Loading of Antibiotic into Biocoated Hydroxyapatite Nanoparticles: Smart Antitumor Platforms with Regulated Release

In this research we propose a nanoplatform for anticancer therapy that is based on the combination of three components: (1) an antibiotic to target selectively the mitochondria of cancer cells, inhibiting their functions; (2) mineral nanoparticles (NPs) able to encapsulate the antibiotic and to ente...

Full description

Saved in:
Bibliographic Details
Published inACS biomaterials science & engineering Vol. 4; no. 9; pp. 3234 - 3245
Main Authors Rivas, Manuel, del Valle, Luís J, Rodríguez-Rivero, Anna M, Turon, Pau, Puiggalí, Jordi, Alemán, Carlos
Format Journal Article Publication
LanguageEnglish
Published United States American Chemical Society 10.09.2018
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this research we propose a nanoplatform for anticancer therapy that is based on the combination of three components: (1) an antibiotic to target selectively the mitochondria of cancer cells, inhibiting their functions; (2) mineral nanoparticles (NPs) able to encapsulate the antibiotic and to enter into the cells across the cell membrane; and (3) a biocoating to protect the antibiotic during and/or after its regulated release, increasing its therapeutic efficacy. Chloramphenicol (CAM), a prototypical wide-spectrum antibiotic, has been used to induce mitochondrial-dysfunctions in cancer cells. Different in situ synthetic strategies have been tested to load such antibiotic into both crystalline hydroxyapatite (cHAp) and amorphous calcium phosphate (ACP) NPs. cHAp NPs showed higher loading capacity, in terms of encapsulation and superficial adsorption of CAM, and slower antibiotic release than ACP NPs. On the other hand, the protecting role played by biocoatings based on pyrophosphate and, especially, triphosphate was greater than that of biophosphonates, the anticancer therapeutic efficacy of CAM being maximized by the former. In vitro studies using healthy and cancer cell lines have demonstrated that in situ CAM-loaded cHAp NPs coated with triphosphate selectively kill a great population of cancer cells, evidencing the potential of this nanoplatform in cancer treatment.
AbstractList In this research we propose a nanoplatform for anticancer therapy that is based on the combination of three components: (1) an antibiotic to target selectively the mitochondria of cancer cells, inhibiting their functions; (2) mineral nanoparticles (NPs) able to encapsulate the antibiotic and to enter into the cells across the cell membrane; and (3) a biocoating to protect the antibiotic during and/or after its regulated release, increasing its therapeutic efficacy. Chloramphenicol (CAM), a prototypical wide-spectrum antibiotic, has been used to induce mitochondrial-dysfunctions in cancer cells. Different synthetic strategies have been tested to load such antibiotic into both crystalline hydroxyapatite (cHAp) and amorphous calcium phosphate (ACP) NPs. cHAp NPs showed higher loading capacity, in terms of encapsulation and superficial adsorption of CAM, and slower antibiotic release than ACP NPs. On the other hand, the protecting role played by biocoatings based on pyrophosphate and, especially, triphosphate was greater than that of biophosphonates, the anticancer therapeutic efficacy of CAM being maximized by the former. studies using healthy and cancer cell lines have demonstrated that CAM-loaded cHAp NPs coated with triphosphate selectively kill a great population of cancer cells, evidencing the potential of this nanoplatform in cancer treatment.
In this research we propose a nanoplatform for anticancer therapy that is based on the combination of three components: (1) an antibiotic to target selectively the mitochondria of cancer cells, inhibiting their functions; (2) mineral nanoparticles (NPs) able to encapsulate the antibiotic and to enter into the cells across the cell membrane; and (3) a biocoating to protect the antibiotic during and/or after its regulated release, increasing its therapeutic efficacy. Chloramphenicol (CAM), a prototypical wide-spectrum antibiotic, has been used to induce mitochondrial-dysfunctions in cancer cells. Different in situ synthetic strategies have been tested to load such antibiotic into both crystalline hydroxyapatite (cHAp) and amorphous calcium phosphate (ACP) NPs. cHAp NPs showed higher loading capacity, in terms of encapsulation and superficial adsorption of CAM, and slower antibiotic release than ACP NPs. On the other hand, the protecting role played by biocoatings based on pyrophosphate and, especially, triphosphate was greater than that of biophosphonates, the anticancer therapeutic efficacy of CAM being maximized by the former. In vitro studies using healthy and cancer cell lines have demonstrated that in situ CAM-loaded cHAp NPs coated with triphosphate selectively kill a great population of cancer cells, evidencing the potential of this nanoplatform in cancer treatment.
In this research we propose a nanoplatform for anticancer therapy that is based on the combination of three components: (1) an antibiotic to target selectively the mitochondria of cancer cells, inhibiting their functions; (2) mineral nanoparticles (NPs) able to encapsulate the antibiotic and to enter into the cells across the cell membrane; and (3) a biocoating to protect the antibiotic during and/or after its regulated release, increasing its therapeutic efficacy. Chloramphenicol (CAM), a prototypical wide-spectrum antibiotic, has been used to induce mitochondrial-dysfunctions in cancer cells. Different in situ synthetic strategies have been tested to load such antibiotic into both crystalline hydroxyapatite (cHAp) and amorphous calcium phosphate (ACP) NPs. cHAp NPs showed higher loading capacity, in terms of encapsulation and superficial adsorption of CAM, and slower antibiotic release than ACP NPs. On the other hand, the protecting role played by biocoatings based on pyrophosphate and, especially, triphosphate was greater than that of biophosphonates, the anticancer therapeutic efficacy of CAM being maximized by the former. In vitro studies using healthy and cancer cell lines have demonstrated that in situ CAM-loaded cHAp NPs coated with triphosphate selectively kill a great population of cancer cells, evidencing the potential of this nanoplatform in cancer treatment. Peer Reviewed
Author Puiggalí, Jordi
Turon, Pau
Rivas, Manuel
del Valle, Luís J
Rodríguez-Rivero, Anna M
Alemán, Carlos
AuthorAffiliation B. Braun Surgical
Barcelona Research Center for Multiscale Science and Engineering
Departament d’Enginyeria Química, EEBE
AuthorAffiliation_xml – name: Departament d’Enginyeria Química, EEBE
– name: B. Braun Surgical
– name: Barcelona Research Center for Multiscale Science and Engineering
Author_xml – sequence: 1
  givenname: Manuel
  surname: Rivas
  fullname: Rivas, Manuel
  organization: Departament d’Enginyeria Química, EEBE
– sequence: 2
  givenname: Luís J
  surname: del Valle
  fullname: del Valle, Luís J
  organization: Barcelona Research Center for Multiscale Science and Engineering
– sequence: 3
  givenname: Anna M
  surname: Rodríguez-Rivero
  fullname: Rodríguez-Rivero, Anna M
  organization: B. Braun Surgical
– sequence: 4
  givenname: Pau
  orcidid: 0000-0001-6354-9701
  surname: Turon
  fullname: Turon, Pau
  email: pau.turon@bbraun.com
  organization: B. Braun Surgical
– sequence: 5
  givenname: Jordi
  surname: Puiggalí
  fullname: Puiggalí, Jordi
  email: jordi.puiggali@upc.edu
  organization: Barcelona Research Center for Multiscale Science and Engineering
– sequence: 6
  givenname: Carlos
  orcidid: 0000-0003-4462-6075
  surname: Alemán
  fullname: Alemán, Carlos
  email: carlos.aleman@upc.edu
  organization: Barcelona Research Center for Multiscale Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33435064$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhq2qiH7-heIjl20df8QOt1JBW2kFqIWzNXEmxVUSL7Yj2H9fb3cpiAsHyzPW-z5jzXtE9qcwISFvKnZeMV5dgEutDyNkjB6GdG5axoQSe-SQCy0WjdFm_6_6gJym9MgYq4RRUsrX5EAIKRSr5SFJywCdnx5o6OnllH0BZ--on3Kg731woUzp6M26i-HXGlaQfUb6CaawgliEA6Z39H4s9bM7z2OI9MsAuQ9xTPSnz9_pHT7MwzPmDgeEhCfkVV_-jae7-5h8-_jh69XNYvn5-vbqcrkAKU1e8NZ13DWOC8cZB1k3ylSq51DXbd3XRgmNopOqVZxJUUkw5dE0CFrUGloQx6Tacl2anY3oMDrINoD_02wOZ5pbobiUTfG83XpWMfyYMWU7-uRwGGDCMCfLpdaKibLWItU7fAwpReztKvqyirWtmN0EZf8Jyu6CKs6z3ZC5HbF78f2OpQjEVlAI9jHMcdrY_4d9AuEhqHc
CitedBy_id crossref_primary_10_1007_s41061_019_0275_y
crossref_primary_10_1002_cctc_202101157
crossref_primary_10_1021_acs_biomac_2c01442
crossref_primary_10_1021_acs_cgd_0c00850
crossref_primary_10_1016_j_ijpharm_2021_120897
crossref_primary_10_1007_s10876_021_02182_6
crossref_primary_10_1016_j_cej_2022_137440
crossref_primary_10_3390_molecules28052107
crossref_primary_10_1016_j_msec_2020_111537
crossref_primary_10_3390_gels5010014
crossref_primary_10_3390_ijms232315016
crossref_primary_10_1016_j_ijpharm_2019_118565
crossref_primary_10_3390_ijms231911352
crossref_primary_10_1002_admi_202100163
crossref_primary_10_3390_ijms23031282
crossref_primary_10_1016_j_msec_2019_01_098
crossref_primary_10_1002_adhm_202001636
crossref_primary_10_1016_j_molliq_2021_117598
crossref_primary_10_1021_acs_langmuir_9b02522
Cites_doi 10.1093/nar/gkg686
10.1016/j.canlet.2016.09.023
10.1016/j.cell.2009.08.001
10.1021/acsami.6b06596
10.1039/C3DT52112E
10.1016/S1359-0294(02)00017-1
10.1089/ten.teb.2012.0624
10.1016/S0092-8674(02)00725-0
10.1073/pnas.78.7.4515
10.1039/C4TB01184H
10.1073/pnas.1008685107
10.1007/s10856-007-3124-4
10.1007/s13233-012-0103-5
10.1038/nrc3184
10.1016/j.clim.2006.06.010
10.1039/C6TB01401A
10.1038/srep00274
10.1016/j.biomaterials.2009.02.044
10.1515/cclm.1993.31.1.41
10.1038/nrmicro3155
10.1016/j.biomaterials.2006.10.026
10.1166/jbn.2014.1893
10.1080/10409230500326334
10.1038/nrmicro1265
10.1016/j.addr.2005.04.002
10.1089/ten.tea.2013.0356
10.1126/scitranslmed.3006055
10.1016/j.actbio.2009.12.055
10.1016/S0022-2836(02)00784-2
10.1038/nrclinonc.2015.24
10.1039/C5DT00209E
10.1248/yakushi1947.76.8_927
10.18632/oncotarget.2789
10.1038/nrd4675
10.1007/s00198-007-0540-8
10.1177/0885328211401933
10.1038/ncomms12856
10.4012/dmj.2013-275
10.1016/S1097-2765(02)00825-0
10.1021/cg201092s
10.1021/la803842g
10.1021/ja01124a037
10.1016/j.cbpa.2013.06.006
10.1016/j.clim.2006.06.006
10.1002/adma.201403354
10.1002/jbm.b.31746
10.1107/S0567740879006452
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament d'Enginyeria Química
Universitat Politècnica de Catalunya. PSEP - Polimers Sintètics: Estructura i Propietats. Polimers Biodegradables
Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria Química
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. PSEP - Polimers Sintètics: Estructura i Propietats. Polimers Biodegradables
– sequence: 3
  fullname: Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies
Copyright Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID NPM
AAYXX
CITATION
7X8
XX2
DOI 10.1021/acsbiomaterials.8b00353
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Recercat
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-9878
EndPage 3245
ExternalDocumentID oai_recercat_cat_2072_352449
10_1021_acsbiomaterials_8b00353
33435064
c132978780
Genre Journal Article
GroupedDBID ABMVS
ABUCX
ACGFS
ACS
AEESW
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
EJD
UI2
VF5
VG9
W1F
53G
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
XX2
ID FETCH-LOGICAL-a448t-2bcd2c9c23c202a4695815f2a66b6f68537e3d45b5204314a8f6889ea7367aba3
IEDL.DBID ACS
ISSN 2373-9878
IngestDate Fri Oct 04 12:42:22 EDT 2024
Fri Aug 16 09:47:46 EDT 2024
Fri Aug 23 00:34:43 EDT 2024
Sat Sep 28 08:30:20 EDT 2024
Thu Aug 27 13:42:19 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords antibiotic
polyphosphate
biocoating
cancer cells
chloramphenicol
calcium phosphate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a448t-2bcd2c9c23c202a4695815f2a66b6f68537e3d45b5204314a8f6889ea7367aba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6354-9701
0000-0003-4462-6075
OpenAccessLink https://recercat.cat/handle/2072/352449
PMID 33435064
PQID 2477503878
PQPubID 23479
PageCount 12
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_352449
proquest_miscellaneous_2477503878
crossref_primary_10_1021_acsbiomaterials_8b00353
pubmed_primary_33435064
acs_journals_10_1021_acsbiomaterials_8b00353
ProviderPackageCode ACS
AEESW
AFEFF
VF5
VG9
ABMVS
ABUCX
AQSVZ
W1F
UI2
PublicationCentury 2000
PublicationDate 2018-09-10
PublicationDateYYYYMMDD 2018-09-10
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS biomaterials science & engineering
PublicationTitleAlternate ACS Biomater. Sci. Eng
PublicationYear 2018
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1093/nar/gkg686
– ident: ref20/cit20
  doi: 10.1016/j.canlet.2016.09.023
– ident: ref10/cit10
  doi: 10.1016/j.cell.2009.08.001
– ident: ref2/cit2
  doi: 10.1021/acsami.6b06596
– ident: ref23/cit23
  doi: 10.1039/C3DT52112E
– ident: ref25/cit25
  doi: 10.1016/S1359-0294(02)00017-1
– ident: ref5/cit5
  doi: 10.1089/ten.teb.2012.0624
– ident: ref8/cit8
  doi: 10.1016/S0092-8674(02)00725-0
– ident: ref45/cit45
  doi: 10.1073/pnas.78.7.4515
– ident: ref24/cit24
  doi: 10.1039/C4TB01184H
– ident: ref40/cit40
  doi: 10.1073/pnas.1008685107
– ident: ref44/cit44
  doi: 10.1007/s10856-007-3124-4
– ident: ref30/cit30
  doi: 10.1007/s13233-012-0103-5
– ident: ref21/cit21
  doi: 10.1038/nrc3184
– ident: ref46/cit46
  doi: 10.1016/j.clim.2006.06.010
– ident: ref43/cit43
  doi: 10.1039/C6TB01401A
– ident: ref6/cit6
  doi: 10.1038/srep00274
– ident: ref42/cit42
  doi: 10.1016/j.biomaterials.2009.02.044
– ident: ref36/cit36
  doi: 10.1515/cclm.1993.31.1.41
– ident: ref7/cit7
  doi: 10.1038/nrmicro3155
– ident: ref35/cit35
  doi: 10.1016/j.biomaterials.2006.10.026
– ident: ref4/cit4
  doi: 10.1166/jbn.2014.1893
– ident: ref9/cit9
  doi: 10.1080/10409230500326334
– ident: ref11/cit11
  doi: 10.1038/nrmicro1265
– ident: ref41/cit41
  doi: 10.1016/j.addr.2005.04.002
– ident: ref3/cit3
  doi: 10.1089/ten.tea.2013.0356
– ident: ref16/cit16
  doi: 10.1126/scitranslmed.3006055
– ident: ref31/cit31
  doi: 10.1016/j.actbio.2009.12.055
– ident: ref14/cit14
  doi: 10.1016/S0022-2836(02)00784-2
– ident: ref18/cit18
  doi: 10.1038/nrclinonc.2015.24
– ident: ref27/cit27
  doi: 10.1039/C5DT00209E
– ident: ref37/cit37
  doi: 10.1248/yakushi1947.76.8_927
– ident: ref17/cit17
  doi: 10.18632/oncotarget.2789
– ident: ref19/cit19
  doi: 10.1038/nrd4675
– ident: ref33/cit33
  doi: 10.1007/s00198-007-0540-8
– ident: ref29/cit29
  doi: 10.1177/0885328211401933
– ident: ref15/cit15
  doi: 10.1038/ncomms12856
– ident: ref28/cit28
  doi: 10.4012/dmj.2013-275
– ident: ref13/cit13
  doi: 10.1016/S1097-2765(02)00825-0
– ident: ref22/cit22
  doi: 10.1021/cg201092s
– ident: ref26/cit26
  doi: 10.1021/la803842g
– ident: ref38/cit38
  doi: 10.1021/ja01124a037
– ident: ref32/cit32
  doi: 10.1016/j.cbpa.2013.06.006
– ident: ref47/cit47
  doi: 10.1016/j.clim.2006.06.006
– ident: ref1/cit1
  doi: 10.1002/adma.201403354
– ident: ref34/cit34
  doi: 10.1002/jbm.b.31746
– ident: ref39/cit39
  doi: 10.1107/S0567740879006452
SSID ssj0001385444
Score 2.2499511
Snippet In this research we propose a nanoplatform for anticancer therapy that is based on the combination of three components: (1) an antibiotic to target selectively...
SourceID csuc
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3234
SubjectTerms antibiotic
Antibiotics
Antibiòtics
biocoating
Calcium phosphate
Cancer
Cancer cells
Chloramphenicol
Cloramfenicol
Càncer
Cèl·lules canceroses
Enginyeria química
Fosfat de calci
polyphosphate
Àrees temàtiques de la UPC
Title Loading of Antibiotic into Biocoated Hydroxyapatite Nanoparticles: Smart Antitumor Platforms with Regulated Release
URI http://dx.doi.org/10.1021/acsbiomaterials.8b00353
https://www.ncbi.nlm.nih.gov/pubmed/33435064
https://search.proquest.com/docview/2477503878
https://recercat.cat/handle/2072/352449
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V5QIHypulgIzECZEl8SOP3kpFtUKA0JZKvVm246AKGqONc4Bf35kkW15aAYdISWSP_Bh7vvE8DPCs8cXAJ4ks6AozUTWJsbZJhK-ssbnyWUMW3Xfv8-WJfHOqTncg22LB59lL4zqKRDdxnJFFSYyoxBW4ysmPkNDQ4fGPYxVRKjlc4cpFIRLUqMuNV9d2WiSZXPeLZJq5rnfbUecgfY52YbWJ4RmdTj4v-mgX7vufKR3_vWM34caERdnByDy3YMe3t-H6TxkK70D3NgxO9iw07KCl-JKAhdlZGwN7dRZcQLo1W36rqWGGvLOjZ7hjoyo-edzts-NzfB9qx_48rNmHLyYSVO4YHQKzlf9EV4ghmRWKQBSqd-Hk6PXHw2Uy3dOQGFTuYsKtq7mrHBeOp9ygwq3KTDXc5LnNmxwBQeFFLZVVFIibSVPiz7LyphB5YawR92DWhtY_AOY8AhSZitphuQzRqfeqQYLCKdyJCjWHFzhselpnnR5M6DzTv42lnsZyDulmSvXXMXvH36s8p6nXKG_82pmoKf_25Qc9PC24RtwqZTWHpxsG0bgsydZiWh_6TnNZkIUY2W8O90fOuWyBEIhREQo-_L_O7ME1RGuDs0qWPoJZXPf-MSKiaJ8Ma-ACaREJ-g
link.rule.ids 230,315,786,790,891,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V5QAcKM-ylIeROCGyJHYcJ9yWimqBbYX6kMrJsh2nqqAx2jgH-PWMvdktVKoQHCIllj3xY-z5xjMeA7xsrIh8kuQiXGHGqiZRWjcJs5VWuuA2a4JFd2-_mB3nH0_4yQaUq7MwWIkOKXXRiH8RXSB7g2nhQLryy4GZlIEfObsG1zn-JXD4dOfwYneFlTyPN7lSJliCinW5cu66mlYQUKb7Q0CNTNebq8FnFEK7m_BlXf3oe_J10ns9MT8vRXb8n_bdgdsDMiXTJSvdhQ3b3oNbv8UrvA_d3EWXe-IaMm3DaROHmclZ6x15d-aMQ7o1mf2oQ_1U8NX2luD6jYr54H_3lhye43ss7ftztyCfvykfgHNHwpYwObCn4UIxJHOAAhFF7AM43n1_tDNLhlsbEoWqnk-oNjU1laHM0JQqVL95mfGGqqLQRVMgPBCW1TnXPBzLzXJVYmJZWSVYIZRW7CGMWtfaR0CMRbiSp6w2mC9DrGotb5AgMxzXJcHH8Bq7TQ6zrpPRoE4zeakv5dCXY0hXIyu_L2N5_L3Iq8ABEqWPXRjlZYjGvf4ID00FlYhi87waw4sVn0icpMHyolrr-k7SXAR7MXLhGLaWDLSuAWOIWBEYPv63xjyHG7Ojvbmcf9j_tA03EcdFN5YsfQIjv-jtU8RKXj-L0-IXXEsSZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VRUJwKG_YloeROCGyJHacB-JSCqsFSlW1VOqlsmzHQRU0qTbOAX59Z7zZBSpVCA6REsse-THOfOMZzwA8r10e-CRKc0phJso60sbUkXCl0SaTLqnJovt5N5sdph-P5NEavFnehcFOdEipC0Z82tVnVT1EGEheYTldStd-sTiTgnhSiitwVVIabwJG2we_TlhEIdOQzZWLXESoXBdLB6_LaZGQst0fQmpku95eDkCDIJrehOPVEIL_ybdJ783E_rwQ3fF_x3gL1geEyrYWLHUb1lxzB278FrfwLnQ7bXC9Z23Nthq6ddJiZXbS-Ja9PWlti3QrNvtRUR81-Wx7x_A_jgr64If3mh2c4nto7fvTds72vmtPALpjdDTM9t1XSiyGZPZRMKKovQeH0_dftmfRkL0h0qjy-YgbW3FbWi4sj7lGNVwWiay5zjKT1RnChNyJKpVG0vXcJNUFFhal07nIcm20uA-jpm3cQ2DWIWxJY1FZrJcgZnVO1khQWIn_p1yO4SVOmxp2X6eCYZ0n6sJcqmEuxxAvV1edLWJ6_L3JC-IChVLIza32iqJyrz7o4XHOFaLZNC3H8GzJKwo3K1lgdOPavlM8zclujJw4hgcLJlr1QAhErggQN_5tME_h2t67qdr5sPtpE64jnAveLEn8CEZ-3rvHCJm8eRJ2xjn57xTf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loading+of+Antibiotic+into+Biocoated+Hydroxyapatite+Nanoparticles%3A+Smart+Antitumor+Platforms+with+Regulated+Release&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=Rivas%2C+Manuel&rft.au=del+Valle%2C+Lui%CC%81s+J&rft.au=Rodri%CC%81guez-Rivero%2C+Anna+M&rft.au=Turon%2C+Pau&rft.date=2018-09-10&rft.pub=American+Chemical+Society&rft.issn=2373-9878&rft.eissn=2373-9878&rft.volume=4&rft.issue=9&rft.spage=3234&rft.epage=3245&rft_id=info:doi/10.1021%2Facsbiomaterials.8b00353&rft.externalDocID=c132978780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon