Hybridization Trends for Main Group Elements and Expanding the Bent’s Rule Beyond Carbon: More than Electronegativity

Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 H n X–YH m compounds, where Y spans the groups 13–17 of the periods 2–4. This set of substrates probes the flexibility of the hybri...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 118; no. 20; pp. 3663 - 3677
Main Authors Alabugin, Igor V., Bresch, Stefan, Manoharan, Mariappan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 H n X–YH m compounds, where Y spans the groups 13–17 of the periods 2–4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent’s rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.
AbstractList Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.
Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 H n X–YH m compounds, where Y spans the groups 13–17 of the periods 2–4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent’s rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.
Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.
Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 H sub(n)X-YH sub()mcompounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.
Author Alabugin, Igor V.
Bresch, Stefan
Manoharan, Mariappan
AuthorAffiliation Department of Chemistry and Biochemistry
Bethune Cookman University
Florida State University
AuthorAffiliation_xml – name: Bethune Cookman University
– name: Florida State University
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Igor V.
  surname: Alabugin
  fullname: Alabugin, Igor V.
  email: alabugin@chem.fsu.edu
– sequence: 2
  givenname: Stefan
  surname: Bresch
  fullname: Bresch, Stefan
– sequence: 3
  givenname: Mariappan
  surname: Manoharan
  fullname: Manoharan, Mariappan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24773162$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKBDEQRYMovhf-gGQj6KI1SSf9cKfD-IARQXQd0um0ZuhJ2iStjit_w9_zS8w4owsRXFVVOPemuLUBlo01CoAdjA4xIvho3DFEaE76JbCOGUEJI5gtxx4VZcKytFwDG96PEUI4JXQVrEU4T3FG1sHzxbRyutavImhr4K1TpvawsQ5eCW3gubN9B4etmigTPBSmhsOXLhZt7mF4UPA0vn-8vXt407ezaWojMhCusuYYXlmnIiXMzEEGF7e-j_886TDdAiuNaL3aXtRNcHc2vB1cJKPr88vBySgRlJYhyUsm465INiRLm0oJlpdUoaIQkhYS10xQUWJMclTUlMqqqFHBKK5JlBGWZekm2J_7ds4-9soHPtFeqrYVRtnec5xnBLEYRfE_yiJEMcUsorsLtK8mquad0xPhpvw71wgczQHprPdONVzq8BVxcEK3HCM-uxz_uVxUHPxSfJv-xe7NWSE9H9vemRjhH9wngaukpg
CitedBy_id crossref_primary_10_1021_acs_chemrev_8b00637
crossref_primary_10_1016_j_cej_2021_128727
crossref_primary_10_1039_D1CS00386K
crossref_primary_10_1016_j_jorganchem_2015_07_027
crossref_primary_10_1016_j_ica_2016_10_037
crossref_primary_10_1016_j_optmat_2019_04_063
crossref_primary_10_1021_acs_jpca_8b03145
crossref_primary_10_1016_j_electacta_2024_144777
crossref_primary_10_3389_fspas_2021_643348
crossref_primary_10_1002_wcms_1389
crossref_primary_10_1016_j_saa_2015_02_070
crossref_primary_10_1039_C8CP02709A
crossref_primary_10_1002_jcc_24036
crossref_primary_10_1016_j_inoche_2023_111567
crossref_primary_10_1007_s12039_015_0941_8
crossref_primary_10_1039_D1CS00564B
crossref_primary_10_1021_acs_jpca_6b02900
crossref_primary_10_1039_D2DT03214G
crossref_primary_10_1002_wcms_1261
crossref_primary_10_1021_acsearthspacechem_0c00029
crossref_primary_10_1039_C5SC02402A
crossref_primary_10_1021_acs_jpca_6b05730
crossref_primary_10_1039_C7CE02185B
crossref_primary_10_3390_molecules26144110
crossref_primary_10_1002_chem_202303133
crossref_primary_10_1039_D2SC02535C
crossref_primary_10_1080_0144235X_2016_1192262
crossref_primary_10_1021_acs_jpca_4c03434
crossref_primary_10_1039_C4FD00183D
crossref_primary_10_1007_s00894_015_2616_2
crossref_primary_10_1039_D3SC00001J
crossref_primary_10_1021_ol502387a
crossref_primary_10_1039_C7OB02463K
crossref_primary_10_1002_jcc_27534
crossref_primary_10_1039_D1RA02877D
crossref_primary_10_1002_jcc_25793
crossref_primary_10_1002_poc_3382
crossref_primary_10_1039_C9CP01011D
crossref_primary_10_1021_acs_joc_9b00503
crossref_primary_10_1021_jacs_5b02373
crossref_primary_10_1039_C9QM00532C
crossref_primary_10_1002_ange_201607040
crossref_primary_10_1016_j_heliyon_2021_e06827
crossref_primary_10_3390_molecules23112834
crossref_primary_10_1002_chem_201800453
crossref_primary_10_1016_j_chemosphere_2024_141128
crossref_primary_10_1016_j_mrgentox_2020_503299
crossref_primary_10_1021_acs_jpclett_9b02928
crossref_primary_10_1021_jacs_8b08513
crossref_primary_10_1016_j_dyepig_2023_111903
crossref_primary_10_1002_slct_202004231
crossref_primary_10_1021_acsomega_0c05840
crossref_primary_10_1016_j_chempr_2016_11_007
crossref_primary_10_1071_CH22205
crossref_primary_10_1039_C7OB00527J
crossref_primary_10_3390_molecules26072005
crossref_primary_10_1021_acs_joc_5b01356
crossref_primary_10_1039_C7CP03572A
crossref_primary_10_1021_jacs_7b05367
crossref_primary_10_1063_5_0084739
crossref_primary_10_1021_acs_accounts_3c00718
crossref_primary_10_1039_C4CC05324A
crossref_primary_10_1039_D2NJ02380F
crossref_primary_10_1080_00268976_2021_1970844
crossref_primary_10_1016_j_optmat_2019_109307
crossref_primary_10_1021_acs_organomet_9b00368
crossref_primary_10_1021_jacs_3c10412
crossref_primary_10_1021_acs_joc_7b00262
crossref_primary_10_1021_jacs_7b03943
crossref_primary_10_1002_anie_201607040
crossref_primary_10_1016_j_susc_2022_122093
crossref_primary_10_1007_s11172_024_4143_8
crossref_primary_10_1016_j_physa_2021_125936
crossref_primary_10_1109_TMAG_2022_3211697
crossref_primary_10_1016_j_jmmm_2018_12_063
crossref_primary_10_1016_j_mencom_2019_05_001
crossref_primary_10_1071_CH16683
crossref_primary_10_1021_acs_organomet_2c00663
crossref_primary_10_1021_acs_chemrev_6b00091
crossref_primary_10_3390_molecules22030361
crossref_primary_10_1002_ejic_202500012
crossref_primary_10_1021_acs_jpca_3c02267
Cites_doi 10.1021/ja00210a008
10.1021/ic951397o
10.1021/ja9739300
10.1016/j.tet.2013.05.008
10.1038/35079036
10.1002/qua.20082
10.1021/ja054170t
10.1021/jp049723l
10.1021/ic50225a098
10.1063/1.1539866
10.1021/ed2006289
10.1021/jo401091w
10.1021/jp9609444
10.1016/S0022-2860(96)09595-6
10.1021/cr4000682
10.1039/c2cc36110h
10.1021/ja953484l
10.1021/ol302389f
10.1021/ed200472t
10.1063/1.1731373
10.1021/ic010131g
10.1021/jo00087a035
10.1021/ja00047a042
10.1021/jo000560g
10.1016/S0166-1280(96)05008-7
10.1021/jp9526612
10.1021/om990936k
10.1021/ja01355a027
10.1021/ed200491q
10.1002/qua.20690
10.1246/cl.2003.746
10.1002/(SICI)1099-1395(199710)10:10<755::AID-POC935>3.0.CO;2-P
10.1016/j.theochem.2004.10.022
10.1021/ja010915t
10.1021/cr00088a005
10.1021/ja00544a007
10.1021/ed100155c
10.1002/ijch.199100032
10.1021/jo991622+
10.1021/ed037p616
10.1063/1.449360
10.1002/1521-3773(20011001)40:19<3534::AID-ANIE3534>3.0.CO;2-#
10.1002/qua.10606
10.1021/ja00063a043
10.1021/ja00056a034
10.1039/B204629F
10.1021/jp020041c
10.1021/ja055881u
10.1021/jp010486l
10.1021/ja9031083
10.1021/ja964132x
10.1021/ja037304g
10.1021/om980951+
10.1021/jp034764n
10.1021/ja954237k
10.1021/jo026824b
10.1039/B711844A
10.1021/ja3114196
10.1016/j.theochem.2007.02.016
10.1021/ed200355u
10.1021/ja00240a013
10.1021/ja003291k
10.1016/S0009-2614(02)00681-4
10.1021/ja00207a003
10.1021/ja017169c
10.1021/ed200746n
10.1021/ja205629b
10.1021/ja017209c
10.1016/S0022-328X(96)06438-8
10.1021/om990955u
10.1002/(SICI)1521-3765(19991203)5:12<3631::AID-CHEM3631>3.0.CO;2-1
10.1021/ja0109702
10.1021/ja980938g
10.1021/ja034656e
10.1021/cr60211a005
10.1021/jp051022g
10.1021/ed200615j
10.1021/jo010062n
10.1002/jcc.20524
10.1021/ja01007a047
10.1021/jp9523635
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID N~.
AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/jp502472u
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 3677
ExternalDocumentID 24773162
10_1021_jp502472u
b122414137
Genre Journal Article
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
53G
55A
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
IHE
JG~
LG6
N~.
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
~02
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a449t-795c4770cf263fbea5794e088ac48c1d5a4a9112708d44cb8d08541d25c425663
IEDL.DBID N~.
ISSN 1089-5639
1520-5215
IngestDate Thu Jul 10 22:28:57 EDT 2025
Fri Jul 11 07:56:05 EDT 2025
Thu Jan 02 22:19:01 EST 2025
Thu Apr 24 22:54:44 EDT 2025
Tue Jul 01 01:27:15 EDT 2025
Wed Jul 10 01:28:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a449t-795c4770cf263fbea5794e088ac48c1d5a4a9112708d44cb8d08541d25c425663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/jp502472u
PMID 24773162
PQID 1528341415
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_1762051628
proquest_miscellaneous_1528341415
pubmed_primary_24773162
crossref_citationtrail_10_1021_jp502472u
crossref_primary_10_1021_jp502472u
acs_journals_10_1021_jp502472u
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-22
PublicationDateYYYYMMDD 2014-05-22
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Lewis M. (ref46/cit46) 1998; 120
Wang J.-T. (ref65/cit65) 2003; 32
Lin T. (ref42/cit42) 2005; 109
Reed A. E. (ref70/cit70) 1991; 31
Gleiter R. (ref73/cit73) 1996; 118
Grushow A. (ref7/cit7) 2012; 89
van der Veken B. J. (ref76/cit76) 2001; 123
Haddon R. C. (ref22/cit22) 1987; 109
Alabugin I. V. (ref51/cit51) 2013; 78
Alabugin I. V. (ref40/cit40) 2003; 125
Bent H. A. (ref18/cit18) 1959; 33
Bent H. A. (ref19/cit19) 1960; 37
Alabugin I. V. (ref62/cit62) 2007; 813
Ferbinteanu M. (ref63/cit63) 2001; 40
Hiberty P. C. (ref8/cit8) 2012; 89
Baldridge K. K. (ref37/cit37) 2002; 124
Deslongchamps G. (ref90/cit90) 2013; 69
Root D. M. (ref56/cit56) 1993; 115
Palmer M. H. (ref32/cit32) 1997; 405
Reed A. E. (ref85/cit85) 1988; 88
O’Hagan D. (ref52/cit52) 2008; 37
Alabugin I. V. (ref91/cit91) 2011; 1
Grushow A. (ref6/cit6) 2011; 88
Worthington S. E. (ref31/cit31) 1997; 10
Mo Y. (ref26/cit26) 1996; 100
Weinhold F. (ref89/cit89) 2005
Allen L. C. (ref4/cit4) 1989; 111
Gilbert T. M. (ref80/cit80) 2000; 19
Xie Y. (ref82/cit82) 1998; 120
Mohamed R. K. (ref49/cit49) 2013; 113
Pu J. (ref44/cit44) 2005; 127
DeKock R. L. (ref10/cit10) 2012; 89
Lemke F. R. (ref59/cit59) 1999; 18
Reed A. E. (ref87/cit87) 1985; 83
Uddin J. (ref79/cit79) 2000; 19
Carpenter J. E. (ref23/cit23) 1988; 110
Paddon-Row M. N. (ref83/cit83) 1997; 119
Lewis M. (ref47/cit47) 2003; 107
Foster J. P. (ref53/cit53) 1980; 102
ref67/cit67
Ou M. C. (ref33/cit33) 1997; 401
Bent H. A. (ref20/cit20) 1961; 61
Sadlej-Sosnowska N. (ref78/cit78) 2001; 66
Major D. T. (ref25/cit25) 2005; 127
Öström H. (ref38/cit38) 2003; 118
Kirschenbaum L. J. (ref64/cit64) 2012; 89
Andujar-De Sanctis I. L. (ref14/cit14) 2012; 14
Krygowski T. M. (ref35/cit35) 2002; 359
Jemmis E. D. (ref43/cit43) 2003; 95
Gold B. (ref50/cit50) 2013; 135
Streitwieser A. (ref21/cit21) 1968; 90
Oxgaard J. (ref36/cit36) 2002; 106
Alabugin I. V. (ref12/cit12) 2003; 125
MacMillar S. (ref17/cit17) 2011; 133
Tro N. J. (ref9/cit9) 2012; 89
Alabugin I. V. (ref13/cit13) 2007; 28
Lauvergnat D. (ref27/cit27) 1996; 100
Kaupp M. (ref60/cit60) 2001; 40
Alabugin I. V. (ref66/cit66) 2004; 108
Hammann B. (ref16/cit16) 2012; 48
Faust R. (ref24/cit24) 1992; 114
ref86/cit86
Huheey J. E. (ref54/cit54) 1981; 20
Landis C. R. (ref11/cit11) 2012; 89
Merrill P. B. (ref29/cit29) 1996; 118
Goodman L. (ref71/cit71) 2001; 411
Kaupp M. (ref58/cit58) 1999; 5
Klod S. (ref74/cit74) 2002; 2
ref68/cit68
Pauling L. (ref1/cit1) 1931; 53
Salzner U. (ref72/cit72) 1994; 59
Clark A. E. (ref39/cit39) 2003; 68
Jonas V. (ref57/cit57) 1996; 35
Skancke A. (ref30/cit30) 1996; 100
Kaupp M. (ref55/cit55) 1993; 115
Pauling L. (ref2/cit2) 1960
Donald K. J. (ref41/cit41) 2005; 713
Wilkens S. J. (ref75/cit75) 2002; 124
Ghosh D. C. (ref61/cit61) 2005; 105
Munoz J. (ref81/cit81) 2001; 105
Alabugin I. V. (ref5/cit5) 2000; 65
Eckert-Maksić (ref28/cit28) 1996; 524
Cortes F. (ref77/cit77) 2001; 66
Kelly K. K. (ref15/cit15) 2009; 131
ref84/cit84
Hamon M. A. (ref45/cit45) 2001; 123
Lewis B. E. (ref34/cit34) 2001; 123
Norberg D. (ref48/cit48) 2004; 98
References_xml – volume: 110
  start-page: 368
  year: 1988
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00210a008
– volume: 35
  start-page: 2097
  year: 1996
  ident: ref57/cit57
  publication-title: Inorg. Chem.
  doi: 10.1021/ic951397o
– volume: 120
  start-page: 3773
  year: 1998
  ident: ref82/cit82
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9739300
– volume: 69
  start-page: 6022
  year: 2013
  ident: ref90/cit90
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2013.05.008
– volume: 411
  start-page: 565
  year: 2001
  ident: ref71/cit71
  publication-title: Nature
  doi: 10.1038/35079036
– volume-title: Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective
  year: 2005
  ident: ref89/cit89
– volume: 98
  start-page: 473
  year: 2004
  ident: ref48/cit48
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.20082
– volume: 127
  start-page: 14879
  year: 2005
  ident: ref44/cit44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054170t
– volume: 108
  start-page: 4720
  year: 2004
  ident: ref66/cit66
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp049723l
– volume: 20
  start-page: 4033
  year: 1981
  ident: ref54/cit54
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50225a098
– volume: 118
  start-page: 3782
  year: 2003
  ident: ref38/cit38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1539866
– volume: 89
  start-page: 567
  year: 2012
  ident: ref9/cit9
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed2006289
– volume: 78
  start-page: 7777
  year: 2013
  ident: ref51/cit51
  publication-title: J. Org. Chem.
  doi: 10.1021/jo401091w
– volume: 100
  start-page: 15079
  year: 1996
  ident: ref30/cit30
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9609444
– volume: 405
  start-page: 193
  year: 1997
  ident: ref32/cit32
  publication-title: J. Mol. Struct.
  doi: 10.1016/S0022-2860(96)09595-6
– volume: 113
  start-page: 7089
  year: 2013
  ident: ref49/cit49
  publication-title: Chem. Rev.
  doi: 10.1021/cr4000682
– volume: 48
  start-page: 11337
  year: 2012
  ident: ref16/cit16
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc36110h
– volume: 118
  start-page: 5062
  year: 1996
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja953484l
– volume: 14
  start-page: 5238
  year: 2012
  ident: ref14/cit14
  publication-title: Org. Lett.
  doi: 10.1021/ol302389f
– volume: 89
  start-page: 569
  issue: 5
  year: 2012
  ident: ref10/cit10
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed200472t
– volume: 33
  start-page: 1258
  year: 1959
  ident: ref18/cit18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1731373
– volume: 40
  start-page: 4947
  year: 2001
  ident: ref63/cit63
  publication-title: Inorg. Chem.
  doi: 10.1021/ic010131g
– ident: ref68/cit68
– volume: 59
  start-page: 2138
  year: 1994
  ident: ref72/cit72
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00087a035
– volume: 114
  start-page: 8263
  year: 1992
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00047a042
– volume: 66
  start-page: 2918
  year: 2001
  ident: ref77/cit77
  publication-title: J. Org. Chem.
  doi: 10.1021/jo000560g
– volume: 401
  start-page: 87
  year: 1997
  ident: ref33/cit33
  publication-title: J. Mol. Struct. (Theochem)
  doi: 10.1016/S0166-1280(96)05008-7
– volume: 100
  start-page: 6469
  issue: 16
  year: 1996
  ident: ref26/cit26
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9526612
– volume: 19
  start-page: 571
  year: 2000
  ident: ref79/cit79
  publication-title: Organometallics
  doi: 10.1021/om990936k
– volume: 53
  start-page: 1367
  year: 1931
  ident: ref1/cit1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01355a027
– volume: 89
  start-page: 570
  year: 2012
  ident: ref11/cit11
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed200491q
– volume: 105
  start-page: 270
  year: 2005
  ident: ref61/cit61
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.20690
– volume: 32
  start-page: 746
  year: 2003
  ident: ref65/cit65
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2003.746
– volume: 10
  start-page: 755
  year: 1997
  ident: ref31/cit31
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/(SICI)1099-1395(199710)10:10<755::AID-POC935>3.0.CO;2-P
– volume: 713
  start-page: 215
  year: 2005
  ident: ref41/cit41
  publication-title: J. Mol. Struct. (Theochem)
  doi: 10.1016/j.theochem.2004.10.022
– volume: 123
  start-page: 12290
  year: 2001
  ident: ref76/cit76
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010915t
– volume: 88
  start-page: 899
  year: 1988
  ident: ref85/cit85
  publication-title: Chem. Rev.
  doi: 10.1021/cr00088a005
– volume: 102
  start-page: 7211
  year: 1980
  ident: ref53/cit53
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00544a007
– volume: 88
  start-page: 860
  issue: 7
  year: 2011
  ident: ref6/cit6
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed100155c
– volume: 31
  start-page: 277
  year: 1991
  ident: ref70/cit70
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.199100032
– volume: 65
  start-page: 3910
  year: 2000
  ident: ref5/cit5
  publication-title: J. Org. Chem.
  doi: 10.1021/jo991622+
– ident: ref86/cit86
– volume: 37
  start-page: 616
  year: 1960
  ident: ref19/cit19
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed037p616
– volume: 83
  start-page: 1736
  year: 1985
  ident: ref87/cit87
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449360
– volume: 40
  start-page: 3534
  year: 2001
  ident: ref60/cit60
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20011001)40:19<3534::AID-ANIE3534>3.0.CO;2-#
– volume: 95
  start-page: 810
  year: 2003
  ident: ref43/cit43
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.10606
– volume: 115
  start-page: 4201
  year: 1993
  ident: ref56/cit56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00063a043
– volume: 115
  start-page: 1061
  year: 1993
  ident: ref55/cit55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00056a034
– volume: 2
  start-page: 1506
  year: 2002
  ident: ref74/cit74
  publication-title: J. Chem. Soc., Perkin Trans. 2
  doi: 10.1039/B204629F
– volume: 106
  start-page: 3967
  year: 2002
  ident: ref36/cit36
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp020041c
– volume: 127
  start-page: 16374
  year: 2005
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055881u
– volume: 105
  start-page: 6051
  year: 2001
  ident: ref81/cit81
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp010486l
– volume: 131
  start-page: 8382
  year: 2009
  ident: ref15/cit15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9031083
– volume: 119
  start-page: 5355
  year: 1997
  ident: ref83/cit83
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja964132x
– volume: 125
  start-page: 14014
  year: 2003
  ident: ref40/cit40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037304g
– volume: 18
  start-page: 1419
  year: 1999
  ident: ref59/cit59
  publication-title: Organometallics
  doi: 10.1021/om980951+
– volume: 107
  start-page: 6814
  year: 2003
  ident: ref47/cit47
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp034764n
– volume: 118
  start-page: 4889
  year: 1996
  ident: ref73/cit73
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja954237k
– volume-title: The Nature of the Chemical Bond
  year: 1960
  ident: ref2/cit2
– volume: 68
  start-page: 3387
  year: 2003
  ident: ref39/cit39
  publication-title: J. Org. Chem.
  doi: 10.1021/jo026824b
– volume: 37
  start-page: 308
  year: 2008
  ident: ref52/cit52
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B711844A
– volume: 135
  start-page: 1558
  year: 2013
  ident: ref50/cit50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3114196
– ident: ref67/cit67
– ident: ref84/cit84
– volume: 813
  start-page: 21
  year: 2007
  ident: ref62/cit62
  publication-title: J. Mol. Struct. (THEOCHEM)
  doi: 10.1016/j.theochem.2007.02.016
– volume: 89
  start-page: 351
  year: 2012
  ident: ref64/cit64
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed200355u
– volume: 109
  start-page: 1676
  year: 1987
  ident: ref22/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00240a013
– volume: 123
  start-page: 1327
  year: 2001
  ident: ref34/cit34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja003291k
– volume: 359
  start-page: 158
  year: 2002
  ident: ref35/cit35
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00681-4
– volume: 111
  start-page: 9003
  year: 1989
  ident: ref4/cit4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00207a003
– volume: 124
  start-page: 1190
  year: 2002
  ident: ref75/cit75
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja017169c
– volume: 89
  start-page: 578
  issue: 5
  year: 2012
  ident: ref7/cit7
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed200746n
– volume: 133
  start-page: 12319
  year: 2011
  ident: ref17/cit17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205629b
– volume: 124
  start-page: 5514
  year: 2002
  ident: ref37/cit37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja017209c
– volume: 1
  start-page: 109
  year: 2011
  ident: ref91/cit91
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 524
  start-page: 107
  issue: 1
  year: 1996
  ident: ref28/cit28
  publication-title: J. Organomet. Chem.
  doi: 10.1016/S0022-328X(96)06438-8
– volume: 19
  start-page: 1160
  year: 2000
  ident: ref80/cit80
  publication-title: Organometallics
  doi: 10.1021/om990955u
– volume: 5
  start-page: 3631
  year: 1999
  ident: ref58/cit58
  publication-title: Chem.—Eur. J.
  doi: 10.1002/(SICI)1521-3765(19991203)5:12<3631::AID-CHEM3631>3.0.CO;2-1
– volume: 123
  start-page: 11292
  year: 2001
  ident: ref45/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0109702
– volume: 120
  start-page: 8541
  year: 1998
  ident: ref46/cit46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja980938g
– volume: 125
  start-page: 5973
  year: 2003
  ident: ref12/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja034656e
– volume: 61
  start-page: 275
  year: 1961
  ident: ref20/cit20
  publication-title: Chem. Rev.
  doi: 10.1021/cr60211a005
– volume: 109
  start-page: 13755
  year: 2005
  ident: ref42/cit42
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp051022g
– volume: 89
  start-page: 575
  year: 2012
  ident: ref8/cit8
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed200615j
– volume: 66
  start-page: 8737
  year: 2001
  ident: ref78/cit78
  publication-title: J. Org. Chem.
  doi: 10.1021/jo010062n
– volume: 28
  start-page: 373
  year: 2007
  ident: ref13/cit13
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20524
– volume: 90
  start-page: 1357
  year: 1968
  ident: ref21/cit21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01007a047
– volume: 100
  start-page: 6463
  year: 1996
  ident: ref27/cit27
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9523635
SSID ssj0001324
Score 2.4273407
Snippet Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3663
SubjectTerms Carbon
Charge
Correlation
Electronegativity
Molecular structure
Orbitals
Polarization
Trends
Title Hybridization Trends for Main Group Elements and Expanding the Bent’s Rule Beyond Carbon: More than Electronegativity
URI http://dx.doi.org/10.1021/jp502472u
https://www.ncbi.nlm.nih.gov/pubmed/24773162
https://www.proquest.com/docview/1528341415
https://www.proquest.com/docview/1762051628
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA61HvQivq2PEh8HL6u7abLJetOlpQjtQS30VpJsVpCyLW0X9SL-Df-ev8TJPopC1eOGScJOkpkvmRdCZzwWmgHydRrGUw71NXeUCaQTu8RIohQgfBvv3On67R697bN-BZ3-YsEn3uXTmIEe4SRdQsvEF8Kevu7bxVzcwnWK5l70gcNA35bpg753tapHT3-qnl_wZKZXWutorQCE-DpfwQ1UMckmWgnLOmxb6Ln9aqOqinhJnDuxYsCauAO3epw9HuFm7gU-xTKJcPNlnAerYEB3-AbaP98_pvguHdovG7GCQzlRo-QKd0YTg-3ruR0hq4djHouCEtuo12o-hG2nKJfgSEqDmcMDpinnro6J34iVkQzOmgEpIjUV2ouYpBJEG-GuiCjVSkQAt6gXEegGwMdv7KBqAtPsIexKTmIRCSWUpoFigdBEyNgwaARJzWuoDvwcFNt9Osgs2QRuEiXDa-i8ZPVAF8nGbc2L4SLSkznpOM-wsYjouFyvAbDfGjVkYkYpTG2z01APcMgfNCDxQfj4RNTQbr7Y86lgeFu8i-z_90sHaBXAErWeA4QcoupskpojACQzVQdAHt7Xs235Bads3XE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJvlUQwCiUtg47VjB4kDLFttaXcPqJV6C7bjIFCVXW12VXpB_A34efwSPuexgFTg1GOsyTgZezyf7XkQPVaFdhLINxr42EYicSqyPjVR0efecGuB8EO882SajA_F2yN5tEHfu1gYfEQFTlV9if8ru0D8_NNcwpwovmodKPf86Qm2Z9XL3TcYyyec74wOhuOorSAQGSHSZaRS6YRSfVfwZFBYbySmn4diGSe0i3NphIG2c9XXuRDO6hwIRMQ5x2vAAskAfC_QRYAeGZR--uXZepXHLk40zvtpJGHmu6xFv39qsHiu-tPi_QXG1uZs5wpdbnEoe9VMnKu04ctrtDXsyr9dp5PxaQjmasM0WeM7ywBx2cR8LFl9ZsVGjfN5xUyZs9HneRMjwwAq2Wu0__j6rWLvVsfhKQTKsKFZ2Fn5gk1mC8_CoX3gUJfh8R_aOhY36PBcZHyTNkt0c5tY3yhe6FxbbZ1IrUy149oUXqIRBkL1aBvyzFotq7L6Ap1jA9MJvEdPO1Fnrs1xHkptHJ9F-mhNOm8Se5xF9LAbrwziD3cppvSzFboOSXFEDPjzDxoYGqx5Cdc9utUM9rorsA81w_id__3SA9oaH0z2s_3d6d5dugS8JoLzAuf3aHO5WPn7wERLu11PTkbvz1sbfgIE2Rqb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BlQqXqoUWtg8wqJV6CSReO3YqcWiXXS3QXVUIJG7BdhwEQtnVZleUC-Jv9NIf11_COI9VkXicuCXWxHbGHs9nex4An0UqDUfk6zVtoD0WGuFpGykv9alVVGtE-M7fudcPu0ds75gfz8Df2hcGO5FjTXlxie-kepikVYSBYOt8yFGlCDqpjCj37dUlbtHy7d0dHM8vlHbah62uV2UR8BRj0dgTETdMCN-kNGym2iqOU9CicCnDpAkSrphCiafClwljRssEUQgLEoqfIR4Im1jvLLzAJ98Jfv96c7rS406OlQb8kcdR1deRi_7vqtN6Jr-r9R6AsoVK67yGVxUWJd_LyfMGZmy2CPOtOgXcElx2r5xDV-WqSUr7WYIwl_TUWUaKcyvSLg3Qc6KyhLR_D0s_GYLAkvzA8n83f3JyMLlwb85ZhrTUSA-yb6Q3GFniDu5dDUUqHnta5bJ4C0fPwuN3MJdhMytAfCVoKhOppTYs0jyShkqVWo6FqCREA1aRn3ElaXlcXKJT3MTUDG_A15rVsaninLt0Gxf3kW5MSYdlcI_7iNbr8YqR_e4-RWV2MMGmXWAcFiAEeoQGlQ2ueyGVDVguB3vaFFbv8obR90_90hq8_LXTiX_u9vc_wAJCNubsFyj9CHPj0cR-Qlg01qvF3CRw8tzCcAs-PBuo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridization+Trends+for+Main+Group+Elements+and+Expanding+the+Bent%E2%80%99s+Rule+Beyond+Carbon%3A+More+than+Electronegativity&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Alabugin%2C+Igor+V.&rft.au=Bresch%2C+Stefan&rft.au=Manoharan%2C+Mariappan&rft.date=2014-05-22&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=118&rft.issue=20&rft.spage=3663&rft.epage=3677&rft_id=info:doi/10.1021%2Fjp502472u&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jp502472u
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon