Growth Intermediates for CVD Graphene on Cu(111): Carbon Clusters and Defective Graphene
Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth in...
Saved in:
Published in | Journal of the American Chemical Society Vol. 135; no. 22; pp. 8409 - 8414 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth intermediates of CVD graphene on metal films. Here, we use in situ low-temperature scanning tunneling microscopy (LT-STM) to reveal the graphene growth intermediates at different stages via thermal decomposition of methane on Cu(111). We clearly demonstrate that various carbon clusters, including carbon dimers, carbon rectangles, and ‘zigzag’ and ‘armchair’-like carbon chains, are the actual growth intermediates prior to the graphene formation. Upon the saturation of these carbon clusters, they can transform into defective graphene possessing pseudoperiodic corrugations and vacancies. These vacancy-defects can only be effectively healed in the presence of methane via high temperature annealing at 800 °C and result in the formation of vacancy-free monolayer graphene on Cu(111). |
---|---|
AbstractList | Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth intermediates of CVD graphene on metal films. Here, we use in situ low-temperature scanning tunneling microscopy (LT-STM) to reveal the graphene growth intermediates at different stages via thermal decomposition of methane on Cu(111). We clearly demonstrate that various carbon clusters, including carbon dimers, carbon rectangles, and 'zigzag' and 'armchair'-like carbon chains, are the actual growth intermediates prior to the graphene formation. Upon the saturation of these carbon clusters, they can transform into defective graphene possessing pseudoperiodic corrugations and vacancies. These vacancy-defects can only be effectively healed in the presence of methane via high temperature annealing at 800 °C and result in the formation of vacancy-free monolayer graphene on Cu(111).Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth intermediates of CVD graphene on metal films. Here, we use in situ low-temperature scanning tunneling microscopy (LT-STM) to reveal the graphene growth intermediates at different stages via thermal decomposition of methane on Cu(111). We clearly demonstrate that various carbon clusters, including carbon dimers, carbon rectangles, and 'zigzag' and 'armchair'-like carbon chains, are the actual growth intermediates prior to the graphene formation. Upon the saturation of these carbon clusters, they can transform into defective graphene possessing pseudoperiodic corrugations and vacancies. These vacancy-defects can only be effectively healed in the presence of methane via high temperature annealing at 800 °C and result in the formation of vacancy-free monolayer graphene on Cu(111). Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth intermediates of CVD graphene on metal films. Here, we use in situ low-temperature scanning tunneling microscopy (LT-STM) to reveal the graphene growth intermediates at different stages via thermal decomposition of methane on Cu(111). We clearly demonstrate that various carbon clusters, including carbon dimers, carbon rectangles, and 'zigzag' and 'armchair'-like carbon chains, are the actual growth intermediates prior to the graphene formation. Upon the saturation of these carbon clusters, they can transform into defective graphene possessing pseudoperiodic corrugations and vacancies. These vacancy-defects can only be effectively healed in the presence of methane via high temperature annealing at 800 °C and result in the formation of vacancy-free monolayer graphene on Cu(111). |
Author | Feng, Yuanping Chen, Wei Niu, Tianchao Zhou, Miao Zhang, Jialin |
AuthorAffiliation | Department of Chemistry, National University of Singapore Department of Physics, National University of Singapore |
AuthorAffiliation_xml | – name: Department of Physics, National University of Singapore – name: Department of Chemistry, National University of Singapore |
Author_xml | – sequence: 1 givenname: Tianchao surname: Niu fullname: Niu, Tianchao – sequence: 2 givenname: Miao surname: Zhou fullname: Zhou, Miao – sequence: 3 givenname: Jialin surname: Zhang fullname: Zhang, Jialin – sequence: 4 givenname: Yuanping surname: Feng fullname: Feng, Yuanping – sequence: 5 givenname: Wei surname: Chen fullname: Chen, Wei email: phycw@nus.edu.sg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23675983$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9LxDAQxYOs6K568AtILsJ6qOZf09SbVF0XBC8q3kraTrFLN1mTVPHbG13dgwieZh783sC8N0EjYw0gdEjJKSWMni20IDxV3G-hMU0ZSVLK5AiNCSEsyZTku2ji_SJKwRTdQbuMyyzNFR-jp5mzb-EZz00At4Sm0wE8bq3DxeMlnjm9egYD2BpcDFNK6ck5LrSrPnU_-OjxWJsGX0ILdeheYWPZR9ut7j0cfM899HB9dV_cJLd3s3lxcZtoIfKQqDSXUteikbTKoI0LV1nOGBM0r4CwuoWodQpKU0EzaNo0bQiRkGvZVkzxPTRd3105-zKAD-Wy8zX0vTZgB1-y-DUXSnH5L0pFnlOmyNfVo290qGIq5cp1S-3ey5_gInCyBmpnvXfQbhBKys9Syk0pkT37xdZd0KGzJjjd9X86jtcOXftyYQdnYoR_cB-79pdL |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_9b11942 crossref_primary_10_1039_C5NR06016H crossref_primary_10_1016_j_seppur_2025_131684 crossref_primary_10_1063_1_4864155 crossref_primary_10_1103_PhysRevLett_132_196201 crossref_primary_10_1186_s40580_020_00237_4 crossref_primary_10_1007_s11664_021_09266_z crossref_primary_10_1021_jp4101653 crossref_primary_10_1038_s41598_018_27026_8 crossref_primary_10_1002_anie_201406570 crossref_primary_10_7498_aps_66_058101 crossref_primary_10_1039_C9CC09638H crossref_primary_10_1002_smll_201401458 crossref_primary_10_1016_j_jallcom_2017_09_251 crossref_primary_10_1021_nn500209d crossref_primary_10_1016_j_carbon_2023_118303 crossref_primary_10_1088_0957_4484_27_33_335602 crossref_primary_10_1103_PhysRevB_91_045427 crossref_primary_10_1016_j_physb_2018_10_035 crossref_primary_10_1016_j_cplett_2018_12_001 crossref_primary_10_1021_acs_jpcb_7b06956 crossref_primary_10_2139_ssrn_3915002 crossref_primary_10_1021_acs_analchem_7b05139 crossref_primary_10_1002_adma_202104308 crossref_primary_10_3390_ma17102448 crossref_primary_10_1021_acs_jpclett_0c02717 crossref_primary_10_1016_j_physe_2022_115465 crossref_primary_10_1063_1_4958859 crossref_primary_10_1063_1_4966116 crossref_primary_10_1002_adma_201903615 crossref_primary_10_1103_PhysRevB_100_235439 crossref_primary_10_1021_acsmaterialslett_1c00783 crossref_primary_10_1088_2053_1583_ab31bd crossref_primary_10_1002_adma_201605448 crossref_primary_10_1002_adma_202108258 crossref_primary_10_1021_acs_jpclett_2c01481 crossref_primary_10_1016_j_vacuum_2024_113641 crossref_primary_10_7498_aps_66_217101 crossref_primary_10_1021_acs_jpcc_9b04700 crossref_primary_10_1021_jp512163n crossref_primary_10_1016_j_carbon_2014_06_024 crossref_primary_10_1016_j_jcat_2016_10_023 crossref_primary_10_1021_acsnano_5b03037 crossref_primary_10_1016_j_carbon_2024_118866 crossref_primary_10_1021_acsnano_9b09588 crossref_primary_10_1038_srep04431 crossref_primary_10_1007_s12274_023_6260_3 crossref_primary_10_1002_smll_201402289 crossref_primary_10_1016_j_apsusc_2020_147722 crossref_primary_10_1039_c3cp53390e crossref_primary_10_1039_C3NR04694J crossref_primary_10_1039_D2CP00906D crossref_primary_10_1088_0965_0393_23_2_025001 crossref_primary_10_1002_ange_201406570 crossref_primary_10_1021_acs_chemmater_0c02121 crossref_primary_10_1039_C3CP53933D crossref_primary_10_1016_j_vacuum_2023_112665 crossref_primary_10_1088_0953_8984_28_3_034003 crossref_primary_10_2139_ssrn_4133353 crossref_primary_10_1021_jp5041025 crossref_primary_10_1002_chem_202401031 crossref_primary_10_1016_j_carbon_2024_119285 crossref_primary_10_1016_j_carbon_2015_11_070 crossref_primary_10_1016_j_susc_2018_01_007 crossref_primary_10_1002_adma_201903266 crossref_primary_10_1063_5_0052870 crossref_primary_10_1016_j_progsurf_2014_11_001 crossref_primary_10_1063_1_4998770 crossref_primary_10_1103_PhysRevE_106_014802 crossref_primary_10_1021_acs_chemmater_9b02871 crossref_primary_10_1007_s11467_021_1055_z crossref_primary_10_1002_cphc_201900291 crossref_primary_10_1002_smll_201303680 crossref_primary_10_1002_pssr_201900605 crossref_primary_10_1039_C6RA28155A crossref_primary_10_1063_1_4918989 crossref_primary_10_1016_j_cej_2021_129028 crossref_primary_10_1038_s41467_023_37222_4 crossref_primary_10_1021_acs_jpcc_7b03940 crossref_primary_10_1088_2053_1583_aa868f crossref_primary_10_1016_j_carbon_2019_09_048 crossref_primary_10_1088_2053_1583_ab1e0a crossref_primary_10_1088_2053_1583_ac8e18 crossref_primary_10_1002_adfm_201504194 crossref_primary_10_3390_molecules28031358 crossref_primary_10_1021_jp5118536 crossref_primary_10_1016_j_carbon_2018_03_092 crossref_primary_10_1021_acs_jpcc_7b06540 crossref_primary_10_1088_0256_307X_34_11_116801 crossref_primary_10_1021_acsnano_7b06992 crossref_primary_10_1038_srep14336 crossref_primary_10_1039_C7NR05853E crossref_primary_10_1103_PhysRevB_98_075439 crossref_primary_10_1002_adts_201800085 crossref_primary_10_1002_adma_201804977 crossref_primary_10_1016_j_matdes_2016_10_019 crossref_primary_10_1016_j_isci_2021_103340 crossref_primary_10_1063_1_4963283 crossref_primary_10_1038_s41524_020_0281_1 crossref_primary_10_1016_j_carbon_2014_11_004 crossref_primary_10_1016_j_physe_2021_114837 crossref_primary_10_3390_s22228661 crossref_primary_10_1016_j_apsusc_2019_143923 crossref_primary_10_1016_j_ccr_2020_213616 crossref_primary_10_1016_j_carbon_2019_01_043 crossref_primary_10_1002_slct_201803871 crossref_primary_10_1088_0957_4484_27_36_365702 crossref_primary_10_1088_2053_1583_acd7fd crossref_primary_10_1016_j_carbon_2022_11_018 crossref_primary_10_1021_acsami_3c10157 crossref_primary_10_1088_2051_672X_ab4788 crossref_primary_10_1021_es503003y crossref_primary_10_1002_aenm_201702093 crossref_primary_10_1016_j_elecom_2013_08_028 crossref_primary_10_1021_acs_jpcc_7b00973 crossref_primary_10_1016_j_pecs_2019_100786 crossref_primary_10_3131_jvsj2_57_266 crossref_primary_10_1016_j_carbon_2019_02_016 crossref_primary_10_1039_C5RA23052G crossref_primary_10_1039_D0CP00990C crossref_primary_10_3390_c7040071 crossref_primary_10_1002_smll_202310678 crossref_primary_10_1002_smll_201303195 crossref_primary_10_1016_j_carbon_2014_03_030 crossref_primary_10_1016_j_carbon_2014_07_011 crossref_primary_10_1007_s40436_017_0180_y crossref_primary_10_1021_acsami_7b01539 |
Cites_doi | 10.1038/srep00337 10.1021/nl2006005 10.1021/nl201566c 10.1021/jp310196k 10.1103/PhysRevB.80.235422 10.1021/nl102788f 10.1021/nn101822s 10.1126/science.280.5370.1732 10.1103/PhysRevLett.104.186101 10.1038/nature07719 10.1021/nl103053t 10.1002/adfm.201201577 10.1021/ja300811p 10.1038/nnano.2010.132 10.1038/nmat3010 10.1103/PhysRevLett.77.3865 10.1021/ja2050875 10.1103/PhysRevB.54.11169 10.1021/jp211818s 10.1063/1.3587239 10.1063/1.3473045 10.1038/nnano.2011.30 10.1103/PhysRevB.84.155425 10.1016/0021-9517(92)90010-F 10.1103/PhysRevLett.107.116803 10.1021/nl1016706 10.1063/1.4795292 10.1021/jz2015007 10.1103/PhysRevLett.97.236806 10.1088/1367-2630/10/9/093026 10.1039/C0JM02126A 10.1002/smll.201101967 10.1021/jp2006827 10.1038/ncomms1702 10.1021/ja200245p 10.1038/srep01115 10.1038/nature09579 10.1021/ja312687a 10.1103/PhysRevB.47.558 10.1038/ncomms1539 10.1038/nature09718 10.1021/ja110927p 10.1021/nl1036403 10.1021/jz3007029 10.1103/PhysRevB.59.1758 10.1021/nn102598m 10.1103/PhysRevLett.50.1998 10.1039/C0CC03617J 10.1016/S0021-9517(02)00124-0 10.1073/pnas.1200339109 10.1021/nn3041446 10.1021/nn103338g 10.1021/ja109793s 10.1021/nl102355e 10.1021/ar3001266 10.1002/smll.201102276 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/ja403583s |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 8414 |
ExternalDocumentID | 23675983 10_1021_ja403583s b766083449 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a449t-85966ac4d61b7efc4d3879222419be02cfe879a5e8a1417edf55d006e9a6fb283 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 17:50:17 EDT 2025 Thu Jul 10 21:41:41 EDT 2025 Thu Apr 03 07:06:26 EDT 2025 Tue Jul 01 02:08:46 EDT 2025 Thu Apr 24 23:01:12 EDT 2025 Thu Aug 27 13:41:58 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a449t-85966ac4d61b7efc4d3879222419be02cfe879a5e8a1417edf55d006e9a6fb283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/76267 |
PMID | 23675983 |
PQID | 1499128028 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000348836 proquest_miscellaneous_1499128028 pubmed_primary_23675983 crossref_primary_10_1021_ja403583s crossref_citationtrail_10_1021_ja403583s acs_journals_10_1021_ja403583s |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-05 |
PublicationDateYYYYMMDD | 2013-06-05 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Edwards R. S. (ref4/cit4) 2013; 46 Cui Y. (ref25/cit25) 2011; 47 Niu T. C. (ref52/cit52) 2013; 117 Wu P. (ref30/cit30) 2010; 133 Cho J. (ref37/cit37) 2011; 5 Karoui S. (ref51/cit51) 2010; 4 Wood J. D. (ref17/cit17) 2011; 11 Wang B. (ref24/cit24) 2011; 11 Ugeda M. M. (ref46/cit46) 2011; 107 Starodub E. (ref47/cit47) 2009; 80 Riikonen S. (ref20/cit20) 2012; 116 Gao L. B. (ref9/cit9) 2012; 3 Huang P. Y. (ref12/cit12) 2011; 469 Wesep R. G. (ref29/cit29) 2011; 134 Mattevi C. (ref33/cit33) 2011; 21 Mehdipour H. (ref14/cit14) 2012; 6 Zhang W. H. (ref19/cit19) 2011; 115 Nie S. (ref38/cit38) 2011; 84 Dai B. Y. (ref7/cit7) 2011; 2 Gao J. F. (ref22/cit22) 2011; 133 Huang Y. L. (ref53/cit53) 2012; 8 Banhart F. (ref45/cit45) 2011; 5 Zhu Y. (ref40/cit40) 2012; 24 Wang L. (ref31/cit31) 2013; 135 Xu Y. D. (ref44/cit44) 2003; 216 Kim K. S. (ref6/cit6) 2009; 457 Lu J. (ref32/cit32) 2011; 6 Kresse G. (ref55/cit55) 1996; 54 Bhaviripudi S. (ref3/cit3) 2010; 10 Dougherty D. B. (ref42/cit42) 2006; 97 Geng D. C. (ref8/cit8) 2012; 109 Perdew J. P. (ref56/cit56) 1996; 77 Rasool H. I. (ref34/cit34) 2011; 133 Sun Z. Z. (ref5/cit5) 2010; 468 Chen H. (ref18/cit18) 2010; 104 Loginova E. (ref27/cit27) 2008; 10 Yuan Q. H. (ref26/cit26) 2012; 134 Koerts T. (ref43/cit43) 1992; 138 Rasool H. I. (ref35/cit35) 2011; 11 Gao L. (ref36/cit36) 2010; 10 Wassei J. K. (ref28/cit28) 2012; 8 Xu L. S. (ref21/cit21) 2013; 117 Kresse G. (ref54/cit54) 1993; 47 Ago H. (ref39/cit39) 2012; 3 Li X. S. (ref1/cit1) 2011; 133 Wu T. R. (ref10/cit10) 2013; 23 Song H. S. (ref11/cit11) 2012; 2 Tersoff J. (ref58/cit58) 1983; 50 Kresse G. (ref57/cit57) 1999; 59 Wofford J. M. (ref16/cit16) 2010; 10 Hayashi K. (ref15/cit15) 2012; 134 Bae S. K. (ref2/cit2) 2010; 5 Yu Q. (ref13/cit13) 2011; 10 Jacobson P. (ref50/cit50) 2012; 3 Zangwill A. (ref23/cit23) 2011; 11 Stipe B. C. (ref41/cit41) 1998; 280 Barreiro A. (ref48/cit48) 2013; 3 Chen J. H. (ref49/cit49) 2013; 102 |
References_xml | – volume: 2 start-page: 337 year: 2012 ident: ref11/cit11 publication-title: Sci. Rep. doi: 10.1038/srep00337 – volume: 11 start-page: 2092 year: 2011 ident: ref23/cit23 publication-title: Nano Lett. doi: 10.1021/nl2006005 – volume: 24 start-page: 354005 year: 2012 ident: ref40/cit40 publication-title: J. Phys.: Condens. Matter – volume: 11 start-page: 4547 year: 2011 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl201566c – volume: 117 start-page: 1013 year: 2013 ident: ref52/cit52 publication-title: J. Phys. Chem. C doi: 10.1021/jp310196k – volume: 80 start-page: 235422 year: 2009 ident: ref47/cit47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.235422 – volume: 10 start-page: 4890 year: 2010 ident: ref16/cit16 publication-title: Nano Lett. doi: 10.1021/nl102788f – volume: 4 start-page: 6114 year: 2010 ident: ref51/cit51 publication-title: ACS Nano doi: 10.1021/nn101822s – volume: 280 start-page: 1732 year: 1998 ident: ref41/cit41 publication-title: Science doi: 10.1126/science.280.5370.1732 – volume: 104 start-page: 186101 year: 2010 ident: ref18/cit18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.186101 – volume: 457 start-page: 706 year: 2009 ident: ref6/cit6 publication-title: Nature doi: 10.1038/nature07719 – volume: 11 start-page: 424 year: 2011 ident: ref24/cit24 publication-title: Nano Lett. doi: 10.1021/nl103053t – volume: 23 start-page: 198 year: 2013 ident: ref10/cit10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201577 – volume: 134 start-page: 12492 year: 2012 ident: ref15/cit15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300811p – volume: 5 start-page: 574 year: 2010 ident: ref2/cit2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 10 start-page: 443 year: 2011 ident: ref13/cit13 publication-title: Nat. Mater. doi: 10.1038/nmat3010 – volume: 77 start-page: 3865 year: 1996 ident: ref56/cit56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 117 start-page: 2952 year: 2013 ident: ref21/cit21 publication-title: J. Phys. Chem. C – volume: 134 start-page: 2970 year: 2012 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2050875 – volume: 54 start-page: 11169 year: 1996 ident: ref55/cit55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 116 start-page: 5802 year: 2012 ident: ref20/cit20 publication-title: J. Phys. Chem. C doi: 10.1021/jp211818s – volume: 134 start-page: 171105 year: 2011 ident: ref29/cit29 publication-title: J. Chem. Phys. doi: 10.1063/1.3587239 – volume: 133 start-page: 071101 year: 2010 ident: ref30/cit30 publication-title: J. Chem. Phys. doi: 10.1063/1.3473045 – volume: 6 start-page: 247 year: 2011 ident: ref32/cit32 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.30 – volume: 84 start-page: 155425 year: 2011 ident: ref38/cit38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.155425 – volume: 138 start-page: 101 year: 1992 ident: ref43/cit43 publication-title: J. Catal. doi: 10.1016/0021-9517(92)90010-F – volume: 107 start-page: 116803 year: 2011 ident: ref46/cit46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.116803 – volume: 10 start-page: 3512 year: 2010 ident: ref36/cit36 publication-title: Nano Lett. doi: 10.1021/nl1016706 – volume: 102 start-page: 103107 year: 2013 ident: ref49/cit49 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4795292 – volume: 3 start-page: 136 year: 2012 ident: ref50/cit50 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2015007 – volume: 97 start-page: 236806 year: 2006 ident: ref42/cit42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.236806 – volume: 10 start-page: 093026 year: 2008 ident: ref27/cit27 publication-title: New J. Phys. doi: 10.1088/1367-2630/10/9/093026 – volume: 21 start-page: 3324 year: 2011 ident: ref33/cit33 publication-title: J. Mater. Chem. doi: 10.1039/C0JM02126A – volume: 8 start-page: 1423 year: 2012 ident: ref53/cit53 publication-title: Small doi: 10.1002/smll.201101967 – volume: 115 start-page: 17782 year: 2011 ident: ref19/cit19 publication-title: J. Phys. Chem. C doi: 10.1021/jp2006827 – volume: 3 start-page: 699 year: 2012 ident: ref9/cit9 publication-title: Nat. Commun. doi: 10.1038/ncomms1702 – volume: 133 start-page: 12536 year: 2011 ident: ref34/cit34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200245p – volume: 3 start-page: 1115 year: 2013 ident: ref48/cit48 publication-title: Sci. Rep. doi: 10.1038/srep01115 – volume: 468 start-page: 549 year: 2010 ident: ref5/cit5 publication-title: Nature doi: 10.1038/nature09579 – volume: 135 start-page: 4476 year: 2013 ident: ref31/cit31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312687a – volume: 47 start-page: 558 year: 1993 ident: ref54/cit54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 2 start-page: 522 year: 2011 ident: ref7/cit7 publication-title: Nat. Commun. doi: 10.1038/ncomms1539 – volume: 469 start-page: 389 year: 2011 ident: ref12/cit12 publication-title: Nature doi: 10.1038/nature09718 – volume: 133 start-page: 5009 year: 2011 ident: ref22/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110927p – volume: 11 start-page: 251 year: 2011 ident: ref35/cit35 publication-title: Nano Lett. doi: 10.1021/nl1036403 – volume: 3 start-page: 2228 year: 2012 ident: ref39/cit39 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3007029 – volume: 59 start-page: 1758 year: 1999 ident: ref57/cit57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 5 start-page: 26 year: 2011 ident: ref45/cit45 publication-title: ACS Nano doi: 10.1021/nn102598m – volume: 50 start-page: 1998 year: 1983 ident: ref58/cit58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1998 – volume: 47 start-page: 1470 year: 2011 ident: ref25/cit25 publication-title: Chem. Commun. doi: 10.1039/C0CC03617J – volume: 216 start-page: 386 year: 2003 ident: ref44/cit44 publication-title: J. Catal. doi: 10.1016/S0021-9517(02)00124-0 – volume: 109 start-page: 7992 year: 2012 ident: ref8/cit8 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1200339109 – volume: 6 start-page: 10276 year: 2012 ident: ref14/cit14 publication-title: ACS Nano doi: 10.1021/nn3041446 – volume: 5 start-page: 3607 year: 2011 ident: ref37/cit37 publication-title: ACS Nano doi: 10.1021/nn103338g – volume: 133 start-page: 2816 year: 2011 ident: ref1/cit1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109793s – volume: 10 start-page: 4128 year: 2010 ident: ref3/cit3 publication-title: Nano Lett. doi: 10.1021/nl102355e – volume: 46 start-page: 23 year: 2013 ident: ref4/cit4 publication-title: Acc. Chem. Res. doi: 10.1021/ar3001266 – volume: 8 start-page: 1415 year: 2012 ident: ref28/cit28 publication-title: Small doi: 10.1002/smll.201102276 |
SSID | ssj0004281 |
Score | 2.4614658 |
Snippet | Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8409 |
SubjectTerms | annealing copper graphene methane scanning tunneling microscopy temperature thermal degradation vapors |
Title | Growth Intermediates for CVD Graphene on Cu(111): Carbon Clusters and Defective Graphene |
URI | http://dx.doi.org/10.1021/ja403583s https://www.ncbi.nlm.nih.gov/pubmed/23675983 https://www.proquest.com/docview/1499128028 https://www.proquest.com/docview/2000348836 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELZKGWDh_SiPyjyGMqRqHDtx2KqUtkKCBYq6VbZjC4kqRW2y8Os5J00B0cIWS2fZ8ePuO5_9HULXYKN9GtPQocZlDpXEOIIK5ni6ZQx4ckpoe97x8Oj3B_R-yIYVdLUigk8sPxBteYx7szW0TnweWA-rHT19PX4k3C0xbsB9r6QP-l7Vmh41-2l6VuDJ3K50t1GnfJ1TXCd5a2apbKqP32SNf3V5B23NcSVuFwthF1V0soc2ojKd2z4a9sDhTl9xfgSYvxcBkIkBsuLopYN7lrca1B6eJDjKGqCabm5xJKbSlseZZVOYYZHEuKNNoSIXVQ7QoHv3HPWdeVoFmAUapg5n4OIIRWPflYE28OHxICTWlodSt4gyGsqCaS5c6gY6NozFsDl1KHwjAY4comoySfQxwioOAhNwExtOqFFKau5zJV1QG9xCsxqqw7iP5ttiNsoj3gQ8jnKAaqhRTslIzUnJbW6M8TLRy4Xoe8HEsUzoopzXEYyvDX6IRE8yaBpcO7DFAKdWy5CcrodzDzp-VCyKRVOW6Y6F3Dv575dO0SYpUmY4LXaGquk00-cAXFJZzxfuJyie5Os |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RetheSukTWqhbtRI9BG0cO3GQOKyyhaULXArV3oLt2KoEyqJNItT-lP4V_hzjPHbbCtQTUm-xNIlfk5lv_PgG4AP66JBlLPaY9bnHFLWeZJJ7gelbi5Gclsatdxwdh6NT9mXCJ0vwq7sLg40o8EtFvYm_YBdwNEGsH3ARFO0ByrH5cYXhWbF7MMS5_Ejp3ueTZOS1GQSwQhaXnuCI5qVmWeiryFh8CEQUU-e2YmX6VFuDZcmNkD7zI5NZzjPUQxPL0Cr0vPjdB_AQQQ91gd0g-bq4c0mF30HrSIRBx1r0e1Odx9PFnx7vDhhbu7O9FbieD0R9iuV8uyrVtv75F0fk_zlST-Bxi6LJoFH7VVgy-VPoJV3yumcw2Z9Nr8rvpF7wrG_HIKQmCNBJ8m1I9h1LNxp5Ms1JUm2hIf60QxI5U658UTnuiILIPCNDYxuHMH_lOZzeS8dewHI-zc0rIDqLIhsJm1lBmdVaGREKrXw0ksIB0TXYxPlIWyNQpPX-PsX4qpuQNdjqNCHVLQW7ywRycZvo-7noZcM7cpvQu06dUhxft9UjczOtsGoMZBF5IHi8W4bW5ERCBNjwl40uzqtyvH48FsH6v7r0Fnqjk6PD9PDgePwaHtEmWYjX529guZxVZgMhW6k263-HwNl9q-AN5INHjQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4BlaAXKJS20BYMohI9BG0cO3Eq9YCyXaA8VKmA9pbajq1KRVm0SYTaH9O_wl_rOI8tIFBPSL3F0sTP8cw3fnwG2EIfHbKMxR6zPveYotaTTHIvMD1rMZLT0rj1juOTcP-MfR7y4RT87u7CYCUKzKmoN_HdrL7MbMsw4KiCWC_gIijaQ5SH5ucVhmjFx4M-juc7SgefTpN9r31FAAtlcekJjoheapaFvoqMxY9ARDF1ritWpke1NZiW3AjpMz8ymeU8Q100sQytQu-L-U7DE7c96IK73eTr33uXVPgdvI5EGHTMRTer6ryeLm57vQegbO3SBgtwPemM-iTLj52qVDv61x2eyP-3t57BfIumyW6j_oswZfIlmEu6R-yew3BvPLoqv5N64bO-JYPQmiBQJ8l5n-w5tm409mSUk6TaRoP8_gNJ5Fi59EXlOCQKIvOM9I1tHMPkl2U4e5SGvYCZfJSbV0B0FkU2EjazgjKrtTIiFFr5aCyFA6QrsIZjkrbGoEjrfX6KcVY3ICuw3WlDqlsqdvciyMV9opsT0cuGf-Q-oY1OpVLsX7flI3MzqrBoDGgRgSCIfFiG1iRFQgRY8ZeNPk6Kcvx-PBbB6r-atA6zX_qD9Ojg5PA1PKXNmyFej7-BmXJcmbeI3Eq1Vk8fAt8eWwP_AOJJShA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+Intermediates+for+CVD+Graphene+on+Cu%28111%29%3A+Carbon+Clusters+and+Defective+Graphene&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Niu%2C+Tianchao&rft.au=Zhou%2C+Miao&rft.au=Zhang%2C+Jialin&rft.au=Feng%2C+Yuanping&rft.date=2013-06-05&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=135&rft.issue=22&rft.spage=8409&rft.epage=8414&rft_id=info:doi/10.1021%2Fja403583s&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ja403583s |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |