Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography
Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, p...
Saved in:
Published in | ACS nano Vol. 8; no. 2; pp. 1538 - 1546 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.02.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/nn405759v |
Cover
Loading…
Abstract | Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO2 gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications. |
---|---|
AbstractList | Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO2 gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications. Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO2 gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications.Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO2 gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications. Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO sub(2) gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications. |
Author | Liu, Gang Liu, Bilu Abbas, Ahmad N Liu, He Ohlberg, Douglas Wu, Wei Zhang, Luyao Zhou, Chongwu |
AuthorAffiliation | University of Southern California Hewlett-Packard Co Department of Electrical Engineering King Abdulaziz University |
AuthorAffiliation_xml | – name: University of Southern California – name: Hewlett-Packard Co – name: Department of Electrical Engineering – name: King Abdulaziz University |
Author_xml | – sequence: 1 givenname: Ahmad N surname: Abbas fullname: Abbas, Ahmad N – sequence: 2 givenname: Gang surname: Liu fullname: Liu, Gang – sequence: 3 givenname: Bilu surname: Liu fullname: Liu, Bilu – sequence: 4 givenname: Luyao surname: Zhang fullname: Zhang, Luyao – sequence: 5 givenname: He surname: Liu fullname: Liu, He – sequence: 6 givenname: Douglas surname: Ohlberg fullname: Ohlberg, Douglas – sequence: 7 givenname: Wei surname: Wu fullname: Wu, Wei email: chongwuz@usc.edu, wu.w@usc.edu – sequence: 8 givenname: Chongwu surname: Zhou fullname: Zhou, Chongwu email: chongwuz@usc.edu, wu.w@usc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24467172$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1u1DAQB3ALFdEPOPACyBekVupS24md5Lgs9ENaARJF4hZNnEnXVWIH2ynaPgMPXW-37AFV4mR79JuR_J9DsmedRULecvaBM8HPrM2ZLGR194Ic8CpTM1aqn3u7u-T75DCEW5ZQWahXZF_kuSp4IQ7In28QI3pr7M0pXazAg05Pcw_ROHtKwbapioPR0NPvaENydD6OfSpsRKCuoxcexhVapF_AOm-axlk69x7WgX5yvy2NjkpqB_rjsfsSezMN9CqhjwgDXZq4cjebEevX5GUHfcA3T-cRuT7_fL24nC2_Xlwt5ssZ5HkVZ1BoxZTQHaQ_d2XWVo2QbamAo4a2aSFjLM-EFK1AgRmTrSgEw0YVJWNaZkfkeDt29O7XhCHWgwka-x4suinUvFCCScGV-D-VTGSiKtlm6rsnOjUDtvXozQB-Xf_NOoGTLdDeheCx2xHO6s0e690ekz37x2oTHxOPHkz_bMf7bQfoUN-6yduU4DPuAfQmq8s |
CitedBy_id | crossref_primary_10_1007_s00339_017_0893_6 crossref_primary_10_1063_1_4926448 crossref_primary_10_1063_1_5044660 crossref_primary_10_1021_acsnano_9b08220 crossref_primary_10_1016_j_apsusc_2020_146467 crossref_primary_10_1039_C5MH00288E crossref_primary_10_1021_acs_nanolett_5b00939 crossref_primary_10_1021_acsnano_8b07714 crossref_primary_10_1016_j_bios_2021_113245 crossref_primary_10_1002_smll_202303572 crossref_primary_10_1039_D2TA06255K crossref_primary_10_1021_acsnano_7b06307 crossref_primary_10_1039_C8NR05875J crossref_primary_10_1016_j_jmmm_2023_171105 crossref_primary_10_1088_1361_6528_aabe22 crossref_primary_10_1021_acsaelm_0c01120 crossref_primary_10_1021_acsanm_2c02448 crossref_primary_10_1364_OE_471315 crossref_primary_10_1021_acs_jpclett_1c03877 crossref_primary_10_1021_acs_chemmater_0c03711 crossref_primary_10_1007_s00604_022_05317_2 crossref_primary_10_1016_j_physe_2018_01_029 crossref_primary_10_1088_2053_1591_aafbc4 crossref_primary_10_1016_j_commatsci_2018_03_022 crossref_primary_10_1021_nn5015215 crossref_primary_10_1002_sstr_202400320 crossref_primary_10_1088_2631_7990_ab0dfc crossref_primary_10_1021_acsaelm_0c00627 crossref_primary_10_1021_ja502764d crossref_primary_10_3390_mi12010006 crossref_primary_10_1002_cplu_202000419 crossref_primary_10_1063_1_4898357 crossref_primary_10_6023_A22120513 crossref_primary_10_1002_adma_201601801 crossref_primary_10_1039_C7RA13516E crossref_primary_10_1088_2053_1591_aabf69 crossref_primary_10_1002_smll_201800072 crossref_primary_10_1021_am508535x crossref_primary_10_3390_s20072134 crossref_primary_10_1039_C4NR00112E crossref_primary_10_1111_jace_16334 crossref_primary_10_1364_OE_423017 crossref_primary_10_1021_acsanm_3c04398 crossref_primary_10_1002_adma_201907082 crossref_primary_10_1016_j_optcom_2017_06_059 crossref_primary_10_1109_JEDS_2015_2490178 crossref_primary_10_1063_5_0069203 crossref_primary_10_1007_s10854_017_7657_0 crossref_primary_10_1021_acsami_8b16688 crossref_primary_10_1007_s12200_016_0618_z crossref_primary_10_1109_LED_2019_2928131 crossref_primary_10_1088_1361_6528_ab0506 crossref_primary_10_1021_acs_chemrev_0c00505 crossref_primary_10_1016_j_snb_2024_136171 crossref_primary_10_1039_C8SC03780A crossref_primary_10_1021_am500471q crossref_primary_10_1063_1_4935405 crossref_primary_10_1002_admt_201600237 crossref_primary_10_1002_adma_202104060 crossref_primary_10_1002_smll_201503680 crossref_primary_10_1039_C8NR09073D crossref_primary_10_1063_1_4899235 crossref_primary_10_1039_C8NH00364E crossref_primary_10_1016_j_ijleo_2019_163532 crossref_primary_10_1016_j_carbon_2017_04_062 crossref_primary_10_1002_pssr_201900398 crossref_primary_10_1021_acsnano_9b04221 crossref_primary_10_1038_srep46583 crossref_primary_10_1016_j_rinp_2024_107783 crossref_primary_10_1016_j_susc_2017_08_012 crossref_primary_10_7736_KSPE_2018_35_3_241 crossref_primary_10_1021_acsami_8b18083 crossref_primary_10_1016_j_nantod_2016_05_008 crossref_primary_10_1021_acsanm_1c02759 crossref_primary_10_1109_JEDS_2014_2327375 crossref_primary_10_1016_j_apsusc_2020_148231 crossref_primary_10_1038_srep11297 crossref_primary_10_1364_OME_436327 crossref_primary_10_1039_D3NA01050C crossref_primary_10_3390_nano12193269 crossref_primary_10_1039_C6RA21293J crossref_primary_10_1116_1_5124838 crossref_primary_10_1088_1757_899X_454_1_012153 crossref_primary_10_1021_acsami_8b00427 crossref_primary_10_1016_j_rechem_2024_101393 crossref_primary_10_1016_j_apsusc_2016_03_119 crossref_primary_10_1016_j_mtcomm_2018_08_006 crossref_primary_10_1038_s41467_020_20651_w crossref_primary_10_1016_j_carbon_2014_07_010 crossref_primary_10_1063_5_0026159 crossref_primary_10_1080_10667857_2018_1447265 crossref_primary_10_1002_admi_202101643 crossref_primary_10_1016_j_commatsci_2016_12_025 crossref_primary_10_1002_admt_201900181 crossref_primary_10_1039_C4NR07197B crossref_primary_10_1021_acssensors_9b02345 crossref_primary_10_1038_ncomms11880 crossref_primary_10_1016_j_nanoen_2020_105451 crossref_primary_10_1103_PhysRevB_100_014306 crossref_primary_10_1002_smtd_201600060 crossref_primary_10_1002_aelm_201500456 crossref_primary_10_1021_acsnano_6b02489 crossref_primary_10_2174_1573413715666190701111638 crossref_primary_10_1103_PhysRevA_95_013832 crossref_primary_10_3762_bjnano_6_175 crossref_primary_10_1039_C5RA06546A crossref_primary_10_1109_LPT_2015_2413363 crossref_primary_10_1364_AO_419831 crossref_primary_10_1002_EXP_20210233 crossref_primary_10_1039_C4NR07007K crossref_primary_10_1038_srep11952 crossref_primary_10_1364_OE_457995 crossref_primary_10_1021_acsnano_6b06290 crossref_primary_10_1021_acs_chemrev_2c00048 crossref_primary_10_1080_16583655_2024_2310885 crossref_primary_10_1063_1_4989981 crossref_primary_10_1039_C5RA04257G crossref_primary_10_1126_science_aaf6308 crossref_primary_10_1016_j_bios_2018_11_049 crossref_primary_10_1021_acs_jpcc_7b00753 crossref_primary_10_1088_1361_6439_aaea48 crossref_primary_10_1021_acsami_1c09923 crossref_primary_10_1116_1_4928744 crossref_primary_10_1021_acsnano_7b06823 crossref_primary_10_1016_j_carbon_2015_01_040 crossref_primary_10_1088_1361_6528_ac5e6f crossref_primary_10_1038_s41699_018_0065_3 crossref_primary_10_1039_C6NR00154H crossref_primary_10_1063_10_0023848 crossref_primary_10_1021_acs_jpcc_9b04390 crossref_primary_10_35848_1347_4065_adbc70 crossref_primary_10_1016_j_surfin_2022_102536 crossref_primary_10_1088_1674_1056_ac0cdd crossref_primary_10_1080_1536383X_2017_1373097 crossref_primary_10_1016_j_spmi_2021_106869 crossref_primary_10_1039_C8NR08224C crossref_primary_10_1007_s00894_021_04787_0 crossref_primary_10_1039_C5CP06533J crossref_primary_10_1002_adom_201900689 crossref_primary_10_1016_j_carbon_2024_119712 crossref_primary_10_1016_j_susc_2014_12_005 crossref_primary_10_1116_1_4981016 crossref_primary_10_1088_0957_4484_27_32_325302 crossref_primary_10_1016_j_jmgm_2017_11_009 crossref_primary_10_1080_25740881_2018_1563108 crossref_primary_10_1002_smll_201901820 crossref_primary_10_1007_s41871_024_00226_9 crossref_primary_10_1063_1_5055624 crossref_primary_10_1016_j_snb_2015_10_019 crossref_primary_10_1002_nano_202000115 crossref_primary_10_1103_PhysRevApplied_12_034003 crossref_primary_10_1039_C5RA05836H crossref_primary_10_1126_science_abk3195 crossref_primary_10_1088_2631_7990_abc673 crossref_primary_10_1016_j_carbon_2016_05_036 crossref_primary_10_1088_1361_6528_28_4_045303 crossref_primary_10_1016_j_spmi_2019_106264 crossref_primary_10_1088_1361_6528_ab668a crossref_primary_10_1016_j_chip_2023_100064 crossref_primary_10_1021_acsami_9b08876 crossref_primary_10_1002_adom_201500707 crossref_primary_10_1364_OE_412925 crossref_primary_10_1088_2053_1591_ab10d4 crossref_primary_10_1103_PhysRevB_95_144307 crossref_primary_10_1002_admt_202000744 crossref_primary_10_1364_JOSAB_487314 crossref_primary_10_1002_adma_201701083 crossref_primary_10_3762_bjnano_12_52 crossref_primary_10_1557_jmr_2017_3 crossref_primary_10_1515_nanoph_2024_0343 crossref_primary_10_1039_C4NR01838A crossref_primary_10_1016_j_cartre_2021_100056 crossref_primary_10_1088_1361_6528_aad0b4 crossref_primary_10_1016_j_cjph_2024_04_043 crossref_primary_10_1088_2053_1583_aa7127 crossref_primary_10_1364_OE_444706 crossref_primary_10_1021_acsnano_5b01961 crossref_primary_10_1002_asia_201500450 crossref_primary_10_1021_acsnano_5b07943 crossref_primary_10_1021_acsnano_6b00643 crossref_primary_10_1016_j_pmatsci_2020_100665 crossref_primary_10_1088_1361_6528_ad892a crossref_primary_10_1021_acs_jpcc_0c10738 crossref_primary_10_1364_OE_24_016336 crossref_primary_10_1246_bcsj_20190368 crossref_primary_10_1002_adma_201801772 crossref_primary_10_1002_smtd_202100771 crossref_primary_10_1021_acs_chemrev_7b00633 crossref_primary_10_1088_2053_1591_aaf0df crossref_primary_10_1007_s11426_016_9016_5 crossref_primary_10_1021_nn5049014 crossref_primary_10_1016_j_carbon_2019_11_033 crossref_primary_10_1016_j_physb_2020_412022 crossref_primary_10_1002_adma_201501809 crossref_primary_10_1021_cm503303s crossref_primary_10_1016_j_apsusc_2024_159591 crossref_primary_10_1021_jacs_7b03467 crossref_primary_10_1038_s41598_023_32655_9 crossref_primary_10_1002_adfm_201504846 crossref_primary_10_1364_JOSAB_401589 crossref_primary_10_1016_j_progpolymsci_2023_101688 crossref_primary_10_1021_acs_nanolett_5b01673 crossref_primary_10_1364_OE_432601 |
Cites_doi | 10.1021/nl204392s 10.1038/nnano.2012.224 10.1021/ja050124h 10.1038/ncomms2366 10.1021/ja203860a 10.1002/adma.201302619 10.1126/science.1157996 10.1116/1.3182742 10.1103/PhysRevLett.97.187401 10.1038/nnano.2011.251 10.1021/nl302322t 10.1038/nnano.2011.138 10.1088/0957-4484/20/45/455301 10.1002/adma.201300813 10.1126/science.1218461 10.1021/nn403057t 10.1021/nl304541s 10.1021/nn300393c 10.1103/PhysRevLett.97.216803 10.1007/s12274-010-1013-5 10.1126/science.1167130 10.1021/nn3021376 10.1126/science.1102896 10.1021/ja307697j 10.1038/nature07872 10.1021/nn401992q 10.1116/1.3250204 10.1021/nn3049158 10.1038/nature07919 10.1109/LED.2009.2039915 10.1021/nn200799y 10.1016/j.snb.2010.12.046 10.1021/nn900744z 10.1021/nn102598m 10.1063/1.3465524 10.1021/nl801827v 10.1016/j.physe.2007.06.020 10.1038/nmat3064 10.1038/nmat2710 10.1021/nl0731872 10.1126/science.1220527 10.1038/nmat1967 10.1038/nature07719 10.1038/nnano.2012.169 10.1126/science.1184289 10.1103/PhysRevB.77.245434 10.1103/PhysRevB.80.155418 10.1103/PhysRevLett.98.206805 10.1038/ncomms3402 10.1038/nnano.2012.145 10.1021/ja207517u 10.1126/science.1171245 10.1038/nature09405 10.1038/nmat3518 10.1021/nl303375a 10.1021/nn800593m 10.1038/nature09211 10.1038/nphoton.2012.147 10.1021/nn303127y 10.1103/PhysRevLett.100.206803 10.1103/PhysRevB.61.14095 10.1103/PhysRevLett.92.225502 10.1038/nchem.719 10.1116/1.2357967 10.1021/nl900531n 10.1126/science.1150878 10.1038/nphys2102 10.1021/jp8021024 10.1038/nphoton.2013.57 10.1007/s12274-010-1043-z |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn405759v |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 1546 |
ExternalDocumentID | 24467172 10_1021_nn405759v d136592008 |
Genre | Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a449t-a7c6062cfa759f83d9b25d86a1ecadbda30043252d2e2e305d2720eb67800c53 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 07:22:57 EDT 2025 Thu Jul 10 20:23:17 EDT 2025 Thu Apr 03 07:04:39 EDT 2025 Tue Jul 01 01:33:38 EDT 2025 Thu Apr 24 22:56:27 EDT 2025 Thu Aug 27 13:42:41 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | graphene nanoribbon field-effect transistor array helium ion beam lithography |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a449t-a7c6062cfa759f83d9b25d86a1ecadbda30043252d2e2e305d2720eb67800c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/Patterning_Characterization_and_Chemical_Sensing_Applications_of_Graphene_Nanoribbon_Arrays_Down_to_5_nm_Using_Helium_Ion_Beam_Lithography/2320561 |
PMID | 24467172 |
PQID | 1502329805 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1762052162 proquest_miscellaneous_1502329805 pubmed_primary_24467172 crossref_primary_10_1021_nn405759v crossref_citationtrail_10_1021_nn405759v acs_journals_10_1021_nn405759v |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-25 |
PublicationDateYYYYMMDD | 2014-02-25 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Balog R. (ref18/cit18) 2010; 9 Schedin F. (ref55/cit55) 2007; 6 Sokolov A. N. (ref42/cit42) 2013; 4 Elias D. C. (ref17/cit17) 2009; 323 Li W.-D. (ref51/cit51) 2012; 30 Fowler J. D. (ref56/cit56) 2009; 3 Wang X. (ref46/cit46) 2011; 6 Kim K. S. (ref4/cit4) 2009; 457 Ward B. W. (ref50/cit50) 2006; 24 Emani N. K. (ref7/cit7) 2012; 12 Pearce R. (ref57/cit57) 2011; 155 Badmaev A. (ref10/cit10) 2012; 6 Schwab M. G. (ref39/cit39) 2012; 134 Novoselov K. S. (ref1/cit1) 2004; 306 Bai J. (ref27/cit27) 2009; 9 Wei D. (ref31/cit31) 2013; 4 Ruffieux P. (ref38/cit38) 2012; 6 Pan Z. (ref45/cit45) 2011; 133 Yinxiao Y. (ref66/cit66) 2010; 31 Bell D. C. (ref53/cit53) 2009; 20 Lemme M. C. (ref52/cit52) 2009; 3 Li X. (ref59/cit59) 2009; 324 Kosynkin D. V. (ref30/cit30) 2009; 458 Solís-Fernández P. (ref43/cit43) 2013; 25 Lui C. H. (ref20/cit20) 2011; 7 Raza H. (ref67/cit67) 2008; 77 Li X. (ref36/cit36) 2008; 319 Son J. G. (ref44/cit44) 2013; 25 Liao L. (ref9/cit9) 2010; 467 Banhart F. (ref63/cit63) 2010; 5 Jiao L. (ref33/cit33) 2010; 3 Cai J. (ref37/cit37) 2010; 466 Liang X. (ref40/cit40) 2012; 6 Yan H. (ref6/cit6) 2013; 7 Pan M. (ref26/cit26) 2012; 12 Ferrari A. C. (ref60/cit60) 2000; 61 Huang B. (ref71/cit71) 2008; 112 Lee C. (ref5/cit5) 2008; 321 Lin H. C. (ref69/cit69) 2009; 94 Winston D. (ref49/cit49) 2009; 27 Hwang Y. (ref68/cit68) 2010; 108 Gu T. (ref8/cit8) 2012; 6 ref72/cit72 Kato T. (ref41/cit41) 2012; 7 Chen Z. (ref65/cit65) 2007; 40 Georgiou T. (ref14/cit14) 2012; 8 Ryu S. (ref54/cit54) 2011; 5 Abramova V. (ref28/cit28) 2013; 7 Ferrari A. C. (ref62/cit62) 2006; 97 Jiao L. (ref29/cit29) 2009; 458 Bao W. (ref70/cit70) 2010; 3 Son Y.-W. (ref24/cit24) 2006; 97 Han M. Y. (ref25/cit25) 2007; 98 Wang X. (ref34/cit34) 2010; 2 Koch M. (ref47/cit47) 2012; 7 Sidorkin V. (ref48/cit48) 2009; 27 Velasco J. (ref21/cit21) 2012; 7 Chang C.-K. (ref19/cit19) 2013; 7 Nakaharai S. (ref23/cit23) 2013; 7 Xie L. (ref32/cit32) 2011; 133 Zou K. (ref22/cit22) 2013; 13 Wang X. (ref35/cit35) 2008; 100 Balandin A. A. (ref3/cit3) 2008; 8 Yang H. (ref13/cit13) 2012; 336 Zeng C. (ref15/cit15) 2013; 13 Reina A. (ref58/cit58) 2008; 9 Yu W. J. (ref16/cit16) 2012; 12 Lin Y.-M. (ref11/cit11) 2010; 327 Radovic L. R. (ref73/cit73) 2005; 127 Balandin A. A. (ref2/cit2) 2011; 10 Gillen R. (ref61/cit61) 2009; 80 Duplock E. J. (ref64/cit64) 2004; 92 Britnell L. (ref12/cit12) 2012; 335 |
References_xml | – volume: 12 start-page: 1928 year: 2012 ident: ref26/cit26 publication-title: Nano Lett. doi: 10.1021/nl204392s – volume: 8 start-page: 100 year: 2012 ident: ref14/cit14 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.224 – volume: 127 start-page: 5917 year: 2005 ident: ref73/cit73 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja050124h – volume: 4 start-page: 1374 year: 2013 ident: ref31/cit31 publication-title: Nat. Commun. doi: 10.1038/ncomms2366 – volume: 133 start-page: 10394 year: 2011 ident: ref32/cit32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203860a – volume: 25 start-page: 6562 year: 2013 ident: ref43/cit43 publication-title: Adv. Mater. doi: 10.1002/adma.201302619 – volume: 321 start-page: 385 year: 2008 ident: ref5/cit5 publication-title: Science doi: 10.1126/science.1157996 – volume: 27 start-page: L18 year: 2009 ident: ref48/cit48 publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom. doi: 10.1116/1.3182742 – volume: 97 start-page: 187401 year: 2006 ident: ref62/cit62 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 7 start-page: 156 year: 2012 ident: ref21/cit21 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.251 – volume: 12 start-page: 5202 year: 2012 ident: ref7/cit7 publication-title: Nano Lett. doi: 10.1021/nl302322t – volume: 6 start-page: 563 year: 2011 ident: ref46/cit46 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.138 – volume: 20 start-page: 455301 year: 2009 ident: ref53/cit53 publication-title: Nanotechnology doi: 10.1088/0957-4484/20/45/455301 – ident: ref72/cit72 – volume: 25 start-page: 4723 year: 2013 ident: ref44/cit44 publication-title: Adv. Mater. doi: 10.1002/adma.201300813 – volume: 335 start-page: 947 year: 2012 ident: ref12/cit12 publication-title: Science doi: 10.1126/science.1218461 – volume: 7 start-page: 6894 year: 2013 ident: ref28/cit28 publication-title: ACS Nano doi: 10.1021/nn403057t – volume: 13 start-page: 2370 year: 2013 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl304541s – volume: 6 start-page: 3371 year: 2012 ident: ref10/cit10 publication-title: ACS Nano doi: 10.1021/nn300393c – volume: 97 start-page: 216803 year: 2006 ident: ref24/cit24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.216803 – volume: 3 start-page: 98 year: 2010 ident: ref70/cit70 publication-title: Nano Res. doi: 10.1007/s12274-010-1013-5 – volume: 323 start-page: 610 year: 2009 ident: ref17/cit17 publication-title: Science doi: 10.1126/science.1167130 – volume: 6 start-page: 6930 year: 2012 ident: ref38/cit38 publication-title: ACS Nano doi: 10.1021/nn3021376 – volume: 306 start-page: 666 year: 2004 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.1102896 – volume: 134 start-page: 18169 year: 2012 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307697j – volume: 458 start-page: 872 year: 2009 ident: ref30/cit30 publication-title: Nature doi: 10.1038/nature07872 – volume: 7 start-page: 5694 year: 2013 ident: ref23/cit23 publication-title: ACS Nano doi: 10.1021/nn401992q – volume: 27 start-page: 2702 year: 2009 ident: ref49/cit49 publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. doi: 10.1116/1.3250204 – volume: 7 start-page: 1333 year: 2013 ident: ref19/cit19 publication-title: ACS Nano doi: 10.1021/nn3049158 – volume: 458 start-page: 877 year: 2009 ident: ref29/cit29 publication-title: Nature doi: 10.1038/nature07919 – volume: 31 start-page: 237 year: 2010 ident: ref66/cit66 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2009.2039915 – volume: 5 start-page: 4123 year: 2011 ident: ref54/cit54 publication-title: ACS Nano doi: 10.1021/nn200799y – volume: 155 start-page: 451 year: 2011 ident: ref57/cit57 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2010.12.046 – volume: 3 start-page: 2674 year: 2009 ident: ref52/cit52 publication-title: ACS Nano doi: 10.1021/nn900744z – volume: 5 start-page: 26 year: 2010 ident: ref63/cit63 publication-title: ACS Nano doi: 10.1021/nn102598m – volume: 108 start-page: 034111 year: 2010 ident: ref68/cit68 publication-title: J. Appl. Phys. doi: 10.1063/1.3465524 – volume: 9 start-page: 30 year: 2008 ident: ref58/cit58 publication-title: Nano Lett. doi: 10.1021/nl801827v – volume: 40 start-page: 228 year: 2007 ident: ref65/cit65 publication-title: Phys. E doi: 10.1016/j.physe.2007.06.020 – volume: 10 start-page: 569 year: 2011 ident: ref2/cit2 publication-title: Nat. Mater. doi: 10.1038/nmat3064 – volume: 9 start-page: 315 year: 2010 ident: ref18/cit18 publication-title: Nat. Mater. doi: 10.1038/nmat2710 – volume: 94 start-page: 153508-3 year: 2009 ident: ref69/cit69 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 902 year: 2008 ident: ref3/cit3 publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 336 start-page: 1140 year: 2012 ident: ref13/cit13 publication-title: Science doi: 10.1126/science.1220527 – volume: 30 start-page: 06F304-4 year: 2012 ident: ref51/cit51 publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom – volume: 6 start-page: 652 year: 2007 ident: ref55/cit55 publication-title: Nat. Mater. doi: 10.1038/nmat1967 – volume: 457 start-page: 706 year: 2009 ident: ref4/cit4 publication-title: Nature doi: 10.1038/nature07719 – volume: 7 start-page: 713 year: 2012 ident: ref47/cit47 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.169 – volume: 327 start-page: 662 year: 2010 ident: ref11/cit11 publication-title: Science doi: 10.1126/science.1184289 – volume: 77 start-page: 245434 year: 2008 ident: ref67/cit67 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.77.245434 – volume: 80 start-page: 155418 year: 2009 ident: ref61/cit61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.155418 – volume: 98 start-page: 206805 year: 2007 ident: ref25/cit25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.206805 – volume: 4 start-page: 2402 year: 2013 ident: ref42/cit42 publication-title: Nat. Commun. doi: 10.1038/ncomms3402 – volume: 7 start-page: 651 year: 2012 ident: ref41/cit41 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.145 – volume: 133 start-page: 17578 year: 2011 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207517u – volume: 324 start-page: 1312 year: 2009 ident: ref59/cit59 publication-title: Science doi: 10.1126/science.1171245 – volume: 467 start-page: 305 year: 2010 ident: ref9/cit9 publication-title: Nature doi: 10.1038/nature09405 – volume: 12 start-page: 246 year: 2012 ident: ref16/cit16 publication-title: Nat. Mater. doi: 10.1038/nmat3518 – volume: 13 start-page: 369 year: 2013 ident: ref22/cit22 publication-title: Nano Lett. doi: 10.1021/nl303375a – volume: 3 start-page: 301 year: 2009 ident: ref56/cit56 publication-title: ACS Nano doi: 10.1021/nn800593m – volume: 466 start-page: 470 year: 2010 ident: ref37/cit37 publication-title: Nature doi: 10.1038/nature09211 – volume: 6 start-page: 554 year: 2012 ident: ref8/cit8 publication-title: Nat. Photonics. doi: 10.1038/nphoton.2012.147 – volume: 6 start-page: 9700 year: 2012 ident: ref40/cit40 publication-title: ACS Nano doi: 10.1021/nn303127y – volume: 100 start-page: 206803 year: 2008 ident: ref35/cit35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.206803 – volume: 61 start-page: 14095 year: 2000 ident: ref60/cit60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.14095 – volume: 92 start-page: 225502 year: 2004 ident: ref64/cit64 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.225502 – volume: 2 start-page: 661 year: 2010 ident: ref34/cit34 publication-title: Nat. Chem. doi: 10.1038/nchem.719 – volume: 24 start-page: 2871 year: 2006 ident: ref50/cit50 publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom. doi: 10.1116/1.2357967 – volume: 9 start-page: 2083 year: 2009 ident: ref27/cit27 publication-title: Nano Lett. doi: 10.1021/nl900531n – volume: 319 start-page: 1229 year: 2008 ident: ref36/cit36 publication-title: Science doi: 10.1126/science.1150878 – volume: 7 start-page: 944 year: 2011 ident: ref20/cit20 publication-title: Nat. Phys. doi: 10.1038/nphys2102 – volume: 112 start-page: 13442 year: 2008 ident: ref71/cit71 publication-title: J. Phys. Chem. C doi: 10.1021/jp8021024 – volume: 7 start-page: 394 year: 2013 ident: ref6/cit6 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.57 – volume: 3 start-page: 387 year: 2010 ident: ref33/cit33 publication-title: Nano Res. doi: 10.1007/s12274-010-1043-z |
SSID | ssj0057876 |
Score | 2.5480962 |
Snippet | Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs)... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1538 |
SubjectTerms | Alignment Arrays Detection Electronics Graphene Ion beams Lithography Nanostructure Patterning |
Title | Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography |
URI | http://dx.doi.org/10.1021/nn405759v https://www.ncbi.nlm.nih.gov/pubmed/24467172 https://www.proquest.com/docview/1502329805 https://www.proquest.com/docview/1762052162 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTxsxELYgvcABKI8SCmhoOXBgw66z3qyPEF6t2qpSQOK28mtLBPGiZINEfwM_mvE-olQlcB_L9no8883OzGdC9pVOmYk6qZcGWnth2_c9LkPjBSmPVdrRgWCu3_nnr-jyOvx-w27myNcZGXwaHFlbYAr-OE8-0AjhtcM_3V5tbp3GRWXqGENjxA81fdD0UOd61Ohf1zMDTxZ-5XyZnNbdOWU5yV1rnMuW-vs_WeNbS14hSxWuhONSET6SOWNXyeIU2-Aaef5dcGm6HyGH0J0QNZd9mIcgrIaaPgB6rq7d_oHjqfw2ZClcOH5rNI-AVjkb9qXMLM45FE8jOMV4HvIMGNgBFJUIgD6tPx7ANxQ6MWIAP_r5bUWRvU6uzs-uupde9RiDJ8KQ557oKIx1qEoFbiyN25pLynQcicAooaUW7YLdj1FNDTVoRbTL8BqJztD3FWtvkIbNrNkkILn0OaoGNb4IFYY7PMYY1ISKx5F7BK1JdvGwkuoujZIiTU6DZPJVm-SgPsdEVUzm7kGN-9dEv0xEH0r6jteE9mplSPByuYyJsCYb49QMIQ3lsc_ekEF34jqgI1z4p1KTJlMhdoowXqZb723pM1lAJBYWvfJsmzTy4djsINrJ5W6h7S9yU_nt |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOACH8iykQBkQBw51a2-8jvcYAiGFpEJqkHqz9uU2KllXsVMJfgM_mtm1HQIqj_vY-_DszDeenW8IeaV0zkzSz4M80jqIe2EYcBmbIMp5qvK-jgRz9c7To2T8Of5wwk4amhxXC4OTKPFNpU_i_2QXiA6s9dCCX14nNxCEUHd9bzA8bq2uU7ykziBjhIwwomUR2nzUeSBV_uqB_gArvXsZ3an7FPmJ-Vsl5_urSu6rb79xNv7fzO-SrQZlwqBWi3vkmrH3ye0N7sEH5Psnz6zpfovswXBN21xXZe6BsBpaMgE4drfc7SkMNrLdUOTw3rFdo7EEtNHFci5lYXHMpfhawluM7qEqgIFdgL-XAOjh5qsFHKLQGyMWMJlXZw1h9kMyG72bDcdB05ohEHHMq0D0FUY-VOUCF5anPc0lZTpNRGSU0FKLnuf6Y1RTQw3aFO3yvUaiawxDxXrbpGMLax4TkFyGHBWFmlDECoMfnmJEamLF08S1ROuSXdzUrDlZZeaT5jTK1rvaJa_bz5mphtfctdf4cpXoy7XoRU3mcZXQi1YnMjxqLn8irClWODRDgEN5GrK_yKBzcfXQCU78Ua1Q66EQSSUYPdOdfy3pObk5nk0n2eTw6OMTcgsxWuyr6NlT0qmWK_MMcVAld_0B-AHT_gJd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagSIg-cJeWowyIBx6aknjjbPy4bFlaKKVSi9S3yGdZ0XWqTbZS-Q38aMbOoQWV430Sj505MzOfCXmltGUmG9rIJlpH6SCOIy5TEyWW58oOdSKYn3f-dJDtfkk_nLCTNlH0szDIRIVvqkIR32v1ubYtwkDyxrkQXvCL6-SGL9f5Fr7R-KizvF74sqaKjFkyhhIdktDyo94LqepXL_SH0DK4mMkd8rlnLnSWfNte1HJbff8Nt_H_ub9LbrfRJowa8bhHrhl3n6wuYRA-ID8OA8Km_z2yBeMevrmZztwC4TR0oAJw5Lvd3SmMlqreUFp471Gv0WgC2upyPpWydLjmXFxWsINZPtQlMHAzCP0JgJ5uupjBHhK9NWIG-9P6awuc_ZAcT94dj3ej9oqGSKQpryMxVJgBUWUFbszmA80lZTrPRGKU0FKLQcD8Y1RTQw3aFu3rvkaii4xjxQZrZMWVzqwTkFzGHAWGmlikCpMgnmNmalLF88xfjbZBNvFgi1bDqiIUz2lS9Ke6QV53n7RQLb65v2bj7CrSlz3peQPqcRXRi04uClQ5X0cRzpQLXJphoEN5HrO_0KCT8XPRGTL-qBGqfimMqDLMounjf23pObl5uDMp9vcOPj4htzBUS8MwPXtKVur5wjzDcKiWm0EHfgI72QTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterning%2C+Characterization%2C+and+Chemical+Sensing+Applications+of+Graphene+Nanoribbon+Arrays+Down+to+5+nm+Using+Helium+Ion+Beam+Lithography&rft.jtitle=ACS+nano&rft.au=Abbas%2C+Ahmad+N.&rft.au=Liu%2C+Gang&rft.au=Liu%2C+Bilu&rft.au=Zhang%2C+Luyao&rft.date=2014-02-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=8&rft.issue=2&rft.spage=1538&rft.epage=1546&rft_id=info:doi/10.1021%2Fnn405759v&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nn405759v |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |