Hybridization Trends for Main Group Elements and Expanding the Bent’s Rule Beyond Carbon: More than Electronegativity
Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 H n X–YH m compounds, where Y spans the groups 13–17 of the periods 2–4. This set of substrates probes the flexibility of the hybri...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 118; no. 20; pp. 3663 - 3677 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 H n X–YH m compounds, where Y spans the groups 13–17 of the periods 2–4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent’s rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent. |
---|---|
AbstractList | Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent. Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 H n X–YH m compounds, where Y spans the groups 13–17 of the periods 2–4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent’s rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent. Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent. Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 H sub(n)X-YH sub()mcompounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent. |
Author | Alabugin, Igor V. Bresch, Stefan Manoharan, Mariappan |
AuthorAffiliation | Department of Chemistry and Biochemistry Bethune Cookman University Florida State University |
AuthorAffiliation_xml | – name: Bethune Cookman University – name: Florida State University – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Igor V. surname: Alabugin fullname: Alabugin, Igor V. email: alabugin@chem.fsu.edu – sequence: 2 givenname: Stefan surname: Bresch fullname: Bresch, Stefan – sequence: 3 givenname: Mariappan surname: Manoharan fullname: Manoharan, Mariappan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24773162$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKBDEQRYMovhf-gGQj6KI1SSf9cKfD-IARQXQd0um0ZuhJ2iStjit_w9_zS8w4owsRXFVVOPemuLUBlo01CoAdjA4xIvho3DFEaE76JbCOGUEJI5gtxx4VZcKytFwDG96PEUI4JXQVrEU4T3FG1sHzxbRyutavImhr4K1TpvawsQ5eCW3gubN9B4etmigTPBSmhsOXLhZt7mF4UPA0vn-8vXt407ezaWojMhCusuYYXlmnIiXMzEEGF7e-j_886TDdAiuNaL3aXtRNcHc2vB1cJKPr88vBySgRlJYhyUsm465INiRLm0oJlpdUoaIQkhYS10xQUWJMclTUlMqqqFHBKK5JlBGWZekm2J_7ds4-9soHPtFeqrYVRtnec5xnBLEYRfE_yiJEMcUsorsLtK8mquad0xPhpvw71wgczQHprPdONVzq8BVxcEK3HCM-uxz_uVxUHPxSfJv-xe7NWSE9H9vemRjhH9wngaukpg |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_8b00637 crossref_primary_10_1016_j_cej_2021_128727 crossref_primary_10_1039_D1CS00386K crossref_primary_10_1016_j_jorganchem_2015_07_027 crossref_primary_10_1016_j_ica_2016_10_037 crossref_primary_10_1016_j_optmat_2019_04_063 crossref_primary_10_1021_acs_jpca_8b03145 crossref_primary_10_1016_j_electacta_2024_144777 crossref_primary_10_3389_fspas_2021_643348 crossref_primary_10_1002_wcms_1389 crossref_primary_10_1016_j_saa_2015_02_070 crossref_primary_10_1039_C8CP02709A crossref_primary_10_1002_jcc_24036 crossref_primary_10_1016_j_inoche_2023_111567 crossref_primary_10_1007_s12039_015_0941_8 crossref_primary_10_1039_D1CS00564B crossref_primary_10_1021_acs_jpca_6b02900 crossref_primary_10_1039_D2DT03214G crossref_primary_10_1002_wcms_1261 crossref_primary_10_1021_acsearthspacechem_0c00029 crossref_primary_10_1039_C5SC02402A crossref_primary_10_1021_acs_jpca_6b05730 crossref_primary_10_1039_C7CE02185B crossref_primary_10_3390_molecules26144110 crossref_primary_10_1002_chem_202303133 crossref_primary_10_1039_D2SC02535C crossref_primary_10_1080_0144235X_2016_1192262 crossref_primary_10_1021_acs_jpca_4c03434 crossref_primary_10_1039_C4FD00183D crossref_primary_10_1007_s00894_015_2616_2 crossref_primary_10_1039_D3SC00001J crossref_primary_10_1021_ol502387a crossref_primary_10_1039_C7OB02463K crossref_primary_10_1002_jcc_27534 crossref_primary_10_1039_D1RA02877D crossref_primary_10_1002_jcc_25793 crossref_primary_10_1002_poc_3382 crossref_primary_10_1039_C9CP01011D crossref_primary_10_1021_acs_joc_9b00503 crossref_primary_10_1021_jacs_5b02373 crossref_primary_10_1039_C9QM00532C crossref_primary_10_1002_ange_201607040 crossref_primary_10_1016_j_heliyon_2021_e06827 crossref_primary_10_3390_molecules23112834 crossref_primary_10_1002_chem_201800453 crossref_primary_10_1016_j_chemosphere_2024_141128 crossref_primary_10_1016_j_mrgentox_2020_503299 crossref_primary_10_1021_acs_jpclett_9b02928 crossref_primary_10_1021_jacs_8b08513 crossref_primary_10_1016_j_dyepig_2023_111903 crossref_primary_10_1002_slct_202004231 crossref_primary_10_1021_acsomega_0c05840 crossref_primary_10_1016_j_chempr_2016_11_007 crossref_primary_10_1071_CH22205 crossref_primary_10_1039_C7OB00527J crossref_primary_10_3390_molecules26072005 crossref_primary_10_1021_acs_joc_5b01356 crossref_primary_10_1039_C7CP03572A crossref_primary_10_1021_jacs_7b05367 crossref_primary_10_1063_5_0084739 crossref_primary_10_1021_acs_accounts_3c00718 crossref_primary_10_1039_C4CC05324A crossref_primary_10_1039_D2NJ02380F crossref_primary_10_1080_00268976_2021_1970844 crossref_primary_10_1016_j_optmat_2019_109307 crossref_primary_10_1021_acs_organomet_9b00368 crossref_primary_10_1021_jacs_3c10412 crossref_primary_10_1021_acs_joc_7b00262 crossref_primary_10_1021_jacs_7b03943 crossref_primary_10_1002_anie_201607040 crossref_primary_10_1016_j_susc_2022_122093 crossref_primary_10_1007_s11172_024_4143_8 crossref_primary_10_1016_j_physa_2021_125936 crossref_primary_10_1109_TMAG_2022_3211697 crossref_primary_10_1016_j_jmmm_2018_12_063 crossref_primary_10_1016_j_mencom_2019_05_001 crossref_primary_10_1071_CH16683 crossref_primary_10_1021_acs_organomet_2c00663 crossref_primary_10_1021_acs_chemrev_6b00091 crossref_primary_10_3390_molecules22030361 crossref_primary_10_1002_ejic_202500012 crossref_primary_10_1021_acs_jpca_3c02267 |
Cites_doi | 10.1021/ja00210a008 10.1021/ic951397o 10.1021/ja9739300 10.1016/j.tet.2013.05.008 10.1038/35079036 10.1002/qua.20082 10.1021/ja054170t 10.1021/jp049723l 10.1021/ic50225a098 10.1063/1.1539866 10.1021/ed2006289 10.1021/jo401091w 10.1021/jp9609444 10.1016/S0022-2860(96)09595-6 10.1021/cr4000682 10.1039/c2cc36110h 10.1021/ja953484l 10.1021/ol302389f 10.1021/ed200472t 10.1063/1.1731373 10.1021/ic010131g 10.1021/jo00087a035 10.1021/ja00047a042 10.1021/jo000560g 10.1016/S0166-1280(96)05008-7 10.1021/jp9526612 10.1021/om990936k 10.1021/ja01355a027 10.1021/ed200491q 10.1002/qua.20690 10.1246/cl.2003.746 10.1002/(SICI)1099-1395(199710)10:10<755::AID-POC935>3.0.CO;2-P 10.1016/j.theochem.2004.10.022 10.1021/ja010915t 10.1021/cr00088a005 10.1021/ja00544a007 10.1021/ed100155c 10.1002/ijch.199100032 10.1021/jo991622+ 10.1021/ed037p616 10.1063/1.449360 10.1002/1521-3773(20011001)40:19<3534::AID-ANIE3534>3.0.CO;2-# 10.1002/qua.10606 10.1021/ja00063a043 10.1021/ja00056a034 10.1039/B204629F 10.1021/jp020041c 10.1021/ja055881u 10.1021/jp010486l 10.1021/ja9031083 10.1021/ja964132x 10.1021/ja037304g 10.1021/om980951+ 10.1021/jp034764n 10.1021/ja954237k 10.1021/jo026824b 10.1039/B711844A 10.1021/ja3114196 10.1016/j.theochem.2007.02.016 10.1021/ed200355u 10.1021/ja00240a013 10.1021/ja003291k 10.1016/S0009-2614(02)00681-4 10.1021/ja00207a003 10.1021/ja017169c 10.1021/ed200746n 10.1021/ja205629b 10.1021/ja017209c 10.1016/S0022-328X(96)06438-8 10.1021/om990955u 10.1002/(SICI)1521-3765(19991203)5:12<3631::AID-CHEM3631>3.0.CO;2-1 10.1021/ja0109702 10.1021/ja980938g 10.1021/ja034656e 10.1021/cr60211a005 10.1021/jp051022g 10.1021/ed200615j 10.1021/jo010062n 10.1002/jcc.20524 10.1021/ja01007a047 10.1021/jp9523635 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | N~. AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/jp502472u |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
EndPage | 3677 |
ExternalDocumentID | 24773162 10_1021_jp502472u b122414137 |
Genre | Journal Article |
GroupedDBID | --- -~X .DC .K2 123 29L 4.4 53G 55A 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L DU5 EBS ED~ EJD F5P GGK GNL IH9 IHE JG~ LG6 N~. PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ~02 AAYXX ABBLG ABLBI CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a449t-795c4770cf263fbea5794e088ac48c1d5a4a9112708d44cb8d08541d25c425663 |
IEDL.DBID | N~. |
ISSN | 1089-5639 1520-5215 |
IngestDate | Thu Jul 10 22:28:57 EDT 2025 Fri Jul 11 07:56:05 EDT 2025 Thu Jan 02 22:19:01 EST 2025 Thu Apr 24 22:54:44 EDT 2025 Tue Jul 01 01:27:15 EDT 2025 Wed Jul 10 01:28:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a449t-795c4770cf263fbea5794e088ac48c1d5a4a9112708d44cb8d08541d25c425663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1021/jp502472u |
PMID | 24773162 |
PQID | 1528341415 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1762051628 proquest_miscellaneous_1528341415 pubmed_primary_24773162 crossref_citationtrail_10_1021_jp502472u crossref_primary_10_1021_jp502472u acs_journals_10_1021_jp502472u |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-22 |
PublicationDateYYYYMMDD | 2014-05-22 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Lewis M. (ref46/cit46) 1998; 120 Wang J.-T. (ref65/cit65) 2003; 32 Lin T. (ref42/cit42) 2005; 109 Reed A. E. (ref70/cit70) 1991; 31 Gleiter R. (ref73/cit73) 1996; 118 Grushow A. (ref7/cit7) 2012; 89 van der Veken B. J. (ref76/cit76) 2001; 123 Haddon R. C. (ref22/cit22) 1987; 109 Alabugin I. V. (ref51/cit51) 2013; 78 Alabugin I. V. (ref40/cit40) 2003; 125 Bent H. A. (ref18/cit18) 1959; 33 Bent H. A. (ref19/cit19) 1960; 37 Alabugin I. V. (ref62/cit62) 2007; 813 Ferbinteanu M. (ref63/cit63) 2001; 40 Hiberty P. C. (ref8/cit8) 2012; 89 Baldridge K. K. (ref37/cit37) 2002; 124 Deslongchamps G. (ref90/cit90) 2013; 69 Root D. M. (ref56/cit56) 1993; 115 Palmer M. H. (ref32/cit32) 1997; 405 Reed A. E. (ref85/cit85) 1988; 88 O’Hagan D. (ref52/cit52) 2008; 37 Alabugin I. V. (ref91/cit91) 2011; 1 Grushow A. (ref6/cit6) 2011; 88 Worthington S. E. (ref31/cit31) 1997; 10 Mo Y. (ref26/cit26) 1996; 100 Weinhold F. (ref89/cit89) 2005 Allen L. C. (ref4/cit4) 1989; 111 Gilbert T. M. (ref80/cit80) 2000; 19 Xie Y. (ref82/cit82) 1998; 120 Mohamed R. K. (ref49/cit49) 2013; 113 Pu J. (ref44/cit44) 2005; 127 DeKock R. L. (ref10/cit10) 2012; 89 Lemke F. R. (ref59/cit59) 1999; 18 Reed A. E. (ref87/cit87) 1985; 83 Uddin J. (ref79/cit79) 2000; 19 Carpenter J. E. (ref23/cit23) 1988; 110 Paddon-Row M. N. (ref83/cit83) 1997; 119 Lewis M. (ref47/cit47) 2003; 107 Foster J. P. (ref53/cit53) 1980; 102 ref67/cit67 Ou M. C. (ref33/cit33) 1997; 401 Bent H. A. (ref20/cit20) 1961; 61 Sadlej-Sosnowska N. (ref78/cit78) 2001; 66 Major D. T. (ref25/cit25) 2005; 127 Öström H. (ref38/cit38) 2003; 118 Kirschenbaum L. J. (ref64/cit64) 2012; 89 Andujar-De Sanctis I. L. (ref14/cit14) 2012; 14 Krygowski T. M. (ref35/cit35) 2002; 359 Jemmis E. D. (ref43/cit43) 2003; 95 Gold B. (ref50/cit50) 2013; 135 Streitwieser A. (ref21/cit21) 1968; 90 Oxgaard J. (ref36/cit36) 2002; 106 Alabugin I. V. (ref12/cit12) 2003; 125 MacMillar S. (ref17/cit17) 2011; 133 Tro N. J. (ref9/cit9) 2012; 89 Alabugin I. V. (ref13/cit13) 2007; 28 Lauvergnat D. (ref27/cit27) 1996; 100 Kaupp M. (ref60/cit60) 2001; 40 Alabugin I. V. (ref66/cit66) 2004; 108 Hammann B. (ref16/cit16) 2012; 48 Faust R. (ref24/cit24) 1992; 114 ref86/cit86 Huheey J. E. (ref54/cit54) 1981; 20 Landis C. R. (ref11/cit11) 2012; 89 Merrill P. B. (ref29/cit29) 1996; 118 Goodman L. (ref71/cit71) 2001; 411 Kaupp M. (ref58/cit58) 1999; 5 Klod S. (ref74/cit74) 2002; 2 ref68/cit68 Pauling L. (ref1/cit1) 1931; 53 Salzner U. (ref72/cit72) 1994; 59 Clark A. E. (ref39/cit39) 2003; 68 Jonas V. (ref57/cit57) 1996; 35 Skancke A. (ref30/cit30) 1996; 100 Kaupp M. (ref55/cit55) 1993; 115 Pauling L. (ref2/cit2) 1960 Donald K. J. (ref41/cit41) 2005; 713 Wilkens S. J. (ref75/cit75) 2002; 124 Ghosh D. C. (ref61/cit61) 2005; 105 Munoz J. (ref81/cit81) 2001; 105 Alabugin I. V. (ref5/cit5) 2000; 65 Eckert-Maksić (ref28/cit28) 1996; 524 Cortes F. (ref77/cit77) 2001; 66 Kelly K. K. (ref15/cit15) 2009; 131 ref84/cit84 Hamon M. A. (ref45/cit45) 2001; 123 Lewis B. E. (ref34/cit34) 2001; 123 Norberg D. (ref48/cit48) 2004; 98 |
References_xml | – volume: 110 start-page: 368 year: 1988 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00210a008 – volume: 35 start-page: 2097 year: 1996 ident: ref57/cit57 publication-title: Inorg. Chem. doi: 10.1021/ic951397o – volume: 120 start-page: 3773 year: 1998 ident: ref82/cit82 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9739300 – volume: 69 start-page: 6022 year: 2013 ident: ref90/cit90 publication-title: Tetrahedron doi: 10.1016/j.tet.2013.05.008 – volume: 411 start-page: 565 year: 2001 ident: ref71/cit71 publication-title: Nature doi: 10.1038/35079036 – volume-title: Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective year: 2005 ident: ref89/cit89 – volume: 98 start-page: 473 year: 2004 ident: ref48/cit48 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.20082 – volume: 127 start-page: 14879 year: 2005 ident: ref44/cit44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054170t – volume: 108 start-page: 4720 year: 2004 ident: ref66/cit66 publication-title: J. Phys. Chem. A doi: 10.1021/jp049723l – volume: 20 start-page: 4033 year: 1981 ident: ref54/cit54 publication-title: Inorg. Chem. doi: 10.1021/ic50225a098 – volume: 118 start-page: 3782 year: 2003 ident: ref38/cit38 publication-title: J. Chem. Phys. doi: 10.1063/1.1539866 – volume: 89 start-page: 567 year: 2012 ident: ref9/cit9 publication-title: J. Chem. Educ. doi: 10.1021/ed2006289 – volume: 78 start-page: 7777 year: 2013 ident: ref51/cit51 publication-title: J. Org. Chem. doi: 10.1021/jo401091w – volume: 100 start-page: 15079 year: 1996 ident: ref30/cit30 publication-title: J. Phys. Chem. doi: 10.1021/jp9609444 – volume: 405 start-page: 193 year: 1997 ident: ref32/cit32 publication-title: J. Mol. Struct. doi: 10.1016/S0022-2860(96)09595-6 – volume: 113 start-page: 7089 year: 2013 ident: ref49/cit49 publication-title: Chem. Rev. doi: 10.1021/cr4000682 – volume: 48 start-page: 11337 year: 2012 ident: ref16/cit16 publication-title: Chem. Commun. doi: 10.1039/c2cc36110h – volume: 118 start-page: 5062 year: 1996 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja953484l – volume: 14 start-page: 5238 year: 2012 ident: ref14/cit14 publication-title: Org. Lett. doi: 10.1021/ol302389f – volume: 89 start-page: 569 issue: 5 year: 2012 ident: ref10/cit10 publication-title: J. Chem. Educ. doi: 10.1021/ed200472t – volume: 33 start-page: 1258 year: 1959 ident: ref18/cit18 publication-title: J. Chem. Phys. doi: 10.1063/1.1731373 – volume: 40 start-page: 4947 year: 2001 ident: ref63/cit63 publication-title: Inorg. Chem. doi: 10.1021/ic010131g – ident: ref68/cit68 – volume: 59 start-page: 2138 year: 1994 ident: ref72/cit72 publication-title: J. Org. Chem. doi: 10.1021/jo00087a035 – volume: 114 start-page: 8263 year: 1992 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00047a042 – volume: 66 start-page: 2918 year: 2001 ident: ref77/cit77 publication-title: J. Org. Chem. doi: 10.1021/jo000560g – volume: 401 start-page: 87 year: 1997 ident: ref33/cit33 publication-title: J. Mol. Struct. (Theochem) doi: 10.1016/S0166-1280(96)05008-7 – volume: 100 start-page: 6469 issue: 16 year: 1996 ident: ref26/cit26 publication-title: J. Phys. Chem. doi: 10.1021/jp9526612 – volume: 19 start-page: 571 year: 2000 ident: ref79/cit79 publication-title: Organometallics doi: 10.1021/om990936k – volume: 53 start-page: 1367 year: 1931 ident: ref1/cit1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01355a027 – volume: 89 start-page: 570 year: 2012 ident: ref11/cit11 publication-title: J. Chem. Educ. doi: 10.1021/ed200491q – volume: 105 start-page: 270 year: 2005 ident: ref61/cit61 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.20690 – volume: 32 start-page: 746 year: 2003 ident: ref65/cit65 publication-title: Chem. Lett. doi: 10.1246/cl.2003.746 – volume: 10 start-page: 755 year: 1997 ident: ref31/cit31 publication-title: J. Phys. Org. Chem. doi: 10.1002/(SICI)1099-1395(199710)10:10<755::AID-POC935>3.0.CO;2-P – volume: 713 start-page: 215 year: 2005 ident: ref41/cit41 publication-title: J. Mol. Struct. (Theochem) doi: 10.1016/j.theochem.2004.10.022 – volume: 123 start-page: 12290 year: 2001 ident: ref76/cit76 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010915t – volume: 88 start-page: 899 year: 1988 ident: ref85/cit85 publication-title: Chem. Rev. doi: 10.1021/cr00088a005 – volume: 102 start-page: 7211 year: 1980 ident: ref53/cit53 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00544a007 – volume: 88 start-page: 860 issue: 7 year: 2011 ident: ref6/cit6 publication-title: J. Chem. Educ. doi: 10.1021/ed100155c – volume: 31 start-page: 277 year: 1991 ident: ref70/cit70 publication-title: Isr. J. Chem. doi: 10.1002/ijch.199100032 – volume: 65 start-page: 3910 year: 2000 ident: ref5/cit5 publication-title: J. Org. Chem. doi: 10.1021/jo991622+ – ident: ref86/cit86 – volume: 37 start-page: 616 year: 1960 ident: ref19/cit19 publication-title: J. Chem. Educ. doi: 10.1021/ed037p616 – volume: 83 start-page: 1736 year: 1985 ident: ref87/cit87 publication-title: J. Chem. Phys. doi: 10.1063/1.449360 – volume: 40 start-page: 3534 year: 2001 ident: ref60/cit60 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20011001)40:19<3534::AID-ANIE3534>3.0.CO;2-# – volume: 95 start-page: 810 year: 2003 ident: ref43/cit43 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.10606 – volume: 115 start-page: 4201 year: 1993 ident: ref56/cit56 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00063a043 – volume: 115 start-page: 1061 year: 1993 ident: ref55/cit55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00056a034 – volume: 2 start-page: 1506 year: 2002 ident: ref74/cit74 publication-title: J. Chem. Soc., Perkin Trans. 2 doi: 10.1039/B204629F – volume: 106 start-page: 3967 year: 2002 ident: ref36/cit36 publication-title: J. Phys. Chem. A doi: 10.1021/jp020041c – volume: 127 start-page: 16374 year: 2005 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055881u – volume: 105 start-page: 6051 year: 2001 ident: ref81/cit81 publication-title: J. Phys. Chem. B doi: 10.1021/jp010486l – volume: 131 start-page: 8382 year: 2009 ident: ref15/cit15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9031083 – volume: 119 start-page: 5355 year: 1997 ident: ref83/cit83 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja964132x – volume: 125 start-page: 14014 year: 2003 ident: ref40/cit40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037304g – volume: 18 start-page: 1419 year: 1999 ident: ref59/cit59 publication-title: Organometallics doi: 10.1021/om980951+ – volume: 107 start-page: 6814 year: 2003 ident: ref47/cit47 publication-title: J. Phys. Chem. A doi: 10.1021/jp034764n – volume: 118 start-page: 4889 year: 1996 ident: ref73/cit73 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja954237k – volume-title: The Nature of the Chemical Bond year: 1960 ident: ref2/cit2 – volume: 68 start-page: 3387 year: 2003 ident: ref39/cit39 publication-title: J. Org. Chem. doi: 10.1021/jo026824b – volume: 37 start-page: 308 year: 2008 ident: ref52/cit52 publication-title: Chem. Soc. Rev. doi: 10.1039/B711844A – volume: 135 start-page: 1558 year: 2013 ident: ref50/cit50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3114196 – ident: ref67/cit67 – ident: ref84/cit84 – volume: 813 start-page: 21 year: 2007 ident: ref62/cit62 publication-title: J. Mol. Struct. (THEOCHEM) doi: 10.1016/j.theochem.2007.02.016 – volume: 89 start-page: 351 year: 2012 ident: ref64/cit64 publication-title: J. Chem. Educ. doi: 10.1021/ed200355u – volume: 109 start-page: 1676 year: 1987 ident: ref22/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00240a013 – volume: 123 start-page: 1327 year: 2001 ident: ref34/cit34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja003291k – volume: 359 start-page: 158 year: 2002 ident: ref35/cit35 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00681-4 – volume: 111 start-page: 9003 year: 1989 ident: ref4/cit4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00207a003 – volume: 124 start-page: 1190 year: 2002 ident: ref75/cit75 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja017169c – volume: 89 start-page: 578 issue: 5 year: 2012 ident: ref7/cit7 publication-title: J. Chem. Educ. doi: 10.1021/ed200746n – volume: 133 start-page: 12319 year: 2011 ident: ref17/cit17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205629b – volume: 124 start-page: 5514 year: 2002 ident: ref37/cit37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja017209c – volume: 1 start-page: 109 year: 2011 ident: ref91/cit91 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 524 start-page: 107 issue: 1 year: 1996 ident: ref28/cit28 publication-title: J. Organomet. Chem. doi: 10.1016/S0022-328X(96)06438-8 – volume: 19 start-page: 1160 year: 2000 ident: ref80/cit80 publication-title: Organometallics doi: 10.1021/om990955u – volume: 5 start-page: 3631 year: 1999 ident: ref58/cit58 publication-title: Chem.—Eur. J. doi: 10.1002/(SICI)1521-3765(19991203)5:12<3631::AID-CHEM3631>3.0.CO;2-1 – volume: 123 start-page: 11292 year: 2001 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0109702 – volume: 120 start-page: 8541 year: 1998 ident: ref46/cit46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja980938g – volume: 125 start-page: 5973 year: 2003 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034656e – volume: 61 start-page: 275 year: 1961 ident: ref20/cit20 publication-title: Chem. Rev. doi: 10.1021/cr60211a005 – volume: 109 start-page: 13755 year: 2005 ident: ref42/cit42 publication-title: J. Phys. Chem. B doi: 10.1021/jp051022g – volume: 89 start-page: 575 year: 2012 ident: ref8/cit8 publication-title: J. Chem. Educ. doi: 10.1021/ed200615j – volume: 66 start-page: 8737 year: 2001 ident: ref78/cit78 publication-title: J. Org. Chem. doi: 10.1021/jo010062n – volume: 28 start-page: 373 year: 2007 ident: ref13/cit13 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20524 – volume: 90 start-page: 1357 year: 1968 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01007a047 – volume: 100 start-page: 6463 year: 1996 ident: ref27/cit27 publication-title: J. Phys. Chem. doi: 10.1021/jp9523635 |
SSID | ssj0001324 |
Score | 2.4273407 |
Snippet | Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3663 |
SubjectTerms | Carbon Charge Correlation Electronegativity Molecular structure Orbitals Polarization Trends |
Title | Hybridization Trends for Main Group Elements and Expanding the Bent’s Rule Beyond Carbon: More than Electronegativity |
URI | http://dx.doi.org/10.1021/jp502472u https://www.ncbi.nlm.nih.gov/pubmed/24773162 https://www.proquest.com/docview/1528341415 https://www.proquest.com/docview/1762051628 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA61HvQivq2PEh8HL6u7abLJetOlpQjtQS30VpJsVpCyLW0X9SL-Df-ev8TJPopC1eOGScJOkpkvmRdCZzwWmgHydRrGUw71NXeUCaQTu8RIohQgfBvv3On67R697bN-BZ3-YsEn3uXTmIEe4SRdQsvEF8Kevu7bxVzcwnWK5l70gcNA35bpg753tapHT3-qnl_wZKZXWutorQCE-DpfwQ1UMckmWgnLOmxb6Ln9aqOqinhJnDuxYsCauAO3epw9HuFm7gU-xTKJcPNlnAerYEB3-AbaP98_pvguHdovG7GCQzlRo-QKd0YTg-3ruR0hq4djHouCEtuo12o-hG2nKJfgSEqDmcMDpinnro6J34iVkQzOmgEpIjUV2ouYpBJEG-GuiCjVSkQAt6gXEegGwMdv7KBqAtPsIexKTmIRCSWUpoFigdBEyNgwaARJzWuoDvwcFNt9Osgs2QRuEiXDa-i8ZPVAF8nGbc2L4SLSkznpOM-wsYjouFyvAbDfGjVkYkYpTG2z01APcMgfNCDxQfj4RNTQbr7Y86lgeFu8i-z_90sHaBXAErWeA4QcoupskpojACQzVQdAHt7Xs235Bads3XE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJvlUQwCiUtg47VjB4kDLFttaXcPqJV6C7bjIFCVXW12VXpB_A34efwSPuexgFTg1GOsyTgZezyf7XkQPVaFdhLINxr42EYicSqyPjVR0efecGuB8EO882SajA_F2yN5tEHfu1gYfEQFTlV9if8ru0D8_NNcwpwovmodKPf86Qm2Z9XL3TcYyyec74wOhuOorSAQGSHSZaRS6YRSfVfwZFBYbySmn4diGSe0i3NphIG2c9XXuRDO6hwIRMQ5x2vAAskAfC_QRYAeGZR--uXZepXHLk40zvtpJGHmu6xFv39qsHiu-tPi_QXG1uZs5wpdbnEoe9VMnKu04ctrtDXsyr9dp5PxaQjmasM0WeM7ywBx2cR8LFl9ZsVGjfN5xUyZs9HneRMjwwAq2Wu0__j6rWLvVsfhKQTKsKFZ2Fn5gk1mC8_CoX3gUJfh8R_aOhY36PBcZHyTNkt0c5tY3yhe6FxbbZ1IrUy149oUXqIRBkL1aBvyzFotq7L6Ap1jA9MJvEdPO1Fnrs1xHkptHJ9F-mhNOm8Se5xF9LAbrwziD3cppvSzFboOSXFEDPjzDxoYGqx5Cdc9utUM9rorsA81w_id__3SA9oaH0z2s_3d6d5dugS8JoLzAuf3aHO5WPn7wERLu11PTkbvz1sbfgIE2Rqb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BlQqXqoUWtg8wqJV6CSReO3YqcWiXXS3QXVUIJG7BdhwEQtnVZleUC-Jv9NIf11_COI9VkXicuCXWxHbGHs9nex4An0UqDUfk6zVtoD0WGuFpGykv9alVVGtE-M7fudcPu0ds75gfz8Df2hcGO5FjTXlxie-kepikVYSBYOt8yFGlCDqpjCj37dUlbtHy7d0dHM8vlHbah62uV2UR8BRj0dgTETdMCN-kNGym2iqOU9CicCnDpAkSrphCiafClwljRssEUQgLEoqfIR4Im1jvLLzAJ98Jfv96c7rS406OlQb8kcdR1deRi_7vqtN6Jr-r9R6AsoVK67yGVxUWJd_LyfMGZmy2CPOtOgXcElx2r5xDV-WqSUr7WYIwl_TUWUaKcyvSLg3Qc6KyhLR_D0s_GYLAkvzA8n83f3JyMLlwb85ZhrTUSA-yb6Q3GFniDu5dDUUqHnta5bJ4C0fPwuN3MJdhMytAfCVoKhOppTYs0jyShkqVWo6FqCREA1aRn3ElaXlcXKJT3MTUDG_A15rVsaninLt0Gxf3kW5MSYdlcI_7iNbr8YqR_e4-RWV2MMGmXWAcFiAEeoQGlQ2ueyGVDVguB3vaFFbv8obR90_90hq8_LXTiX_u9vc_wAJCNubsFyj9CHPj0cR-Qlg01qvF3CRw8tzCcAs-PBuo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridization+Trends+for+Main+Group+Elements+and+Expanding+the+Bent%E2%80%99s+Rule+Beyond+Carbon%3A+More+than+Electronegativity&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Alabugin%2C+Igor+V.&rft.au=Bresch%2C+Stefan&rft.au=Manoharan%2C+Mariappan&rft.date=2014-05-22&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=118&rft.issue=20&rft.spage=3663&rft.epage=3677&rft_id=info:doi/10.1021%2Fjp502472u&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jp502472u |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |