Adsorption of Carbon Dioxide for Post-combustion Capture: A Review

Aiming at meeting the global goals established for carbon dioxide (CO2) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the adsorption-based CO2 post-combustion capture is considered one of the most promising approaches because it can provide remarkable energy saving...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 35; no. 16; pp. 12845 - 12868
Main Authors Raganati, Federica, Miccio, Francesco, Ammendola, Paola
Format Journal Article
LanguageEnglish
Published American Chemical Society 19.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aiming at meeting the global goals established for carbon dioxide (CO2) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the adsorption-based CO2 post-combustion capture is considered one of the most promising approaches because it can provide remarkable energy savings with respect to the standard amine-based absorption capture. To date, most of the research effort has been devoted to the development of novel cutting-edge adsorbent materials with the primary purpose of enhancing the adsorption capacity and lifetime while reducing the heat of adsorption, thus lessening the energetic requirement of the sorbent regeneration. Anyway, other factors, beyond the sorbents, greatly affect the competitiveness of the CO2 capture based on the adsorption route, namely, the gas–solid contacting system, impacting the sorbent utilization efficiency, and the regeneration strategies, determining most of the global CO2 capture costs. This review describes the state-of-the-art and most recent progresses of the adsorption-based CO2 post-combustion capture. In particular, the first section describes the CO2 adsorption performances of different classes of solid sorbents on the basis of the most important evaluation parameters (equilibrium adsorption capacity, multi-cyclic stability, etc.). In the second section, the two main gas–solid contacting systems, i.e., fixed beds and fluidized beds, have been reviewed, pointing out their strengths and limitations. Finally, the third section provides a review on the different regeneration modes (temperature, pressure, or hybrid swings), with a focus on the possible strategies available to limit the energy penalty.
AbstractList Aiming at meeting the global goals established for carbon dioxide (CO₂) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the adsorption-based CO₂ post-combustion capture is considered one of the most promising approaches because it can provide remarkable energy savings with respect to the standard amine-based absorption capture. To date, most of the research effort has been devoted to the development of novel cutting-edge adsorbent materials with the primary purpose of enhancing the adsorption capacity and lifetime while reducing the heat of adsorption, thus lessening the energetic requirement of the sorbent regeneration. Anyway, other factors, beyond the sorbents, greatly affect the competitiveness of the CO₂ capture based on the adsorption route, namely, the gas–solid contacting system, impacting the sorbent utilization efficiency, and the regeneration strategies, determining most of the global CO₂ capture costs. This review describes the state-of-the-art and most recent progresses of the adsorption-based CO₂ post-combustion capture. In particular, the first section describes the CO₂ adsorption performances of different classes of solid sorbents on the basis of the most important evaluation parameters (equilibrium adsorption capacity, multi-cyclic stability, etc.). In the second section, the two main gas–solid contacting systems, i.e., fixed beds and fluidized beds, have been reviewed, pointing out their strengths and limitations. Finally, the third section provides a review on the different regeneration modes (temperature, pressure, or hybrid swings), with a focus on the possible strategies available to limit the energy penalty.
Aiming at meeting the global goals established for carbon dioxide (CO2) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the adsorption-based CO2 post-combustion capture is considered one of the most promising approaches because it can provide remarkable energy savings with respect to the standard amine-based absorption capture. To date, most of the research effort has been devoted to the development of novel cutting-edge adsorbent materials with the primary purpose of enhancing the adsorption capacity and lifetime while reducing the heat of adsorption, thus lessening the energetic requirement of the sorbent regeneration. Anyway, other factors, beyond the sorbents, greatly affect the competitiveness of the CO2 capture based on the adsorption route, namely, the gas–solid contacting system, impacting the sorbent utilization efficiency, and the regeneration strategies, determining most of the global CO2 capture costs. This review describes the state-of-the-art and most recent progresses of the adsorption-based CO2 post-combustion capture. In particular, the first section describes the CO2 adsorption performances of different classes of solid sorbents on the basis of the most important evaluation parameters (equilibrium adsorption capacity, multi-cyclic stability, etc.). In the second section, the two main gas–solid contacting systems, i.e., fixed beds and fluidized beds, have been reviewed, pointing out their strengths and limitations. Finally, the third section provides a review on the different regeneration modes (temperature, pressure, or hybrid swings), with a focus on the possible strategies available to limit the energy penalty.
Author Ammendola, Paola
Raganati, Federica
Miccio, Francesco
AuthorAffiliation Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)
Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC)
Consiglio Nazionale delle Ricerche (CNR)
AuthorAffiliation_xml – name: Consiglio Nazionale delle Ricerche (CNR)
– name: Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC)
– name: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)
Author_xml – sequence: 1
  givenname: Federica
  surname: Raganati
  fullname: Raganati, Federica
  organization: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0003-0643-6721
  surname: Miccio
  fullname: Miccio, Francesco
  organization: Consiglio Nazionale delle Ricerche (CNR)
– sequence: 3
  givenname: Paola
  orcidid: 0000-0002-2005-3877
  surname: Ammendola
  fullname: Ammendola, Paola
  email: paola.ammendola@stems.cnr.it
  organization: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)
BookMark eNqNkMtOwzAQRS0EEm3hG8iSTco4iRMXiUUJT6kSCHVvOfYYuUrjYidA_56EdoHYwGquNOeMRndMDhvXICFnFKYUEnohVZhig_51azqsw5QqoDnlB2REWQIxg2R2SEbAeRFDnmTHZBzCCgDylLMRuZ7r4Pymta6JnIlK6as-3Vj3aTVGxvno2YU2Vm5ddeGbKuWm7TxeRvPoBd8tfpyQIyPrgKf7OSHLu9tl-RAvnu4fy_killk2a-OMAvZJU5ZljFeoFDBVGKMkL1Kti4rpRFOD2P-FnFNagZYyyZniuapMOiHnu7Mb7946DK1Y26CwrmWDrgsiydM8Y2xWQI9e7VDlXQgejVC2lcP3rZe2FhTEUJ3oqxM_qhP76nq_-OVvvF1Lv_2Hme7MAVi5zjdy2P5hfQHGwI7V
CitedBy_id crossref_primary_10_1021_acs_energyfuels_3c01203
crossref_primary_10_1021_acs_energyfuels_3c03987
crossref_primary_10_1039_D4TA07837C
crossref_primary_10_1039_D4ME00127C
crossref_primary_10_1002_asia_202400515
crossref_primary_10_1021_acsaem_2c04132
crossref_primary_10_1016_j_colsurfa_2023_132201
crossref_primary_10_1002_asia_202400994
crossref_primary_10_3390_molecules30030563
crossref_primary_10_1515_chem_2022_0312
crossref_primary_10_1007_s41660_023_00383_2
crossref_primary_10_1063_5_0175953
crossref_primary_10_1016_j_crgsc_2025_100451
crossref_primary_10_1109_TIA_2024_3481188
crossref_primary_10_1016_j_cej_2024_154702
crossref_primary_10_1021_acs_iecr_2c04150
crossref_primary_10_3390_app12126100
crossref_primary_10_1080_15422119_2024_2328080
crossref_primary_10_3390_nano14161340
crossref_primary_10_1021_jacs_4c05318
crossref_primary_10_1002_slct_202301739
crossref_primary_10_1016_j_jobe_2024_108861
crossref_primary_10_1016_j_ccst_2022_100059
crossref_primary_10_1016_j_seppur_2024_129592
crossref_primary_10_1021_jacs_3c10475
crossref_primary_10_1021_acs_energyfuels_4c02513
crossref_primary_10_1016_j_seppur_2024_127171
crossref_primary_10_1038_s44172_024_00244_x
crossref_primary_10_1021_acsaem_3c00426
crossref_primary_10_1016_j_est_2023_109770
crossref_primary_10_1007_s11426_023_1826_3
crossref_primary_10_1016_j_seppur_2024_127722
crossref_primary_10_1016_j_csite_2023_103233
crossref_primary_10_1021_acs_langmuir_2c02205
crossref_primary_10_1016_j_jcou_2024_102895
crossref_primary_10_1016_j_ccst_2024_100288
crossref_primary_10_1039_D4CP02207F
crossref_primary_10_1016_j_jaap_2024_106765
crossref_primary_10_3389_fenrg_2023_1167043
crossref_primary_10_1088_2053_1591_ace41e
crossref_primary_10_1007_s11705_024_2402_8
crossref_primary_10_1016_j_cej_2024_150676
crossref_primary_10_1016_j_clet_2024_100802
crossref_primary_10_1016_j_fuel_2023_129265
crossref_primary_10_1016_j_enconman_2024_118715
crossref_primary_10_1021_acsomega_3c05034
crossref_primary_10_1016_j_jece_2022_107521
crossref_primary_10_1002_admi_202202290
crossref_primary_10_1016_j_ces_2023_118671
crossref_primary_10_1016_j_jcou_2022_101890
crossref_primary_10_1016_j_cej_2022_137944
crossref_primary_10_1016_j_applthermaleng_2025_125468
crossref_primary_10_1016_j_fuel_2024_130898
crossref_primary_10_1016_j_cscee_2024_100996
crossref_primary_10_1002_anie_202424747
crossref_primary_10_1016_j_jcou_2024_102668
crossref_primary_10_1016_j_fuel_2025_134370
crossref_primary_10_3390_molecules29174183
crossref_primary_10_1016_j_jaap_2024_106637
crossref_primary_10_1016_j_seppur_2024_131090
crossref_primary_10_1016_j_cherd_2023_04_057
crossref_primary_10_1021_acs_chemmater_4c00137
crossref_primary_10_1016_j_applthermaleng_2024_122907
crossref_primary_10_3390_molecules29051158
crossref_primary_10_1007_s11356_025_36227_4
crossref_primary_10_1016_j_ccst_2023_100137
crossref_primary_10_1021_acs_iecr_4c01523
crossref_primary_10_1021_acs_iecr_4c00435
crossref_primary_10_1021_acs_iecr_3c02989
crossref_primary_10_3390_atmos13030397
crossref_primary_10_1016_j_jece_2024_113434
crossref_primary_10_1039_D2RA04052B
crossref_primary_10_1021_acs_iecr_4c04482
crossref_primary_10_1016_j_mtener_2023_101397
crossref_primary_10_1039_D4TA06019A
crossref_primary_10_1021_acs_jpcc_4c05835
crossref_primary_10_1016_j_jece_2024_115171
crossref_primary_10_1021_acsomega_4c05487
crossref_primary_10_1016_j_seppur_2023_125621
crossref_primary_10_1016_j_seppur_2024_128910
crossref_primary_10_1016_j_rser_2025_115458
crossref_primary_10_1021_acs_energyfuels_2c03971
crossref_primary_10_1021_acs_energyfuels_4c00409
crossref_primary_10_1016_j_ccst_2025_100386
crossref_primary_10_1016_j_jece_2024_114274
crossref_primary_10_1016_j_jece_2025_116056
crossref_primary_10_1016_j_jece_2025_115881
crossref_primary_10_1016_j_powtec_2021_117090
crossref_primary_10_3390_en17071673
crossref_primary_10_3390_en15082940
crossref_primary_10_1016_j_cej_2024_150771
crossref_primary_10_1016_j_jece_2024_114952
crossref_primary_10_1016_j_fuel_2022_127300
crossref_primary_10_1016_j_memsci_2023_121994
crossref_primary_10_1016_j_envres_2022_113949
crossref_primary_10_1002_jctb_7829
crossref_primary_10_1016_j_apcatb_2023_123315
crossref_primary_10_1002_gch2_202300073
crossref_primary_10_1016_j_mtener_2024_101746
crossref_primary_10_1021_acs_energyfuels_2c03846
crossref_primary_10_3390_catal13091267
crossref_primary_10_1016_j_apt_2024_104728
crossref_primary_10_1016_j_jcou_2025_103017
crossref_primary_10_1016_j_jct_2023_107068
crossref_primary_10_1021_jacs_1c13368
crossref_primary_10_1016_j_fuel_2024_132103
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126906
crossref_primary_10_1016_j_resenv_2025_100195
crossref_primary_10_1039_D4CC00478G
crossref_primary_10_3390_ma16165625
crossref_primary_10_1002_ange_202424747
crossref_primary_10_1021_acs_iecr_4c00611
crossref_primary_10_3390_membranes13120898
crossref_primary_10_2478_pjct_2024_0002
crossref_primary_10_1021_acs_iecr_3c04422
crossref_primary_10_1016_j_nxsust_2025_100108
crossref_primary_10_1016_j_ynexs_2024_100013
crossref_primary_10_1021_acs_inorgchem_3c01055
crossref_primary_10_1016_j_fuel_2023_128102
crossref_primary_10_1016_j_rser_2025_115589
crossref_primary_10_1007_s11356_024_35493_y
crossref_primary_10_1016_j_jcou_2022_102296
crossref_primary_10_1016_j_jece_2022_108389
crossref_primary_10_1080_19392699_2024_2305940
crossref_primary_10_1021_acsenergylett_4c02851
crossref_primary_10_1016_j_seppur_2023_125760
crossref_primary_10_1039_D2CC02503E
crossref_primary_10_1016_j_cej_2021_133877
crossref_primary_10_4271_13_05_03_0021
crossref_primary_10_1007_s11356_023_28023_9
crossref_primary_10_1016_j_fuel_2025_134740
crossref_primary_10_1016_j_jiec_2024_03_049
crossref_primary_10_1016_j_seppur_2023_123468
crossref_primary_10_1039_D4SE01784F
crossref_primary_10_1016_j_jenvman_2025_124749
crossref_primary_10_1016_j_jece_2024_113404
crossref_primary_10_1002_cssc_202300930
crossref_primary_10_3390_su162210132
crossref_primary_10_1016_j_jcou_2022_101970
crossref_primary_10_1016_j_psep_2022_02_047
crossref_primary_10_1016_j_fuel_2025_135143
crossref_primary_10_1002_eem2_12832
crossref_primary_10_1016_j_jgsce_2024_205481
crossref_primary_10_1016_j_seppur_2023_124688
crossref_primary_10_1016_j_fuel_2024_133320
crossref_primary_10_1016_j_scitotenv_2022_157805
crossref_primary_10_1016_j_ccst_2025_100379
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123796
crossref_primary_10_1016_j_jece_2023_111393
crossref_primary_10_1007_s42250_024_01179_8
crossref_primary_10_1016_j_pecs_2023_101098
crossref_primary_10_1016_j_energy_2023_129631
crossref_primary_10_20517_cs_2024_28
crossref_primary_10_1002_jccs_202400261
crossref_primary_10_1016_j_rechem_2023_101099
crossref_primary_10_1016_j_seppur_2022_123062
crossref_primary_10_1039_D2RA00139J
crossref_primary_10_1016_j_susmat_2024_e01091
crossref_primary_10_1016_j_energy_2022_125764
crossref_primary_10_1016_j_memsci_2023_122166
crossref_primary_10_1002_chem_202400428
crossref_primary_10_3390_polym16131759
crossref_primary_10_1016_j_jiec_2023_12_027
crossref_primary_10_1016_j_jece_2022_108928
crossref_primary_10_1039_D4CS00574K
crossref_primary_10_1021_acssuschemeng_4c01172
crossref_primary_10_1021_acsapm_3c02341
crossref_primary_10_1002_slct_202405495
crossref_primary_10_1016_j_advmem_2023_100071
crossref_primary_10_1016_j_ccst_2024_100342
crossref_primary_10_1021_acs_energyfuels_1c04372
crossref_primary_10_1016_j_jcou_2023_102517
crossref_primary_10_1016_j_jenvman_2023_118887
crossref_primary_10_1016_j_ccst_2024_100224
crossref_primary_10_1007_s13762_024_05908_x
crossref_primary_10_1016_j_molliq_2023_123114
crossref_primary_10_1039_D2MA00235C
crossref_primary_10_1016_j_fuel_2023_128554
crossref_primary_10_46604_ijeti_2024_13298
crossref_primary_10_1016_j_seppur_2024_130981
crossref_primary_10_1016_j_jcou_2025_103054
crossref_primary_10_1016_j_mtcomm_2022_104776
crossref_primary_10_1016_j_susmat_2022_e00452
crossref_primary_10_1016_j_jiec_2021_12_036
crossref_primary_10_1021_acs_energyfuels_3c02384
crossref_primary_10_1038_s41598_023_47221_6
crossref_primary_10_1038_s41467_024_48994_8
crossref_primary_10_1016_j_seppur_2024_129514
crossref_primary_10_1007_s10311_023_01596_0
crossref_primary_10_1016_j_diamond_2025_112139
crossref_primary_10_1021_acs_iecr_5c00208
crossref_primary_10_1021_acs_iecr_4c01345
crossref_primary_10_1016_j_ijggc_2023_103876
crossref_primary_10_1039_D3TA04553F
crossref_primary_10_1021_acs_energyfuels_5c00125
crossref_primary_10_1016_j_heliyon_2023_e22341
crossref_primary_10_1016_j_ijggc_2024_104227
crossref_primary_10_3390_cleantechnol7010003
crossref_primary_10_61927_igmin127
crossref_primary_10_4491_eer_2021_569
crossref_primary_10_1002_tcr_202400188
crossref_primary_10_1039_D4CS00564C
crossref_primary_10_1016_j_cej_2025_159966
crossref_primary_10_1007_s11814_024_00053_0
crossref_primary_10_1016_j_cej_2023_148362
crossref_primary_10_1016_j_jcou_2023_102631
crossref_primary_10_1016_j_cej_2022_134703
crossref_primary_10_1016_j_cherd_2023_12_019
crossref_primary_10_1021_acs_energyfuels_3c01165
crossref_primary_10_1016_j_jece_2024_115103
crossref_primary_10_1016_j_psep_2023_08_062
crossref_primary_10_1007_s12221_025_00871_x
crossref_primary_10_1002_adma_202406610
crossref_primary_10_1016_j_device_2024_100614
crossref_primary_10_1016_j_jece_2023_110253
crossref_primary_10_1016_j_cej_2023_144557
crossref_primary_10_1016_j_micromeso_2024_113371
crossref_primary_10_1038_s41598_024_72104_9
crossref_primary_10_1021_acs_iecr_4c03772
crossref_primary_10_1016_j_nxmate_2024_100388
crossref_primary_10_1016_j_scitotenv_2023_163913
crossref_primary_10_1007_s10311_023_01609_y
crossref_primary_10_1016_j_cej_2022_138197
crossref_primary_10_1515_ntrev_2022_0055
crossref_primary_10_1016_j_cej_2022_138999
crossref_primary_10_3390_en16176375
crossref_primary_10_1016_j_cej_2024_152345
crossref_primary_10_1021_acsami_2c15476
crossref_primary_10_1016_j_mtsust_2023_100353
crossref_primary_10_1021_acs_iecr_2c01264
crossref_primary_10_1142_S1793292024500681
crossref_primary_10_1002_adfm_202402355
crossref_primary_10_1016_j_ccr_2023_215373
crossref_primary_10_1016_j_cej_2024_157101
crossref_primary_10_1016_j_fuel_2022_123492
crossref_primary_10_1016_j_jenvman_2022_117020
crossref_primary_10_1016_j_cej_2022_135378
crossref_primary_10_1016_j_cej_2022_138405
crossref_primary_10_3390_fermentation10030135
crossref_primary_10_1016_j_rineng_2024_103574
crossref_primary_10_1016_j_psep_2023_12_025
crossref_primary_10_1016_j_enconman_2024_119265
crossref_primary_10_1016_j_fuproc_2022_107437
crossref_primary_10_1016_j_jece_2024_112014
crossref_primary_10_3390_pr12112315
crossref_primary_10_3390_separations10120581
crossref_primary_10_1002_aic_18363
crossref_primary_10_1038_s41598_024_56070_w
crossref_primary_10_1016_j_enconman_2023_116831
crossref_primary_10_3390_en15218309
crossref_primary_10_1016_j_cej_2024_151583
crossref_primary_10_3390_membranes13020130
crossref_primary_10_3390_app12063200
crossref_primary_10_3390_atmos14030490
crossref_primary_10_3390_molecules27113429
crossref_primary_10_1016_j_fuel_2023_129725
crossref_primary_10_3390_ma17153845
crossref_primary_10_1016_j_cscee_2024_100895
crossref_primary_10_2298_TSCI231204091H
crossref_primary_10_1021_acs_energyfuels_4c04292
crossref_primary_10_1021_acs_energyfuels_4c04172
crossref_primary_10_1039_D4MA00321G
crossref_primary_10_1002_advs_202304289
crossref_primary_10_1021_acs_iecr_4c03968
crossref_primary_10_1021_acs_langmuir_4c01171
crossref_primary_10_1016_j_jece_2025_116102
crossref_primary_10_1016_j_energy_2023_129379
crossref_primary_10_1016_j_est_2025_115363
crossref_primary_10_1039_D4TA02194K
crossref_primary_10_1016_j_jece_2025_116109
crossref_primary_10_1007_s11144_023_02521_w
crossref_primary_10_1016_j_envres_2025_121211
crossref_primary_10_1016_j_seppur_2025_131519
crossref_primary_10_1021_acsenergylett_3c02340
crossref_primary_10_1016_j_ccr_2024_216380
crossref_primary_10_1016_j_cep_2022_108958
crossref_primary_10_1016_j_ccst_2021_100026
crossref_primary_10_1016_j_cej_2023_148440
crossref_primary_10_1016_j_apenergy_2023_121305
crossref_primary_10_1016_j_seppur_2023_123740
crossref_primary_10_1039_D3DT00208J
crossref_primary_10_1021_jacs_4c10654
crossref_primary_10_1021_acs_energyfuels_2c02585
crossref_primary_10_1016_j_applthermaleng_2023_120976
crossref_primary_10_1016_j_jiec_2022_06_026
crossref_primary_10_1039_D2TA04352A
crossref_primary_10_1016_j_psep_2023_12_041
crossref_primary_10_1016_j_cej_2024_153072
crossref_primary_10_1002_smll_202405215
crossref_primary_10_1016_j_fuel_2022_124097
crossref_primary_10_1016_j_cej_2022_137345
crossref_primary_10_3390_molecules28145461
crossref_primary_10_1016_j_egyr_2025_02_030
crossref_primary_10_1039_D4MA00703D
crossref_primary_10_1002_clen_202200406
crossref_primary_10_1016_j_seppur_2023_123990
crossref_primary_10_1016_j_susmat_2024_e01122
crossref_primary_10_1016_j_micromeso_2023_112513
crossref_primary_10_3390_en15103753
crossref_primary_10_1007_s43979_022_00040_6
crossref_primary_10_3390_thermo5010008
crossref_primary_10_1016_j_fuel_2024_133161
crossref_primary_10_1002_ghg_2242
crossref_primary_10_1080_01496395_2024_2377585
crossref_primary_10_1016_j_jcou_2022_102304
crossref_primary_10_1002_anie_202301497
crossref_primary_10_3390_recycling8040053
crossref_primary_10_1016_j_pnsc_2025_02_011
crossref_primary_10_1016_j_seta_2023_103365
crossref_primary_10_1007_s10853_024_10058_z
crossref_primary_10_3390_molecules29184348
crossref_primary_10_1007_s40242_024_4206_2
crossref_primary_10_1016_j_ccst_2023_100178
crossref_primary_10_1016_j_jece_2024_112265
crossref_primary_10_1021_acs_iecr_2c02313
crossref_primary_10_1016_j_jece_2023_110582
crossref_primary_10_1016_j_jece_2024_112943
crossref_primary_10_1021_acsomega_2c04269
crossref_primary_10_1016_j_ccst_2021_100011
crossref_primary_10_3390_catal11111355
crossref_primary_10_1039_D1CC06856C
crossref_primary_10_1016_j_seppur_2024_131206
crossref_primary_10_1039_D2RE00542E
crossref_primary_10_1016_j_compchemeng_2023_108387
crossref_primary_10_1021_acsmaterialsau_3c00061
crossref_primary_10_1002_elsa_202400007
crossref_primary_10_1021_acs_energyfuels_1c03426
crossref_primary_10_1021_acsomega_3c01777
crossref_primary_10_1007_s10311_024_01737_z
crossref_primary_10_1016_j_cej_2023_143095
crossref_primary_10_1016_j_cherd_2024_02_040
crossref_primary_10_1002_ange_202301497
Cites_doi 10.1021/ja9057234
10.1039/c1jm11699a
10.1016/j.cej.2013.11.005
10.1021/la990976t
10.1016/j.apsusc.2020.147226
10.1021/acs.iecr.5b03277
10.1016/S0008-6223(98)00333-9
10.1016/j.ijggc.2015.04.018
10.1039/B618320B
10.1016/j.renene.2020.05.048
10.1016/j.cherd.2017.10.037
10.1021/acs.iecr.9b04901
10.1016/j.egypro.2011.01.089
10.1007/s10450-009-9178-5
10.1021/acs.accounts.5b00284
10.1016/j.cej.2016.08.077
10.1016/j.cherd.2015.12.018
10.14356/kona.2015006
10.1016/j.cherd.2018.04.037
10.1002/adfm.200901461
10.1016/j.ijggc.2009.04.005
10.1016/S0008-6223(00)00319-5
10.1093/ce/zkz034
10.1016/j.jcis.2017.09.040
10.1016/j.micromeso.2018.09.018
10.1093/ce/zkz009
10.1016/j.ccr.2015.05.005
10.1021/la901156z
10.1021/acs.energyfuels.7b01508
10.1016/j.jhazmat.2011.11.091
10.1016/j.cej.2018.02.050
10.1016/j.powtec.2020.06.075
10.1021/ie060774+
10.1016/j.egypro.2017.03.1385
10.1016/j.scitotenv.2009.01.007
10.1016/j.apenergy.2019.05.079
10.1016/j.scitotenv.2019.135090
10.1016/j.ijggc.2012.12.014
10.1016/j.enconman.2020.113668
10.1002/aic.16297
10.1007/s10098-014-0788-6
10.1016/j.cej.2013.06.118
10.1016/j.egypro.2017.03.1145
10.1016/j.apenergy.2013.08.073
10.1016/j.cattod.2006.02.029
10.1021/ie3005308
10.1016/j.fuel.2009.02.025
10.1016/j.ijggc.2015.02.001
10.1016/j.cej.2010.07.030
10.1016/j.seppur.2005.08.011
10.1016/j.seppur.2016.05.001
10.1021/je100840n
10.1016/j.cej.2019.123205
10.1021/ie050382n
10.1016/j.cej.2011.01.004
10.1016/j.jcou.2019.09.012
10.1007/s10973-013-3086-3
10.1016/j.ces.2015.11.005
10.1016/j.ijggc.2019.03.021
10.1080/09593330.2015.1118557
10.1016/j.apenergy.2013.09.058
10.1016/j.ijggc.2017.03.001
10.1016/j.cej.2014.04.063
10.1016/j.cplett.2018.09.038
10.1016/j.egypro.2009.01.160
10.1016/j.cej.2017.04.037
10.1021/ie202097y
10.1021/ef070038y
10.1016/j.ijggc.2013.01.010
10.1016/j.jcou.2020.101251
10.1007/s10311-020-01133-3
10.1016/j.micromeso.2007.12.016
10.1021/ja0775265
10.1016/j.partic.2015.02.001
10.1007/s13762-017-1534-5
10.1007/s10450-013-9563-y
10.1016/j.fuel.2018.02.093
10.1021/ie040183o
10.1016/j.cej.2019.123658
10.1039/c0ee00784f
10.3390/ma14030672
10.1002/ep.10363
10.1016/j.ijggc.2015.03.009
10.1016/j.micromeso.2005.11.023
10.1016/j.fuproc.2009.08.002
10.1016/j.egypro.2014.11.245
10.1021/ef040059h
10.1016/j.micromeso.2004.07.035
10.1787/208b66f4-en
10.1016/j.cej.2019.04.165
10.1021/ie801186g
10.1016/j.cej.2016.08.071
10.1016/j.powtec.2014.08.062
10.1021/jp077618g
10.1016/j.cej.2017.06.123
10.3390/en12214143
10.1016/j.cej.2018.09.196
10.1016/j.physe.2013.10.024
10.1002/adfm.201804950
10.1021/ie011011j
10.1021/acs.iecr.9b02127
10.1016/j.apenergy.2013.05.012
10.1016/j.micromeso.2010.05.014
10.1021/ie070831e
10.1016/j.powtec.2016.11.066
10.1016/j.cej.2014.06.004
10.1016/S0009-2614(03)01124-2
10.1016/j.cej.2020.124308
10.1016/j.apenergy.2012.05.028
10.1039/C5SC01191D
10.1021/acs.energyfuels.7b00633
10.1021/acs.iecr.0c04547
10.1007/s10450-013-9560-1
10.1016/j.fuproc.2015.03.010
10.1021/ie071012x
10.1016/j.apsusc.2015.11.026
10.1016/j.fuproc.2017.09.024
10.1016/j.micromeso.2008.04.028
10.1007/s10450-008-9128-7
10.1007/s10450-014-9603-2
10.1021/ie800172e
10.1016/j.ijggc.2018.03.018
10.1039/C7EE02342A
10.1021/acs.est.6b00627
10.1021/ie201057p
10.1016/j.egypro.2014.11.243
10.1021/acs.energyfuels.1c00294
10.1016/j.jcou.2020.101214
10.1016/j.cep.2009.11.015
10.1002/smll.201203252
10.1016/j.pecs.2009.05.003
10.1039/c2ra22552b
10.2172/1337051
10.1016/j.ijggc.2020.103005
10.1016/j.cej.2012.06.100
10.1016/j.ijggc.2013.04.005
10.1039/C4CS00492B
10.1007/s10450-014-9608-x
10.1016/j.cej.2012.05.017
10.1073/pnas.0602439103
10.1039/c1ee01720a
10.1016/j.rser.2020.110490
10.1039/C5CS00873E
10.1016/S1387-1811(03)00353-6
10.1039/b927476f
10.1021/ef020058u
10.1016/S1872-2067(07)60066-7
10.1016/j.ces.2016.04.013
10.1016/j.ijggc.2011.05.036
10.1016/S1750-5836(07)00088-6
10.1039/c1jm12522b
10.1016/j.jngse.2020.103203
10.1021/ie0504194
10.1016/j.clay.2012.09.027
10.1016/j.jclepro.2020.125776
10.1002/aic.14435
10.1016/j.pecs.2011.05.001
10.1016/j.seppur.2009.10.004
10.1007/s10973-007-8493-x
10.1016/S1750-5836(07)00031-X
10.1016/S1383-5866(98)00094-X
10.1016/0020-1693(95)04534-1
10.1002/adsu.201700147
10.1080/25726641.2019.1591791
10.1016/j.egypro.2017.03.1357
10.1016/j.cherd.2018.03.034
10.1016/j.apenergy.2020.114874
10.1016/j.ces.2009.08.029
10.1021/ie060955b
10.1016/j.cej.2020.127315
10.1016/j.jcou.2017.10.010
10.1021/acs.iecr.6b04270
10.1016/j.ces.2009.10.005
10.1021/ie200686q
10.1016/j.applthermaleng.2006.07.037
10.1016/j.jaap.2012.01.009
10.1016/j.egypro.2017.03.1409
10.1016/j.micromeso.2019.05.051
10.1002/cssc.200900036
10.1021/ef8000086
10.1007/s10450-012-9431-1
10.1016/j.pecs.2020.100849
10.1002/anie.201000431
10.1002/cssc.201100735
10.1021/ie4009716
10.1016/j.seppur.2011.07.037
10.1021/ie901133r
10.1016/j.ijggc.2018.04.012
10.1016/j.micromeso.2019.109653
10.1080/10962247.2013.772927
10.1016/j.cej.2011.02.007
10.1016/S1003-9953(09)60015-3
10.1021/jacs.8b09682
10.1021/ja8074105
10.1039/C4EE01647E
10.1016/j.jece.2020.104142
10.1021/acs.iecr.0c05951
10.1016/j.jcis.2012.07.025
10.1016/j.cej.2013.02.041
10.1016/j.fuproc.2006.06.005
10.1016/j.tsep.2018.07.012
10.1016/j.fuel.2016.12.083
10.1021/acs.iecr.5b01384
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.energyfuels.1c01618
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 12868
ExternalDocumentID 10_1021_acs_energyfuels_1c01618
c890640342
GroupedDBID 02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABUCX
ACGFO
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DC
DU5
EBS
ED
F5P
GGK
GNL
IH9
JG
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
ZCA
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
BAANH
CITATION
CUPRZ
ED~
JG~
~02
7S9
L.6
ID FETCH-LOGICAL-a449t-410ea44d154458becc05c7ffca873dd7b5d2d1fee385e8811b0daa265c86cbf3
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Fri Jul 11 01:07:40 EDT 2025
Tue Jul 01 02:27:39 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Sat Jul 23 05:17:29 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a449t-410ea44d154458becc05c7ffca873dd7b5d2d1fee385e8811b0daa265c86cbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0643-6721
0000-0002-2005-3877
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.1c01618
PQID 2636455970
PQPubID 24069
PageCount 24
ParticipantIDs proquest_miscellaneous_2636455970
crossref_citationtrail_10_1021_acs_energyfuels_1c01618
crossref_primary_10_1021_acs_energyfuels_1c01618
acs_journals_10_1021_acs_energyfuels_1c01618
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-19
PublicationDateYYYYMMDD 2021-08-19
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-19
  day: 19
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref187/cit187
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref203/cit203
ref148/cit148
ref55/cit55
ref144/cit144
ref167/cit167
ref163/cit163
ref66/cit66
ref22/cit22
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref194/cit194
ref98/cit98
ref153/cit153
ref150/cit150
ref63/cit63
ref56/cit56
ref155/cit155
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref17/cit17
ref82/cit82
ref147/cit147
ref145/cit145
ref21/cit21
ref166/cit166
Berg C. (ref164/cit164) 1946; 42
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref134/cit134
ref208/cit208
ref40/cit40
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref15/cit15
ref180/cit180
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref195/cit195
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref76/cit76
ref32/cit32
ref39/cit39
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref91/cit91
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref154/cit154
ref27/cit27
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
ref88/cit88
ref160/cit160
ref143/cit143
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
Gyftopoulos E. P. (ref188/cit188) 2005
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref201/cit201
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref69/cit69
ref165/cit165
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref47/cit47
ref127/cit127
References_xml – ident: ref107/cit107
  doi: 10.1021/ja9057234
– ident: ref76/cit76
  doi: 10.1039/c1jm11699a
– ident: ref105/cit105
  doi: 10.1016/j.cej.2013.11.005
– ident: ref54/cit54
  doi: 10.1021/la990976t
– ident: ref42/cit42
  doi: 10.1016/j.apsusc.2020.147226
– ident: ref35/cit35
  doi: 10.1021/acs.iecr.5b03277
– ident: ref53/cit53
  doi: 10.1016/S0008-6223(98)00333-9
– ident: ref6/cit6
  doi: 10.1016/j.ijggc.2015.04.018
– ident: ref79/cit79
  doi: 10.1039/B618320B
– ident: ref173/cit173
  doi: 10.1016/j.renene.2020.05.048
– ident: ref145/cit145
  doi: 10.1016/j.cherd.2017.10.037
– ident: ref143/cit143
  doi: 10.1021/acs.iecr.9b04901
– ident: ref25/cit25
  doi: 10.1016/j.egypro.2011.01.089
– ident: ref82/cit82
  doi: 10.1007/s10450-009-9178-5
– ident: ref111/cit111
  doi: 10.1021/acs.accounts.5b00284
– ident: ref31/cit31
  doi: 10.1016/j.cej.2016.08.077
– ident: ref147/cit147
  doi: 10.1016/j.cherd.2015.12.018
– ident: ref174/cit174
  doi: 10.14356/kona.2015006
– ident: ref136/cit136
  doi: 10.1016/j.cherd.2018.04.037
– ident: ref131/cit131
  doi: 10.1002/adfm.200901461
– ident: ref181/cit181
  doi: 10.1016/j.ijggc.2009.04.005
– ident: ref55/cit55
  doi: 10.1016/S0008-6223(00)00319-5
– ident: ref208/cit208
  doi: 10.1093/ce/zkz034
– ident: ref65/cit65
  doi: 10.1016/j.jcis.2017.09.040
– ident: ref50/cit50
  doi: 10.1016/j.micromeso.2018.09.018
– ident: ref207/cit207
  doi: 10.1093/ce/zkz009
– ident: ref102/cit102
  doi: 10.1016/j.ccr.2015.05.005
– ident: ref130/cit130
  doi: 10.1021/la901156z
– ident: ref199/cit199
  doi: 10.1021/acs.energyfuels.7b01508
– ident: ref40/cit40
  doi: 10.1016/j.micromeso.2018.09.018
– ident: ref95/cit95
  doi: 10.1016/j.jhazmat.2011.11.091
– ident: ref87/cit87
  doi: 10.1016/j.cej.2018.02.050
– ident: ref33/cit33
  doi: 10.1016/j.powtec.2020.06.075
– ident: ref122/cit122
  doi: 10.1021/ie060774+
– ident: ref189/cit189
  doi: 10.1016/j.egypro.2017.03.1385
– ident: ref69/cit69
  doi: 10.1016/j.scitotenv.2009.01.007
– ident: ref134/cit134
  doi: 10.1016/j.apenergy.2019.05.079
– ident: ref101/cit101
  doi: 10.1016/j.scitotenv.2019.135090
– ident: ref160/cit160
  doi: 10.1016/j.ijggc.2012.12.014
– ident: ref3/cit3
  doi: 10.1016/j.enconman.2020.113668
– ident: ref84/cit84
  doi: 10.1002/aic.16297
– ident: ref44/cit44
  doi: 10.1007/s10098-014-0788-6
– ident: ref45/cit45
  doi: 10.1016/j.cej.2013.06.118
– ident: ref90/cit90
  doi: 10.1016/j.egypro.2017.03.1145
– ident: ref140/cit140
  doi: 10.1016/j.apenergy.2013.08.073
– ident: ref11/cit11
  doi: 10.1016/j.cattod.2006.02.029
– ident: ref152/cit152
  doi: 10.1021/ie3005308
– ident: ref117/cit117
  doi: 10.1016/j.fuel.2009.02.025
– ident: ref190/cit190
  doi: 10.1016/j.ijggc.2015.02.001
– ident: ref14/cit14
  doi: 10.1016/j.cej.2010.07.030
– ident: ref135/cit135
  doi: 10.1016/j.seppur.2005.08.011
– ident: ref22/cit22
  doi: 10.1016/j.seppur.2016.05.001
– ident: ref167/cit167
– volume: 42
  start-page: 665
  year: 1946
  ident: ref164/cit164
  publication-title: Trans. AIChE
– ident: ref71/cit71
  doi: 10.1021/je100840n
– ident: ref66/cit66
  doi: 10.1016/j.cej.2019.123205
– ident: ref113/cit113
  doi: 10.1021/ie050382n
– ident: ref158/cit158
  doi: 10.1016/j.cej.2011.01.004
– ident: ref183/cit183
  doi: 10.1016/j.jcou.2019.09.012
– ident: ref63/cit63
  doi: 10.1007/s10973-013-3086-3
– ident: ref148/cit148
  doi: 10.1016/j.ces.2015.11.005
– ident: ref163/cit163
  doi: 10.1016/j.ijggc.2019.03.021
– ident: ref91/cit91
  doi: 10.1080/09593330.2015.1118557
– ident: ref48/cit48
  doi: 10.1016/j.apenergy.2013.09.058
– ident: ref200/cit200
  doi: 10.1016/j.ijggc.2017.03.001
– ident: ref144/cit144
  doi: 10.1016/j.cej.2014.04.063
– ident: ref52/cit52
  doi: 10.1016/j.cplett.2018.09.038
– ident: ref187/cit187
  doi: 10.1016/j.egypro.2009.01.160
– ident: ref30/cit30
  doi: 10.1016/j.cej.2017.04.037
– ident: ref202/cit202
  doi: 10.1021/ie202097y
– ident: ref116/cit116
  doi: 10.1021/ef070038y
– ident: ref150/cit150
  doi: 10.1016/j.ijggc.2013.01.010
– ident: ref77/cit77
  doi: 10.1016/j.jcou.2020.101251
– ident: ref8/cit8
  doi: 10.1007/s10311-020-01133-3
– ident: ref121/cit121
  doi: 10.1016/j.micromeso.2007.12.016
– ident: ref104/cit104
  doi: 10.1021/ja0775265
– ident: ref21/cit21
  doi: 10.1016/j.partic.2015.02.001
– ident: ref88/cit88
  doi: 10.1007/s13762-017-1534-5
– ident: ref133/cit133
  doi: 10.1007/s10450-013-9563-y
– ident: ref12/cit12
  doi: 10.1016/j.fuel.2018.02.093
– ident: ref81/cit81
  doi: 10.1021/ie040183o
– ident: ref171/cit171
  doi: 10.1016/j.cej.2019.123658
– ident: ref58/cit58
  doi: 10.1039/c0ee00784f
– ident: ref151/cit151
  doi: 10.3390/ma14030672
– ident: ref115/cit115
  doi: 10.1002/ep.10363
– ident: ref34/cit34
– ident: ref204/cit204
  doi: 10.1016/j.ijggc.2015.03.009
– ident: ref80/cit80
  doi: 10.1016/j.micromeso.2005.11.023
– ident: ref129/cit129
  doi: 10.1016/j.fuproc.2009.08.002
– ident: ref205/cit205
  doi: 10.1016/j.egypro.2014.11.245
– ident: ref93/cit93
  doi: 10.1021/ef040059h
– ident: ref94/cit94
  doi: 10.1016/j.micromeso.2004.07.035
– ident: ref2/cit2
  doi: 10.1787/208b66f4-en
– ident: ref32/cit32
  doi: 10.1016/j.cej.2019.04.165
– ident: ref126/cit126
  doi: 10.1021/ie801186g
– ident: ref196/cit196
  doi: 10.1016/j.cej.2016.08.071
– ident: ref78/cit78
  doi: 10.1016/j.powtec.2014.08.062
– ident: ref106/cit106
  doi: 10.1021/jp077618g
– ident: ref186/cit186
  doi: 10.1016/j.cej.2017.06.123
– ident: ref7/cit7
  doi: 10.3390/en12214143
– ident: ref197/cit197
  doi: 10.1016/j.cej.2018.09.196
– ident: ref18/cit18
  doi: 10.1016/j.physe.2013.10.024
– ident: ref109/cit109
  doi: 10.1002/adfm.201804950
– ident: ref180/cit180
  doi: 10.1021/ie011011j
– ident: ref64/cit64
  doi: 10.1021/acs.iecr.9b02127
– ident: ref142/cit142
  doi: 10.1016/j.apenergy.2013.05.012
– ident: ref92/cit92
  doi: 10.1016/j.micromeso.2010.05.014
– volume-title: Thermodynamics─Foundations and Applications
  year: 2005
  ident: ref188/cit188
– ident: ref27/cit27
  doi: 10.1021/ie070831e
– ident: ref146/cit146
  doi: 10.1016/j.powtec.2016.11.066
– ident: ref62/cit62
  doi: 10.1016/j.cej.2014.06.004
– ident: ref70/cit70
  doi: 10.1016/S0009-2614(03)01124-2
– ident: ref159/cit159
  doi: 10.1016/j.cej.2020.124308
– ident: ref46/cit46
  doi: 10.1016/j.apenergy.2012.05.028
– ident: ref26/cit26
  doi: 10.1039/C5SC01191D
– ident: ref39/cit39
  doi: 10.1021/acs.energyfuels.7b00633
– ident: ref10/cit10
  doi: 10.1021/acs.iecr.0c04547
– ident: ref83/cit83
  doi: 10.1007/s10450-013-9560-1
– ident: ref20/cit20
  doi: 10.1016/j.fuproc.2015.03.010
– ident: ref9/cit9
  doi: 10.1021/ie071012x
– ident: ref19/cit19
  doi: 10.1016/j.apsusc.2015.11.026
– ident: ref169/cit169
  doi: 10.1016/j.fuproc.2017.09.024
– ident: ref127/cit127
  doi: 10.1016/j.micromeso.2008.04.028
– ident: ref191/cit191
  doi: 10.1007/s10450-008-9128-7
– ident: ref16/cit16
  doi: 10.1007/s10450-014-9603-2
– ident: ref23/cit23
  doi: 10.1021/ie800172e
– ident: ref149/cit149
  doi: 10.1016/j.ijggc.2018.03.018
– ident: ref100/cit100
  doi: 10.1039/C7EE02342A
– ident: ref36/cit36
  doi: 10.1021/acs.est.6b00627
– ident: ref157/cit157
  doi: 10.1021/ie201057p
– ident: ref166/cit166
  doi: 10.1016/j.egypro.2014.11.243
– ident: ref43/cit43
  doi: 10.1021/acs.energyfuels.1c00294
– ident: ref37/cit37
  doi: 10.1016/j.jcou.2020.101214
– ident: ref179/cit179
  doi: 10.1016/j.cep.2009.11.015
– ident: ref74/cit74
  doi: 10.1002/smll.201203252
– ident: ref161/cit161
  doi: 10.1016/j.pecs.2009.05.003
– ident: ref59/cit59
  doi: 10.1039/c2ra22552b
– ident: ref165/cit165
  doi: 10.2172/1337051
– ident: ref41/cit41
  doi: 10.1016/j.ijggc.2020.103005
– ident: ref172/cit172
  doi: 10.1016/j.cej.2012.06.100
– ident: ref137/cit137
  doi: 10.1016/j.ijggc.2013.04.005
– ident: ref75/cit75
  doi: 10.1039/C4CS00492B
– ident: ref154/cit154
  doi: 10.1007/s10450-014-9608-x
– ident: ref192/cit192
  doi: 10.1016/j.cej.2012.05.017
– ident: ref103/cit103
  doi: 10.1073/pnas.0602439103
– ident: ref24/cit24
  doi: 10.1039/c1ee01720a
– ident: ref4/cit4
  doi: 10.1016/j.rser.2020.110490
– ident: ref123/cit123
  doi: 10.1039/C5CS00873E
– ident: ref89/cit89
  doi: 10.1016/S1387-1811(03)00353-6
– ident: ref96/cit96
  doi: 10.1039/b927476f
– ident: ref112/cit112
  doi: 10.1021/ef020058u
– ident: ref128/cit128
  doi: 10.1016/S1872-2067(07)60066-7
– ident: ref86/cit86
  doi: 10.1016/j.ces.2016.04.013
– ident: ref182/cit182
  doi: 10.1016/j.ijggc.2011.05.036
– ident: ref120/cit120
  doi: 10.1016/S1750-5836(07)00088-6
– ident: ref124/cit124
  doi: 10.1039/c1jm12522b
– ident: ref5/cit5
  doi: 10.1016/j.jngse.2020.103203
– ident: ref118/cit118
  doi: 10.1021/ie0504194
– ident: ref85/cit85
  doi: 10.1016/j.clay.2012.09.027
– ident: ref1/cit1
  doi: 10.1016/j.jclepro.2020.125776
– ident: ref203/cit203
  doi: 10.1002/aic.14435
– ident: ref198/cit198
  doi: 10.1016/j.pecs.2011.05.001
– ident: ref156/cit156
  doi: 10.1016/j.seppur.2009.10.004
– ident: ref119/cit119
  doi: 10.1007/s10973-007-8493-x
– ident: ref110/cit110
  doi: 10.1016/S1750-5836(07)00031-X
– ident: ref98/cit98
  doi: 10.1016/S1383-5866(98)00094-X
– ident: ref125/cit125
  doi: 10.1016/0020-1693(95)04534-1
– ident: ref47/cit47
  doi: 10.1002/adsu.201700147
– ident: ref177/cit177
  doi: 10.1080/25726641.2019.1591791
– ident: ref138/cit138
  doi: 10.1016/j.egypro.2017.03.1357
– ident: ref141/cit141
  doi: 10.1016/j.cherd.2018.03.034
– ident: ref132/cit132
  doi: 10.1016/j.apenergy.2020.114874
– ident: ref162/cit162
  doi: 10.1016/j.ces.2009.08.029
– ident: ref73/cit73
  doi: 10.1021/ie060955b
– ident: ref153/cit153
  doi: 10.1016/j.cej.2020.127315
– ident: ref15/cit15
  doi: 10.1016/j.jcou.2017.10.010
– ident: ref195/cit195
  doi: 10.1021/acs.iecr.6b04270
– ident: ref68/cit68
  doi: 10.1016/j.ces.2009.10.005
– ident: ref28/cit28
  doi: 10.1021/ie200686q
– ident: ref155/cit155
  doi: 10.1016/j.applthermaleng.2006.07.037
– ident: ref49/cit49
  doi: 10.1016/j.jaap.2012.01.009
– ident: ref206/cit206
  doi: 10.1016/j.egypro.2017.03.1409
– ident: ref175/cit175
  doi: 10.1016/j.micromeso.2019.05.051
– ident: ref38/cit38
  doi: 10.1002/cssc.200900036
– ident: ref67/cit67
  doi: 10.1021/ef8000086
– ident: ref194/cit194
  doi: 10.1007/s10450-012-9431-1
– ident: ref99/cit99
  doi: 10.1016/j.pecs.2020.100849
– ident: ref17/cit17
  doi: 10.1002/anie.201000431
– ident: ref60/cit60
  doi: 10.1002/cssc.201100735
– ident: ref201/cit201
  doi: 10.1021/ie4009716
– ident: ref193/cit193
  doi: 10.1016/j.seppur.2011.07.037
– ident: ref178/cit178
  doi: 10.1021/ie901133r
– ident: ref185/cit185
  doi: 10.1016/j.ijggc.2018.04.012
– ident: ref176/cit176
  doi: 10.1016/j.micromeso.2019.109653
– ident: ref61/cit61
  doi: 10.1080/10962247.2013.772927
– ident: ref29/cit29
  doi: 10.1016/j.cej.2011.02.007
– ident: ref97/cit97
  doi: 10.1016/S1003-9953(09)60015-3
– ident: ref108/cit108
  doi: 10.1021/jacs.8b09682
– ident: ref114/cit114
  doi: 10.1021/ja8074105
– ident: ref56/cit56
  doi: 10.1039/C4EE01647E
– ident: ref13/cit13
  doi: 10.1016/j.jece.2020.104142
– ident: ref170/cit170
  doi: 10.1021/acs.iecr.0c05951
– ident: ref72/cit72
  doi: 10.1016/j.jcis.2012.07.025
– ident: ref139/cit139
  doi: 10.1016/j.cej.2013.02.041
– ident: ref51/cit51
  doi: 10.1016/j.fuproc.2006.06.005
– ident: ref168/cit168
  doi: 10.1016/j.tsep.2018.07.012
– ident: ref57/cit57
  doi: 10.1016/j.fuel.2016.12.083
– ident: ref184/cit184
  doi: 10.1021/acs.iecr.5b01384
SSID ssj0006385
Score 2.71166
SecondaryResourceType review_article
Snippet Aiming at meeting the global goals established for carbon dioxide (CO2) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the...
Aiming at meeting the global goals established for carbon dioxide (CO₂) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12845
SubjectTerms absorption
adsorbents
adsorption
carbon dioxide
carbon sequestration
energy
heat
hybrids
temperature
Title Adsorption of Carbon Dioxide for Post-combustion Capture: A Review
URI http://dx.doi.org/10.1021/acs.energyfuels.1c01618
https://www.proquest.com/docview/2636455970
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qPagHH1Wxvojg0dTsZpNuvNVoKYIetEJvYZ9QlKY0KYi_3t00KS1SqrclYZZkZnZmlpn5BuCatbmyftkV2JfmgqK4y0QQudxjjGOqicC2Ofn5Jey9k6dBMKgBWpHBx-iWiaylij44PTXuooVEAfK-AZs4NEfZRkPx29z4GnUKKnBPL8SkKulavZF1SyJbdkvLVrlwNd09eK0admYVJh-tac5b4vs3fuPf_2IfdsvA0-nMNOUAamrUgK24mvfWgJ0FaMJDuO_ILJ0U9sRJtROzCTerh2H6NZTKMZGuY8f8ukZfuZ0HZt7FbGyzEXdOx5klHI6g333sxz23nLfgMkKi3CXIU2YlC4AeaoXrBaKttWC07UvZ5oHEEmmlDI8VpQhxTzKGw0DQUHDtH0N9lI7UCThUahPXSE8TnxCOVKSMGfApVZpGiOuoCTeGIUl5XLKkyIRjlNiHC1xKSi41IayEk4gSutxO0PhcT-jNCccz9I71JFeV9BMjAJs-YSOVTrMEhzZlay5g3un_Pv8MtrGthLFAutE51PPJVF2YUCbnl4Xy_gCV2fRK
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLZYOLAceC0r3hSJIx2aNO2k3IYCGp4XBglOVZ4SWjRF0xkJ8etxMu3wkFYIblGqRK7j2I5sfwbYE21pnF0OFY01PlCMDIVKslBGQkjKLVPUFSdfXafdW3Z-l9xNAW9qYZCICneqfBD_DV2AHLg548vh7AitRosoj_X-C2bQJaFOtjv5zUQHo1QlDcZnlFLWZHb9fyNnnVT10Tp9VM7e4pwuwP2EVp9o8q81GsqWevkE4_iTn1mE-doNDTpjuVmCKdNfhtm86f62DHPvgAr_wFFHV-XAa5egtEEuBhJHxw_l84M2Afq9gWv6G6L0StcdDL_l4snFJg6DTjAOP6xA7_Skl3fDuvtCKBjLhiEjkcGR9nA93B11lKi2tUrwdqx1WyaaamKNQVYbzgmRkRaCponiqZI2_gvT_bJvViHg2qKXoyPLYsYkMZlBpRBzbizPiLTZGuwjQ4r68lSFj4tTUrjJd1wqai6tQdqcUaFqIHPXT-Px64XRZOHTGMvj6yW7jRAUeAAumCL6phxVBU1dABefY9H698jfgdlu7-qyuDy7vtiA39TlyDiI3WwTpoeDkdlCJ2cot708vwL3hPyr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_SDtrtoWu7jnXdhwd7nFNLlh159CVzF9p9lMI66Msw-oSwEYc4gdG_fneKHdLCKNubkJGQT6e7E7_T7wDeqoF25Jdjw1OLFxSnY2WyItaJUppLLwynx8lfL_Kz7-LTdXbdg5PuLQwuosGZmgDi06meWt8yDLBj6nfhSZxfoOfoMxP43jfgAYF3pN_D8tvKDqNmZR3PZ5Jz0WV3_X0i8lCmue2hbhvo4HVGj-HHar0h2eRnfzHXfXNzh8rxf39oF3bacDQaLvVnD3pusg_bZVcFbh8erREWPoEPQ9vUs2BlotpHpZppbJ2O699j6yKMfyMq_hujFmuqEobfSjUljOJ9NIyWMMQBXI0-XpVncVuFIVZCFPNYsMRhywbaHklbnmRm4L1RcpBaO9CZ5ZZ551DcTkrGdGKV4nlmZG60T5_C5qSeuGcQSesx2rGJF6kQmrnCoXFIpXReFkz74hDeoUCq9hA1VcDHOauoc01KVSulQ8i7fapMS2hOdTV-3T8wWQ2cLjk97h_yplOECjeAQBU1cfWiqXhOQC5ey5Ln_7b817B1eTqqvpxffD6Ch5xSZYhpt3gBm_PZwr3EWGeuXwWV_gMEr_8u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+Carbon+Dioxide+for+Post-combustion+Capture%3A+A+Review&rft.jtitle=Energy+%26+fuels&rft.au=Raganati%2C+Federica&rft.au=Miccio%2C+Francesco&rft.au=Ammendola%2C+Paola&rft.date=2021-08-19&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=35&rft.issue=16&rft.spage=12845&rft.epage=12868&rft_id=info:doi/10.1021%2Facs.energyfuels.1c01618&rft.externalDocID=c890640342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon