Growth Intermediates for CVD Graphene on Cu(111): Carbon Clusters and Defective Graphene

Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth in...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 135; no. 22; pp. 8409 - 8414
Main Authors Niu, Tianchao, Zhou, Miao, Zhang, Jialin, Feng, Yuanping, Chen, Wei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth intermediates of CVD graphene on metal films. Here, we use in situ low-temperature scanning tunneling microscopy (LT-STM) to reveal the graphene growth intermediates at different stages via thermal decomposition of methane on Cu(111). We clearly demonstrate that various carbon clusters, including carbon dimers, carbon rectangles, and ‘zigzag’ and ‘armchair’-like carbon chains, are the actual growth intermediates prior to the graphene formation. Upon the saturation of these carbon clusters, they can transform into defective graphene possessing pseudoperiodic corrugations and vacancies. These vacancy-defects can only be effectively healed in the presence of methane via high temperature annealing at 800 °C and result in the formation of vacancy-free monolayer graphene on Cu(111).
AbstractList Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth intermediates of CVD graphene on metal films. Here, we use in situ low-temperature scanning tunneling microscopy (LT-STM) to reveal the graphene growth intermediates at different stages via thermal decomposition of methane on Cu(111). We clearly demonstrate that various carbon clusters, including carbon dimers, carbon rectangles, and 'zigzag' and 'armchair'-like carbon chains, are the actual growth intermediates prior to the graphene formation. Upon the saturation of these carbon clusters, they can transform into defective graphene possessing pseudoperiodic corrugations and vacancies. These vacancy-defects can only be effectively healed in the presence of methane via high temperature annealing at 800 °C and result in the formation of vacancy-free monolayer graphene on Cu(111).Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth intermediates of CVD graphene on metal films. Here, we use in situ low-temperature scanning tunneling microscopy (LT-STM) to reveal the graphene growth intermediates at different stages via thermal decomposition of methane on Cu(111). We clearly demonstrate that various carbon clusters, including carbon dimers, carbon rectangles, and 'zigzag' and 'armchair'-like carbon chains, are the actual growth intermediates prior to the graphene formation. Upon the saturation of these carbon clusters, they can transform into defective graphene possessing pseudoperiodic corrugations and vacancies. These vacancy-defects can only be effectively healed in the presence of methane via high temperature annealing at 800 °C and result in the formation of vacancy-free monolayer graphene on Cu(111).
Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth intermediates of CVD graphene on metal films. Here, we use in situ low-temperature scanning tunneling microscopy (LT-STM) to reveal the graphene growth intermediates at different stages via thermal decomposition of methane on Cu(111). We clearly demonstrate that various carbon clusters, including carbon dimers, carbon rectangles, and 'zigzag' and 'armchair'-like carbon chains, are the actual growth intermediates prior to the graphene formation. Upon the saturation of these carbon clusters, they can transform into defective graphene possessing pseudoperiodic corrugations and vacancies. These vacancy-defects can only be effectively healed in the presence of methane via high temperature annealing at 800 °C and result in the formation of vacancy-free monolayer graphene on Cu(111).
Author Feng, Yuanping
Chen, Wei
Niu, Tianchao
Zhou, Miao
Zhang, Jialin
AuthorAffiliation Department of Chemistry, National University of Singapore
Department of Physics, National University of Singapore
AuthorAffiliation_xml – name: Department of Physics, National University of Singapore
– name: Department of Chemistry, National University of Singapore
Author_xml – sequence: 1
  givenname: Tianchao
  surname: Niu
  fullname: Niu, Tianchao
– sequence: 2
  givenname: Miao
  surname: Zhou
  fullname: Zhou, Miao
– sequence: 3
  givenname: Jialin
  surname: Zhang
  fullname: Zhang, Jialin
– sequence: 4
  givenname: Yuanping
  surname: Feng
  fullname: Feng, Yuanping
– sequence: 5
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: phycw@nus.edu.sg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23675983$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9LxDAQxYOs6K568AtILsJ6qOZf09SbVF0XBC8q3kraTrFLN1mTVPHbG13dgwieZh783sC8N0EjYw0gdEjJKSWMni20IDxV3G-hMU0ZSVLK5AiNCSEsyZTku2ji_SJKwRTdQbuMyyzNFR-jp5mzb-EZz00At4Sm0wE8bq3DxeMlnjm9egYD2BpcDFNK6ck5LrSrPnU_-OjxWJsGX0ILdeheYWPZR9ut7j0cfM899HB9dV_cJLd3s3lxcZtoIfKQqDSXUteikbTKoI0LV1nOGBM0r4CwuoWodQpKU0EzaNo0bQiRkGvZVkzxPTRd3105-zKAD-Wy8zX0vTZgB1-y-DUXSnH5L0pFnlOmyNfVo290qGIq5cp1S-3ey5_gInCyBmpnvXfQbhBKys9Syk0pkT37xdZd0KGzJjjd9X86jtcOXftyYQdnYoR_cB-79pdL
CitedBy_id crossref_primary_10_1021_acs_jpcc_9b11942
crossref_primary_10_1039_C5NR06016H
crossref_primary_10_1016_j_seppur_2025_131684
crossref_primary_10_1063_1_4864155
crossref_primary_10_1103_PhysRevLett_132_196201
crossref_primary_10_1186_s40580_020_00237_4
crossref_primary_10_1007_s11664_021_09266_z
crossref_primary_10_1021_jp4101653
crossref_primary_10_1038_s41598_018_27026_8
crossref_primary_10_1002_anie_201406570
crossref_primary_10_7498_aps_66_058101
crossref_primary_10_1039_C9CC09638H
crossref_primary_10_1002_smll_201401458
crossref_primary_10_1016_j_jallcom_2017_09_251
crossref_primary_10_1021_nn500209d
crossref_primary_10_1016_j_carbon_2023_118303
crossref_primary_10_1088_0957_4484_27_33_335602
crossref_primary_10_1103_PhysRevB_91_045427
crossref_primary_10_1016_j_physb_2018_10_035
crossref_primary_10_1016_j_cplett_2018_12_001
crossref_primary_10_1021_acs_jpcb_7b06956
crossref_primary_10_2139_ssrn_3915002
crossref_primary_10_1021_acs_analchem_7b05139
crossref_primary_10_1002_adma_202104308
crossref_primary_10_3390_ma17102448
crossref_primary_10_1021_acs_jpclett_0c02717
crossref_primary_10_1016_j_physe_2022_115465
crossref_primary_10_1063_1_4958859
crossref_primary_10_1063_1_4966116
crossref_primary_10_1002_adma_201903615
crossref_primary_10_1103_PhysRevB_100_235439
crossref_primary_10_1021_acsmaterialslett_1c00783
crossref_primary_10_1088_2053_1583_ab31bd
crossref_primary_10_1002_adma_201605448
crossref_primary_10_1002_adma_202108258
crossref_primary_10_1021_acs_jpclett_2c01481
crossref_primary_10_1016_j_vacuum_2024_113641
crossref_primary_10_7498_aps_66_217101
crossref_primary_10_1021_acs_jpcc_9b04700
crossref_primary_10_1021_jp512163n
crossref_primary_10_1016_j_carbon_2014_06_024
crossref_primary_10_1016_j_jcat_2016_10_023
crossref_primary_10_1021_acsnano_5b03037
crossref_primary_10_1016_j_carbon_2024_118866
crossref_primary_10_1021_acsnano_9b09588
crossref_primary_10_1038_srep04431
crossref_primary_10_1007_s12274_023_6260_3
crossref_primary_10_1002_smll_201402289
crossref_primary_10_1016_j_apsusc_2020_147722
crossref_primary_10_1039_c3cp53390e
crossref_primary_10_1039_C3NR04694J
crossref_primary_10_1039_D2CP00906D
crossref_primary_10_1088_0965_0393_23_2_025001
crossref_primary_10_1002_ange_201406570
crossref_primary_10_1021_acs_chemmater_0c02121
crossref_primary_10_1039_C3CP53933D
crossref_primary_10_1016_j_vacuum_2023_112665
crossref_primary_10_1088_0953_8984_28_3_034003
crossref_primary_10_2139_ssrn_4133353
crossref_primary_10_1021_jp5041025
crossref_primary_10_1002_chem_202401031
crossref_primary_10_1016_j_carbon_2024_119285
crossref_primary_10_1016_j_carbon_2015_11_070
crossref_primary_10_1016_j_susc_2018_01_007
crossref_primary_10_1002_adma_201903266
crossref_primary_10_1063_5_0052870
crossref_primary_10_1016_j_progsurf_2014_11_001
crossref_primary_10_1063_1_4998770
crossref_primary_10_1103_PhysRevE_106_014802
crossref_primary_10_1021_acs_chemmater_9b02871
crossref_primary_10_1007_s11467_021_1055_z
crossref_primary_10_1002_cphc_201900291
crossref_primary_10_1002_smll_201303680
crossref_primary_10_1002_pssr_201900605
crossref_primary_10_1039_C6RA28155A
crossref_primary_10_1063_1_4918989
crossref_primary_10_1016_j_cej_2021_129028
crossref_primary_10_1038_s41467_023_37222_4
crossref_primary_10_1021_acs_jpcc_7b03940
crossref_primary_10_1088_2053_1583_aa868f
crossref_primary_10_1016_j_carbon_2019_09_048
crossref_primary_10_1088_2053_1583_ab1e0a
crossref_primary_10_1088_2053_1583_ac8e18
crossref_primary_10_1002_adfm_201504194
crossref_primary_10_3390_molecules28031358
crossref_primary_10_1021_jp5118536
crossref_primary_10_1016_j_carbon_2018_03_092
crossref_primary_10_1021_acs_jpcc_7b06540
crossref_primary_10_1088_0256_307X_34_11_116801
crossref_primary_10_1021_acsnano_7b06992
crossref_primary_10_1038_srep14336
crossref_primary_10_1039_C7NR05853E
crossref_primary_10_1103_PhysRevB_98_075439
crossref_primary_10_1002_adts_201800085
crossref_primary_10_1002_adma_201804977
crossref_primary_10_1016_j_matdes_2016_10_019
crossref_primary_10_1016_j_isci_2021_103340
crossref_primary_10_1063_1_4963283
crossref_primary_10_1038_s41524_020_0281_1
crossref_primary_10_1016_j_carbon_2014_11_004
crossref_primary_10_1016_j_physe_2021_114837
crossref_primary_10_3390_s22228661
crossref_primary_10_1016_j_apsusc_2019_143923
crossref_primary_10_1016_j_ccr_2020_213616
crossref_primary_10_1016_j_carbon_2019_01_043
crossref_primary_10_1002_slct_201803871
crossref_primary_10_1088_0957_4484_27_36_365702
crossref_primary_10_1088_2053_1583_acd7fd
crossref_primary_10_1016_j_carbon_2022_11_018
crossref_primary_10_1021_acsami_3c10157
crossref_primary_10_1088_2051_672X_ab4788
crossref_primary_10_1021_es503003y
crossref_primary_10_1002_aenm_201702093
crossref_primary_10_1016_j_elecom_2013_08_028
crossref_primary_10_1021_acs_jpcc_7b00973
crossref_primary_10_1016_j_pecs_2019_100786
crossref_primary_10_3131_jvsj2_57_266
crossref_primary_10_1016_j_carbon_2019_02_016
crossref_primary_10_1039_C5RA23052G
crossref_primary_10_1039_D0CP00990C
crossref_primary_10_3390_c7040071
crossref_primary_10_1002_smll_202310678
crossref_primary_10_1002_smll_201303195
crossref_primary_10_1016_j_carbon_2014_03_030
crossref_primary_10_1016_j_carbon_2014_07_011
crossref_primary_10_1007_s40436_017_0180_y
crossref_primary_10_1021_acsami_7b01539
Cites_doi 10.1038/srep00337
10.1021/nl2006005
10.1021/nl201566c
10.1021/jp310196k
10.1103/PhysRevB.80.235422
10.1021/nl102788f
10.1021/nn101822s
10.1126/science.280.5370.1732
10.1103/PhysRevLett.104.186101
10.1038/nature07719
10.1021/nl103053t
10.1002/adfm.201201577
10.1021/ja300811p
10.1038/nnano.2010.132
10.1038/nmat3010
10.1103/PhysRevLett.77.3865
10.1021/ja2050875
10.1103/PhysRevB.54.11169
10.1021/jp211818s
10.1063/1.3587239
10.1063/1.3473045
10.1038/nnano.2011.30
10.1103/PhysRevB.84.155425
10.1016/0021-9517(92)90010-F
10.1103/PhysRevLett.107.116803
10.1021/nl1016706
10.1063/1.4795292
10.1021/jz2015007
10.1103/PhysRevLett.97.236806
10.1088/1367-2630/10/9/093026
10.1039/C0JM02126A
10.1002/smll.201101967
10.1021/jp2006827
10.1038/ncomms1702
10.1021/ja200245p
10.1038/srep01115
10.1038/nature09579
10.1021/ja312687a
10.1103/PhysRevB.47.558
10.1038/ncomms1539
10.1038/nature09718
10.1021/ja110927p
10.1021/nl1036403
10.1021/jz3007029
10.1103/PhysRevB.59.1758
10.1021/nn102598m
10.1103/PhysRevLett.50.1998
10.1039/C0CC03617J
10.1016/S0021-9517(02)00124-0
10.1073/pnas.1200339109
10.1021/nn3041446
10.1021/nn103338g
10.1021/ja109793s
10.1021/nl102355e
10.1021/ar3001266
10.1002/smll.201102276
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/ja403583s
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 8414
ExternalDocumentID 23675983
10_1021_ja403583s
b766083449
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a449t-85966ac4d61b7efc4d3879222419be02cfe879a5e8a1417edf55d006e9a6fb283
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 17:50:17 EDT 2025
Thu Jul 10 21:41:41 EDT 2025
Thu Apr 03 07:06:26 EDT 2025
Tue Jul 01 02:08:46 EDT 2025
Thu Apr 24 23:01:12 EDT 2025
Thu Aug 27 13:41:58 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a449t-85966ac4d61b7efc4d3879222419be02cfe879a5e8a1417edf55d006e9a6fb283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/76267
PMID 23675983
PQID 1499128028
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000348836
proquest_miscellaneous_1499128028
pubmed_primary_23675983
crossref_primary_10_1021_ja403583s
crossref_citationtrail_10_1021_ja403583s
acs_journals_10_1021_ja403583s
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-05
PublicationDateYYYYMMDD 2013-06-05
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Edwards R. S. (ref4/cit4) 2013; 46
Cui Y. (ref25/cit25) 2011; 47
Niu T. C. (ref52/cit52) 2013; 117
Wu P. (ref30/cit30) 2010; 133
Cho J. (ref37/cit37) 2011; 5
Karoui S. (ref51/cit51) 2010; 4
Wood J. D. (ref17/cit17) 2011; 11
Wang B. (ref24/cit24) 2011; 11
Ugeda M. M. (ref46/cit46) 2011; 107
Starodub E. (ref47/cit47) 2009; 80
Riikonen S. (ref20/cit20) 2012; 116
Gao L. B. (ref9/cit9) 2012; 3
Huang P. Y. (ref12/cit12) 2011; 469
Wesep R. G. (ref29/cit29) 2011; 134
Mattevi C. (ref33/cit33) 2011; 21
Mehdipour H. (ref14/cit14) 2012; 6
Zhang W. H. (ref19/cit19) 2011; 115
Nie S. (ref38/cit38) 2011; 84
Dai B. Y. (ref7/cit7) 2011; 2
Gao J. F. (ref22/cit22) 2011; 133
Huang Y. L. (ref53/cit53) 2012; 8
Banhart F. (ref45/cit45) 2011; 5
Zhu Y. (ref40/cit40) 2012; 24
Wang L. (ref31/cit31) 2013; 135
Xu Y. D. (ref44/cit44) 2003; 216
Kim K. S. (ref6/cit6) 2009; 457
Lu J. (ref32/cit32) 2011; 6
Kresse G. (ref55/cit55) 1996; 54
Bhaviripudi S. (ref3/cit3) 2010; 10
Dougherty D. B. (ref42/cit42) 2006; 97
Geng D. C. (ref8/cit8) 2012; 109
Perdew J. P. (ref56/cit56) 1996; 77
Rasool H. I. (ref34/cit34) 2011; 133
Sun Z. Z. (ref5/cit5) 2010; 468
Chen H. (ref18/cit18) 2010; 104
Loginova E. (ref27/cit27) 2008; 10
Yuan Q. H. (ref26/cit26) 2012; 134
Koerts T. (ref43/cit43) 1992; 138
Rasool H. I. (ref35/cit35) 2011; 11
Gao L. (ref36/cit36) 2010; 10
Wassei J. K. (ref28/cit28) 2012; 8
Xu L. S. (ref21/cit21) 2013; 117
Kresse G. (ref54/cit54) 1993; 47
Ago H. (ref39/cit39) 2012; 3
Li X. S. (ref1/cit1) 2011; 133
Wu T. R. (ref10/cit10) 2013; 23
Song H. S. (ref11/cit11) 2012; 2
Tersoff J. (ref58/cit58) 1983; 50
Kresse G. (ref57/cit57) 1999; 59
Wofford J. M. (ref16/cit16) 2010; 10
Hayashi K. (ref15/cit15) 2012; 134
Bae S. K. (ref2/cit2) 2010; 5
Yu Q. (ref13/cit13) 2011; 10
Jacobson P. (ref50/cit50) 2012; 3
Zangwill A. (ref23/cit23) 2011; 11
Stipe B. C. (ref41/cit41) 1998; 280
Barreiro A. (ref48/cit48) 2013; 3
Chen J. H. (ref49/cit49) 2013; 102
References_xml – volume: 2
  start-page: 337
  year: 2012
  ident: ref11/cit11
  publication-title: Sci. Rep.
  doi: 10.1038/srep00337
– volume: 11
  start-page: 2092
  year: 2011
  ident: ref23/cit23
  publication-title: Nano Lett.
  doi: 10.1021/nl2006005
– volume: 24
  start-page: 354005
  year: 2012
  ident: ref40/cit40
  publication-title: J. Phys.: Condens. Matter
– volume: 11
  start-page: 4547
  year: 2011
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl201566c
– volume: 117
  start-page: 1013
  year: 2013
  ident: ref52/cit52
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp310196k
– volume: 80
  start-page: 235422
  year: 2009
  ident: ref47/cit47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.235422
– volume: 10
  start-page: 4890
  year: 2010
  ident: ref16/cit16
  publication-title: Nano Lett.
  doi: 10.1021/nl102788f
– volume: 4
  start-page: 6114
  year: 2010
  ident: ref51/cit51
  publication-title: ACS Nano
  doi: 10.1021/nn101822s
– volume: 280
  start-page: 1732
  year: 1998
  ident: ref41/cit41
  publication-title: Science
  doi: 10.1126/science.280.5370.1732
– volume: 104
  start-page: 186101
  year: 2010
  ident: ref18/cit18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.186101
– volume: 457
  start-page: 706
  year: 2009
  ident: ref6/cit6
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 11
  start-page: 424
  year: 2011
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl103053t
– volume: 23
  start-page: 198
  year: 2013
  ident: ref10/cit10
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201577
– volume: 134
  start-page: 12492
  year: 2012
  ident: ref15/cit15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300811p
– volume: 5
  start-page: 574
  year: 2010
  ident: ref2/cit2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 10
  start-page: 443
  year: 2011
  ident: ref13/cit13
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3010
– volume: 77
  start-page: 3865
  year: 1996
  ident: ref56/cit56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 117
  start-page: 2952
  year: 2013
  ident: ref21/cit21
  publication-title: J. Phys. Chem. C
– volume: 134
  start-page: 2970
  year: 2012
  ident: ref26/cit26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2050875
– volume: 54
  start-page: 11169
  year: 1996
  ident: ref55/cit55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 116
  start-page: 5802
  year: 2012
  ident: ref20/cit20
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp211818s
– volume: 134
  start-page: 171105
  year: 2011
  ident: ref29/cit29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3587239
– volume: 133
  start-page: 071101
  year: 2010
  ident: ref30/cit30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3473045
– volume: 6
  start-page: 247
  year: 2011
  ident: ref32/cit32
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.30
– volume: 84
  start-page: 155425
  year: 2011
  ident: ref38/cit38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.155425
– volume: 138
  start-page: 101
  year: 1992
  ident: ref43/cit43
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(92)90010-F
– volume: 107
  start-page: 116803
  year: 2011
  ident: ref46/cit46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.116803
– volume: 10
  start-page: 3512
  year: 2010
  ident: ref36/cit36
  publication-title: Nano Lett.
  doi: 10.1021/nl1016706
– volume: 102
  start-page: 103107
  year: 2013
  ident: ref49/cit49
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4795292
– volume: 3
  start-page: 136
  year: 2012
  ident: ref50/cit50
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2015007
– volume: 97
  start-page: 236806
  year: 2006
  ident: ref42/cit42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.236806
– volume: 10
  start-page: 093026
  year: 2008
  ident: ref27/cit27
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/9/093026
– volume: 21
  start-page: 3324
  year: 2011
  ident: ref33/cit33
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM02126A
– volume: 8
  start-page: 1423
  year: 2012
  ident: ref53/cit53
  publication-title: Small
  doi: 10.1002/smll.201101967
– volume: 115
  start-page: 17782
  year: 2011
  ident: ref19/cit19
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2006827
– volume: 3
  start-page: 699
  year: 2012
  ident: ref9/cit9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1702
– volume: 133
  start-page: 12536
  year: 2011
  ident: ref34/cit34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200245p
– volume: 3
  start-page: 1115
  year: 2013
  ident: ref48/cit48
  publication-title: Sci. Rep.
  doi: 10.1038/srep01115
– volume: 468
  start-page: 549
  year: 2010
  ident: ref5/cit5
  publication-title: Nature
  doi: 10.1038/nature09579
– volume: 135
  start-page: 4476
  year: 2013
  ident: ref31/cit31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312687a
– volume: 47
  start-page: 558
  year: 1993
  ident: ref54/cit54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 2
  start-page: 522
  year: 2011
  ident: ref7/cit7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1539
– volume: 469
  start-page: 389
  year: 2011
  ident: ref12/cit12
  publication-title: Nature
  doi: 10.1038/nature09718
– volume: 133
  start-page: 5009
  year: 2011
  ident: ref22/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110927p
– volume: 11
  start-page: 251
  year: 2011
  ident: ref35/cit35
  publication-title: Nano Lett.
  doi: 10.1021/nl1036403
– volume: 3
  start-page: 2228
  year: 2012
  ident: ref39/cit39
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3007029
– volume: 59
  start-page: 1758
  year: 1999
  ident: ref57/cit57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 5
  start-page: 26
  year: 2011
  ident: ref45/cit45
  publication-title: ACS Nano
  doi: 10.1021/nn102598m
– volume: 50
  start-page: 1998
  year: 1983
  ident: ref58/cit58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.1998
– volume: 47
  start-page: 1470
  year: 2011
  ident: ref25/cit25
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC03617J
– volume: 216
  start-page: 386
  year: 2003
  ident: ref44/cit44
  publication-title: J. Catal.
  doi: 10.1016/S0021-9517(02)00124-0
– volume: 109
  start-page: 7992
  year: 2012
  ident: ref8/cit8
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1200339109
– volume: 6
  start-page: 10276
  year: 2012
  ident: ref14/cit14
  publication-title: ACS Nano
  doi: 10.1021/nn3041446
– volume: 5
  start-page: 3607
  year: 2011
  ident: ref37/cit37
  publication-title: ACS Nano
  doi: 10.1021/nn103338g
– volume: 133
  start-page: 2816
  year: 2011
  ident: ref1/cit1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109793s
– volume: 10
  start-page: 4128
  year: 2010
  ident: ref3/cit3
  publication-title: Nano Lett.
  doi: 10.1021/nl102355e
– volume: 46
  start-page: 23
  year: 2013
  ident: ref4/cit4
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3001266
– volume: 8
  start-page: 1415
  year: 2012
  ident: ref28/cit28
  publication-title: Small
  doi: 10.1002/smll.201102276
SSID ssj0004281
Score 2.4614658
Snippet Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8409
SubjectTerms annealing
copper
graphene
methane
scanning tunneling microscopy
temperature
thermal degradation
vapors
Title Growth Intermediates for CVD Graphene on Cu(111): Carbon Clusters and Defective Graphene
URI http://dx.doi.org/10.1021/ja403583s
https://www.ncbi.nlm.nih.gov/pubmed/23675983
https://www.proquest.com/docview/1499128028
https://www.proquest.com/docview/2000348836
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELZKGWDh_SiPyjyGMqRqHDtx2KqUtkKCBYq6VbZjC4kqRW2y8Os5J00B0cIWS2fZ8ePuO5_9HULXYKN9GtPQocZlDpXEOIIK5ni6ZQx4ckpoe97x8Oj3B_R-yIYVdLUigk8sPxBteYx7szW0TnweWA-rHT19PX4k3C0xbsB9r6QP-l7Vmh41-2l6VuDJ3K50t1GnfJ1TXCd5a2apbKqP32SNf3V5B23NcSVuFwthF1V0soc2ojKd2z4a9sDhTl9xfgSYvxcBkIkBsuLopYN7lrca1B6eJDjKGqCabm5xJKbSlseZZVOYYZHEuKNNoSIXVQ7QoHv3HPWdeVoFmAUapg5n4OIIRWPflYE28OHxICTWlodSt4gyGsqCaS5c6gY6NozFsDl1KHwjAY4comoySfQxwioOAhNwExtOqFFKau5zJV1QG9xCsxqqw7iP5ttiNsoj3gQ8jnKAaqhRTslIzUnJbW6M8TLRy4Xoe8HEsUzoopzXEYyvDX6IRE8yaBpcO7DFAKdWy5CcrodzDzp-VCyKRVOW6Y6F3Dv575dO0SYpUmY4LXaGquk00-cAXFJZzxfuJyie5Os
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RetheSukTWqhbtRI9BG0cO3GQOKyyhaULXArV3oLt2KoEyqJNItT-lP4V_hzjPHbbCtQTUm-xNIlfk5lv_PgG4AP66JBlLPaY9bnHFLWeZJJ7gelbi5Gclsatdxwdh6NT9mXCJ0vwq7sLg40o8EtFvYm_YBdwNEGsH3ARFO0ByrH5cYXhWbF7MMS5_Ejp3ueTZOS1GQSwQhaXnuCI5qVmWeiryFh8CEQUU-e2YmX6VFuDZcmNkD7zI5NZzjPUQxPL0Cr0vPjdB_AQQQ91gd0g-bq4c0mF30HrSIRBx1r0e1Odx9PFnx7vDhhbu7O9FbieD0R9iuV8uyrVtv75F0fk_zlST-Bxi6LJoFH7VVgy-VPoJV3yumcw2Z9Nr8rvpF7wrG_HIKQmCNBJ8m1I9h1LNxp5Ms1JUm2hIf60QxI5U658UTnuiILIPCNDYxuHMH_lOZzeS8dewHI-zc0rIDqLIhsJm1lBmdVaGREKrXw0ksIB0TXYxPlIWyNQpPX-PsX4qpuQNdjqNCHVLQW7ywRycZvo-7noZcM7cpvQu06dUhxft9UjczOtsGoMZBF5IHi8W4bW5ERCBNjwl40uzqtyvH48FsH6v7r0Fnqjk6PD9PDgePwaHtEmWYjX529guZxVZgMhW6k263-HwNl9q-AN5INHjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4BlaAXKJS20BYMohI9BG0cO3Eq9YCyXaA8VKmA9pbajq1KRVm0SYTaH9O_wl_rOI8tIFBPSL3F0sTP8cw3fnwG2EIfHbKMxR6zPveYotaTTHIvMD1rMZLT0rj1juOTcP-MfR7y4RT87u7CYCUKzKmoN_HdrL7MbMsw4KiCWC_gIijaQ5SH5ucVhmjFx4M-juc7SgefTpN9r31FAAtlcekJjoheapaFvoqMxY9ARDF1ritWpke1NZiW3AjpMz8ymeU8Q100sQytQu-L-U7DE7c96IK73eTr33uXVPgdvI5EGHTMRTer6ryeLm57vQegbO3SBgtwPemM-iTLj52qVDv61x2eyP-3t57BfIumyW6j_oswZfIlmEu6R-yew3BvPLoqv5N64bO-JYPQmiBQJ8l5n-w5tm409mSUk6TaRoP8_gNJ5Fi59EXlOCQKIvOM9I1tHMPkl2U4e5SGvYCZfJSbV0B0FkU2EjazgjKrtTIiFFr5aCyFA6QrsIZjkrbGoEjrfX6KcVY3ICuw3WlDqlsqdvciyMV9opsT0cuGf-Q-oY1OpVLsX7flI3MzqrBoDGgRgSCIfFiG1iRFQgRY8ZeNPk6Kcvx-PBbB6r-atA6zX_qD9Ojg5PA1PKXNmyFej7-BmXJcmbeI3Eq1Vk8fAt8eWwP_AOJJShA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+Intermediates+for+CVD+Graphene+on+Cu%28111%29%3A+Carbon+Clusters+and+Defective+Graphene&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Niu%2C+Tianchao&rft.au=Zhou%2C+Miao&rft.au=Zhang%2C+Jialin&rft.au=Feng%2C+Yuanping&rft.date=2013-06-05&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=135&rft.issue=22&rft.spage=8409&rft.epage=8414&rft_id=info:doi/10.1021%2Fja403583s&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ja403583s
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon