Hetero-cycloreversions Mediated by Photoinduced Electron Transfer
Discovered more than eight decades ago, the Diels–Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in na...
Saved in:
Published in | Accounts of chemical research Vol. 47; no. 4; pp. 1359 - 1368 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.04.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-4842 1520-4898 1520-4898 |
DOI | 10.1021/ar4003224 |
Cover
Loading…
Abstract | Discovered more than eight decades ago, the Diels–Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6–4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C–C or C–X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C–X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve CX/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings. |
---|---|
AbstractList | Discovered more than eight decades ago, the Diels–Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6–4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C–C or C–X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C–X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve CX/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings. Conspectus Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C=X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings. Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C═X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C═X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings. Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C═X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings. |
Author | Jiménez, M. Consuelo Pérez-Ruiz, Raúl Miranda, Miguel A |
AuthorAffiliation | Departamento de Química/Instituto de Tecnología Química (UPV-CSIC) Universitat Politècnica de València |
AuthorAffiliation_xml | – name: Universitat Politècnica de València – name: Departamento de Química/Instituto de Tecnología Química (UPV-CSIC) |
Author_xml | – sequence: 1 givenname: Raúl surname: Pérez-Ruiz fullname: Pérez-Ruiz, Raúl – sequence: 2 givenname: M. Consuelo surname: Jiménez fullname: Jiménez, M. Consuelo email: mcjimene@qim.upv.es – sequence: 3 givenname: Miguel A surname: Miranda fullname: Miranda, Miguel A email: mmiranda@qim.upv.es |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24702062$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYNU7EMX_gHpRtDF2LxmJlmWUq1Q0UVdh0zmDk6ZTmqSEfrvjbR1IQVX9x74zlmcM0S91raA0DXBDwRTMtGOY8wo5WdoQFKKEy6k6KEBxpjEn9M-Gnq_jpLyLL9AfcpzTHFGB2i6gADOJmZnGuvgC5yvbevHL1DWOkA5Lnbjtw8bbN2WnYl63oAJzrbjldOtr8BdovNKNx6uDneE3h_nq9kiWb4-Pc-my0RzLkOiCcUYipKmmDLOJM-kxLwSUaY6TXWVZwKKqihTqJgUjBlutEhFwWihs1KyEbrb526d_ezAB7WpvYGm0S3YziuS55jlgmXifzQlWU6lzHhEbw5oV2ygVFtXb7TbqWNDEZjsAeOs9w4qZeqgQywpOF03imD1s4H63SA67v84jqGn2Ns9q41Xa9u5NlZ4gvsGDDeP6A |
CitedBy_id | crossref_primary_10_1039_C4OB01416B crossref_primary_10_3390_molecules26102911 crossref_primary_10_1016_j_tet_2015_06_071 crossref_primary_10_1021_acs_chemrev_6b00057 crossref_primary_10_3390_molecules22122203 crossref_primary_10_1039_D0SC04585C crossref_primary_10_1002_anie_201601475 crossref_primary_10_1021_acscatal_8b01454 crossref_primary_10_1139_cjc_2014_0338 crossref_primary_10_1002_ange_201601475 crossref_primary_10_1016_j_tet_2016_05_078 crossref_primary_10_1021_acs_joc_3c00930 crossref_primary_10_1002_anie_201604349 crossref_primary_10_1002_chem_201803298 crossref_primary_10_1002_ange_201604349 crossref_primary_10_1039_C8GC01675E crossref_primary_10_1007_s10965_018_1459_9 crossref_primary_10_1039_D0OB01450H crossref_primary_10_1002_anie_201411974 crossref_primary_10_1002_chin_201424277 crossref_primary_10_3390_molecules21121683 crossref_primary_10_1002_ange_201411974 |
Cites_doi | 10.1021/ol201984s 10.1016/S0021-9258(17)37228-9 10.1021/jo048708+ 10.1002/1521-3773(20020301)41:5<767::AID-ANIE767>3.0.CO;2-B 10.1021/ol802181u 10.1002/anie.200804268 10.1055/s-2006-942521 10.1016/j.tet.2004.11.042 10.1021/ol0158516 10.1021/jp1035579 10.1039/B604529D 10.1002/anie.200600150 10.1246/bcsj.65.1472 10.1002/cbic.200600394 10.1038/nature09192 10.1021/jp0676383 10.1002/(SICI)1099-1395(199608)9:8<529::AID-POC813>3.0.CO;2-1 10.1021/ja904550d 10.1021/ol7014384 10.1021/ol100520m 10.1021/ja104480g 10.1021/ja108336t 10.1021/ja002541u 10.1016/j.tet.2008.12.059 10.1021/ja805214s 10.1126/science.275.5305.1465 10.1039/b513875b 10.1039/b209500a 10.1016/j.tet.2011.02.066 10.1007/s00706-002-0485-8 10.1021/jp045832o 10.1021/ol302717s 10.1039/b503205a 10.1002/ejoc.200300576 10.1021/cr00028a009 10.1021/jp900486e 10.1021/ja992244t 10.1021/ja0040363 10.1074/jbc.272.51.32580 10.1002/ejoc.200901325 10.1016/j.tetlet.2006.03.083 10.1039/B514921E 10.1016/j.tetlet.2005.10.083 10.1039/B815458A 10.1002/chem.200600074 10.1002/anie.201301567 10.1002/ijch.197000029 10.1021/ja952450a 10.1021/jo011103i 10.1021/jo034890n 10.1039/c39890001334 10.1021/jp034080f 10.1021/ja00150a050 10.1021/ja030543j 10.1016/S0040-4039(02)02328-6 10.1002/anie.201000590 10.1021/jp200177a 10.1021/ja026924z 10.1246/bcsj.62.96 10.1021/ja025697y 10.1039/b201740g 10.1021/ja00014a065 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/ar4003224 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 1368 |
ExternalDocumentID | 24702062 10_1021_ar4003224 h58910430 |
Genre | Journal Article |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a449t-a1200ebd25023439469904f85025a55af768ebfbd5ef39833c4ca858b32ba6d93 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Thu Jul 10 18:41:30 EDT 2025 Fri Jul 11 12:34:06 EDT 2025 Mon Jul 21 06:01:32 EDT 2025 Thu Apr 24 22:51:14 EDT 2025 Tue Jul 01 04:04:08 EDT 2025 Thu Aug 27 13:42:17 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a449t-a1200ebd25023439469904f85025a55af768ebfbd5ef39833c4ca858b32ba6d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10251/55410 |
PMID | 24702062 |
PQID | 1516729964 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1770378368 proquest_miscellaneous_1516729964 pubmed_primary_24702062 crossref_citationtrail_10_1021_ar4003224 crossref_primary_10_1021_ar4003224 acs_journals_10_1021_ar4003224 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-15 |
PublicationDateYYYYMMDD | 2014-04-15 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kim S.-T. (ref17/cit17) 1994; 269 Stafforst T. (ref28/cit28) 2006; 45 Domingo L. R. (ref62/cit62) 2009; 113 Jia X. (ref12/cit12) 2006 Shima K. (ref58/cit58) 1992; 65 Joseph A. (ref32/cit32) 2002; 1 Argüello J. E. (ref61/cit61) 2007; 9 Borg O. A. (ref22/cit22) 2007; 111 Song Q.-H. (ref38/cit38) 2006; 4 Dandliker P. J. (ref42/cit42) 1997; 275 Joseph A. (ref30/cit30) 2000; 122 Tang W.-J. (ref36/cit36) 2006; 4 Kaiser A. (ref51/cit51) 2003; 134 Miranda M. A. (ref13/cit13) 1994; 94 Rehm D. (ref37/cit37) 1970; 8 Zhang W. (ref14/cit14) 2002; 43 Li J. (ref26/cit26) 2010; 466 Prakash G. (ref29/cit29) 1995; 117 Liu J. (ref55/cit55) 1996; 118 Izquierdo M. A. (ref46/cit46) 2005; 109 Yang J. (ref9/cit9) 2004; 126 Wang Y. (ref21/cit21) 2000; 122 Zhou Y. (ref11/cit11) 2005; 46 Trzcionka J. (ref34/cit34) 2007; 8 Miranda M. A. (ref49/cit49) 2002; 124 Cichon M. K. (ref20/cit20) 2002; 41 Miranda M. A. (ref45/cit45) 2002; 67 Han B. (ref10/cit10) 2006; 47 Yueh W. (ref5/cit5) 1996; 9 Yamamoto J. (ref18/cit18) 2009; 7 Perez-Ruiz R. (ref40/cit40) 2005; 70 Hurtley A. E. (ref8/cit8) 2011; 67 Argüello J. E. (ref59/cit59) 2010; 12 Xie M. (ref3/cit3) 2010; 49 Breeger S. (ref33/cit33) 2006; 12 Zhang W. (ref15/cit15) 2005; 61 Miranda M. A. (ref48/cit48) 2003 Asgatay S. (ref19/cit19) 2008; 130 Saettel N. J. (ref6/cit6) 2002; 124 Clivio P. (ref54/cit54) 1991; 113 Domratcheva T. (ref25/cit25) 2009; 131 Perez-Ruiz R. (ref41/cit41) 2006; 5 Perez-Ruiz R. (ref16/cit16) 2011; 13 Wu Q.-Q. (ref35/cit35) 2010; 114 Andreu I. (ref52/cit52) 2008; 10 Fukuzumi S. (ref7/cit7) 2003; 107 Palacios F. (ref4/cit4) 2010 Friedel M. G. (ref56/cit56) 2005; 3 Zhao X. (ref57/cit57) 1997; 272 Sadeghian K. (ref23/cit23) 2010; 132 Tambar U. K. (ref2/cit2) 2010; 132 Domingo L. R. (ref60/cit60) 2011; 115 Perez-Ruiz R. (ref50/cit50) 2012; 14 Yamamoto J. (ref27/cit27) 2013; 52 Kouznetsov V. V. (ref1/cit1) 2009; 65 Maul M. J. (ref24/cit24) 2008; 47 Pérez-Ruiz R. (ref39/cit39) 2003; 68 Joseph A. (ref31/cit31) 2001; 123 Izquierdo M. A. (ref47/cit47) 2004 Miranda M. A. (ref44/cit44) 2001; 3 Nakabayashi K. (ref43/cit43) 1989; 62 Fourrey J.-L. (ref53/cit53) 1989 |
References_xml | – volume: 13 start-page: 5116 year: 2011 ident: ref16/cit16 publication-title: Org. Lett. doi: 10.1021/ol201984s – volume: 269 start-page: 8535 year: 1994 ident: ref17/cit17 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)37228-9 – volume: 70 start-page: 1376 year: 2005 ident: ref40/cit40 publication-title: J. Org. Chem. doi: 10.1021/jo048708+ – volume: 41 start-page: 767 year: 2002 ident: ref20/cit20 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020301)41:5<767::AID-ANIE767>3.0.CO;2-B – volume: 10 start-page: 5207 year: 2008 ident: ref52/cit52 publication-title: Org. Lett. doi: 10.1021/ol802181u – volume: 47 start-page: 10076 year: 2008 ident: ref24/cit24 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200804268 – start-page: 2831 year: 2006 ident: ref12/cit12 publication-title: Synthesis doi: 10.1055/s-2006-942521 – volume: 61 start-page: 1325 year: 2005 ident: ref15/cit15 publication-title: Tetrahedron doi: 10.1016/j.tet.2004.11.042 – volume: 3 start-page: 1965 year: 2001 ident: ref44/cit44 publication-title: Org. Lett. doi: 10.1021/ol0158516 – volume: 114 start-page: 9827 year: 2010 ident: ref35/cit35 publication-title: J. Phys. Chem. B doi: 10.1021/jp1035579 – volume: 4 start-page: 2575 year: 2006 ident: ref36/cit36 publication-title: Org. Biomol. Chem. doi: 10.1039/B604529D – volume: 45 start-page: 5376 year: 2006 ident: ref28/cit28 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200600150 – volume: 65 start-page: 1472 year: 1992 ident: ref58/cit58 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.65.1472 – volume: 8 start-page: 402 year: 2007 ident: ref34/cit34 publication-title: ChemBioChem doi: 10.1002/cbic.200600394 – volume: 466 start-page: 887 year: 2010 ident: ref26/cit26 publication-title: Nature doi: 10.1038/nature09192 – volume: 111 start-page: 2351 year: 2007 ident: ref22/cit22 publication-title: J. Phys. Chem. A doi: 10.1021/jp0676383 – volume: 9 start-page: 529 year: 1996 ident: ref5/cit5 publication-title: J. Phys. Org. Chem. doi: 10.1002/(SICI)1099-1395(199608)9:8<529::AID-POC813>3.0.CO;2-1 – volume: 131 start-page: 17793 year: 2009 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904550d – volume: 9 start-page: 3587 year: 2007 ident: ref61/cit61 publication-title: Org. Lett. doi: 10.1021/ol7014384 – volume: 12 start-page: 1884 year: 2010 ident: ref59/cit59 publication-title: Org. Lett. doi: 10.1021/ol100520m – volume: 132 start-page: 10248 year: 2010 ident: ref2/cit2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104480g – volume: 132 start-page: 16285 year: 2010 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja108336t – volume: 122 start-page: 11219 year: 2000 ident: ref30/cit30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002541u – volume: 65 start-page: 2721 year: 2009 ident: ref1/cit1 publication-title: Tetrahedron doi: 10.1016/j.tet.2008.12.059 – volume: 130 start-page: 12618 year: 2008 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805214s – volume: 275 start-page: 1465 year: 1997 ident: ref42/cit42 publication-title: Science doi: 10.1126/science.275.5305.1465 – volume: 5 start-page: 51 year: 2006 ident: ref41/cit41 publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b513875b – start-page: 364 year: 2003 ident: ref48/cit48 publication-title: Chem. Commun. doi: 10.1039/b209500a – volume: 67 start-page: 4442 year: 2011 ident: ref8/cit8 publication-title: Tetrahedron doi: 10.1016/j.tet.2011.02.066 – volume: 134 start-page: 343 year: 2003 ident: ref51/cit51 publication-title: Monatsh. Chem. doi: 10.1007/s00706-002-0485-8 – volume: 109 start-page: 2602 year: 2005 ident: ref46/cit46 publication-title: J. Phys. Chem. A doi: 10.1021/jp045832o – volume: 14 start-page: 5700 year: 2012 ident: ref50/cit50 publication-title: Org. Lett. doi: 10.1021/ol302717s – volume: 3 start-page: 1937 year: 2005 ident: ref56/cit56 publication-title: Org. Biomol. Chem. doi: 10.1039/b503205a – start-page: 1424 year: 2004 ident: ref47/cit47 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.200300576 – volume: 94 start-page: 1063 year: 1994 ident: ref13/cit13 publication-title: Chem. Rev. doi: 10.1021/cr00028a009 – volume: 113 start-page: 5718 year: 2009 ident: ref62/cit62 publication-title: J. Phys. Chem. A doi: 10.1021/jp900486e – volume: 122 start-page: 5510 year: 2000 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja992244t – volume: 123 start-page: 3145 year: 2001 ident: ref31/cit31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0040363 – volume: 272 start-page: 32580 year: 1997 ident: ref57/cit57 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.51.32580 – start-page: 2091 year: 2010 ident: ref4/cit4 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.200901325 – volume: 47 start-page: 3545 year: 2006 ident: ref10/cit10 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2006.03.083 – volume: 4 start-page: 291 year: 2006 ident: ref38/cit38 publication-title: Org. Biomol. Chem. doi: 10.1039/B514921E – volume: 46 start-page: 8937 year: 2005 ident: ref11/cit11 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2005.10.083 – volume: 7 start-page: 161 year: 2009 ident: ref18/cit18 publication-title: Org. Biomol. Chem. doi: 10.1039/B815458A – volume: 12 start-page: 6469 year: 2006 ident: ref33/cit33 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200600074 – volume: 52 start-page: 7432 year: 2013 ident: ref27/cit27 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301567 – volume: 8 start-page: 259 year: 1970 ident: ref37/cit37 publication-title: Isr. J. Chem. doi: 10.1002/ijch.197000029 – volume: 118 start-page: 3287 year: 1996 ident: ref55/cit55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja952450a – volume: 67 start-page: 4138 year: 2002 ident: ref45/cit45 publication-title: J. Org. Chem. doi: 10.1021/jo011103i – volume: 68 start-page: 10103 year: 2003 ident: ref39/cit39 publication-title: J. Org. Chem. doi: 10.1021/jo034890n – start-page: 1334 year: 1989 ident: ref53/cit53 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39890001334 – volume: 107 start-page: 5412 year: 2003 ident: ref7/cit7 publication-title: J. Phys. Chem. A doi: 10.1021/jp034080f – volume: 117 start-page: 11375 year: 1995 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00150a050 – volume: 126 start-page: 1634 year: 2004 ident: ref9/cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja030543j – volume: 43 start-page: 9433 year: 2002 ident: ref14/cit14 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(02)02328-6 – volume: 49 start-page: 3799 year: 2010 ident: ref3/cit3 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000590 – volume: 115 start-page: 5443 year: 2011 ident: ref60/cit60 publication-title: J. Phys. Chem. A doi: 10.1021/jp200177a – volume: 124 start-page: 11552 year: 2002 ident: ref6/cit6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026924z – volume: 62 start-page: 96 year: 1989 ident: ref43/cit43 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.62.96 – volume: 124 start-page: 6532 year: 2002 ident: ref49/cit49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja025697y – volume: 1 start-page: 632 year: 2002 ident: ref32/cit32 publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b201740g – volume: 113 start-page: 5481 year: 1991 ident: ref54/cit54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00014a065 |
SSID | ssj0002467 |
Score | 2.2679603 |
Snippet | Discovered more than eight decades ago, the Diels–Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry.... Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry.... Conspectus Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1359 |
SubjectTerms | Cleavage Deoxyribonucleic acid Electron transfer Radicals Repair Single electrons Splitting Strategy |
Title | Hetero-cycloreversions Mediated by Photoinduced Electron Transfer |
URI | http://dx.doi.org/10.1021/ar4003224 https://www.ncbi.nlm.nih.gov/pubmed/24702062 https://www.proquest.com/docview/1516729964 https://www.proquest.com/docview/1770378368 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ZS8QwEB48HvTF-1gv6vHgS9WmSTZ9lHWXRVAEFXwrOSYIylZ2u4L-eqfXong9FqakmZlkvulcAEft2BhlpQyVVTrkCbpQO21Do898lHglRdmu6epa9u_55YN4mILDXyL4LDrVQ1IzUjs-DbNMErwu8E_ndnLdMi6rxpjkF3PFWdM-6POrhemxo6-m5xc8WdqV3iJcNNU5VTrJ08k4Nyf2_Xuzxr8-eQkWalwZnFeKsAxTOFiBuU4zzm0VzvtF4ksW2jdLLjq-Vv_JRsFVOasDXWDegpvHLM_ISSdxu6BbD8gJSnPmcbgG973uXacf1vMTQs15koc6oiOAxhHKYXFRASvJ9HCv6FFoIbQnVwONN06gjxMVx5ZbrYQyMTNauiReh5lBNsBNCDhqj0XQUjHkKFWilbMGyd6jPfPOt2CPGJzW-j9Ky9A2i9IJJ1pw3PA-tXX38WIIxvNPpAcT0peq5cZPRPuNAFNiZBHl0APMxrS0iCR5DIn8i6ZNF11Rv6JasFFJf7IU423aqGRb_21pG-YJPZVpPJHYgZl8OMZdQii52Ss19AOZbt13 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELdYeWAvA_bBykeXTXvYS7rGsV3nsaqKCqNo0kDiLfLHWZOYmqlJkcpfz9lJykBs4zHSJT7bZ99d7u53hHweplpLI0QsjVQxy8DGyioTazVwSeak4AGuaXYuppfs9IpfNTA5vhYGmSjxS2UI4t-jCyRf1QKlDaWPvSCbaIRQn743Gv9Y37qUiRofE91jJhltUYT-fNVrIFM-1EB_MSuDejnervsUBcZCVsl1f1npvrl9hNn4PM53yKvGyoxGtVjskg2YvyZb47a52xsymvo0mCI2K4MOO9zUf83KaBY6d4CN9Cr6_rOoCnTZcfNtNGna5URBuTlYvCWXx5OL8TRuuinEirGsilWCBwK0RZuHpr4eVqAiYk7iI1ecK4eOB2inLQeXZjJNDTNKcqlTqpWwWfqOdObFHN6TiIFy4EOYkgIDITMlrdGA2h_MwFnXJT1ciLw5DWUeAt00ydcr0SVf2i3ITYNF7lti_HqK9NOa9HcNwPEU0cd2H3NcSB_zUHMoljg0TwT6D5n4F80Qrz1fzSK7ZK8WgvVQlA1xooLu_29KH8jW9GJ2lp-dnH87IC_RrgoJPgk_JJ1qsYQjtF0q3QtCewf9ROXY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLcYSIwXtrENjm2sQ3vYS4G2SS59PN04HWx8SAyJtyofjiaBrujaQ4K_HiftVRtig8dKbpM4dmzXzs8AX_uZ1tIIEUsjVcxytLGyysRa7bkkd1LwANd0dCzG5-zwgl-0gaK_C0OTqOhLVUjie62-tq5FGEh21ZQkjiSQvYAln67zJXyD4Vl38qZMNBiZFCIzydI5ktCfr3orZKq_rdA_XMtgYkav4KSbXKgsudyZ1XrH3D3AbXz-7F_DauttRoNGPN7AAk7W4OVw3uTtLQzGvhymjM2tocAdb5q_Z1V0FDp4oI30bXT6u6xLCt1JCGy037bNiYKRczh9B-ej_V_Dcdx2VYgVY3kdq4QUA7Ul3yfN_L1YQQaJOUmPXHGuHAUgqJ22HF2WyywzzCjJpc5SrYTNs_ewOCknuAERQ-XQpzJligyFzJW0RiN5AWj2nHU92CJmFK1WVEVIeKdJ0XGiB9_m21CYFpPct8a4eox0uyO9boA4HiP6Mt_Lghjpcx9qguWMhuaJoDgiF_-j6dPx52-1yB6sN4LQDZWyPi1UpJtPLekzLJ9-HxU_D45_fIAVcq9CnU_CP8JiPZ3hJ3Jhar0V5PYeolPoWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hetero-cycloreversions+Mediated+by+Photoinduced+Electron+Transfer&rft.jtitle=Accounts+of+chemical+research&rft.au=Perez-Ruiz%2C+Raul&rft.au=Jimenez%2C+MConsuelo&rft.au=Miranda%2C+Miguel+A&rft.date=2014-04-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=47&rft.issue=4&rft.spage=1359&rft.epage=1368-1359-1368&rft_id=info:doi/10.1021%2Far4003224&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |