Adsorption of Carbon Dioxide for Post-combustion Capture: A Review
Aiming at meeting the global goals established for carbon dioxide (CO2) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the adsorption-based CO2 post-combustion capture is considered one of the most promising approaches because it can provide remarkable energy saving...
Saved in:
Published in | Energy & fuels Vol. 35; no. 16; pp. 12845 - 12868 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
19.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aiming at meeting the global goals established for carbon dioxide (CO2) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the adsorption-based CO2 post-combustion capture is considered one of the most promising approaches because it can provide remarkable energy savings with respect to the standard amine-based absorption capture. To date, most of the research effort has been devoted to the development of novel cutting-edge adsorbent materials with the primary purpose of enhancing the adsorption capacity and lifetime while reducing the heat of adsorption, thus lessening the energetic requirement of the sorbent regeneration. Anyway, other factors, beyond the sorbents, greatly affect the competitiveness of the CO2 capture based on the adsorption route, namely, the gas–solid contacting system, impacting the sorbent utilization efficiency, and the regeneration strategies, determining most of the global CO2 capture costs. This review describes the state-of-the-art and most recent progresses of the adsorption-based CO2 post-combustion capture. In particular, the first section describes the CO2 adsorption performances of different classes of solid sorbents on the basis of the most important evaluation parameters (equilibrium adsorption capacity, multi-cyclic stability, etc.). In the second section, the two main gas–solid contacting systems, i.e., fixed beds and fluidized beds, have been reviewed, pointing out their strengths and limitations. Finally, the third section provides a review on the different regeneration modes (temperature, pressure, or hybrid swings), with a focus on the possible strategies available to limit the energy penalty. |
---|---|
AbstractList | Aiming at meeting the global goals established for carbon dioxide (CO₂) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the adsorption-based CO₂ post-combustion capture is considered one of the most promising approaches because it can provide remarkable energy savings with respect to the standard amine-based absorption capture. To date, most of the research effort has been devoted to the development of novel cutting-edge adsorbent materials with the primary purpose of enhancing the adsorption capacity and lifetime while reducing the heat of adsorption, thus lessening the energetic requirement of the sorbent regeneration. Anyway, other factors, beyond the sorbents, greatly affect the competitiveness of the CO₂ capture based on the adsorption route, namely, the gas–solid contacting system, impacting the sorbent utilization efficiency, and the regeneration strategies, determining most of the global CO₂ capture costs. This review describes the state-of-the-art and most recent progresses of the adsorption-based CO₂ post-combustion capture. In particular, the first section describes the CO₂ adsorption performances of different classes of solid sorbents on the basis of the most important evaluation parameters (equilibrium adsorption capacity, multi-cyclic stability, etc.). In the second section, the two main gas–solid contacting systems, i.e., fixed beds and fluidized beds, have been reviewed, pointing out their strengths and limitations. Finally, the third section provides a review on the different regeneration modes (temperature, pressure, or hybrid swings), with a focus on the possible strategies available to limit the energy penalty. Aiming at meeting the global goals established for carbon dioxide (CO2) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the adsorption-based CO2 post-combustion capture is considered one of the most promising approaches because it can provide remarkable energy savings with respect to the standard amine-based absorption capture. To date, most of the research effort has been devoted to the development of novel cutting-edge adsorbent materials with the primary purpose of enhancing the adsorption capacity and lifetime while reducing the heat of adsorption, thus lessening the energetic requirement of the sorbent regeneration. Anyway, other factors, beyond the sorbents, greatly affect the competitiveness of the CO2 capture based on the adsorption route, namely, the gas–solid contacting system, impacting the sorbent utilization efficiency, and the regeneration strategies, determining most of the global CO2 capture costs. This review describes the state-of-the-art and most recent progresses of the adsorption-based CO2 post-combustion capture. In particular, the first section describes the CO2 adsorption performances of different classes of solid sorbents on the basis of the most important evaluation parameters (equilibrium adsorption capacity, multi-cyclic stability, etc.). In the second section, the two main gas–solid contacting systems, i.e., fixed beds and fluidized beds, have been reviewed, pointing out their strengths and limitations. Finally, the third section provides a review on the different regeneration modes (temperature, pressure, or hybrid swings), with a focus on the possible strategies available to limit the energy penalty. |
Author | Ammendola, Paola Raganati, Federica Miccio, Francesco |
AuthorAffiliation | Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS) Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC) Consiglio Nazionale delle Ricerche (CNR) |
AuthorAffiliation_xml | – name: Consiglio Nazionale delle Ricerche (CNR) – name: Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC) – name: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS) |
Author_xml | – sequence: 1 givenname: Federica surname: Raganati fullname: Raganati, Federica organization: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS) – sequence: 2 givenname: Francesco orcidid: 0000-0003-0643-6721 surname: Miccio fullname: Miccio, Francesco organization: Consiglio Nazionale delle Ricerche (CNR) – sequence: 3 givenname: Paola orcidid: 0000-0002-2005-3877 surname: Ammendola fullname: Ammendola, Paola email: paola.ammendola@stems.cnr.it organization: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS) |
BookMark | eNqNkMtOwzAQRS0EEm3hG8iSTco4iRMXiUUJT6kSCHVvOfYYuUrjYidA_56EdoHYwGquNOeMRndMDhvXICFnFKYUEnohVZhig_51azqsw5QqoDnlB2REWQIxg2R2SEbAeRFDnmTHZBzCCgDylLMRuZ7r4Pymta6JnIlK6as-3Vj3aTVGxvno2YU2Vm5ddeGbKuWm7TxeRvPoBd8tfpyQIyPrgKf7OSHLu9tl-RAvnu4fy_killk2a-OMAvZJU5ZljFeoFDBVGKMkL1Kti4rpRFOD2P-FnFNagZYyyZniuapMOiHnu7Mb7946DK1Y26CwrmWDrgsiydM8Y2xWQI9e7VDlXQgejVC2lcP3rZe2FhTEUJ3oqxM_qhP76nq_-OVvvF1Lv_2Hme7MAVi5zjdy2P5hfQHGwI7V |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_3c01203 crossref_primary_10_1021_acs_energyfuels_3c03987 crossref_primary_10_1039_D4TA07837C crossref_primary_10_1039_D4ME00127C crossref_primary_10_1002_asia_202400515 crossref_primary_10_1021_acsaem_2c04132 crossref_primary_10_1016_j_colsurfa_2023_132201 crossref_primary_10_1002_asia_202400994 crossref_primary_10_3390_molecules30030563 crossref_primary_10_1515_chem_2022_0312 crossref_primary_10_1007_s41660_023_00383_2 crossref_primary_10_1063_5_0175953 crossref_primary_10_1016_j_crgsc_2025_100451 crossref_primary_10_1109_TIA_2024_3481188 crossref_primary_10_1016_j_cej_2024_154702 crossref_primary_10_1021_acs_iecr_2c04150 crossref_primary_10_3390_app12126100 crossref_primary_10_1080_15422119_2024_2328080 crossref_primary_10_3390_nano14161340 crossref_primary_10_1021_jacs_4c05318 crossref_primary_10_1002_slct_202301739 crossref_primary_10_1016_j_jobe_2024_108861 crossref_primary_10_1016_j_ccst_2022_100059 crossref_primary_10_1016_j_seppur_2024_129592 crossref_primary_10_1021_jacs_3c10475 crossref_primary_10_1021_acs_energyfuels_4c02513 crossref_primary_10_1016_j_seppur_2024_127171 crossref_primary_10_1038_s44172_024_00244_x crossref_primary_10_1021_acsaem_3c00426 crossref_primary_10_1016_j_est_2023_109770 crossref_primary_10_1007_s11426_023_1826_3 crossref_primary_10_1016_j_seppur_2024_127722 crossref_primary_10_1016_j_csite_2023_103233 crossref_primary_10_1021_acs_langmuir_2c02205 crossref_primary_10_1016_j_jcou_2024_102895 crossref_primary_10_1016_j_ccst_2024_100288 crossref_primary_10_1039_D4CP02207F crossref_primary_10_1016_j_jaap_2024_106765 crossref_primary_10_3389_fenrg_2023_1167043 crossref_primary_10_1088_2053_1591_ace41e crossref_primary_10_1007_s11705_024_2402_8 crossref_primary_10_1016_j_cej_2024_150676 crossref_primary_10_1016_j_clet_2024_100802 crossref_primary_10_1016_j_fuel_2023_129265 crossref_primary_10_1016_j_enconman_2024_118715 crossref_primary_10_1021_acsomega_3c05034 crossref_primary_10_1016_j_jece_2022_107521 crossref_primary_10_1002_admi_202202290 crossref_primary_10_1016_j_ces_2023_118671 crossref_primary_10_1016_j_jcou_2022_101890 crossref_primary_10_1016_j_cej_2022_137944 crossref_primary_10_1016_j_applthermaleng_2025_125468 crossref_primary_10_1016_j_fuel_2024_130898 crossref_primary_10_1016_j_cscee_2024_100996 crossref_primary_10_1002_anie_202424747 crossref_primary_10_1016_j_jcou_2024_102668 crossref_primary_10_1016_j_fuel_2025_134370 crossref_primary_10_3390_molecules29174183 crossref_primary_10_1016_j_jaap_2024_106637 crossref_primary_10_1016_j_seppur_2024_131090 crossref_primary_10_1016_j_cherd_2023_04_057 crossref_primary_10_1021_acs_chemmater_4c00137 crossref_primary_10_1016_j_applthermaleng_2024_122907 crossref_primary_10_3390_molecules29051158 crossref_primary_10_1007_s11356_025_36227_4 crossref_primary_10_1016_j_ccst_2023_100137 crossref_primary_10_1021_acs_iecr_4c01523 crossref_primary_10_1021_acs_iecr_4c00435 crossref_primary_10_1021_acs_iecr_3c02989 crossref_primary_10_3390_atmos13030397 crossref_primary_10_1016_j_jece_2024_113434 crossref_primary_10_1039_D2RA04052B crossref_primary_10_1021_acs_iecr_4c04482 crossref_primary_10_1016_j_mtener_2023_101397 crossref_primary_10_1039_D4TA06019A crossref_primary_10_1021_acs_jpcc_4c05835 crossref_primary_10_1016_j_jece_2024_115171 crossref_primary_10_1021_acsomega_4c05487 crossref_primary_10_1016_j_seppur_2023_125621 crossref_primary_10_1016_j_seppur_2024_128910 crossref_primary_10_1016_j_rser_2025_115458 crossref_primary_10_1021_acs_energyfuels_2c03971 crossref_primary_10_1021_acs_energyfuels_4c00409 crossref_primary_10_1016_j_ccst_2025_100386 crossref_primary_10_1016_j_jece_2024_114274 crossref_primary_10_1016_j_jece_2025_116056 crossref_primary_10_1016_j_jece_2025_115881 crossref_primary_10_1016_j_powtec_2021_117090 crossref_primary_10_3390_en17071673 crossref_primary_10_3390_en15082940 crossref_primary_10_1016_j_cej_2024_150771 crossref_primary_10_1016_j_jece_2024_114952 crossref_primary_10_1016_j_fuel_2022_127300 crossref_primary_10_1016_j_memsci_2023_121994 crossref_primary_10_1016_j_envres_2022_113949 crossref_primary_10_1002_jctb_7829 crossref_primary_10_1016_j_apcatb_2023_123315 crossref_primary_10_1002_gch2_202300073 crossref_primary_10_1016_j_mtener_2024_101746 crossref_primary_10_1021_acs_energyfuels_2c03846 crossref_primary_10_3390_catal13091267 crossref_primary_10_1016_j_apt_2024_104728 crossref_primary_10_1016_j_jcou_2025_103017 crossref_primary_10_1016_j_jct_2023_107068 crossref_primary_10_1021_jacs_1c13368 crossref_primary_10_1016_j_fuel_2024_132103 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126906 crossref_primary_10_1016_j_resenv_2025_100195 crossref_primary_10_1039_D4CC00478G crossref_primary_10_3390_ma16165625 crossref_primary_10_1002_ange_202424747 crossref_primary_10_1021_acs_iecr_4c00611 crossref_primary_10_3390_membranes13120898 crossref_primary_10_2478_pjct_2024_0002 crossref_primary_10_1021_acs_iecr_3c04422 crossref_primary_10_1016_j_nxsust_2025_100108 crossref_primary_10_1016_j_ynexs_2024_100013 crossref_primary_10_1021_acs_inorgchem_3c01055 crossref_primary_10_1016_j_fuel_2023_128102 crossref_primary_10_1016_j_rser_2025_115589 crossref_primary_10_1007_s11356_024_35493_y crossref_primary_10_1016_j_jcou_2022_102296 crossref_primary_10_1016_j_jece_2022_108389 crossref_primary_10_1080_19392699_2024_2305940 crossref_primary_10_1021_acsenergylett_4c02851 crossref_primary_10_1016_j_seppur_2023_125760 crossref_primary_10_1039_D2CC02503E crossref_primary_10_1016_j_cej_2021_133877 crossref_primary_10_4271_13_05_03_0021 crossref_primary_10_1007_s11356_023_28023_9 crossref_primary_10_1016_j_fuel_2025_134740 crossref_primary_10_1016_j_jiec_2024_03_049 crossref_primary_10_1016_j_seppur_2023_123468 crossref_primary_10_1039_D4SE01784F crossref_primary_10_1016_j_jenvman_2025_124749 crossref_primary_10_1016_j_jece_2024_113404 crossref_primary_10_1002_cssc_202300930 crossref_primary_10_3390_su162210132 crossref_primary_10_1016_j_jcou_2022_101970 crossref_primary_10_1016_j_psep_2022_02_047 crossref_primary_10_1016_j_fuel_2025_135143 crossref_primary_10_1002_eem2_12832 crossref_primary_10_1016_j_jgsce_2024_205481 crossref_primary_10_1016_j_seppur_2023_124688 crossref_primary_10_1016_j_fuel_2024_133320 crossref_primary_10_1016_j_scitotenv_2022_157805 crossref_primary_10_1016_j_ccst_2025_100379 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123796 crossref_primary_10_1016_j_jece_2023_111393 crossref_primary_10_1007_s42250_024_01179_8 crossref_primary_10_1016_j_pecs_2023_101098 crossref_primary_10_1016_j_energy_2023_129631 crossref_primary_10_20517_cs_2024_28 crossref_primary_10_1002_jccs_202400261 crossref_primary_10_1016_j_rechem_2023_101099 crossref_primary_10_1016_j_seppur_2022_123062 crossref_primary_10_1039_D2RA00139J crossref_primary_10_1016_j_susmat_2024_e01091 crossref_primary_10_1016_j_energy_2022_125764 crossref_primary_10_1016_j_memsci_2023_122166 crossref_primary_10_1002_chem_202400428 crossref_primary_10_3390_polym16131759 crossref_primary_10_1016_j_jiec_2023_12_027 crossref_primary_10_1016_j_jece_2022_108928 crossref_primary_10_1039_D4CS00574K crossref_primary_10_1021_acssuschemeng_4c01172 crossref_primary_10_1021_acsapm_3c02341 crossref_primary_10_1002_slct_202405495 crossref_primary_10_1016_j_advmem_2023_100071 crossref_primary_10_1016_j_ccst_2024_100342 crossref_primary_10_1021_acs_energyfuels_1c04372 crossref_primary_10_1016_j_jcou_2023_102517 crossref_primary_10_1016_j_jenvman_2023_118887 crossref_primary_10_1016_j_ccst_2024_100224 crossref_primary_10_1007_s13762_024_05908_x crossref_primary_10_1016_j_molliq_2023_123114 crossref_primary_10_1039_D2MA00235C crossref_primary_10_1016_j_fuel_2023_128554 crossref_primary_10_46604_ijeti_2024_13298 crossref_primary_10_1016_j_seppur_2024_130981 crossref_primary_10_1016_j_jcou_2025_103054 crossref_primary_10_1016_j_mtcomm_2022_104776 crossref_primary_10_1016_j_susmat_2022_e00452 crossref_primary_10_1016_j_jiec_2021_12_036 crossref_primary_10_1021_acs_energyfuels_3c02384 crossref_primary_10_1038_s41598_023_47221_6 crossref_primary_10_1038_s41467_024_48994_8 crossref_primary_10_1016_j_seppur_2024_129514 crossref_primary_10_1007_s10311_023_01596_0 crossref_primary_10_1016_j_diamond_2025_112139 crossref_primary_10_1021_acs_iecr_5c00208 crossref_primary_10_1021_acs_iecr_4c01345 crossref_primary_10_1016_j_ijggc_2023_103876 crossref_primary_10_1039_D3TA04553F crossref_primary_10_1021_acs_energyfuels_5c00125 crossref_primary_10_1016_j_heliyon_2023_e22341 crossref_primary_10_1016_j_ijggc_2024_104227 crossref_primary_10_3390_cleantechnol7010003 crossref_primary_10_61927_igmin127 crossref_primary_10_4491_eer_2021_569 crossref_primary_10_1002_tcr_202400188 crossref_primary_10_1039_D4CS00564C crossref_primary_10_1016_j_cej_2025_159966 crossref_primary_10_1007_s11814_024_00053_0 crossref_primary_10_1016_j_cej_2023_148362 crossref_primary_10_1016_j_jcou_2023_102631 crossref_primary_10_1016_j_cej_2022_134703 crossref_primary_10_1016_j_cherd_2023_12_019 crossref_primary_10_1021_acs_energyfuels_3c01165 crossref_primary_10_1016_j_jece_2024_115103 crossref_primary_10_1016_j_psep_2023_08_062 crossref_primary_10_1007_s12221_025_00871_x crossref_primary_10_1002_adma_202406610 crossref_primary_10_1016_j_device_2024_100614 crossref_primary_10_1016_j_jece_2023_110253 crossref_primary_10_1016_j_cej_2023_144557 crossref_primary_10_1016_j_micromeso_2024_113371 crossref_primary_10_1038_s41598_024_72104_9 crossref_primary_10_1021_acs_iecr_4c03772 crossref_primary_10_1016_j_nxmate_2024_100388 crossref_primary_10_1016_j_scitotenv_2023_163913 crossref_primary_10_1007_s10311_023_01609_y crossref_primary_10_1016_j_cej_2022_138197 crossref_primary_10_1515_ntrev_2022_0055 crossref_primary_10_1016_j_cej_2022_138999 crossref_primary_10_3390_en16176375 crossref_primary_10_1016_j_cej_2024_152345 crossref_primary_10_1021_acsami_2c15476 crossref_primary_10_1016_j_mtsust_2023_100353 crossref_primary_10_1021_acs_iecr_2c01264 crossref_primary_10_1142_S1793292024500681 crossref_primary_10_1002_adfm_202402355 crossref_primary_10_1016_j_ccr_2023_215373 crossref_primary_10_1016_j_cej_2024_157101 crossref_primary_10_1016_j_fuel_2022_123492 crossref_primary_10_1016_j_jenvman_2022_117020 crossref_primary_10_1016_j_cej_2022_135378 crossref_primary_10_1016_j_cej_2022_138405 crossref_primary_10_3390_fermentation10030135 crossref_primary_10_1016_j_rineng_2024_103574 crossref_primary_10_1016_j_psep_2023_12_025 crossref_primary_10_1016_j_enconman_2024_119265 crossref_primary_10_1016_j_fuproc_2022_107437 crossref_primary_10_1016_j_jece_2024_112014 crossref_primary_10_3390_pr12112315 crossref_primary_10_3390_separations10120581 crossref_primary_10_1002_aic_18363 crossref_primary_10_1038_s41598_024_56070_w crossref_primary_10_1016_j_enconman_2023_116831 crossref_primary_10_3390_en15218309 crossref_primary_10_1016_j_cej_2024_151583 crossref_primary_10_3390_membranes13020130 crossref_primary_10_3390_app12063200 crossref_primary_10_3390_atmos14030490 crossref_primary_10_3390_molecules27113429 crossref_primary_10_1016_j_fuel_2023_129725 crossref_primary_10_3390_ma17153845 crossref_primary_10_1016_j_cscee_2024_100895 crossref_primary_10_2298_TSCI231204091H crossref_primary_10_1021_acs_energyfuels_4c04292 crossref_primary_10_1021_acs_energyfuels_4c04172 crossref_primary_10_1039_D4MA00321G crossref_primary_10_1002_advs_202304289 crossref_primary_10_1021_acs_iecr_4c03968 crossref_primary_10_1021_acs_langmuir_4c01171 crossref_primary_10_1016_j_jece_2025_116102 crossref_primary_10_1016_j_energy_2023_129379 crossref_primary_10_1016_j_est_2025_115363 crossref_primary_10_1039_D4TA02194K crossref_primary_10_1016_j_jece_2025_116109 crossref_primary_10_1007_s11144_023_02521_w crossref_primary_10_1016_j_envres_2025_121211 crossref_primary_10_1016_j_seppur_2025_131519 crossref_primary_10_1021_acsenergylett_3c02340 crossref_primary_10_1016_j_ccr_2024_216380 crossref_primary_10_1016_j_cep_2022_108958 crossref_primary_10_1016_j_ccst_2021_100026 crossref_primary_10_1016_j_cej_2023_148440 crossref_primary_10_1016_j_apenergy_2023_121305 crossref_primary_10_1016_j_seppur_2023_123740 crossref_primary_10_1039_D3DT00208J crossref_primary_10_1021_jacs_4c10654 crossref_primary_10_1021_acs_energyfuels_2c02585 crossref_primary_10_1016_j_applthermaleng_2023_120976 crossref_primary_10_1016_j_jiec_2022_06_026 crossref_primary_10_1039_D2TA04352A crossref_primary_10_1016_j_psep_2023_12_041 crossref_primary_10_1016_j_cej_2024_153072 crossref_primary_10_1002_smll_202405215 crossref_primary_10_1016_j_fuel_2022_124097 crossref_primary_10_1016_j_cej_2022_137345 crossref_primary_10_3390_molecules28145461 crossref_primary_10_1016_j_egyr_2025_02_030 crossref_primary_10_1039_D4MA00703D crossref_primary_10_1002_clen_202200406 crossref_primary_10_1016_j_seppur_2023_123990 crossref_primary_10_1016_j_susmat_2024_e01122 crossref_primary_10_1016_j_micromeso_2023_112513 crossref_primary_10_3390_en15103753 crossref_primary_10_1007_s43979_022_00040_6 crossref_primary_10_3390_thermo5010008 crossref_primary_10_1016_j_fuel_2024_133161 crossref_primary_10_1002_ghg_2242 crossref_primary_10_1080_01496395_2024_2377585 crossref_primary_10_1016_j_jcou_2022_102304 crossref_primary_10_1002_anie_202301497 crossref_primary_10_3390_recycling8040053 crossref_primary_10_1016_j_pnsc_2025_02_011 crossref_primary_10_1016_j_seta_2023_103365 crossref_primary_10_1007_s10853_024_10058_z crossref_primary_10_3390_molecules29184348 crossref_primary_10_1007_s40242_024_4206_2 crossref_primary_10_1016_j_ccst_2023_100178 crossref_primary_10_1016_j_jece_2024_112265 crossref_primary_10_1021_acs_iecr_2c02313 crossref_primary_10_1016_j_jece_2023_110582 crossref_primary_10_1016_j_jece_2024_112943 crossref_primary_10_1021_acsomega_2c04269 crossref_primary_10_1016_j_ccst_2021_100011 crossref_primary_10_3390_catal11111355 crossref_primary_10_1039_D1CC06856C crossref_primary_10_1016_j_seppur_2024_131206 crossref_primary_10_1039_D2RE00542E crossref_primary_10_1016_j_compchemeng_2023_108387 crossref_primary_10_1021_acsmaterialsau_3c00061 crossref_primary_10_1002_elsa_202400007 crossref_primary_10_1021_acs_energyfuels_1c03426 crossref_primary_10_1021_acsomega_3c01777 crossref_primary_10_1007_s10311_024_01737_z crossref_primary_10_1016_j_cej_2023_143095 crossref_primary_10_1016_j_cherd_2024_02_040 crossref_primary_10_1002_ange_202301497 |
Cites_doi | 10.1021/ja9057234 10.1039/c1jm11699a 10.1016/j.cej.2013.11.005 10.1021/la990976t 10.1016/j.apsusc.2020.147226 10.1021/acs.iecr.5b03277 10.1016/S0008-6223(98)00333-9 10.1016/j.ijggc.2015.04.018 10.1039/B618320B 10.1016/j.renene.2020.05.048 10.1016/j.cherd.2017.10.037 10.1021/acs.iecr.9b04901 10.1016/j.egypro.2011.01.089 10.1007/s10450-009-9178-5 10.1021/acs.accounts.5b00284 10.1016/j.cej.2016.08.077 10.1016/j.cherd.2015.12.018 10.14356/kona.2015006 10.1016/j.cherd.2018.04.037 10.1002/adfm.200901461 10.1016/j.ijggc.2009.04.005 10.1016/S0008-6223(00)00319-5 10.1093/ce/zkz034 10.1016/j.jcis.2017.09.040 10.1016/j.micromeso.2018.09.018 10.1093/ce/zkz009 10.1016/j.ccr.2015.05.005 10.1021/la901156z 10.1021/acs.energyfuels.7b01508 10.1016/j.jhazmat.2011.11.091 10.1016/j.cej.2018.02.050 10.1016/j.powtec.2020.06.075 10.1021/ie060774+ 10.1016/j.egypro.2017.03.1385 10.1016/j.scitotenv.2009.01.007 10.1016/j.apenergy.2019.05.079 10.1016/j.scitotenv.2019.135090 10.1016/j.ijggc.2012.12.014 10.1016/j.enconman.2020.113668 10.1002/aic.16297 10.1007/s10098-014-0788-6 10.1016/j.cej.2013.06.118 10.1016/j.egypro.2017.03.1145 10.1016/j.apenergy.2013.08.073 10.1016/j.cattod.2006.02.029 10.1021/ie3005308 10.1016/j.fuel.2009.02.025 10.1016/j.ijggc.2015.02.001 10.1016/j.cej.2010.07.030 10.1016/j.seppur.2005.08.011 10.1016/j.seppur.2016.05.001 10.1021/je100840n 10.1016/j.cej.2019.123205 10.1021/ie050382n 10.1016/j.cej.2011.01.004 10.1016/j.jcou.2019.09.012 10.1007/s10973-013-3086-3 10.1016/j.ces.2015.11.005 10.1016/j.ijggc.2019.03.021 10.1080/09593330.2015.1118557 10.1016/j.apenergy.2013.09.058 10.1016/j.ijggc.2017.03.001 10.1016/j.cej.2014.04.063 10.1016/j.cplett.2018.09.038 10.1016/j.egypro.2009.01.160 10.1016/j.cej.2017.04.037 10.1021/ie202097y 10.1021/ef070038y 10.1016/j.ijggc.2013.01.010 10.1016/j.jcou.2020.101251 10.1007/s10311-020-01133-3 10.1016/j.micromeso.2007.12.016 10.1021/ja0775265 10.1016/j.partic.2015.02.001 10.1007/s13762-017-1534-5 10.1007/s10450-013-9563-y 10.1016/j.fuel.2018.02.093 10.1021/ie040183o 10.1016/j.cej.2019.123658 10.1039/c0ee00784f 10.3390/ma14030672 10.1002/ep.10363 10.1016/j.ijggc.2015.03.009 10.1016/j.micromeso.2005.11.023 10.1016/j.fuproc.2009.08.002 10.1016/j.egypro.2014.11.245 10.1021/ef040059h 10.1016/j.micromeso.2004.07.035 10.1787/208b66f4-en 10.1016/j.cej.2019.04.165 10.1021/ie801186g 10.1016/j.cej.2016.08.071 10.1016/j.powtec.2014.08.062 10.1021/jp077618g 10.1016/j.cej.2017.06.123 10.3390/en12214143 10.1016/j.cej.2018.09.196 10.1016/j.physe.2013.10.024 10.1002/adfm.201804950 10.1021/ie011011j 10.1021/acs.iecr.9b02127 10.1016/j.apenergy.2013.05.012 10.1016/j.micromeso.2010.05.014 10.1021/ie070831e 10.1016/j.powtec.2016.11.066 10.1016/j.cej.2014.06.004 10.1016/S0009-2614(03)01124-2 10.1016/j.cej.2020.124308 10.1016/j.apenergy.2012.05.028 10.1039/C5SC01191D 10.1021/acs.energyfuels.7b00633 10.1021/acs.iecr.0c04547 10.1007/s10450-013-9560-1 10.1016/j.fuproc.2015.03.010 10.1021/ie071012x 10.1016/j.apsusc.2015.11.026 10.1016/j.fuproc.2017.09.024 10.1016/j.micromeso.2008.04.028 10.1007/s10450-008-9128-7 10.1007/s10450-014-9603-2 10.1021/ie800172e 10.1016/j.ijggc.2018.03.018 10.1039/C7EE02342A 10.1021/acs.est.6b00627 10.1021/ie201057p 10.1016/j.egypro.2014.11.243 10.1021/acs.energyfuels.1c00294 10.1016/j.jcou.2020.101214 10.1016/j.cep.2009.11.015 10.1002/smll.201203252 10.1016/j.pecs.2009.05.003 10.1039/c2ra22552b 10.2172/1337051 10.1016/j.ijggc.2020.103005 10.1016/j.cej.2012.06.100 10.1016/j.ijggc.2013.04.005 10.1039/C4CS00492B 10.1007/s10450-014-9608-x 10.1016/j.cej.2012.05.017 10.1073/pnas.0602439103 10.1039/c1ee01720a 10.1016/j.rser.2020.110490 10.1039/C5CS00873E 10.1016/S1387-1811(03)00353-6 10.1039/b927476f 10.1021/ef020058u 10.1016/S1872-2067(07)60066-7 10.1016/j.ces.2016.04.013 10.1016/j.ijggc.2011.05.036 10.1016/S1750-5836(07)00088-6 10.1039/c1jm12522b 10.1016/j.jngse.2020.103203 10.1021/ie0504194 10.1016/j.clay.2012.09.027 10.1016/j.jclepro.2020.125776 10.1002/aic.14435 10.1016/j.pecs.2011.05.001 10.1016/j.seppur.2009.10.004 10.1007/s10973-007-8493-x 10.1016/S1750-5836(07)00031-X 10.1016/S1383-5866(98)00094-X 10.1016/0020-1693(95)04534-1 10.1002/adsu.201700147 10.1080/25726641.2019.1591791 10.1016/j.egypro.2017.03.1357 10.1016/j.cherd.2018.03.034 10.1016/j.apenergy.2020.114874 10.1016/j.ces.2009.08.029 10.1021/ie060955b 10.1016/j.cej.2020.127315 10.1016/j.jcou.2017.10.010 10.1021/acs.iecr.6b04270 10.1016/j.ces.2009.10.005 10.1021/ie200686q 10.1016/j.applthermaleng.2006.07.037 10.1016/j.jaap.2012.01.009 10.1016/j.egypro.2017.03.1409 10.1016/j.micromeso.2019.05.051 10.1002/cssc.200900036 10.1021/ef8000086 10.1007/s10450-012-9431-1 10.1016/j.pecs.2020.100849 10.1002/anie.201000431 10.1002/cssc.201100735 10.1021/ie4009716 10.1016/j.seppur.2011.07.037 10.1021/ie901133r 10.1016/j.ijggc.2018.04.012 10.1016/j.micromeso.2019.109653 10.1080/10962247.2013.772927 10.1016/j.cej.2011.02.007 10.1016/S1003-9953(09)60015-3 10.1021/jacs.8b09682 10.1021/ja8074105 10.1039/C4EE01647E 10.1016/j.jece.2020.104142 10.1021/acs.iecr.0c05951 10.1016/j.jcis.2012.07.025 10.1016/j.cej.2013.02.041 10.1016/j.fuproc.2006.06.005 10.1016/j.tsep.2018.07.012 10.1016/j.fuel.2016.12.083 10.1021/acs.iecr.5b01384 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.energyfuels.1c01618 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5029 |
EndPage | 12868 |
ExternalDocumentID | 10_1021_acs_energyfuels_1c01618 c890640342 |
GroupedDBID | 02 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABUCX ACGFO ACGFS ACJ ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DC DU5 EBS ED F5P GGK GNL IH9 JG LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F X ZCA -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV BAANH CITATION CUPRZ ED~ JG~ ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a449t-410ea44d154458becc05c7ffca873dd7b5d2d1fee385e8811b0daa265c86cbf3 |
IEDL.DBID | ACS |
ISSN | 0887-0624 1520-5029 |
IngestDate | Fri Jul 11 01:07:40 EDT 2025 Tue Jul 01 02:27:39 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Sat Jul 23 05:17:29 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a449t-410ea44d154458becc05c7ffca873dd7b5d2d1fee385e8811b0daa265c86cbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0643-6721 0000-0002-2005-3877 |
OpenAccessLink | https://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.1c01618 |
PQID | 2636455970 |
PQPubID | 24069 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_2636455970 crossref_citationtrail_10_1021_acs_energyfuels_1c01618 crossref_primary_10_1021_acs_energyfuels_1c01618 acs_journals_10_1021_acs_energyfuels_1c01618 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-19 |
PublicationDateYYYYMMDD | 2021-08-19 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Energy & fuels |
PublicationTitleAlternate | Energy Fuels |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref187/cit187 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref203/cit203 ref148/cit148 ref55/cit55 ref144/cit144 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref194/cit194 ref98/cit98 ref153/cit153 ref150/cit150 ref63/cit63 ref56/cit56 ref155/cit155 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref17/cit17 ref82/cit82 ref147/cit147 ref145/cit145 ref21/cit21 ref166/cit166 Berg C. (ref164/cit164) 1946; 42 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref134/cit134 ref208/cit208 ref40/cit40 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref195/cit195 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref39/cit39 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref91/cit91 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref154/cit154 ref27/cit27 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref31/cit31 ref88/cit88 ref160/cit160 ref143/cit143 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 Gyftopoulos E. P. (ref188/cit188) 2005 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref201/cit201 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref204/cit204 ref146/cit146 ref26/cit26 ref73/cit73 ref69/cit69 ref165/cit165 ref95/cit95 ref108/cit108 ref192/cit192 ref4/cit4 ref30/cit30 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref107/cit107 doi: 10.1021/ja9057234 – ident: ref76/cit76 doi: 10.1039/c1jm11699a – ident: ref105/cit105 doi: 10.1016/j.cej.2013.11.005 – ident: ref54/cit54 doi: 10.1021/la990976t – ident: ref42/cit42 doi: 10.1016/j.apsusc.2020.147226 – ident: ref35/cit35 doi: 10.1021/acs.iecr.5b03277 – ident: ref53/cit53 doi: 10.1016/S0008-6223(98)00333-9 – ident: ref6/cit6 doi: 10.1016/j.ijggc.2015.04.018 – ident: ref79/cit79 doi: 10.1039/B618320B – ident: ref173/cit173 doi: 10.1016/j.renene.2020.05.048 – ident: ref145/cit145 doi: 10.1016/j.cherd.2017.10.037 – ident: ref143/cit143 doi: 10.1021/acs.iecr.9b04901 – ident: ref25/cit25 doi: 10.1016/j.egypro.2011.01.089 – ident: ref82/cit82 doi: 10.1007/s10450-009-9178-5 – ident: ref111/cit111 doi: 10.1021/acs.accounts.5b00284 – ident: ref31/cit31 doi: 10.1016/j.cej.2016.08.077 – ident: ref147/cit147 doi: 10.1016/j.cherd.2015.12.018 – ident: ref174/cit174 doi: 10.14356/kona.2015006 – ident: ref136/cit136 doi: 10.1016/j.cherd.2018.04.037 – ident: ref131/cit131 doi: 10.1002/adfm.200901461 – ident: ref181/cit181 doi: 10.1016/j.ijggc.2009.04.005 – ident: ref55/cit55 doi: 10.1016/S0008-6223(00)00319-5 – ident: ref208/cit208 doi: 10.1093/ce/zkz034 – ident: ref65/cit65 doi: 10.1016/j.jcis.2017.09.040 – ident: ref50/cit50 doi: 10.1016/j.micromeso.2018.09.018 – ident: ref207/cit207 doi: 10.1093/ce/zkz009 – ident: ref102/cit102 doi: 10.1016/j.ccr.2015.05.005 – ident: ref130/cit130 doi: 10.1021/la901156z – ident: ref199/cit199 doi: 10.1021/acs.energyfuels.7b01508 – ident: ref40/cit40 doi: 10.1016/j.micromeso.2018.09.018 – ident: ref95/cit95 doi: 10.1016/j.jhazmat.2011.11.091 – ident: ref87/cit87 doi: 10.1016/j.cej.2018.02.050 – ident: ref33/cit33 doi: 10.1016/j.powtec.2020.06.075 – ident: ref122/cit122 doi: 10.1021/ie060774+ – ident: ref189/cit189 doi: 10.1016/j.egypro.2017.03.1385 – ident: ref69/cit69 doi: 10.1016/j.scitotenv.2009.01.007 – ident: ref134/cit134 doi: 10.1016/j.apenergy.2019.05.079 – ident: ref101/cit101 doi: 10.1016/j.scitotenv.2019.135090 – ident: ref160/cit160 doi: 10.1016/j.ijggc.2012.12.014 – ident: ref3/cit3 doi: 10.1016/j.enconman.2020.113668 – ident: ref84/cit84 doi: 10.1002/aic.16297 – ident: ref44/cit44 doi: 10.1007/s10098-014-0788-6 – ident: ref45/cit45 doi: 10.1016/j.cej.2013.06.118 – ident: ref90/cit90 doi: 10.1016/j.egypro.2017.03.1145 – ident: ref140/cit140 doi: 10.1016/j.apenergy.2013.08.073 – ident: ref11/cit11 doi: 10.1016/j.cattod.2006.02.029 – ident: ref152/cit152 doi: 10.1021/ie3005308 – ident: ref117/cit117 doi: 10.1016/j.fuel.2009.02.025 – ident: ref190/cit190 doi: 10.1016/j.ijggc.2015.02.001 – ident: ref14/cit14 doi: 10.1016/j.cej.2010.07.030 – ident: ref135/cit135 doi: 10.1016/j.seppur.2005.08.011 – ident: ref22/cit22 doi: 10.1016/j.seppur.2016.05.001 – ident: ref167/cit167 – volume: 42 start-page: 665 year: 1946 ident: ref164/cit164 publication-title: Trans. AIChE – ident: ref71/cit71 doi: 10.1021/je100840n – ident: ref66/cit66 doi: 10.1016/j.cej.2019.123205 – ident: ref113/cit113 doi: 10.1021/ie050382n – ident: ref158/cit158 doi: 10.1016/j.cej.2011.01.004 – ident: ref183/cit183 doi: 10.1016/j.jcou.2019.09.012 – ident: ref63/cit63 doi: 10.1007/s10973-013-3086-3 – ident: ref148/cit148 doi: 10.1016/j.ces.2015.11.005 – ident: ref163/cit163 doi: 10.1016/j.ijggc.2019.03.021 – ident: ref91/cit91 doi: 10.1080/09593330.2015.1118557 – ident: ref48/cit48 doi: 10.1016/j.apenergy.2013.09.058 – ident: ref200/cit200 doi: 10.1016/j.ijggc.2017.03.001 – ident: ref144/cit144 doi: 10.1016/j.cej.2014.04.063 – ident: ref52/cit52 doi: 10.1016/j.cplett.2018.09.038 – ident: ref187/cit187 doi: 10.1016/j.egypro.2009.01.160 – ident: ref30/cit30 doi: 10.1016/j.cej.2017.04.037 – ident: ref202/cit202 doi: 10.1021/ie202097y – ident: ref116/cit116 doi: 10.1021/ef070038y – ident: ref150/cit150 doi: 10.1016/j.ijggc.2013.01.010 – ident: ref77/cit77 doi: 10.1016/j.jcou.2020.101251 – ident: ref8/cit8 doi: 10.1007/s10311-020-01133-3 – ident: ref121/cit121 doi: 10.1016/j.micromeso.2007.12.016 – ident: ref104/cit104 doi: 10.1021/ja0775265 – ident: ref21/cit21 doi: 10.1016/j.partic.2015.02.001 – ident: ref88/cit88 doi: 10.1007/s13762-017-1534-5 – ident: ref133/cit133 doi: 10.1007/s10450-013-9563-y – ident: ref12/cit12 doi: 10.1016/j.fuel.2018.02.093 – ident: ref81/cit81 doi: 10.1021/ie040183o – ident: ref171/cit171 doi: 10.1016/j.cej.2019.123658 – ident: ref58/cit58 doi: 10.1039/c0ee00784f – ident: ref151/cit151 doi: 10.3390/ma14030672 – ident: ref115/cit115 doi: 10.1002/ep.10363 – ident: ref34/cit34 – ident: ref204/cit204 doi: 10.1016/j.ijggc.2015.03.009 – ident: ref80/cit80 doi: 10.1016/j.micromeso.2005.11.023 – ident: ref129/cit129 doi: 10.1016/j.fuproc.2009.08.002 – ident: ref205/cit205 doi: 10.1016/j.egypro.2014.11.245 – ident: ref93/cit93 doi: 10.1021/ef040059h – ident: ref94/cit94 doi: 10.1016/j.micromeso.2004.07.035 – ident: ref2/cit2 doi: 10.1787/208b66f4-en – ident: ref32/cit32 doi: 10.1016/j.cej.2019.04.165 – ident: ref126/cit126 doi: 10.1021/ie801186g – ident: ref196/cit196 doi: 10.1016/j.cej.2016.08.071 – ident: ref78/cit78 doi: 10.1016/j.powtec.2014.08.062 – ident: ref106/cit106 doi: 10.1021/jp077618g – ident: ref186/cit186 doi: 10.1016/j.cej.2017.06.123 – ident: ref7/cit7 doi: 10.3390/en12214143 – ident: ref197/cit197 doi: 10.1016/j.cej.2018.09.196 – ident: ref18/cit18 doi: 10.1016/j.physe.2013.10.024 – ident: ref109/cit109 doi: 10.1002/adfm.201804950 – ident: ref180/cit180 doi: 10.1021/ie011011j – ident: ref64/cit64 doi: 10.1021/acs.iecr.9b02127 – ident: ref142/cit142 doi: 10.1016/j.apenergy.2013.05.012 – ident: ref92/cit92 doi: 10.1016/j.micromeso.2010.05.014 – volume-title: Thermodynamics─Foundations and Applications year: 2005 ident: ref188/cit188 – ident: ref27/cit27 doi: 10.1021/ie070831e – ident: ref146/cit146 doi: 10.1016/j.powtec.2016.11.066 – ident: ref62/cit62 doi: 10.1016/j.cej.2014.06.004 – ident: ref70/cit70 doi: 10.1016/S0009-2614(03)01124-2 – ident: ref159/cit159 doi: 10.1016/j.cej.2020.124308 – ident: ref46/cit46 doi: 10.1016/j.apenergy.2012.05.028 – ident: ref26/cit26 doi: 10.1039/C5SC01191D – ident: ref39/cit39 doi: 10.1021/acs.energyfuels.7b00633 – ident: ref10/cit10 doi: 10.1021/acs.iecr.0c04547 – ident: ref83/cit83 doi: 10.1007/s10450-013-9560-1 – ident: ref20/cit20 doi: 10.1016/j.fuproc.2015.03.010 – ident: ref9/cit9 doi: 10.1021/ie071012x – ident: ref19/cit19 doi: 10.1016/j.apsusc.2015.11.026 – ident: ref169/cit169 doi: 10.1016/j.fuproc.2017.09.024 – ident: ref127/cit127 doi: 10.1016/j.micromeso.2008.04.028 – ident: ref191/cit191 doi: 10.1007/s10450-008-9128-7 – ident: ref16/cit16 doi: 10.1007/s10450-014-9603-2 – ident: ref23/cit23 doi: 10.1021/ie800172e – ident: ref149/cit149 doi: 10.1016/j.ijggc.2018.03.018 – ident: ref100/cit100 doi: 10.1039/C7EE02342A – ident: ref36/cit36 doi: 10.1021/acs.est.6b00627 – ident: ref157/cit157 doi: 10.1021/ie201057p – ident: ref166/cit166 doi: 10.1016/j.egypro.2014.11.243 – ident: ref43/cit43 doi: 10.1021/acs.energyfuels.1c00294 – ident: ref37/cit37 doi: 10.1016/j.jcou.2020.101214 – ident: ref179/cit179 doi: 10.1016/j.cep.2009.11.015 – ident: ref74/cit74 doi: 10.1002/smll.201203252 – ident: ref161/cit161 doi: 10.1016/j.pecs.2009.05.003 – ident: ref59/cit59 doi: 10.1039/c2ra22552b – ident: ref165/cit165 doi: 10.2172/1337051 – ident: ref41/cit41 doi: 10.1016/j.ijggc.2020.103005 – ident: ref172/cit172 doi: 10.1016/j.cej.2012.06.100 – ident: ref137/cit137 doi: 10.1016/j.ijggc.2013.04.005 – ident: ref75/cit75 doi: 10.1039/C4CS00492B – ident: ref154/cit154 doi: 10.1007/s10450-014-9608-x – ident: ref192/cit192 doi: 10.1016/j.cej.2012.05.017 – ident: ref103/cit103 doi: 10.1073/pnas.0602439103 – ident: ref24/cit24 doi: 10.1039/c1ee01720a – ident: ref4/cit4 doi: 10.1016/j.rser.2020.110490 – ident: ref123/cit123 doi: 10.1039/C5CS00873E – ident: ref89/cit89 doi: 10.1016/S1387-1811(03)00353-6 – ident: ref96/cit96 doi: 10.1039/b927476f – ident: ref112/cit112 doi: 10.1021/ef020058u – ident: ref128/cit128 doi: 10.1016/S1872-2067(07)60066-7 – ident: ref86/cit86 doi: 10.1016/j.ces.2016.04.013 – ident: ref182/cit182 doi: 10.1016/j.ijggc.2011.05.036 – ident: ref120/cit120 doi: 10.1016/S1750-5836(07)00088-6 – ident: ref124/cit124 doi: 10.1039/c1jm12522b – ident: ref5/cit5 doi: 10.1016/j.jngse.2020.103203 – ident: ref118/cit118 doi: 10.1021/ie0504194 – ident: ref85/cit85 doi: 10.1016/j.clay.2012.09.027 – ident: ref1/cit1 doi: 10.1016/j.jclepro.2020.125776 – ident: ref203/cit203 doi: 10.1002/aic.14435 – ident: ref198/cit198 doi: 10.1016/j.pecs.2011.05.001 – ident: ref156/cit156 doi: 10.1016/j.seppur.2009.10.004 – ident: ref119/cit119 doi: 10.1007/s10973-007-8493-x – ident: ref110/cit110 doi: 10.1016/S1750-5836(07)00031-X – ident: ref98/cit98 doi: 10.1016/S1383-5866(98)00094-X – ident: ref125/cit125 doi: 10.1016/0020-1693(95)04534-1 – ident: ref47/cit47 doi: 10.1002/adsu.201700147 – ident: ref177/cit177 doi: 10.1080/25726641.2019.1591791 – ident: ref138/cit138 doi: 10.1016/j.egypro.2017.03.1357 – ident: ref141/cit141 doi: 10.1016/j.cherd.2018.03.034 – ident: ref132/cit132 doi: 10.1016/j.apenergy.2020.114874 – ident: ref162/cit162 doi: 10.1016/j.ces.2009.08.029 – ident: ref73/cit73 doi: 10.1021/ie060955b – ident: ref153/cit153 doi: 10.1016/j.cej.2020.127315 – ident: ref15/cit15 doi: 10.1016/j.jcou.2017.10.010 – ident: ref195/cit195 doi: 10.1021/acs.iecr.6b04270 – ident: ref68/cit68 doi: 10.1016/j.ces.2009.10.005 – ident: ref28/cit28 doi: 10.1021/ie200686q – ident: ref155/cit155 doi: 10.1016/j.applthermaleng.2006.07.037 – ident: ref49/cit49 doi: 10.1016/j.jaap.2012.01.009 – ident: ref206/cit206 doi: 10.1016/j.egypro.2017.03.1409 – ident: ref175/cit175 doi: 10.1016/j.micromeso.2019.05.051 – ident: ref38/cit38 doi: 10.1002/cssc.200900036 – ident: ref67/cit67 doi: 10.1021/ef8000086 – ident: ref194/cit194 doi: 10.1007/s10450-012-9431-1 – ident: ref99/cit99 doi: 10.1016/j.pecs.2020.100849 – ident: ref17/cit17 doi: 10.1002/anie.201000431 – ident: ref60/cit60 doi: 10.1002/cssc.201100735 – ident: ref201/cit201 doi: 10.1021/ie4009716 – ident: ref193/cit193 doi: 10.1016/j.seppur.2011.07.037 – ident: ref178/cit178 doi: 10.1021/ie901133r – ident: ref185/cit185 doi: 10.1016/j.ijggc.2018.04.012 – ident: ref176/cit176 doi: 10.1016/j.micromeso.2019.109653 – ident: ref61/cit61 doi: 10.1080/10962247.2013.772927 – ident: ref29/cit29 doi: 10.1016/j.cej.2011.02.007 – ident: ref97/cit97 doi: 10.1016/S1003-9953(09)60015-3 – ident: ref108/cit108 doi: 10.1021/jacs.8b09682 – ident: ref114/cit114 doi: 10.1021/ja8074105 – ident: ref56/cit56 doi: 10.1039/C4EE01647E – ident: ref13/cit13 doi: 10.1016/j.jece.2020.104142 – ident: ref170/cit170 doi: 10.1021/acs.iecr.0c05951 – ident: ref72/cit72 doi: 10.1016/j.jcis.2012.07.025 – ident: ref139/cit139 doi: 10.1016/j.cej.2013.02.041 – ident: ref51/cit51 doi: 10.1016/j.fuproc.2006.06.005 – ident: ref168/cit168 doi: 10.1016/j.tsep.2018.07.012 – ident: ref57/cit57 doi: 10.1016/j.fuel.2016.12.083 – ident: ref184/cit184 doi: 10.1021/acs.iecr.5b01384 |
SSID | ssj0006385 |
Score | 2.71166 |
SecondaryResourceType | review_article |
Snippet | Aiming at meeting the global goals established for carbon dioxide (CO2) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the... Aiming at meeting the global goals established for carbon dioxide (CO₂) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12845 |
SubjectTerms | absorption adsorbents adsorption carbon dioxide carbon sequestration energy heat hybrids temperature |
Title | Adsorption of Carbon Dioxide for Post-combustion Capture: A Review |
URI | http://dx.doi.org/10.1021/acs.energyfuels.1c01618 https://www.proquest.com/docview/2636455970 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qPagHH1Wxvojg0dTsZpNuvNVoKYIetEJvYZ9QlKY0KYi_3t00KS1SqrclYZZkZnZmlpn5BuCatbmyftkV2JfmgqK4y0QQudxjjGOqicC2Ofn5Jey9k6dBMKgBWpHBx-iWiaylij44PTXuooVEAfK-AZs4NEfZRkPx29z4GnUKKnBPL8SkKulavZF1SyJbdkvLVrlwNd09eK0admYVJh-tac5b4vs3fuPf_2IfdsvA0-nMNOUAamrUgK24mvfWgJ0FaMJDuO_ILJ0U9sRJtROzCTerh2H6NZTKMZGuY8f8ukZfuZ0HZt7FbGyzEXdOx5klHI6g333sxz23nLfgMkKi3CXIU2YlC4AeaoXrBaKttWC07UvZ5oHEEmmlDI8VpQhxTzKGw0DQUHDtH0N9lI7UCThUahPXSE8TnxCOVKSMGfApVZpGiOuoCTeGIUl5XLKkyIRjlNiHC1xKSi41IayEk4gSutxO0PhcT-jNCccz9I71JFeV9BMjAJs-YSOVTrMEhzZlay5g3un_Pv8MtrGthLFAutE51PPJVF2YUCbnl4Xy_gCV2fRK |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLZYOLAceC0r3hSJIx2aNO2k3IYCGp4XBglOVZ4SWjRF0xkJ8etxMu3wkFYIblGqRK7j2I5sfwbYE21pnF0OFY01PlCMDIVKslBGQkjKLVPUFSdfXafdW3Z-l9xNAW9qYZCICneqfBD_DV2AHLg548vh7AitRosoj_X-C2bQJaFOtjv5zUQHo1QlDcZnlFLWZHb9fyNnnVT10Tp9VM7e4pwuwP2EVp9o8q81GsqWevkE4_iTn1mE-doNDTpjuVmCKdNfhtm86f62DHPvgAr_wFFHV-XAa5egtEEuBhJHxw_l84M2Afq9gWv6G6L0StcdDL_l4snFJg6DTjAOP6xA7_Skl3fDuvtCKBjLhiEjkcGR9nA93B11lKi2tUrwdqx1WyaaamKNQVYbzgmRkRaCponiqZI2_gvT_bJvViHg2qKXoyPLYsYkMZlBpRBzbizPiLTZGuwjQ4r68lSFj4tTUrjJd1wqai6tQdqcUaFqIHPXT-Px64XRZOHTGMvj6yW7jRAUeAAumCL6phxVBU1dABefY9H698jfgdlu7-qyuDy7vtiA39TlyDiI3WwTpoeDkdlCJ2cot708vwL3hPyr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_SDtrtoWu7jnXdhwd7nFNLlh159CVzF9p9lMI66Msw-oSwEYc4gdG_fneKHdLCKNubkJGQT6e7E7_T7wDeqoF25Jdjw1OLFxSnY2WyItaJUppLLwynx8lfL_Kz7-LTdXbdg5PuLQwuosGZmgDi06meWt8yDLBj6nfhSZxfoOfoMxP43jfgAYF3pN_D8tvKDqNmZR3PZ5Jz0WV3_X0i8lCmue2hbhvo4HVGj-HHar0h2eRnfzHXfXNzh8rxf39oF3bacDQaLvVnD3pusg_bZVcFbh8erREWPoEPQ9vUs2BlotpHpZppbJ2O699j6yKMfyMq_hujFmuqEobfSjUljOJ9NIyWMMQBXI0-XpVncVuFIVZCFPNYsMRhywbaHklbnmRm4L1RcpBaO9CZ5ZZ551DcTkrGdGKV4nlmZG60T5_C5qSeuGcQSesx2rGJF6kQmrnCoXFIpXReFkz74hDeoUCq9hA1VcDHOauoc01KVSulQ8i7fapMS2hOdTV-3T8wWQ2cLjk97h_yplOECjeAQBU1cfWiqXhOQC5ey5Ln_7b817B1eTqqvpxffD6Ch5xSZYhpt3gBm_PZwr3EWGeuXwWV_gMEr_8u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+Carbon+Dioxide+for+Post-combustion+Capture%3A+A+Review&rft.jtitle=Energy+%26+fuels&rft.au=Raganati%2C+Federica&rft.au=Miccio%2C+Francesco&rft.au=Ammendola%2C+Paola&rft.date=2021-08-19&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=35&rft.issue=16&rft.spage=12845&rft.epage=12868&rft_id=info:doi/10.1021%2Facs.energyfuels.1c01618&rft.externalDocID=c890640342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |