Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography

Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, p...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 8; no. 2; pp. 1538 - 1546
Main Authors Abbas, Ahmad N, Liu, Gang, Liu, Bilu, Zhang, Luyao, Liu, He, Ohlberg, Douglas, Wu, Wei, Zhou, Chongwu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.02.2014
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/nn405759v

Cover

Loading…
Abstract Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO2 gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications.
AbstractList Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO2 gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications.
Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO2 gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications.Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO2 gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications.
Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO sub(2) gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications.
Author Liu, Gang
Liu, Bilu
Abbas, Ahmad N
Liu, He
Ohlberg, Douglas
Wu, Wei
Zhang, Luyao
Zhou, Chongwu
AuthorAffiliation University of Southern California
Hewlett-Packard Co
Department of Electrical Engineering
King Abdulaziz University
AuthorAffiliation_xml – name: University of Southern California
– name: Hewlett-Packard Co
– name: Department of Electrical Engineering
– name: King Abdulaziz University
Author_xml – sequence: 1
  givenname: Ahmad N
  surname: Abbas
  fullname: Abbas, Ahmad N
– sequence: 2
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
– sequence: 3
  givenname: Bilu
  surname: Liu
  fullname: Liu, Bilu
– sequence: 4
  givenname: Luyao
  surname: Zhang
  fullname: Zhang, Luyao
– sequence: 5
  givenname: He
  surname: Liu
  fullname: Liu, He
– sequence: 6
  givenname: Douglas
  surname: Ohlberg
  fullname: Ohlberg, Douglas
– sequence: 7
  givenname: Wei
  surname: Wu
  fullname: Wu, Wei
  email: chongwuz@usc.edu, wu.w@usc.edu
– sequence: 8
  givenname: Chongwu
  surname: Zhou
  fullname: Zhou, Chongwu
  email: chongwuz@usc.edu, wu.w@usc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24467172$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1u1DAQB3ALFdEPOPACyBekVupS24md5Lgs9ENaARJF4hZNnEnXVWIH2ynaPgMPXW-37AFV4mR79JuR_J9DsmedRULecvaBM8HPrM2ZLGR194Ic8CpTM1aqn3u7u-T75DCEW5ZQWahXZF_kuSp4IQ7In28QI3pr7M0pXazAg05Pcw_ROHtKwbapioPR0NPvaENydD6OfSpsRKCuoxcexhVapF_AOm-axlk69x7WgX5yvy2NjkpqB_rjsfsSezMN9CqhjwgDXZq4cjebEevX5GUHfcA3T-cRuT7_fL24nC2_Xlwt5ssZ5HkVZ1BoxZTQHaQ_d2XWVo2QbamAo4a2aSFjLM-EFK1AgRmTrSgEw0YVJWNaZkfkeDt29O7XhCHWgwka-x4suinUvFCCScGV-D-VTGSiKtlm6rsnOjUDtvXozQB-Xf_NOoGTLdDeheCx2xHO6s0e690ekz37x2oTHxOPHkz_bMf7bQfoUN-6yduU4DPuAfQmq8s
CitedBy_id crossref_primary_10_1007_s00339_017_0893_6
crossref_primary_10_1063_1_4926448
crossref_primary_10_1063_1_5044660
crossref_primary_10_1021_acsnano_9b08220
crossref_primary_10_1016_j_apsusc_2020_146467
crossref_primary_10_1039_C5MH00288E
crossref_primary_10_1021_acs_nanolett_5b00939
crossref_primary_10_1021_acsnano_8b07714
crossref_primary_10_1016_j_bios_2021_113245
crossref_primary_10_1002_smll_202303572
crossref_primary_10_1039_D2TA06255K
crossref_primary_10_1021_acsnano_7b06307
crossref_primary_10_1039_C8NR05875J
crossref_primary_10_1016_j_jmmm_2023_171105
crossref_primary_10_1088_1361_6528_aabe22
crossref_primary_10_1021_acsaelm_0c01120
crossref_primary_10_1021_acsanm_2c02448
crossref_primary_10_1364_OE_471315
crossref_primary_10_1021_acs_jpclett_1c03877
crossref_primary_10_1021_acs_chemmater_0c03711
crossref_primary_10_1007_s00604_022_05317_2
crossref_primary_10_1016_j_physe_2018_01_029
crossref_primary_10_1088_2053_1591_aafbc4
crossref_primary_10_1016_j_commatsci_2018_03_022
crossref_primary_10_1021_nn5015215
crossref_primary_10_1002_sstr_202400320
crossref_primary_10_1088_2631_7990_ab0dfc
crossref_primary_10_1021_acsaelm_0c00627
crossref_primary_10_1021_ja502764d
crossref_primary_10_3390_mi12010006
crossref_primary_10_1002_cplu_202000419
crossref_primary_10_1063_1_4898357
crossref_primary_10_6023_A22120513
crossref_primary_10_1002_adma_201601801
crossref_primary_10_1039_C7RA13516E
crossref_primary_10_1088_2053_1591_aabf69
crossref_primary_10_1002_smll_201800072
crossref_primary_10_1021_am508535x
crossref_primary_10_3390_s20072134
crossref_primary_10_1039_C4NR00112E
crossref_primary_10_1111_jace_16334
crossref_primary_10_1364_OE_423017
crossref_primary_10_1021_acsanm_3c04398
crossref_primary_10_1002_adma_201907082
crossref_primary_10_1016_j_optcom_2017_06_059
crossref_primary_10_1109_JEDS_2015_2490178
crossref_primary_10_1063_5_0069203
crossref_primary_10_1007_s10854_017_7657_0
crossref_primary_10_1021_acsami_8b16688
crossref_primary_10_1007_s12200_016_0618_z
crossref_primary_10_1109_LED_2019_2928131
crossref_primary_10_1088_1361_6528_ab0506
crossref_primary_10_1021_acs_chemrev_0c00505
crossref_primary_10_1016_j_snb_2024_136171
crossref_primary_10_1039_C8SC03780A
crossref_primary_10_1021_am500471q
crossref_primary_10_1063_1_4935405
crossref_primary_10_1002_admt_201600237
crossref_primary_10_1002_adma_202104060
crossref_primary_10_1002_smll_201503680
crossref_primary_10_1039_C8NR09073D
crossref_primary_10_1063_1_4899235
crossref_primary_10_1039_C8NH00364E
crossref_primary_10_1016_j_ijleo_2019_163532
crossref_primary_10_1016_j_carbon_2017_04_062
crossref_primary_10_1002_pssr_201900398
crossref_primary_10_1021_acsnano_9b04221
crossref_primary_10_1038_srep46583
crossref_primary_10_1016_j_rinp_2024_107783
crossref_primary_10_1016_j_susc_2017_08_012
crossref_primary_10_7736_KSPE_2018_35_3_241
crossref_primary_10_1021_acsami_8b18083
crossref_primary_10_1016_j_nantod_2016_05_008
crossref_primary_10_1021_acsanm_1c02759
crossref_primary_10_1109_JEDS_2014_2327375
crossref_primary_10_1016_j_apsusc_2020_148231
crossref_primary_10_1038_srep11297
crossref_primary_10_1364_OME_436327
crossref_primary_10_1039_D3NA01050C
crossref_primary_10_3390_nano12193269
crossref_primary_10_1039_C6RA21293J
crossref_primary_10_1116_1_5124838
crossref_primary_10_1088_1757_899X_454_1_012153
crossref_primary_10_1021_acsami_8b00427
crossref_primary_10_1016_j_rechem_2024_101393
crossref_primary_10_1016_j_apsusc_2016_03_119
crossref_primary_10_1016_j_mtcomm_2018_08_006
crossref_primary_10_1038_s41467_020_20651_w
crossref_primary_10_1016_j_carbon_2014_07_010
crossref_primary_10_1063_5_0026159
crossref_primary_10_1080_10667857_2018_1447265
crossref_primary_10_1002_admi_202101643
crossref_primary_10_1016_j_commatsci_2016_12_025
crossref_primary_10_1002_admt_201900181
crossref_primary_10_1039_C4NR07197B
crossref_primary_10_1021_acssensors_9b02345
crossref_primary_10_1038_ncomms11880
crossref_primary_10_1016_j_nanoen_2020_105451
crossref_primary_10_1103_PhysRevB_100_014306
crossref_primary_10_1002_smtd_201600060
crossref_primary_10_1002_aelm_201500456
crossref_primary_10_1021_acsnano_6b02489
crossref_primary_10_2174_1573413715666190701111638
crossref_primary_10_1103_PhysRevA_95_013832
crossref_primary_10_3762_bjnano_6_175
crossref_primary_10_1039_C5RA06546A
crossref_primary_10_1109_LPT_2015_2413363
crossref_primary_10_1364_AO_419831
crossref_primary_10_1002_EXP_20210233
crossref_primary_10_1039_C4NR07007K
crossref_primary_10_1038_srep11952
crossref_primary_10_1364_OE_457995
crossref_primary_10_1021_acsnano_6b06290
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1080_16583655_2024_2310885
crossref_primary_10_1063_1_4989981
crossref_primary_10_1039_C5RA04257G
crossref_primary_10_1126_science_aaf6308
crossref_primary_10_1016_j_bios_2018_11_049
crossref_primary_10_1021_acs_jpcc_7b00753
crossref_primary_10_1088_1361_6439_aaea48
crossref_primary_10_1021_acsami_1c09923
crossref_primary_10_1116_1_4928744
crossref_primary_10_1021_acsnano_7b06823
crossref_primary_10_1016_j_carbon_2015_01_040
crossref_primary_10_1088_1361_6528_ac5e6f
crossref_primary_10_1038_s41699_018_0065_3
crossref_primary_10_1039_C6NR00154H
crossref_primary_10_1063_10_0023848
crossref_primary_10_1021_acs_jpcc_9b04390
crossref_primary_10_35848_1347_4065_adbc70
crossref_primary_10_1016_j_surfin_2022_102536
crossref_primary_10_1088_1674_1056_ac0cdd
crossref_primary_10_1080_1536383X_2017_1373097
crossref_primary_10_1016_j_spmi_2021_106869
crossref_primary_10_1039_C8NR08224C
crossref_primary_10_1007_s00894_021_04787_0
crossref_primary_10_1039_C5CP06533J
crossref_primary_10_1002_adom_201900689
crossref_primary_10_1016_j_carbon_2024_119712
crossref_primary_10_1016_j_susc_2014_12_005
crossref_primary_10_1116_1_4981016
crossref_primary_10_1088_0957_4484_27_32_325302
crossref_primary_10_1016_j_jmgm_2017_11_009
crossref_primary_10_1080_25740881_2018_1563108
crossref_primary_10_1002_smll_201901820
crossref_primary_10_1007_s41871_024_00226_9
crossref_primary_10_1063_1_5055624
crossref_primary_10_1016_j_snb_2015_10_019
crossref_primary_10_1002_nano_202000115
crossref_primary_10_1103_PhysRevApplied_12_034003
crossref_primary_10_1039_C5RA05836H
crossref_primary_10_1126_science_abk3195
crossref_primary_10_1088_2631_7990_abc673
crossref_primary_10_1016_j_carbon_2016_05_036
crossref_primary_10_1088_1361_6528_28_4_045303
crossref_primary_10_1016_j_spmi_2019_106264
crossref_primary_10_1088_1361_6528_ab668a
crossref_primary_10_1016_j_chip_2023_100064
crossref_primary_10_1021_acsami_9b08876
crossref_primary_10_1002_adom_201500707
crossref_primary_10_1364_OE_412925
crossref_primary_10_1088_2053_1591_ab10d4
crossref_primary_10_1103_PhysRevB_95_144307
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1364_JOSAB_487314
crossref_primary_10_1002_adma_201701083
crossref_primary_10_3762_bjnano_12_52
crossref_primary_10_1557_jmr_2017_3
crossref_primary_10_1515_nanoph_2024_0343
crossref_primary_10_1039_C4NR01838A
crossref_primary_10_1016_j_cartre_2021_100056
crossref_primary_10_1088_1361_6528_aad0b4
crossref_primary_10_1016_j_cjph_2024_04_043
crossref_primary_10_1088_2053_1583_aa7127
crossref_primary_10_1364_OE_444706
crossref_primary_10_1021_acsnano_5b01961
crossref_primary_10_1002_asia_201500450
crossref_primary_10_1021_acsnano_5b07943
crossref_primary_10_1021_acsnano_6b00643
crossref_primary_10_1016_j_pmatsci_2020_100665
crossref_primary_10_1088_1361_6528_ad892a
crossref_primary_10_1021_acs_jpcc_0c10738
crossref_primary_10_1364_OE_24_016336
crossref_primary_10_1246_bcsj_20190368
crossref_primary_10_1002_adma_201801772
crossref_primary_10_1002_smtd_202100771
crossref_primary_10_1021_acs_chemrev_7b00633
crossref_primary_10_1088_2053_1591_aaf0df
crossref_primary_10_1007_s11426_016_9016_5
crossref_primary_10_1021_nn5049014
crossref_primary_10_1016_j_carbon_2019_11_033
crossref_primary_10_1016_j_physb_2020_412022
crossref_primary_10_1002_adma_201501809
crossref_primary_10_1021_cm503303s
crossref_primary_10_1016_j_apsusc_2024_159591
crossref_primary_10_1021_jacs_7b03467
crossref_primary_10_1038_s41598_023_32655_9
crossref_primary_10_1002_adfm_201504846
crossref_primary_10_1364_JOSAB_401589
crossref_primary_10_1016_j_progpolymsci_2023_101688
crossref_primary_10_1021_acs_nanolett_5b01673
crossref_primary_10_1364_OE_432601
Cites_doi 10.1021/nl204392s
10.1038/nnano.2012.224
10.1021/ja050124h
10.1038/ncomms2366
10.1021/ja203860a
10.1002/adma.201302619
10.1126/science.1157996
10.1116/1.3182742
10.1103/PhysRevLett.97.187401
10.1038/nnano.2011.251
10.1021/nl302322t
10.1038/nnano.2011.138
10.1088/0957-4484/20/45/455301
10.1002/adma.201300813
10.1126/science.1218461
10.1021/nn403057t
10.1021/nl304541s
10.1021/nn300393c
10.1103/PhysRevLett.97.216803
10.1007/s12274-010-1013-5
10.1126/science.1167130
10.1021/nn3021376
10.1126/science.1102896
10.1021/ja307697j
10.1038/nature07872
10.1021/nn401992q
10.1116/1.3250204
10.1021/nn3049158
10.1038/nature07919
10.1109/LED.2009.2039915
10.1021/nn200799y
10.1016/j.snb.2010.12.046
10.1021/nn900744z
10.1021/nn102598m
10.1063/1.3465524
10.1021/nl801827v
10.1016/j.physe.2007.06.020
10.1038/nmat3064
10.1038/nmat2710
10.1021/nl0731872
10.1126/science.1220527
10.1038/nmat1967
10.1038/nature07719
10.1038/nnano.2012.169
10.1126/science.1184289
10.1103/PhysRevB.77.245434
10.1103/PhysRevB.80.155418
10.1103/PhysRevLett.98.206805
10.1038/ncomms3402
10.1038/nnano.2012.145
10.1021/ja207517u
10.1126/science.1171245
10.1038/nature09405
10.1038/nmat3518
10.1021/nl303375a
10.1021/nn800593m
10.1038/nature09211
10.1038/nphoton.2012.147
10.1021/nn303127y
10.1103/PhysRevLett.100.206803
10.1103/PhysRevB.61.14095
10.1103/PhysRevLett.92.225502
10.1038/nchem.719
10.1116/1.2357967
10.1021/nl900531n
10.1126/science.1150878
10.1038/nphys2102
10.1021/jp8021024
10.1038/nphoton.2013.57
10.1007/s12274-010-1043-z
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn405759v
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 1546
ExternalDocumentID 24467172
10_1021_nn405759v
d136592008
Genre Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a449t-a7c6062cfa759f83d9b25d86a1ecadbda30043252d2e2e305d2720eb67800c53
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 07:22:57 EDT 2025
Thu Jul 10 20:23:17 EDT 2025
Thu Apr 03 07:04:39 EDT 2025
Tue Jul 01 01:33:38 EDT 2025
Thu Apr 24 22:56:27 EDT 2025
Thu Aug 27 13:42:41 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords graphene nanoribbon
field-effect transistor
array
helium ion beam lithography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a449t-a7c6062cfa759f83d9b25d86a1ecadbda30043252d2e2e305d2720eb67800c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://figshare.com/articles/journal_contribution/Patterning_Characterization_and_Chemical_Sensing_Applications_of_Graphene_Nanoribbon_Arrays_Down_to_5_nm_Using_Helium_Ion_Beam_Lithography/2320561
PMID 24467172
PQID 1502329805
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1762052162
proquest_miscellaneous_1502329805
pubmed_primary_24467172
crossref_primary_10_1021_nn405759v
crossref_citationtrail_10_1021_nn405759v
acs_journals_10_1021_nn405759v
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-25
PublicationDateYYYYMMDD 2014-02-25
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Balog R. (ref18/cit18) 2010; 9
Schedin F. (ref55/cit55) 2007; 6
Sokolov A. N. (ref42/cit42) 2013; 4
Elias D. C. (ref17/cit17) 2009; 323
Li W.-D. (ref51/cit51) 2012; 30
Fowler J. D. (ref56/cit56) 2009; 3
Wang X. (ref46/cit46) 2011; 6
Kim K. S. (ref4/cit4) 2009; 457
Ward B. W. (ref50/cit50) 2006; 24
Emani N. K. (ref7/cit7) 2012; 12
Pearce R. (ref57/cit57) 2011; 155
Badmaev A. (ref10/cit10) 2012; 6
Schwab M. G. (ref39/cit39) 2012; 134
Novoselov K. S. (ref1/cit1) 2004; 306
Bai J. (ref27/cit27) 2009; 9
Wei D. (ref31/cit31) 2013; 4
Ruffieux P. (ref38/cit38) 2012; 6
Pan Z. (ref45/cit45) 2011; 133
Yinxiao Y. (ref66/cit66) 2010; 31
Bell D. C. (ref53/cit53) 2009; 20
Lemme M. C. (ref52/cit52) 2009; 3
Li X. (ref59/cit59) 2009; 324
Kosynkin D. V. (ref30/cit30) 2009; 458
Solís-Fernández P. (ref43/cit43) 2013; 25
Lui C. H. (ref20/cit20) 2011; 7
Raza H. (ref67/cit67) 2008; 77
Li X. (ref36/cit36) 2008; 319
Son J. G. (ref44/cit44) 2013; 25
Liao L. (ref9/cit9) 2010; 467
Banhart F. (ref63/cit63) 2010; 5
Jiao L. (ref33/cit33) 2010; 3
Cai J. (ref37/cit37) 2010; 466
Liang X. (ref40/cit40) 2012; 6
Yan H. (ref6/cit6) 2013; 7
Pan M. (ref26/cit26) 2012; 12
Ferrari A. C. (ref60/cit60) 2000; 61
Huang B. (ref71/cit71) 2008; 112
Lee C. (ref5/cit5) 2008; 321
Lin H. C. (ref69/cit69) 2009; 94
Winston D. (ref49/cit49) 2009; 27
Hwang Y. (ref68/cit68) 2010; 108
Gu T. (ref8/cit8) 2012; 6
ref72/cit72
Kato T. (ref41/cit41) 2012; 7
Chen Z. (ref65/cit65) 2007; 40
Georgiou T. (ref14/cit14) 2012; 8
Ryu S. (ref54/cit54) 2011; 5
Abramova V. (ref28/cit28) 2013; 7
Ferrari A. C. (ref62/cit62) 2006; 97
Jiao L. (ref29/cit29) 2009; 458
Bao W. (ref70/cit70) 2010; 3
Son Y.-W. (ref24/cit24) 2006; 97
Han M. Y. (ref25/cit25) 2007; 98
Wang X. (ref34/cit34) 2010; 2
Koch M. (ref47/cit47) 2012; 7
Sidorkin V. (ref48/cit48) 2009; 27
Velasco J. (ref21/cit21) 2012; 7
Chang C.-K. (ref19/cit19) 2013; 7
Nakaharai S. (ref23/cit23) 2013; 7
Xie L. (ref32/cit32) 2011; 133
Zou K. (ref22/cit22) 2013; 13
Wang X. (ref35/cit35) 2008; 100
Balandin A. A. (ref3/cit3) 2008; 8
Yang H. (ref13/cit13) 2012; 336
Zeng C. (ref15/cit15) 2013; 13
Reina A. (ref58/cit58) 2008; 9
Yu W. J. (ref16/cit16) 2012; 12
Lin Y.-M. (ref11/cit11) 2010; 327
Radovic L. R. (ref73/cit73) 2005; 127
Balandin A. A. (ref2/cit2) 2011; 10
Gillen R. (ref61/cit61) 2009; 80
Duplock E. J. (ref64/cit64) 2004; 92
Britnell L. (ref12/cit12) 2012; 335
References_xml – volume: 12
  start-page: 1928
  year: 2012
  ident: ref26/cit26
  publication-title: Nano Lett.
  doi: 10.1021/nl204392s
– volume: 8
  start-page: 100
  year: 2012
  ident: ref14/cit14
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.224
– volume: 127
  start-page: 5917
  year: 2005
  ident: ref73/cit73
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja050124h
– volume: 4
  start-page: 1374
  year: 2013
  ident: ref31/cit31
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2366
– volume: 133
  start-page: 10394
  year: 2011
  ident: ref32/cit32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203860a
– volume: 25
  start-page: 6562
  year: 2013
  ident: ref43/cit43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302619
– volume: 321
  start-page: 385
  year: 2008
  ident: ref5/cit5
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 27
  start-page: L18
  year: 2009
  ident: ref48/cit48
  publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom.
  doi: 10.1116/1.3182742
– volume: 97
  start-page: 187401
  year: 2006
  ident: ref62/cit62
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 7
  start-page: 156
  year: 2012
  ident: ref21/cit21
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.251
– volume: 12
  start-page: 5202
  year: 2012
  ident: ref7/cit7
  publication-title: Nano Lett.
  doi: 10.1021/nl302322t
– volume: 6
  start-page: 563
  year: 2011
  ident: ref46/cit46
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.138
– volume: 20
  start-page: 455301
  year: 2009
  ident: ref53/cit53
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/45/455301
– ident: ref72/cit72
– volume: 25
  start-page: 4723
  year: 2013
  ident: ref44/cit44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300813
– volume: 335
  start-page: 947
  year: 2012
  ident: ref12/cit12
  publication-title: Science
  doi: 10.1126/science.1218461
– volume: 7
  start-page: 6894
  year: 2013
  ident: ref28/cit28
  publication-title: ACS Nano
  doi: 10.1021/nn403057t
– volume: 13
  start-page: 2370
  year: 2013
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl304541s
– volume: 6
  start-page: 3371
  year: 2012
  ident: ref10/cit10
  publication-title: ACS Nano
  doi: 10.1021/nn300393c
– volume: 97
  start-page: 216803
  year: 2006
  ident: ref24/cit24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.216803
– volume: 3
  start-page: 98
  year: 2010
  ident: ref70/cit70
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-1013-5
– volume: 323
  start-page: 610
  year: 2009
  ident: ref17/cit17
  publication-title: Science
  doi: 10.1126/science.1167130
– volume: 6
  start-page: 6930
  year: 2012
  ident: ref38/cit38
  publication-title: ACS Nano
  doi: 10.1021/nn3021376
– volume: 306
  start-page: 666
  year: 2004
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 134
  start-page: 18169
  year: 2012
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307697j
– volume: 458
  start-page: 872
  year: 2009
  ident: ref30/cit30
  publication-title: Nature
  doi: 10.1038/nature07872
– volume: 7
  start-page: 5694
  year: 2013
  ident: ref23/cit23
  publication-title: ACS Nano
  doi: 10.1021/nn401992q
– volume: 27
  start-page: 2702
  year: 2009
  ident: ref49/cit49
  publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
  doi: 10.1116/1.3250204
– volume: 7
  start-page: 1333
  year: 2013
  ident: ref19/cit19
  publication-title: ACS Nano
  doi: 10.1021/nn3049158
– volume: 458
  start-page: 877
  year: 2009
  ident: ref29/cit29
  publication-title: Nature
  doi: 10.1038/nature07919
– volume: 31
  start-page: 237
  year: 2010
  ident: ref66/cit66
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2009.2039915
– volume: 5
  start-page: 4123
  year: 2011
  ident: ref54/cit54
  publication-title: ACS Nano
  doi: 10.1021/nn200799y
– volume: 155
  start-page: 451
  year: 2011
  ident: ref57/cit57
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2010.12.046
– volume: 3
  start-page: 2674
  year: 2009
  ident: ref52/cit52
  publication-title: ACS Nano
  doi: 10.1021/nn900744z
– volume: 5
  start-page: 26
  year: 2010
  ident: ref63/cit63
  publication-title: ACS Nano
  doi: 10.1021/nn102598m
– volume: 108
  start-page: 034111
  year: 2010
  ident: ref68/cit68
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3465524
– volume: 9
  start-page: 30
  year: 2008
  ident: ref58/cit58
  publication-title: Nano Lett.
  doi: 10.1021/nl801827v
– volume: 40
  start-page: 228
  year: 2007
  ident: ref65/cit65
  publication-title: Phys. E
  doi: 10.1016/j.physe.2007.06.020
– volume: 10
  start-page: 569
  year: 2011
  ident: ref2/cit2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3064
– volume: 9
  start-page: 315
  year: 2010
  ident: ref18/cit18
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2710
– volume: 94
  start-page: 153508-3
  year: 2009
  ident: ref69/cit69
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 902
  year: 2008
  ident: ref3/cit3
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 336
  start-page: 1140
  year: 2012
  ident: ref13/cit13
  publication-title: Science
  doi: 10.1126/science.1220527
– volume: 30
  start-page: 06F304-4
  year: 2012
  ident: ref51/cit51
  publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom
– volume: 6
  start-page: 652
  year: 2007
  ident: ref55/cit55
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1967
– volume: 457
  start-page: 706
  year: 2009
  ident: ref4/cit4
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 7
  start-page: 713
  year: 2012
  ident: ref47/cit47
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.169
– volume: 327
  start-page: 662
  year: 2010
  ident: ref11/cit11
  publication-title: Science
  doi: 10.1126/science.1184289
– volume: 77
  start-page: 245434
  year: 2008
  ident: ref67/cit67
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.77.245434
– volume: 80
  start-page: 155418
  year: 2009
  ident: ref61/cit61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.155418
– volume: 98
  start-page: 206805
  year: 2007
  ident: ref25/cit25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.206805
– volume: 4
  start-page: 2402
  year: 2013
  ident: ref42/cit42
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3402
– volume: 7
  start-page: 651
  year: 2012
  ident: ref41/cit41
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.145
– volume: 133
  start-page: 17578
  year: 2011
  ident: ref45/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207517u
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref59/cit59
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 467
  start-page: 305
  year: 2010
  ident: ref9/cit9
  publication-title: Nature
  doi: 10.1038/nature09405
– volume: 12
  start-page: 246
  year: 2012
  ident: ref16/cit16
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3518
– volume: 13
  start-page: 369
  year: 2013
  ident: ref22/cit22
  publication-title: Nano Lett.
  doi: 10.1021/nl303375a
– volume: 3
  start-page: 301
  year: 2009
  ident: ref56/cit56
  publication-title: ACS Nano
  doi: 10.1021/nn800593m
– volume: 466
  start-page: 470
  year: 2010
  ident: ref37/cit37
  publication-title: Nature
  doi: 10.1038/nature09211
– volume: 6
  start-page: 554
  year: 2012
  ident: ref8/cit8
  publication-title: Nat. Photonics.
  doi: 10.1038/nphoton.2012.147
– volume: 6
  start-page: 9700
  year: 2012
  ident: ref40/cit40
  publication-title: ACS Nano
  doi: 10.1021/nn303127y
– volume: 100
  start-page: 206803
  year: 2008
  ident: ref35/cit35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.206803
– volume: 61
  start-page: 14095
  year: 2000
  ident: ref60/cit60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.14095
– volume: 92
  start-page: 225502
  year: 2004
  ident: ref64/cit64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.225502
– volume: 2
  start-page: 661
  year: 2010
  ident: ref34/cit34
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.719
– volume: 24
  start-page: 2871
  year: 2006
  ident: ref50/cit50
  publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom.
  doi: 10.1116/1.2357967
– volume: 9
  start-page: 2083
  year: 2009
  ident: ref27/cit27
  publication-title: Nano Lett.
  doi: 10.1021/nl900531n
– volume: 319
  start-page: 1229
  year: 2008
  ident: ref36/cit36
  publication-title: Science
  doi: 10.1126/science.1150878
– volume: 7
  start-page: 944
  year: 2011
  ident: ref20/cit20
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2102
– volume: 112
  start-page: 13442
  year: 2008
  ident: ref71/cit71
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8021024
– volume: 7
  start-page: 394
  year: 2013
  ident: ref6/cit6
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.57
– volume: 3
  start-page: 387
  year: 2010
  ident: ref33/cit33
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-1043-z
SSID ssj0057876
Score 2.5480962
Snippet Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs)...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1538
SubjectTerms Alignment
Arrays
Detection
Electronics
Graphene
Ion beams
Lithography
Nanostructure
Patterning
Title Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography
URI http://dx.doi.org/10.1021/nn405759v
https://www.ncbi.nlm.nih.gov/pubmed/24467172
https://www.proquest.com/docview/1502329805
https://www.proquest.com/docview/1762052162
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTxsxELYgvcABKI8SCmhoOXBgw66z3qyPEF6t2qpSQOK28mtLBPGiZINEfwM_mvE-olQlcB_L9no8883OzGdC9pVOmYk6qZcGWnth2_c9LkPjBSmPVdrRgWCu3_nnr-jyOvx-w27myNcZGXwaHFlbYAr-OE8-0AjhtcM_3V5tbp3GRWXqGENjxA81fdD0UOd61Ohf1zMDTxZ-5XyZnNbdOWU5yV1rnMuW-vs_WeNbS14hSxWuhONSET6SOWNXyeIU2-Aaef5dcGm6HyGH0J0QNZd9mIcgrIaaPgB6rq7d_oHjqfw2ZClcOH5rNI-AVjkb9qXMLM45FE8jOMV4HvIMGNgBFJUIgD6tPx7ANxQ6MWIAP_r5bUWRvU6uzs-uupde9RiDJ8KQ557oKIx1qEoFbiyN25pLynQcicAooaUW7YLdj1FNDTVoRbTL8BqJztD3FWtvkIbNrNkkILn0OaoGNb4IFYY7PMYY1ISKx5F7BK1JdvGwkuoujZIiTU6DZPJVm-SgPsdEVUzm7kGN-9dEv0xEH0r6jteE9mplSPByuYyJsCYb49QMIQ3lsc_ekEF34jqgI1z4p1KTJlMhdoowXqZb723pM1lAJBYWvfJsmzTy4djsINrJ5W6h7S9yU_nt
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOACH8iykQBkQBw51a2-8jvcYAiGFpEJqkHqz9uU2KllXsVMJfgM_mtm1HQIqj_vY-_DszDeenW8IeaV0zkzSz4M80jqIe2EYcBmbIMp5qvK-jgRz9c7To2T8Of5wwk4amhxXC4OTKPFNpU_i_2QXiA6s9dCCX14nNxCEUHd9bzA8bq2uU7ykziBjhIwwomUR2nzUeSBV_uqB_gArvXsZ3an7FPmJ-Vsl5_urSu6rb79xNv7fzO-SrQZlwqBWi3vkmrH3ye0N7sEH5Psnz6zpfovswXBN21xXZe6BsBpaMgE4drfc7SkMNrLdUOTw3rFdo7EEtNHFci5lYXHMpfhawluM7qEqgIFdgL-XAOjh5qsFHKLQGyMWMJlXZw1h9kMyG72bDcdB05ohEHHMq0D0FUY-VOUCF5anPc0lZTpNRGSU0FKLnuf6Y1RTQw3aFO3yvUaiawxDxXrbpGMLax4TkFyGHBWFmlDECoMfnmJEamLF08S1ROuSXdzUrDlZZeaT5jTK1rvaJa_bz5mphtfctdf4cpXoy7XoRU3mcZXQi1YnMjxqLn8irClWODRDgEN5GrK_yKBzcfXQCU78Ua1Q66EQSSUYPdOdfy3pObk5nk0n2eTw6OMTcgsxWuyr6NlT0qmWK_MMcVAld_0B-AHT_gJd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagSIg-cJeWowyIBx6aknjjbPy4bFlaKKVSi9S3yGdZ0XWqTbZS-Q38aMbOoQWV430Sj505MzOfCXmltGUmG9rIJlpH6SCOIy5TEyWW58oOdSKYn3f-dJDtfkk_nLCTNlH0szDIRIVvqkIR32v1ubYtwkDyxrkQXvCL6-SGL9f5Fr7R-KizvF74sqaKjFkyhhIdktDyo94LqepXL_SH0DK4mMkd8rlnLnSWfNte1HJbff8Nt_H_ub9LbrfRJowa8bhHrhl3n6wuYRA-ID8OA8Km_z2yBeMevrmZztwC4TR0oAJw5Lvd3SmMlqreUFp471Gv0WgC2upyPpWydLjmXFxWsINZPtQlMHAzCP0JgJ5uupjBHhK9NWIG-9P6awuc_ZAcT94dj3ej9oqGSKQpryMxVJgBUWUFbszmA80lZTrPRGKU0FKLQcD8Y1RTQw3aFu3rvkaii4xjxQZrZMWVzqwTkFzGHAWGmlikCpMgnmNmalLF88xfjbZBNvFgi1bDqiIUz2lS9Ke6QV53n7RQLb65v2bj7CrSlz3peQPqcRXRi04uClQ5X0cRzpQLXJphoEN5HrO_0KCT8XPRGTL-qBGqfimMqDLMounjf23pObl5uDMp9vcOPj4htzBUS8MwPXtKVur5wjzDcKiWm0EHfgI72QTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterning%2C+Characterization%2C+and+Chemical+Sensing+Applications+of+Graphene+Nanoribbon+Arrays+Down+to+5+nm+Using+Helium+Ion+Beam+Lithography&rft.jtitle=ACS+nano&rft.au=Abbas%2C+Ahmad+N.&rft.au=Liu%2C+Gang&rft.au=Liu%2C+Bilu&rft.au=Zhang%2C+Luyao&rft.date=2014-02-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=8&rft.issue=2&rft.spage=1538&rft.epage=1546&rft_id=info:doi/10.1021%2Fnn405759v&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nn405759v
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon