Hetero-cycloreversions Mediated by Photoinduced Electron Transfer

Discovered more than eight decades ago, the Diels–Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in na...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 47; no. 4; pp. 1359 - 1368
Main Authors Pérez-Ruiz, Raúl, Jiménez, M. Consuelo, Miranda, Miguel A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.04.2014
Subjects
Online AccessGet full text
ISSN0001-4842
1520-4898
1520-4898
DOI10.1021/ar4003224

Cover

Loading…
Abstract Discovered more than eight decades ago, the Diels–Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6–4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C–C or C–X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C–X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve CX/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.
AbstractList Discovered more than eight decades ago, the Diels–Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6–4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C–C or C–X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C–X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve CX/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.
Conspectus Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C=X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.
Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C═X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C═X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.
Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C═X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.
Author Jiménez, M. Consuelo
Pérez-Ruiz, Raúl
Miranda, Miguel A
AuthorAffiliation Departamento de Química/Instituto de Tecnología Química (UPV-CSIC)
Universitat Politècnica de València
AuthorAffiliation_xml – name: Universitat Politècnica de València
– name: Departamento de Química/Instituto de Tecnología Química (UPV-CSIC)
Author_xml – sequence: 1
  givenname: Raúl
  surname: Pérez-Ruiz
  fullname: Pérez-Ruiz, Raúl
– sequence: 2
  givenname: M. Consuelo
  surname: Jiménez
  fullname: Jiménez, M. Consuelo
  email: mcjimene@qim.upv.es
– sequence: 3
  givenname: Miguel A
  surname: Miranda
  fullname: Miranda, Miguel A
  email: mmiranda@qim.upv.es
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24702062$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYNU7EMX_gHpRtDF2LxmJlmWUq1Q0UVdh0zmDk6ZTmqSEfrvjbR1IQVX9x74zlmcM0S91raA0DXBDwRTMtGOY8wo5WdoQFKKEy6k6KEBxpjEn9M-Gnq_jpLyLL9AfcpzTHFGB2i6gADOJmZnGuvgC5yvbevHL1DWOkA5Lnbjtw8bbN2WnYl63oAJzrbjldOtr8BdovNKNx6uDneE3h_nq9kiWb4-Pc-my0RzLkOiCcUYipKmmDLOJM-kxLwSUaY6TXWVZwKKqihTqJgUjBlutEhFwWihs1KyEbrb526d_ezAB7WpvYGm0S3YziuS55jlgmXifzQlWU6lzHhEbw5oV2ygVFtXb7TbqWNDEZjsAeOs9w4qZeqgQywpOF03imD1s4H63SA67v84jqGn2Ns9q41Xa9u5NlZ4gvsGDDeP6A
CitedBy_id crossref_primary_10_1039_C4OB01416B
crossref_primary_10_3390_molecules26102911
crossref_primary_10_1016_j_tet_2015_06_071
crossref_primary_10_1021_acs_chemrev_6b00057
crossref_primary_10_3390_molecules22122203
crossref_primary_10_1039_D0SC04585C
crossref_primary_10_1002_anie_201601475
crossref_primary_10_1021_acscatal_8b01454
crossref_primary_10_1139_cjc_2014_0338
crossref_primary_10_1002_ange_201601475
crossref_primary_10_1016_j_tet_2016_05_078
crossref_primary_10_1021_acs_joc_3c00930
crossref_primary_10_1002_anie_201604349
crossref_primary_10_1002_chem_201803298
crossref_primary_10_1002_ange_201604349
crossref_primary_10_1039_C8GC01675E
crossref_primary_10_1007_s10965_018_1459_9
crossref_primary_10_1039_D0OB01450H
crossref_primary_10_1002_anie_201411974
crossref_primary_10_1002_chin_201424277
crossref_primary_10_3390_molecules21121683
crossref_primary_10_1002_ange_201411974
Cites_doi 10.1021/ol201984s
10.1016/S0021-9258(17)37228-9
10.1021/jo048708+
10.1002/1521-3773(20020301)41:5<767::AID-ANIE767>3.0.CO;2-B
10.1021/ol802181u
10.1002/anie.200804268
10.1055/s-2006-942521
10.1016/j.tet.2004.11.042
10.1021/ol0158516
10.1021/jp1035579
10.1039/B604529D
10.1002/anie.200600150
10.1246/bcsj.65.1472
10.1002/cbic.200600394
10.1038/nature09192
10.1021/jp0676383
10.1002/(SICI)1099-1395(199608)9:8<529::AID-POC813>3.0.CO;2-1
10.1021/ja904550d
10.1021/ol7014384
10.1021/ol100520m
10.1021/ja104480g
10.1021/ja108336t
10.1021/ja002541u
10.1016/j.tet.2008.12.059
10.1021/ja805214s
10.1126/science.275.5305.1465
10.1039/b513875b
10.1039/b209500a
10.1016/j.tet.2011.02.066
10.1007/s00706-002-0485-8
10.1021/jp045832o
10.1021/ol302717s
10.1039/b503205a
10.1002/ejoc.200300576
10.1021/cr00028a009
10.1021/jp900486e
10.1021/ja992244t
10.1021/ja0040363
10.1074/jbc.272.51.32580
10.1002/ejoc.200901325
10.1016/j.tetlet.2006.03.083
10.1039/B514921E
10.1016/j.tetlet.2005.10.083
10.1039/B815458A
10.1002/chem.200600074
10.1002/anie.201301567
10.1002/ijch.197000029
10.1021/ja952450a
10.1021/jo011103i
10.1021/jo034890n
10.1039/c39890001334
10.1021/jp034080f
10.1021/ja00150a050
10.1021/ja030543j
10.1016/S0040-4039(02)02328-6
10.1002/anie.201000590
10.1021/jp200177a
10.1021/ja026924z
10.1246/bcsj.62.96
10.1021/ja025697y
10.1039/b201740g
10.1021/ja00014a065
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/ar4003224
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 1368
ExternalDocumentID 24702062
10_1021_ar4003224
h58910430
Genre Journal Article
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a449t-a1200ebd25023439469904f85025a55af768ebfbd5ef39833c4ca858b32ba6d93
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Thu Jul 10 18:41:30 EDT 2025
Fri Jul 11 12:34:06 EDT 2025
Mon Jul 21 06:01:32 EDT 2025
Thu Apr 24 22:51:14 EDT 2025
Tue Jul 01 04:04:08 EDT 2025
Thu Aug 27 13:42:17 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a449t-a1200ebd25023439469904f85025a55af768ebfbd5ef39833c4ca858b32ba6d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10251/55410
PMID 24702062
PQID 1516729964
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1770378368
proquest_miscellaneous_1516729964
pubmed_primary_24702062
crossref_citationtrail_10_1021_ar4003224
crossref_primary_10_1021_ar4003224
acs_journals_10_1021_ar4003224
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-15
PublicationDateYYYYMMDD 2014-04-15
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kim S.-T. (ref17/cit17) 1994; 269
Stafforst T. (ref28/cit28) 2006; 45
Domingo L. R. (ref62/cit62) 2009; 113
Jia X. (ref12/cit12) 2006
Shima K. (ref58/cit58) 1992; 65
Joseph A. (ref32/cit32) 2002; 1
Argüello J. E. (ref61/cit61) 2007; 9
Borg O. A. (ref22/cit22) 2007; 111
Song Q.-H. (ref38/cit38) 2006; 4
Dandliker P. J. (ref42/cit42) 1997; 275
Joseph A. (ref30/cit30) 2000; 122
Tang W.-J. (ref36/cit36) 2006; 4
Kaiser A. (ref51/cit51) 2003; 134
Miranda M. A. (ref13/cit13) 1994; 94
Rehm D. (ref37/cit37) 1970; 8
Zhang W. (ref14/cit14) 2002; 43
Li J. (ref26/cit26) 2010; 466
Prakash G. (ref29/cit29) 1995; 117
Liu J. (ref55/cit55) 1996; 118
Izquierdo M. A. (ref46/cit46) 2005; 109
Yang J. (ref9/cit9) 2004; 126
Wang Y. (ref21/cit21) 2000; 122
Zhou Y. (ref11/cit11) 2005; 46
Trzcionka J. (ref34/cit34) 2007; 8
Miranda M. A. (ref49/cit49) 2002; 124
Cichon M. K. (ref20/cit20) 2002; 41
Miranda M. A. (ref45/cit45) 2002; 67
Han B. (ref10/cit10) 2006; 47
Yueh W. (ref5/cit5) 1996; 9
Yamamoto J. (ref18/cit18) 2009; 7
Perez-Ruiz R. (ref40/cit40) 2005; 70
Hurtley A. E. (ref8/cit8) 2011; 67
Argüello J. E. (ref59/cit59) 2010; 12
Xie M. (ref3/cit3) 2010; 49
Breeger S. (ref33/cit33) 2006; 12
Zhang W. (ref15/cit15) 2005; 61
Miranda M. A. (ref48/cit48) 2003
Asgatay S. (ref19/cit19) 2008; 130
Saettel N. J. (ref6/cit6) 2002; 124
Clivio P. (ref54/cit54) 1991; 113
Domratcheva T. (ref25/cit25) 2009; 131
Perez-Ruiz R. (ref41/cit41) 2006; 5
Perez-Ruiz R. (ref16/cit16) 2011; 13
Wu Q.-Q. (ref35/cit35) 2010; 114
Andreu I. (ref52/cit52) 2008; 10
Fukuzumi S. (ref7/cit7) 2003; 107
Palacios F. (ref4/cit4) 2010
Friedel M. G. (ref56/cit56) 2005; 3
Zhao X. (ref57/cit57) 1997; 272
Sadeghian K. (ref23/cit23) 2010; 132
Tambar U. K. (ref2/cit2) 2010; 132
Domingo L. R. (ref60/cit60) 2011; 115
Perez-Ruiz R. (ref50/cit50) 2012; 14
Yamamoto J. (ref27/cit27) 2013; 52
Kouznetsov V. V. (ref1/cit1) 2009; 65
Maul M. J. (ref24/cit24) 2008; 47
Pérez-Ruiz R. (ref39/cit39) 2003; 68
Joseph A. (ref31/cit31) 2001; 123
Izquierdo M. A. (ref47/cit47) 2004
Miranda M. A. (ref44/cit44) 2001; 3
Nakabayashi K. (ref43/cit43) 1989; 62
Fourrey J.-L. (ref53/cit53) 1989
References_xml – volume: 13
  start-page: 5116
  year: 2011
  ident: ref16/cit16
  publication-title: Org. Lett.
  doi: 10.1021/ol201984s
– volume: 269
  start-page: 8535
  year: 1994
  ident: ref17/cit17
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)37228-9
– volume: 70
  start-page: 1376
  year: 2005
  ident: ref40/cit40
  publication-title: J. Org. Chem.
  doi: 10.1021/jo048708+
– volume: 41
  start-page: 767
  year: 2002
  ident: ref20/cit20
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020301)41:5<767::AID-ANIE767>3.0.CO;2-B
– volume: 10
  start-page: 5207
  year: 2008
  ident: ref52/cit52
  publication-title: Org. Lett.
  doi: 10.1021/ol802181u
– volume: 47
  start-page: 10076
  year: 2008
  ident: ref24/cit24
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200804268
– start-page: 2831
  year: 2006
  ident: ref12/cit12
  publication-title: Synthesis
  doi: 10.1055/s-2006-942521
– volume: 61
  start-page: 1325
  year: 2005
  ident: ref15/cit15
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2004.11.042
– volume: 3
  start-page: 1965
  year: 2001
  ident: ref44/cit44
  publication-title: Org. Lett.
  doi: 10.1021/ol0158516
– volume: 114
  start-page: 9827
  year: 2010
  ident: ref35/cit35
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp1035579
– volume: 4
  start-page: 2575
  year: 2006
  ident: ref36/cit36
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/B604529D
– volume: 45
  start-page: 5376
  year: 2006
  ident: ref28/cit28
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200600150
– volume: 65
  start-page: 1472
  year: 1992
  ident: ref58/cit58
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.65.1472
– volume: 8
  start-page: 402
  year: 2007
  ident: ref34/cit34
  publication-title: ChemBioChem
  doi: 10.1002/cbic.200600394
– volume: 466
  start-page: 887
  year: 2010
  ident: ref26/cit26
  publication-title: Nature
  doi: 10.1038/nature09192
– volume: 111
  start-page: 2351
  year: 2007
  ident: ref22/cit22
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0676383
– volume: 9
  start-page: 529
  year: 1996
  ident: ref5/cit5
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/(SICI)1099-1395(199608)9:8<529::AID-POC813>3.0.CO;2-1
– volume: 131
  start-page: 17793
  year: 2009
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904550d
– volume: 9
  start-page: 3587
  year: 2007
  ident: ref61/cit61
  publication-title: Org. Lett.
  doi: 10.1021/ol7014384
– volume: 12
  start-page: 1884
  year: 2010
  ident: ref59/cit59
  publication-title: Org. Lett.
  doi: 10.1021/ol100520m
– volume: 132
  start-page: 10248
  year: 2010
  ident: ref2/cit2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104480g
– volume: 132
  start-page: 16285
  year: 2010
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108336t
– volume: 122
  start-page: 11219
  year: 2000
  ident: ref30/cit30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002541u
– volume: 65
  start-page: 2721
  year: 2009
  ident: ref1/cit1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.12.059
– volume: 130
  start-page: 12618
  year: 2008
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805214s
– volume: 275
  start-page: 1465
  year: 1997
  ident: ref42/cit42
  publication-title: Science
  doi: 10.1126/science.275.5305.1465
– volume: 5
  start-page: 51
  year: 2006
  ident: ref41/cit41
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b513875b
– start-page: 364
  year: 2003
  ident: ref48/cit48
  publication-title: Chem. Commun.
  doi: 10.1039/b209500a
– volume: 67
  start-page: 4442
  year: 2011
  ident: ref8/cit8
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2011.02.066
– volume: 134
  start-page: 343
  year: 2003
  ident: ref51/cit51
  publication-title: Monatsh. Chem.
  doi: 10.1007/s00706-002-0485-8
– volume: 109
  start-page: 2602
  year: 2005
  ident: ref46/cit46
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp045832o
– volume: 14
  start-page: 5700
  year: 2012
  ident: ref50/cit50
  publication-title: Org. Lett.
  doi: 10.1021/ol302717s
– volume: 3
  start-page: 1937
  year: 2005
  ident: ref56/cit56
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b503205a
– start-page: 1424
  year: 2004
  ident: ref47/cit47
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.200300576
– volume: 94
  start-page: 1063
  year: 1994
  ident: ref13/cit13
  publication-title: Chem. Rev.
  doi: 10.1021/cr00028a009
– volume: 113
  start-page: 5718
  year: 2009
  ident: ref62/cit62
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp900486e
– volume: 122
  start-page: 5510
  year: 2000
  ident: ref21/cit21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja992244t
– volume: 123
  start-page: 3145
  year: 2001
  ident: ref31/cit31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0040363
– volume: 272
  start-page: 32580
  year: 1997
  ident: ref57/cit57
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.51.32580
– start-page: 2091
  year: 2010
  ident: ref4/cit4
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.200901325
– volume: 47
  start-page: 3545
  year: 2006
  ident: ref10/cit10
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2006.03.083
– volume: 4
  start-page: 291
  year: 2006
  ident: ref38/cit38
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/B514921E
– volume: 46
  start-page: 8937
  year: 2005
  ident: ref11/cit11
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2005.10.083
– volume: 7
  start-page: 161
  year: 2009
  ident: ref18/cit18
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/B815458A
– volume: 12
  start-page: 6469
  year: 2006
  ident: ref33/cit33
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200600074
– volume: 52
  start-page: 7432
  year: 2013
  ident: ref27/cit27
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301567
– volume: 8
  start-page: 259
  year: 1970
  ident: ref37/cit37
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.197000029
– volume: 118
  start-page: 3287
  year: 1996
  ident: ref55/cit55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja952450a
– volume: 67
  start-page: 4138
  year: 2002
  ident: ref45/cit45
  publication-title: J. Org. Chem.
  doi: 10.1021/jo011103i
– volume: 68
  start-page: 10103
  year: 2003
  ident: ref39/cit39
  publication-title: J. Org. Chem.
  doi: 10.1021/jo034890n
– start-page: 1334
  year: 1989
  ident: ref53/cit53
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39890001334
– volume: 107
  start-page: 5412
  year: 2003
  ident: ref7/cit7
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp034080f
– volume: 117
  start-page: 11375
  year: 1995
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00150a050
– volume: 126
  start-page: 1634
  year: 2004
  ident: ref9/cit9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja030543j
– volume: 43
  start-page: 9433
  year: 2002
  ident: ref14/cit14
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(02)02328-6
– volume: 49
  start-page: 3799
  year: 2010
  ident: ref3/cit3
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000590
– volume: 115
  start-page: 5443
  year: 2011
  ident: ref60/cit60
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp200177a
– volume: 124
  start-page: 11552
  year: 2002
  ident: ref6/cit6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja026924z
– volume: 62
  start-page: 96
  year: 1989
  ident: ref43/cit43
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.62.96
– volume: 124
  start-page: 6532
  year: 2002
  ident: ref49/cit49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja025697y
– volume: 1
  start-page: 632
  year: 2002
  ident: ref32/cit32
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b201740g
– volume: 113
  start-page: 5481
  year: 1991
  ident: ref54/cit54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00014a065
SSID ssj0002467
Score 2.2679603
Snippet Discovered more than eight decades ago, the Diels–Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry....
Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry....
Conspectus Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1359
SubjectTerms Cleavage
Deoxyribonucleic acid
Electron transfer
Radicals
Repair
Single electrons
Splitting
Strategy
Title Hetero-cycloreversions Mediated by Photoinduced Electron Transfer
URI http://dx.doi.org/10.1021/ar4003224
https://www.ncbi.nlm.nih.gov/pubmed/24702062
https://www.proquest.com/docview/1516729964
https://www.proquest.com/docview/1770378368
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ZS8QwEB48HvTF-1gv6vHgS9WmSTZ9lHWXRVAEFXwrOSYIylZ2u4L-eqfXong9FqakmZlkvulcAEft2BhlpQyVVTrkCbpQO21Do898lHglRdmu6epa9u_55YN4mILDXyL4LDrVQ1IzUjs-DbNMErwu8E_ndnLdMi6rxpjkF3PFWdM-6POrhemxo6-m5xc8WdqV3iJcNNU5VTrJ08k4Nyf2_Xuzxr8-eQkWalwZnFeKsAxTOFiBuU4zzm0VzvtF4ksW2jdLLjq-Vv_JRsFVOasDXWDegpvHLM_ISSdxu6BbD8gJSnPmcbgG973uXacf1vMTQs15koc6oiOAxhHKYXFRASvJ9HCv6FFoIbQnVwONN06gjxMVx5ZbrYQyMTNauiReh5lBNsBNCDhqj0XQUjHkKFWilbMGyd6jPfPOt2CPGJzW-j9Ky9A2i9IJJ1pw3PA-tXX38WIIxvNPpAcT0peq5cZPRPuNAFNiZBHl0APMxrS0iCR5DIn8i6ZNF11Rv6JasFFJf7IU423aqGRb_21pG-YJPZVpPJHYgZl8OMZdQii52Ss19AOZbt13
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELdYeWAvA_bBykeXTXvYS7rGsV3nsaqKCqNo0kDiLfLHWZOYmqlJkcpfz9lJykBs4zHSJT7bZ99d7u53hHweplpLI0QsjVQxy8DGyioTazVwSeak4AGuaXYuppfs9IpfNTA5vhYGmSjxS2UI4t-jCyRf1QKlDaWPvSCbaIRQn743Gv9Y37qUiRofE91jJhltUYT-fNVrIFM-1EB_MSuDejnervsUBcZCVsl1f1npvrl9hNn4PM53yKvGyoxGtVjskg2YvyZb47a52xsymvo0mCI2K4MOO9zUf83KaBY6d4CN9Cr6_rOoCnTZcfNtNGna5URBuTlYvCWXx5OL8TRuuinEirGsilWCBwK0RZuHpr4eVqAiYk7iI1ecK4eOB2inLQeXZjJNDTNKcqlTqpWwWfqOdObFHN6TiIFy4EOYkgIDITMlrdGA2h_MwFnXJT1ciLw5DWUeAt00ydcr0SVf2i3ITYNF7lti_HqK9NOa9HcNwPEU0cd2H3NcSB_zUHMoljg0TwT6D5n4F80Qrz1fzSK7ZK8WgvVQlA1xooLu_29KH8jW9GJ2lp-dnH87IC_RrgoJPgk_JJ1qsYQjtF0q3QtCewf9ROXY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLcYSIwXtrENjm2sQ3vYS4G2SS59PN04HWx8SAyJtyofjiaBrujaQ4K_HiftVRtig8dKbpM4dmzXzs8AX_uZ1tIIEUsjVcxytLGyysRa7bkkd1LwANd0dCzG5-zwgl-0gaK_C0OTqOhLVUjie62-tq5FGEh21ZQkjiSQvYAln67zJXyD4Vl38qZMNBiZFCIzydI5ktCfr3orZKq_rdA_XMtgYkav4KSbXKgsudyZ1XrH3D3AbXz-7F_DauttRoNGPN7AAk7W4OVw3uTtLQzGvhymjM2tocAdb5q_Z1V0FDp4oI30bXT6u6xLCt1JCGy037bNiYKRczh9B-ej_V_Dcdx2VYgVY3kdq4QUA7Ul3yfN_L1YQQaJOUmPXHGuHAUgqJ22HF2WyywzzCjJpc5SrYTNs_ewOCknuAERQ-XQpzJligyFzJW0RiN5AWj2nHU92CJmFK1WVEVIeKdJ0XGiB9_m21CYFpPct8a4eox0uyO9boA4HiP6Mt_Lghjpcx9qguWMhuaJoDgiF_-j6dPx52-1yB6sN4LQDZWyPi1UpJtPLekzLJ9-HxU_D45_fIAVcq9CnU_CP8JiPZ3hJ3Jhar0V5PYeolPoWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hetero-cycloreversions+Mediated+by+Photoinduced+Electron+Transfer&rft.jtitle=Accounts+of+chemical+research&rft.au=Perez-Ruiz%2C+Raul&rft.au=Jimenez%2C+MConsuelo&rft.au=Miranda%2C+Miguel+A&rft.date=2014-04-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=47&rft.issue=4&rft.spage=1359&rft.epage=1368-1359-1368&rft_id=info:doi/10.1021%2Far4003224&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon