary_10_1039_D1QM00918D crossref_primary_10_1002_chem_201500677 crossref_primary_10_1007_s11581_019_02845_5 crossref_primary_10_1016_j_apcatb_2019_01_083 crossref_primary_10_1016_j_jpowsour_2014_10_098 crossref_primary_10_1016_j_snb_2016_06_173 crossref_primary_10_1016_j_jcat_2015_04_007 crossref_primary_10_1039_C4RA16340K crossref_primary_10_1002_chem_201702031 crossref_primary_10_1016_j_mcat_2022_112879 crossref_primary_10_1557_jmr_2018_394 crossref_primary_10_1016_j_ijhydene_2015_05_153 crossref_primary_10_1016_j_ijhydene_2016_06_245 crossref_primary_10_1007_s00396_016_3875_x crossref_primary_10_1039_c3nr03280a crossref_primary_10_1016_j_jechem_2019_02_009 crossref_primary_10_1039_C3NR06539A crossref_primary_10_1002_chem_202000535 crossref_primary_10_1016_j_nantod_2013_12_002 crossref_primary_10_1039_C8CC08803A crossref_primary_10_1007_s11581_014_1284_z crossref_primary_10_1002_smll_202003256 crossref_primary_10_1016_j_carbon_2013_06_067 crossref_primary_10_1007_s10876_019_01752_z crossref_primary_10_1016_S1872_2067_15_60971_8 crossref_primary_10_1039_c3nr01323e crossref_primary_10_1002_aenm_201802936 crossref_primary_10_1016_j_msec_2018_10_072 crossref_primary_10_1021_nn500880v crossref_primary_10_1039_c3ta12531a crossref_primary_10_1149_2_0391906jes crossref_primary_10_1039_c3cc45997g crossref_primary_10_1149_2_0011815jes crossref_primary_10_1039_C5RA04817F crossref_primary_10_1016_j_electacta_2016_12_021 crossref_primary_10_1016_j_jechem_2016_04_013 crossref_primary_10_1039_C5NR01679G crossref_primary_10_1039_C6AN00773B crossref_primary_10_1016_j_elecom_2013_09_013 crossref_primary_10_1016_j_electacta_2015_09_153 crossref_primary_10_1038_srep12058 crossref_primary_10_1021_acs_chemmater_1c02112 crossref_primary_10_1002_cey2_87 crossref_primary_10_1038_s41598_017_02766_1 crossref_primary_10_1021_la304616k crossref_primary_10_1039_C5RA23780G crossref_primary_10_1039_C9TA14174J crossref_primary_10_1016_j_nantod_2019_100767 crossref_primary_10_1002_ange_201703864 crossref_primary_10_1021_acscatal_8b03444 crossref_primary_10_1021_ja5129154 crossref_primary_10_1021_acsami_8b14810 crossref_primary_10_1021_am505916q crossref_primary_10_1016_j_snb_2016_01_093 crossref_primary_10_1002_jctb_4797 crossref_primary_10_1016_j_jhazmat_2014_03_032 crossref_primary_10_1039_C4TA01417K crossref_primary_10_1039_c2cc38403e crossref_primary_10_1016_j_cplett_2020_138059 crossref_primary_10_1142_S1793292014500313 crossref_primary_10_1002_adma_201204419 crossref_primary_10_1002_elan_201800555 crossref_primary_10_1021_am507890h crossref_primary_10_1039_D1RA06940C crossref_primary_10_1038_srep03568 crossref_primary_10_1021_ja511511q crossref_primary_10_1002_aoc_4971 crossref_primary_10_1016_j_chempr_2016_07_005 crossref_primary_10_1142_S1793292016500223 crossref_primary_10_1039_C3TA15335E crossref_primary_10_1016_j_cattod_2018_10_060 crossref_primary_10_3390_molecules22040575 crossref_primary_10_1002_chem_201705504 crossref_primary_10_1016_j_snb_2016_01_086 crossref_primary_10_1021_acs_chemmater_6b01447 crossref_primary_10_1016_j_aca_2014_08_037 crossref_primary_10_1021_acscatal_5b01411 crossref_primary_10_1088_2053_1591_aaef73 crossref_primary_10_1016_j_electacta_2017_04_117 crossref_primary_10_1002_cctc_201300647 crossref_primary_10_1021_acsami_7b09830 crossref_primary_10_1021_acs_inorgchem_7b00936 crossref_primary_10_1002_slct_201600302 crossref_primary_10_1039_C6CP01192F crossref_primary_10_1021_ie403393u crossref_primary_10_1088_1742_6596_2705_1_012017 crossref_primary_10_1002_anie_201304122 crossref_primary_10_1002_smll_201702753 crossref_primary_10_1002_elan_201500062 crossref_primary_10_1021_acsanm_3c00564 crossref_primary_10_1039_C8CC02279H crossref_primary_10_1016_j_snb_2016_05_046 crossref_primary_10_1002_aenm_201901227 crossref_primary_10_1016_j_jallcom_2013_10_070 crossref_primary_10_1039_C8DT01966E crossref_primary_10_1021_acs_langmuir_8b02785 crossref_primary_10_1039_c3ta14193d crossref_primary_10_1088_2043_6262_ad1a9d crossref_primary_10_1039_C5RA17087G crossref_primary_10_1016_j_electacta_2020_136840 crossref_primary_10_1039_C9SE01243E crossref_primary_10_1021_cr400523y crossref_primary_10_1002_adfm_201303968 crossref_primary_10_1016_j_jpowsour_2016_02_020 crossref_primary_10_1002_admi_201800303 crossref_primary_10_1016_j_ijhydene_2014_01_107 crossref_primary_10_1139_cjc_2016_0360 crossref_primary_10_1002_smll_201400068 crossref_primary_10_1016_j_jpowsour_2017_01_081 crossref_primary_10_1038_am_2014_128 crossref_primary_10_1039_C6RA23995A crossref_primary_10_1016_S1872_2067_20_63652_X crossref_primary_10_1021_acs_langmuir_7b01214 crossref_primary_10_1039_C7CS00256D crossref_primary_10_1002_cphc_201700447 crossref_primary_10_1007_s10008_018_4111_z crossref_primary_10_1016_j_electacta_2017_01_192 crossref_primary_10_1021_acsanm_0c01555 crossref_primary_10_1002_cnma_201500022 crossref_primary_10_1016_j_msec_2018_07_075 crossref_primary_10_1002_cssc_201800052 crossref_primary_10_3390_bios14040169 crossref_primary_10_1002_adfm_202006918 crossref_primary_10_1002_adfm_202314282 crossref_primary_10_1039_C6NR00400H crossref_primary_10_1016_S1872_2067_20_63536_7 crossref_primary_10_1039_C9NJ05661K crossref_primary_10_1002_aenm_201600458 crossref_primary_10_1016_j_jhazmat_2020_124456 crossref_primary_10_1039_C5NR00527B crossref_primary_10_1016_j_physe_2016_11_016 crossref_primary_10_1039_C4NR04283B crossref_primary_10_1016_j_aca_2017_05_019 crossref_primary_10_1021_jp506877z crossref_primary_10_1016_j_materresbull_2016_08_019 crossref_primary_10_1002_smll_201602615 crossref_primary_10_1016_j_microc_2024_112169 crossref_primary_10_1039_D3NJ03799A crossref_primary_10_1002_admi_202300647 crossref_primary_10_1039_c4ra03184a crossref_primary_10_1149_2162_8777_ac8dbe crossref_primary_10_34133_research_0117 crossref_primary_10_1007_s10854_021_05242_9 crossref_primary_10_1002_celc_201701062 crossref_primary_10_1002_slct_202203335 crossref_primary_10_1039_C7NJ03798H crossref_primary_10_1021_acsami_6b02223 crossref_primary_10_1016_j_ijhydene_2016_09_041 crossref_primary_10_1016_j_materresbull_2014_10_053 crossref_primary_10_1016_j_snb_2017_09_013 crossref_primary_10_1002_anie_201703864 crossref_primary_10_1039_C8TA09785B crossref_primary_10_1016_j_bios_2016_09_104 crossref_primary_10_1039_D0CC05732K crossref_primary_10_1088_1361_6528_abe43c crossref_primary_10_2139_ssrn_4072293 crossref_primary_10_1063_1_4917468 crossref_primary_10_1016_j_electacta_2015_02_207 crossref_primary_10_1002_cctc_201802019 crossref_primary_10_1002_anie_201407390 crossref_primary_10_1016_j_electacta_2016_06_169 crossref_primary_10_1039_D1GC00574J crossref_primary_10_1039_D0TB00934B crossref_primary_10_1016_j_jelechem_2020_114694 crossref_primary_10_1038_srep05259 crossref_primary_10_1039_C6TA07380H crossref_primary_10_1021_acsami_5b05857 crossref_primary_10_1007_s12274_022_4777_5 crossref_primary_10_1016_j_jallcom_2020_154787 crossref_primary_10_1021_acsami_5b00039 crossref_primary_10_1016_j_jtice_2017_08_038 crossref_primary_10_1002_cey2_13 crossref_primary_10_1021_acsanm_0c00135 crossref_primary_10_1039_C7CY01732D crossref_primary_10_1039_c2nr33839d crossref_primary_10_1007_s10800_019_01297_z crossref_primary_10_1039_C9NR07272A crossref_primary_10_1063_5_0173905 crossref_primary_10_1039_c3nr05357a crossref_primary_10_1016_j_snb_2014_10_083 crossref_primary_10_1039_c4nj00057a crossref_primary_10_1021_acsami_7b11371 crossref_primary_10_1021_acsmaterialslett_9b00136 crossref_primary_10_1021_acsnano_3c06711 crossref_primary_10_1021_acs_chemrev_5b00620 crossref_primary_10_1021_jacs_6b07590 crossref_primary_10_1149_2_025404jes crossref_primary_10_1002_adma_201302223 crossref_primary_10_1039_C3DT53316F crossref_primary_10_1021_acsami_7b02546 crossref_primary_10_1021_acssuschemeng_6b01257 crossref_primary_10_1021_acsami_8b04737 crossref_primary_10_1021_acssuschemeng_5b00162 crossref_primary_10_1016_j_apsusc_2018_12_072 crossref_primary_10_1039_C4MH00040D crossref_primary_10_1039_c3tb20923g crossref_primary_10_1016_j_desal_2014_10_001 crossref_primary_10_3390_nano10020238 crossref_primary_10_1039_C4PY00743C crossref_primary_10_1002_aenm_201801400 crossref_primary_10_1039_C9QI00037B crossref_primary_10_1088_1755_1315_558_4_042042 crossref_primary_10_1016_j_ijhydene_2014_10_129 crossref_primary_10_1039_c3nr04032a crossref_primary_10_1016_j_jelechem_2022_116701 crossref_primary_10_1021_acs_jpcc_5b08771 crossref_primary_10_1016_j_apsusc_2017_12_084 crossref_primary_10_1021_acssuschemeng_8b04929 crossref_primary_10_1039_C9CS00379G crossref_primary_10_1039_C4NR00005F crossref_primary_10_1021_acsaem_4c02108 crossref_primary_10_1016_j_electacta_2015_02_242 crossref_primary_10_1038_srep14177 crossref_primary_10_1039_C9SC05469C crossref_primary_10_1039_D0TA06542K crossref_primary_10_1016_j_compositesb_2017_09_070 crossref_primary_10_1039_C4RA02208D crossref_primary_10_1016_j_cej_2022_138668 crossref_primary_10_1002_ange_201300711 crossref_primary_10_5012_bkcs_2013_34_8_2519 crossref_primary_10_1016_j_bios_2016_02_067 crossref_primary_10_1016_j_apsusc_2014_07_152 crossref_primary_10_1039_c3nr05809c crossref_primary_10_1039_C8TA01093E crossref_primary_10_1002_elan_201300254 crossref_primary_10_1039_C4RA13395A crossref_primary_10_1016_j_carbon_2013_09_067 crossref_primary_10_1021_acsami_9b03879 crossref_primary_10_1016_j_electacta_2022_140871 crossref_primary_10_1021_acsenergylett_8b00245 crossref_primary_10_1021_acsomega_1c06225 crossref_primary_10_1039_C7QM00511C crossref_primary_10_1002_ange_201602627 crossref_primary_10_1007_s12274_019_2539_9 crossref_primary_10_1021_acsanm_4c05813 crossref_primary_10_1007_s10562_017_2222_2 crossref_primary_10_1016_j_snb_2015_07_086 crossref_primary_10_1021_acsami_9b13451 crossref_primary_10_1002_adfm_202105662 crossref_primary_10_1016_j_apsusc_2017_10_152 crossref_primary_10_1016_S1872_2067_15_61123_8 crossref_primary_10_1016_j_compositesb_2019_107464 crossref_primary_10_1039_C8NA00095F crossref_primary_10_1007_s12274_017_1747_4 crossref_primary_10_1002_ppsc_201400040 crossref_primary_10_1039_C7TA09119B |
Cites_doi | 10.1038/nmat1849 10.1021/cr020730k 10.1021/la011161z 10.1016/j.apcatb.2004.06.021 10.1021/cs300219j 10.1021/ja303580b 10.1021/nl9031617 10.1002/anie.200901185 10.1021/cr900070d 10.1126/science.1168049 10.1021/jp105368j 10.1021/jp047349j 10.1021/cm9013046 10.1021/jp3012816 10.1016/j.electacta.2009.08.001 10.1016/j.carbon.2004.10.035 10.1021/la803680h 10.1021/la200013z 10.1021/ja110313d 10.1021/jp710929n 10.1021/cr100060r 10.1021/jp210796e 10.1039/c002416c 10.1038/nature11115 10.1021/nn300082k 10.1016/j.jpowsour.2008.07.008 10.1016/j.carbon.2007.02.034 10.1038/nchem.1069 10.1021/ja026824t 10.1038/nature07194 10.1021/ic9022486 10.1039/b717686b 10.1039/c2jm16195h 10.1021/ja01539a017 10.1021/ja302902p 10.1002/(SICI)1521-4095(199805)10:7<515::AID-ADMA515>3.0.CO;2-Y 10.1002/anie.200905614 10.1039/c2cs15325d 10.1021/jp205244m 10.1021/ja210924t 10.1021/jz900265j 10.1002/chem.201101333 10.1021/nl8013549 10.1016/j.electacta.2010.09.021 10.1021/nn100883p 10.1016/j.jpowsour.2009.07.050 10.1038/nnano.2007.451 10.1016/j.cplett.2010.07.091 10.1039/c0jm03376f 10.1016/j.jpowsour.2010.02.044 10.1021/ja206030c 10.1021/ic034261w 10.1016/S0169-4332(03)00705-0 10.1021/nn901850u 10.1126/science.1200832 10.1524/zpch.2007.221.9-10.1209 10.1021/ja074447k 10.1038/nnano.2012.71 10.1103/PhysRevLett.51.2310 10.1038/nmat3087 10.1038/nnano.2009.58 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn302984x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 8297 |
ExternalDocumentID | 22931045 10_1021_nn302984x a871556813 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a449t-cffd2bdf8ac76e987254180cd89e8319abb77cbfa3dc8e3fd03f363023938af33 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 15:52:43 EDT 2025 Thu Jul 10 18:20:41 EDT 2025 Mon Jul 21 06:05:23 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 01:33:27 EDT 2025 Thu Feb 04 21:42:53 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | gold cluster hybrids material oxygen reduction reaction graphene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a449t-cffd2bdf8ac76e987254180cd89e8319abb77cbfa3dc8e3fd03f363023938af33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://ir.ipe.ac.cn/handle/122111/6344 |
PMID | 22931045 |
PQID | 1080653849 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1762051063 proquest_miscellaneous_1080653849 pubmed_primary_22931045 crossref_primary_10_1021_nn302984x crossref_citationtrail_10_1021_nn302984x acs_journals_10_1021_nn302984x |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-25 |
PublicationDateYYYYMMDD | 2012-09-25 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Hummers W. S. (ref58/cit58) 1958; 70 Zhou M. (ref29/cit29) 2010; 114 Liang Y. (ref62/cit62) 2012; 134 Shao Y. (ref64/cit64) 2010; 195 Ji X. (ref44/cit44) 2007; 129 Greeley J. (ref17/cit17) 2007; 221 Li D. (ref19/cit19) 2012; 2 Suntivich J. (ref7/cit7) 2011; 3 Lim D.-H. (ref30/cit30) 2011; 115 Erikson H. (ref50/cit50) 2009; 54 Shao Y. (ref63/cit63) 2008; 185 Schmid G. (ref14/cit14) 1998; 10 Li Y. (ref61/cit61) 2012; 134 Debe M. K. (ref4/cit4) 2012; 486 Wagner A. J. (ref42/cit42) 2003; 219 Winter M. (ref1/cit1) 2004; 104 Slanac D. A. (ref56/cit56) 2012; 116 Thorseth M. A. (ref9/cit9) 2012 Cong H.-P. (ref28/cit28) 2012; 6 Turner M. (ref35/cit35) 2008; 454 Wu G. (ref6/cit6) 2011; 332 Titelman G. I. (ref59/cit59) 2005; 43 Huo Z. (ref45/cit45) 2008; 8 Nøskov J. K. (ref10/cit10) 2004; 108 Koo H. Y. (ref37/cit37) 2012; 22 Gong K. (ref5/cit5) 2009; 323 Slanac D. A. (ref57/cit57) 2012; 134 Park S. (ref22/cit22) 2009; 4 Wu J.-B. (ref43/cit43) 2003; 42 Stankovich S. (ref38/cit38) 2007; 45 Gasteiger H. A. (ref2/cit2) 2005; 56 Häkkinen H. (ref15/cit15) 2008; 37 Bard A. J. (ref49/cit49) 2001 Chen W. (ref12/cit12) 2009; 48 Quintana M. (ref40/cit40) 2010; 4 Choi H. C. (ref46/cit46) 2002; 124 Lim D.-H. (ref31/cit31) 2012; 116 Geim A. K. (ref21/cit21) 2007; 6 Liang Y. (ref8/cit8) 2011; 10 Xu W.-P. (ref27/cit27) 2011; 21 Lee Y. (ref18/cit18) 2010; 22 Chen X. (ref36/cit36) 2011; 133 Wang Y. J. (ref20/cit20) 2011; 111 Li D. (ref32/cit32) 2008; 3 Wertheim G. M. (ref34/cit34) 1983; 51 Jia Y. F. (ref41/cit41) 2002; 18 Gómez-Navarro C. (ref39/cit39) 2010; 10 Subrahmanyam K. S. (ref33/cit33) 2010; 497 Gentry S. T. (ref47/cit47) 2009; 25 Kamat P. V. (ref24/cit24) 2010; 1 Chen W. (ref55/cit55) 2010; 195 Tang W. (ref53/cit53) 2008; 112 Allen M. J. (ref23/cit23) 2010; 110 Pal R. (ref54/cit54) 2012; 134 Jeyabharathi C. (ref13/cit13) 2010 Son D. I. (ref26/cit26) 2012; 7 Lu Y. (ref16/cit16) 2012; 41 Hu Y. (ref52/cit52) 2010; 56 Yang J. (ref48/cit48) 2011; 27 Wu D. (ref25/cit25) 2011; 17 Qu L. T. (ref60/cit60) 2010; 4 Gewirth A. A. (ref3/cit3) 2010; 49 Jirkovský J. S. (ref51/cit51) 2010; 12 |
References_xml | – volume: 6 start-page: 183 year: 2007 ident: ref21/cit21 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 104 start-page: 4245 year: 2004 ident: ref1/cit1 publication-title: Chem. Rev. doi: 10.1021/cr020730k – volume: 18 start-page: 470 year: 2002 ident: ref41/cit41 publication-title: Langmuir doi: 10.1021/la011161z – volume: 56 start-page: 9 year: 2005 ident: ref2/cit2 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2004.06.021 – volume: 2 start-page: 1358 year: 2012 ident: ref19/cit19 publication-title: ACS Catal. doi: 10.1021/cs300219j – volume: 134 start-page: 9812 year: 2012 ident: ref57/cit57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303580b – volume: 10 start-page: 1144 year: 2010 ident: ref39/cit39 publication-title: Nano Lett. doi: 10.1021/nl9031617 – volume: 48 start-page: 4386 year: 2009 ident: ref12/cit12 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200901185 – volume: 110 start-page: 132 year: 2010 ident: ref23/cit23 publication-title: Chem. Rev. doi: 10.1021/cr900070d – volume: 323 start-page: 760 year: 2009 ident: ref5/cit5 publication-title: Science doi: 10.1126/science.1168049 – volume: 114 start-page: 16541 year: 2010 ident: ref29/cit29 publication-title: J. Phys. Chem. C doi: 10.1021/jp105368j – year: 2012 ident: ref9/cit9 publication-title: Coord. Chem. Rev. – volume: 108 start-page: 17886 year: 2004 ident: ref10/cit10 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 22 start-page: 755 year: 2010 ident: ref18/cit18 publication-title: Chem. Mater. doi: 10.1021/cm9013046 – volume: 116 start-page: 11032 year: 2012 ident: ref56/cit56 publication-title: J. Phys. Chem. C doi: 10.1021/jp3012816 – volume: 54 start-page: 7483 year: 2009 ident: ref50/cit50 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.08.001 – volume: 43 start-page: 641 year: 2005 ident: ref59/cit59 publication-title: Carbon doi: 10.1016/j.carbon.2004.10.035 – volume: 25 start-page: 2613 year: 2009 ident: ref47/cit47 publication-title: Langmuir doi: 10.1021/la803680h – volume-title: Electrochemical Methods. Fundamentals and Applications year: 2001 ident: ref49/cit49 – volume: 27 start-page: 5047 year: 2011 ident: ref48/cit48 publication-title: Langmuir doi: 10.1021/la200013z – volume: 133 start-page: 3693 year: 2011 ident: ref36/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110313d – volume: 112 start-page: 10515 year: 2008 ident: ref53/cit53 publication-title: J. Phys. Chem. C doi: 10.1021/jp710929n – volume: 111 start-page: 7625 year: 2011 ident: ref20/cit20 publication-title: Chem. Rev. doi: 10.1021/cr100060r – volume: 116 start-page: 3653 year: 2012 ident: ref31/cit31 publication-title: J. Phys. Chem. C doi: 10.1021/jp210796e – volume: 12 start-page: 8042 year: 2010 ident: ref51/cit51 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c002416c – volume: 486 start-page: 43 year: 2012 ident: ref4/cit4 publication-title: Nature doi: 10.1038/nature11115 – volume: 6 start-page: 2693 year: 2012 ident: ref28/cit28 publication-title: ACS Nano doi: 10.1021/nn300082k – volume: 185 start-page: 280 year: 2008 ident: ref63/cit63 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.07.008 – volume: 45 start-page: 1558 year: 2007 ident: ref38/cit38 publication-title: Carbon doi: 10.1016/j.carbon.2007.02.034 – volume: 3 start-page: 546 year: 2011 ident: ref7/cit7 publication-title: Nat. Chem. doi: 10.1038/nchem.1069 – volume: 124 start-page: 9058 year: 2002 ident: ref46/cit46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026824t – volume: 454 start-page: 981 year: 2008 ident: ref35/cit35 publication-title: Nature doi: 10.1038/nature07194 – volume: 49 start-page: 3557 year: 2010 ident: ref3/cit3 publication-title: Inorg. Chem. doi: 10.1021/ic9022486 – volume: 37 start-page: 1847 year: 2008 ident: ref15/cit15 publication-title: Chem. Soc. Rev. doi: 10.1039/b717686b – volume: 22 start-page: 7130 year: 2012 ident: ref37/cit37 publication-title: J. Mater. Chem. doi: 10.1039/c2jm16195h – volume: 70 start-page: 1339 year: 1958 ident: ref58/cit58 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 134 start-page: 9438 year: 2012 ident: ref54/cit54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302902p – volume: 10 start-page: 515 year: 1998 ident: ref14/cit14 publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199805)10:7<515::AID-ADMA515>3.0.CO;2-Y – start-page: 2925 issue: 49 year: 2010 ident: ref13/cit13 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905614 – volume: 41 start-page: 3594 year: 2012 ident: ref16/cit16 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15325d – volume: 115 start-page: 22742 year: 2011 ident: ref30/cit30 publication-title: J. Phys. Chem. C doi: 10.1021/jp205244m – volume: 134 start-page: 3517 year: 2012 ident: ref62/cit62 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210924t – volume: 1 start-page: 520 year: 2010 ident: ref24/cit24 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz900265j – volume: 17 start-page: 10804 year: 2011 ident: ref25/cit25 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201101333 – volume: 8 start-page: 2041 year: 2008 ident: ref45/cit45 publication-title: Nano Lett. doi: 10.1021/nl8013549 – volume: 56 start-page: 491 year: 2010 ident: ref52/cit52 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.09.021 – volume: 4 start-page: 3527 year: 2010 ident: ref40/cit40 publication-title: ACS Nano doi: 10.1021/nn100883p – volume: 195 start-page: 412 year: 2010 ident: ref55/cit55 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.07.050 – volume: 3 start-page: 101 year: 2008 ident: ref32/cit32 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.451 – volume: 497 start-page: 70 year: 2010 ident: ref33/cit33 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.07.091 – volume: 21 start-page: 4593 year: 2011 ident: ref27/cit27 publication-title: J. Mater. Chem. doi: 10.1039/c0jm03376f – volume: 195 start-page: 4600 year: 2010 ident: ref64/cit64 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.02.044 – volume: 134 start-page: 15 year: 2012 ident: ref61/cit61 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206030c – volume: 42 start-page: 4516 year: 2003 ident: ref43/cit43 publication-title: Inorg. Chem. doi: 10.1021/ic034261w – volume: 219 start-page: 317 year: 2003 ident: ref42/cit42 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(03)00705-0 – volume: 4 start-page: 1321 year: 2010 ident: ref60/cit60 publication-title: ACS Nano doi: 10.1021/nn901850u – volume: 332 start-page: 443 year: 2011 ident: ref6/cit6 publication-title: Science doi: 10.1126/science.1200832 – volume: 221 start-page: 1209 year: 2007 ident: ref17/cit17 publication-title: Z. Phys. Chem. doi: 10.1524/zpch.2007.221.9-10.1209 – volume: 129 start-page: 13939 year: 2007 ident: ref44/cit44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja074447k – volume: 7 start-page: 465 year: 2012 ident: ref26/cit26 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.71 – volume: 51 start-page: 2310 year: 1983 ident: ref34/cit34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.2310 – volume: 10 start-page: 780 year: 2011 ident: ref8/cit8 publication-title: Nat. Mater. doi: 10.1038/nmat3087 – volume: 4 start-page: 217 year: 2009 ident: ref22/cit22 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.58 |
SSID | ssj0057876 |
Score | 2.5858529 |
Snippet | Non-Pt noble metal clusters like Au clusters are believed to be promising high performance catalysts for the oxygen reduction reaction (ORR) at the cathode of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8288 |
SubjectTerms | Catalysis Clusters Crystallization - methods Gold Gold - chemistry Graphene Graphite - chemistry Macromolecular Substances - chemistry Materials Testing Methyl alcohol Molecular Conformation Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Oxidation-Reduction Oxygen - chemistry Particle Size Platinum Reduction Sheet metal Surface Properties Surface-Active Agents - chemistry |
Title | Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction |
URI | http://dx.doi.org/10.1021/nn302984x https://www.ncbi.nlm.nih.gov/pubmed/22931045 https://www.proquest.com/docview/1080653849 https://www.proquest.com/docview/1762051063 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELUQXODAvpRNZjlwMaR24jjHqlAqJBZRkLhFjhcJUaWoaSTK1zNOmgKiLbccJnLi2Z41M88InTLOja95REITCeJLTknE6paIQII5aSuNcAPOt3e8_ezfvAQvc-hkSgWf1i_SlDmacB-A4gLl4LwO_zQ7Vbh1FsfL0jEcjQE_VPRBP191qUdlv1PPFDxZ5JXWCrqspnPKdpK383yQnKvPv2SNsz55FS2PcCVulIawhuZMuo6WfrANbqC0JRXEANwZpoD6stcM9yzu5H032wD7S1p9Y3Ajx81u7tgTLq4dlzWEQtweurGuDAO-xa4vhDx8Txvg-48h2CB-dBSwTsnwVM5KbKLn1tVTs01G1y0Q6fvRgChrNU20FVKFHDQXwtmxLjylRWQEeKpMkjBUiZVMK2GY1R6zjLOCRE1Iy9gWmk97qdlBmALuCKwG9BhoX0ZeBCDGcM1sGBhPirCGDkEf8chdsriohNN6PN64GjqrVBWrEVm5uzOjO0n0eCz6XjJ0TBI6qvQdg_-4oohMTS_PCoJUDlHfj2bIQMZwwYuzGtoujWW8FAW8BEfaYPe_X9pDiwC2qOs1ocE-mh_0c3MAgGaQHBYG_QU2RO_C |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6hcKA9FCiPhpawRT1w2Ty89np9jCJCgCStmkTKzVrvQ0KNnCqOJcKvZ8Z20hYF6C2Hib3e-XbmW83Ot4RccCGsb0TEQhtJ5ivhsYh3HJOBAjgZp6zEBufRWAxm_rd5MK9kcrAXBgaRwZOyooh_py7QaaUpR7VwH_jiUyAhHqK525tsoy4CT5QVZNghA43Yqgjd_ytmIJ09zEB_oZVFeuk_L-8pKgZWnCq5aebrpKl__aHZ-LiRvyBHFcuk3RIWL8kTmx6Tw3vag69I2lcaIgKdbFLggNmPjC4dneQr7HSA2Wb9lbW0m9PeIkcthdYXVLaGwEgHG2zyyiiwXYqnRNjVXe8Bvfy5AUTSaxSERZfDr7Jz4jWZ9T9PewNWXb7AlO9Ha6adM15inFQ6FODHEHaSHdnWRkZWwrpVSRKGOnGKGy0td6bNHRe8kFSTynH-htTSZWpPCPWAhQTOAJcMjK-idgSUxgrDXRjYtpJhnTRg3uJq8WRxURf3OvFu4urk09Zjsa6ky_EGjcU-048709tSr2Of0fnW7TGsJiyRqNQu86yQSxWQA_zoHzaQPzCUCV4nb0vM7F7lAXuCDW7w7n-f9IE8G0xHw3j4dfz9lBwADfPwFIoXnJHaepXb90B11kmjwPhvcqb4Iw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6hVEL00JZHIaUNC-LAZVPHa6_XxyjFpKWkFWmk3Kz1PiRE5VRxLBF-PTO2kwYUKDcfxvZ65_WNZuczIe-5EDYwImaRjSULlPBZzHuOyVCBORmnrMQB5y8jMZwEF9Nw2hSKOAsDiyjgSUXVxEevvjOuYRjoneY5R8bwADDjDrbr0KL7g_Eq8qLxibqLDFUyQIkVk9DmrZiFdPF7FvoLtKxSTLJPrtaLq06WfO-Wi6yrf_7B2_j_qz8gew3apP3aPJ6SRzZ_RnY3OAifkzxRGiIDHS9zwILFt4LOHB2Xc5x4gF1nydxa2i_p4LZEToXTT8hwDQGSDpc47FVQQL0UT4uw6_sZBHr1YwmWSb8iMSyqHq7qCYoXZJJ8vBkMWfMTBqaCIF4w7ZzxM-Ok0pEAfUZQUfakp42MrQT_VVkWRTpzihstLXfG444LXlGrSeU4PyStfJbbV4T6gEZCZwBThiZQsRcDtLHCcBeF1lMyapMO7F3aOFGRVv1xv5euN65NPqy0luqGwhz_pHG7TfTdWvSu5u3YJvR2pfoUvApbJSq3s7KoaFMF5IIg_ocM5BEMaYK3ycvabtav8gFFQaEbHj30SW_I4-uzJL08H31-TZ4AGvPxMIofHpPWYl7aE0A8i6xTmfkvijv6pg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Synthesis+of+Surfactant-Free+Au+Cluster%2FGraphene+Hybrids+for+High-Performance+Oxygen+Reduction+Reaction&rft.jtitle=ACS+nano&rft.au=Yin%2C+Huajie&rft.au=Tang%2C+Hongjie&rft.au=Wang%2C+Dan&rft.au=Gao%2C+Yan&rft.date=2012-09-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=6&rft.issue=9&rft.spage=8288&rft.epage=8297-8288-8297&rft_id=info:doi/10.1021%2Fnn302984x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |