Biophysical Mechanisms of Membrane-Thickness-Dependent MscL Gating: An All-Atom Molecular Dynamics Study
The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We...
Saved in:
Published in | Langmuir Vol. 35; no. 23; pp. 7432 - 7442 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)), 1,2-dimyristoyl-glycero-3-phosphorylcholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching. |
---|---|
AbstractList | The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)), 1,2-dimyristoyl-glycero-3-phosphorylcholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching. The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)), 1,2-dimyristoyl-glycero-3-phosphorylcholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching. The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-dilauroyl- sn-glycero-3-phosphocholine (DLPC)), 1,2-dimyristoyl-glycero-3-phosphorylcholine (DMPC), 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl- sn-glycero-3-phosphocholine (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching.The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-dilauroyl- sn-glycero-3-phosphocholine (DLPC)), 1,2-dimyristoyl-glycero-3-phosphorylcholine (DMPC), 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl- sn-glycero-3-phosphocholine (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching. |
Author | Katsuta, Hiroki Sawada, Yasuyuki Sokabe, Masahiro |
AuthorAffiliation | Department of Physiology Mechanobiology Laboratory Nagoya University Graduate School of Medicine |
AuthorAffiliation_xml | – name: Nagoya University Graduate School of Medicine – name: Department of Physiology – name: Mechanobiology Laboratory |
Author_xml | – sequence: 1 givenname: Hiroki surname: Katsuta fullname: Katsuta, Hiroki – sequence: 2 givenname: Yasuyuki surname: Sawada fullname: Sawada, Yasuyuki – sequence: 3 givenname: Masahiro orcidid: 0000-0001-7791-0166 surname: Sokabe fullname: Sokabe, Masahiro email: msokabe@med.nagoya-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30113845$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uGyEUhVGVqnHSvkEUsexm3MvPGCY7N3-tZKuLpusRA0xMwoADMwu_fYjsZJFFs0LA93HFOSfoKMRgETojMCdAyQ-l89yrcD9MLs1lBxQE_4RmpKZQ1ZKKIzQrJ6wSfMGO0UnODwDQMN58QccMCGGS1zO0-enidrPLTiuP11ZvVHB5yDj2ZTd0SQVb3W2cfgw25-rKbm0wNox4nfUK36rRhfsLvAx46X21HOOA19FbPXmV8NUuqMHpjP-Ok9l9RZ975bP9dlhP0b-b67vLX9Xqz-3vy-WqUpyLsbI9F8SArinTtIaFATCiVoY3TBpFherKPwUHxRaE2d7Qpgbe276XtJNaLNgp-r5_d5vi02Tz2A4ua-tLVDZOuaVUEEkZFc3HKMhG1qzMK-j5AZ26wZp2m9yg0q59DbIAfA_oFHNOtn9DCLQvfbWlr_a1r_bQV9Eu3mnajSXVGMaknP9Ihr38cvsQpxRKsP9XngEUN6_C |
CitedBy_id | crossref_primary_10_1021_acs_jpcb_0c07487 crossref_primary_10_3389_fchem_2023_1162412 crossref_primary_10_1021_acs_jpcb_1c09282 crossref_primary_10_1016_j_csbj_2022_05_022 crossref_primary_10_1016_j_str_2021_12_004 crossref_primary_10_1021_acs_jcim_3c01611 crossref_primary_10_1021_acs_langmuir_9b01206 crossref_primary_10_1016_j_addr_2022_114395 crossref_primary_10_1016_j_devcel_2025_01_004 crossref_primary_10_3390_membranes13020250 crossref_primary_10_1016_j_jbc_2022_102236 crossref_primary_10_1021_acs_jpcb_0c06413 |
Cites_doi | 10.1046/j.1469-7580.1999.19430335.x 10.1529/biophysj.105.072009 10.1002/prot.24550 10.1007/s00249-015-1065-2 10.1007/978-3-642-76690-9_7 10.4161/chan.21895 10.1016/S0006-3495(97)78259-6 10.1016/S0009-2614(02)00839-4 10.1016/S0006-3495(03)74637-2 10.1126/science.282.5397.2220 10.1021/jp101759q 10.1002/jcc.20945 10.1529/biophysj.107.105130 10.1146/annurev.ph.57.030195.002001 10.1016/j.bbamem.2008.08.023 10.1021/bi0509649 10.1096/fj.14-259309 10.1016/S0006-3495(01)75751-7 10.1016/j.bpj.2009.04.013 10.1016/S0006-3495(97)78223-7 10.1085/jgp.113.4.525 10.1016/0926-6542(64)90043-5 10.1007/978-1-4684-8580-6_2 10.1016/S0959-440X(03)00106-4 10.1128/jb.84.6.1260-1267.1962 10.4161/chan.21085 10.1063/1.464397 10.1016/S0006-3495(04)74270-8 10.1021/bi034995k 10.1021/bi00682a001 10.1016/S0006-3495(93)81249-9 10.1098/rspb.1992.0064 10.1016/j.colsurfb.2010.12.010 10.1021/acs.jctc.5b00935 10.1016/j.cell.2009.09.010 10.1016/0263-7855(96)00018-5 10.1529/biophysj.104.045005 10.1002/jcc.23702 10.1021/bi00720a024 10.1016/S0263-7855(97)00009-X 10.1093/bioinformatics/btu037 10.1074/jbc.275.2.1015 10.1016/j.bbamem.2004.05.012 10.1073/pnas.082092599 10.1016/S0014-5793(99)01148-5 10.1016/S0005-2736(98)00165-5 10.1016/S1063-5823(06)58001-9 10.1371/journal.pone.0000880 10.1038/nsb828 10.1016/S0959-4388(96)80060-2 10.1006/jcph.1999.6201 10.1073/pnas.84.8.2297 10.1016/S0006-3495(03)74584-6 10.1002/prot.21810 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.8b02074 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 7442 |
ExternalDocumentID | 30113845 10_1021_acs_langmuir_8b02074 d079494144 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK YQT ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a447t-ef471d0c523c2506d00d75ad4938da27ab207740a3613efd29504feff82b8c763 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Fri Jul 11 05:28:37 EDT 2025 Fri Jul 11 06:55:47 EDT 2025 Thu Jan 02 22:59:32 EST 2025 Thu Apr 24 23:03:11 EDT 2025 Tue Jul 01 01:34:31 EDT 2025 Thu Aug 27 13:41:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a447t-ef471d0c523c2506d00d75ad4938da27ab207740a3613efd29504feff82b8c763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7791-0166 |
PMID | 30113845 |
PQID | 2089853077 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2271823279 proquest_miscellaneous_2089853077 pubmed_primary_30113845 crossref_primary_10_1021_acs_langmuir_8b02074 crossref_citationtrail_10_1021_acs_langmuir_8b02074 acs_journals_10_1021_acs_langmuir_8b02074 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-11 |
PublicationDateYYYYMMDD | 2019-06-11 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 Marr A. G. (ref53/cit53) 1962; 84 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1046/j.1469-7580.1999.19430335.x – ident: ref15/cit15 doi: 10.1529/biophysj.105.072009 – ident: ref44/cit44 doi: 10.1002/prot.24550 – ident: ref13/cit13 doi: 10.1007/s00249-015-1065-2 – ident: ref7/cit7 doi: 10.1007/978-3-642-76690-9_7 – ident: ref12/cit12 doi: 10.4161/chan.21895 – ident: ref36/cit36 doi: 10.1016/S0006-3495(97)78259-6 – ident: ref49/cit49 doi: 10.1016/S0009-2614(02)00839-4 – ident: ref33/cit33 – ident: ref24/cit24 doi: 10.1016/S0006-3495(03)74637-2 – ident: ref10/cit10 doi: 10.1126/science.282.5397.2220 – ident: ref37/cit37 doi: 10.1021/jp101759q – ident: ref28/cit28 doi: 10.1002/jcc.20945 – ident: ref20/cit20 doi: 10.1529/biophysj.107.105130 – ident: ref3/cit3 doi: 10.1146/annurev.ph.57.030195.002001 – ident: ref54/cit54 doi: 10.1016/j.bbamem.2008.08.023 – ident: ref55/cit55 doi: 10.1021/bi0509649 – ident: ref45/cit45 doi: 10.1096/fj.14-259309 – ident: ref25/cit25 doi: 10.1016/S0006-3495(01)75751-7 – ident: ref27/cit27 doi: 10.1016/j.bpj.2009.04.013 – ident: ref16/cit16 doi: 10.1016/S0006-3495(97)78223-7 – ident: ref39/cit39 doi: 10.1085/jgp.113.4.525 – ident: ref52/cit52 doi: 10.1016/0926-6542(64)90043-5 – ident: ref35/cit35 doi: 10.1007/978-1-4684-8580-6_2 – ident: ref47/cit47 doi: 10.1016/S0959-440X(03)00106-4 – volume: 84 start-page: 1260 issue: 6 year: 1962 ident: ref53/cit53 publication-title: J. Bacteriol. doi: 10.1128/jb.84.6.1260-1267.1962 – ident: ref9/cit9 doi: 10.4161/chan.21085 – ident: ref38/cit38 doi: 10.1063/1.464397 – ident: ref14/cit14 doi: 10.1016/S0006-3495(04)74270-8 – ident: ref21/cit21 doi: 10.1021/bi034995k – ident: ref42/cit42 doi: 10.1021/bi00682a001 – ident: ref19/cit19 doi: 10.1016/S0006-3495(93)81249-9 – ident: ref4/cit4 doi: 10.1098/rspb.1992.0064 – ident: ref50/cit50 doi: 10.1016/j.colsurfb.2010.12.010 – ident: ref31/cit31 doi: 10.1021/acs.jctc.5b00935 – ident: ref5/cit5 doi: 10.1016/j.cell.2009.09.010 – ident: ref32/cit32 doi: 10.1016/0263-7855(96)00018-5 – ident: ref48/cit48 doi: 10.1529/biophysj.104.045005 – ident: ref30/cit30 doi: 10.1002/jcc.23702 – ident: ref41/cit41 doi: 10.1021/bi00720a024 – ident: ref40/cit40 doi: 10.1016/S0263-7855(97)00009-X – ident: ref43/cit43 doi: 10.1093/bioinformatics/btu037 – ident: ref26/cit26 doi: 10.1074/jbc.275.2.1015 – ident: ref17/cit17 doi: 10.1016/j.bbamem.2004.05.012 – ident: ref8/cit8 doi: 10.1073/pnas.082092599 – ident: ref18/cit18 doi: 10.1016/S0014-5793(99)01148-5 – ident: ref51/cit51 doi: 10.1016/S0005-2736(98)00165-5 – ident: ref11/cit11 doi: 10.1016/S1063-5823(06)58001-9 – ident: ref29/cit29 doi: 10.1371/journal.pone.0000880 – ident: ref46/cit46 doi: 10.1038/nsb828 – ident: ref2/cit2 doi: 10.1016/S0959-4388(96)80060-2 – ident: ref34/cit34 doi: 10.1006/jcph.1999.6201 – ident: ref1/cit1 doi: 10.1073/pnas.84.8.2297 – ident: ref22/cit22 doi: 10.1016/S0006-3495(03)74584-6 – ident: ref23/cit23 doi: 10.1002/prot.21810 |
SSID | ssj0009349 |
Score | 2.3652196 |
Snippet | The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7432 |
SubjectTerms | bacteria lipid bilayers molecular dynamics |
Title | Biophysical Mechanisms of Membrane-Thickness-Dependent MscL Gating: An All-Atom Molecular Dynamics Study |
URI | http://dx.doi.org/10.1021/acs.langmuir.8b02074 https://www.ncbi.nlm.nih.gov/pubmed/30113845 https://www.proquest.com/docview/2089853077 https://www.proquest.com/docview/2271823279 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagDLBwH-WSkVgYXBLHiRO2UigIERigUrfIcRy1ok1Qkw7w63nOUQSIa4xlJ3qH_b4X299D6BiauVCmSbgUlDDpSRLakUvsODaVoJI5BR2Df-dc99hN3-6_J4qfd_CpeSpk1tL_7sbT4aTlhgBvOJtHC9SBeayhUOfhnWTXKuGupt3kzLHqq3LfvEUHJJl9DEjfoMwi2nRX0H19Z6c8ZPLUmuZhS75-pXD8oyCraLkCnrhdesoamlPJOlrs1PXeNtDgfJg-V1bDvtI3gofZOMNpDE9jSKoTRR4HQ_mkF0dyURXPzbGfyVt8JfTx6TPcTnB7NCLtPB1jv668iy_KsvcZ1qcWXzZRr3v52LkmVR0GIhjjOVExRLDIkJCzSkBMTmQYEbdFxDzLjQTlIgRRODOEBdhAxRH1bIPFKo5dGroSFrAt1EjSRO0gbEoBCaXkSmjSGldAumZIg1OlHFt5wmmiE1BTUM2jLCi2yKkZ6MZad0GluyayasMFsiI013U1Rr-MIrNRzyWhxy_9j2qfCMAgejsF9J1Os4AargdgB0T_oQ-F2A-glXtNtF061Oyremm1XGbv_kPmPbQEiE3zRhDT3EeNfDJVB4CK8vCwmApvs40KIQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONALLX3Alj5cqZcevE0cJ064pUvptt1w6VJxixzHERGbBOHsgf76jrPJoiIB4hjLdjLjseeb2P4G4BMWC6ldlwolGeUqUjTz85D6ReFqyRQPOjqG5CSYnvKfZ_7ZBvjDXRj8CIM9mW4T_4ZdwP1iy-wvvGpZXo3DDFGO4E9gC_EIs4YdT37fcO16K9Rr2TcFD7zhxtwdvVi_pMz_fukOsNk5neNn8Gf9ud1Zk4vxss3G6u8tJsdHy_McdnoYSuKV3ezChq5fwPZkyP72Es6_ls1lP4Yk0fZ-cGkqQ5oCnyoMsWtN5-elurBLJT3qU-m2JDFqRr5Le5j6kMQ1iRcLGrdNRZIhDy85uq5lVSpD7BnG61dwevxtPpnSPisDlZyLluoC_VnuKIxgFeKnIHecXPgy55EX5pIJmaEogjvSQ6Sgi5xFvsMLXRQhy0KFy9lr2KybWu8DcZXE8FIJLS2FTSgxeHOUI5jWga8jGYzgM6op7WeVSbsNc-amtnDQXdrrbgTeMH6p6unNbZaNxQOt6LrV5Yre44H6HwfTSHFA7OYK6rtZmpQ5YYTQB0W_pw5DJIAQVkQj2FvZ1fqtdqH1Qu6_eYTMH2B7Ok9m6ezHya8DeIpYzjJKUNd9C5vt1VK_Q7zUZu-72fEPrWsSgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BkYAL5ZuFAkbiwsHbxHHihFu6y1KgWyHRShWXyHFsNeomWdXZQ_n1jLPJFpBKBcdYtpMZj-03GfsNwFssFlL7PhVKMspVomgeFjENjfG1ZIpHHR3D_DDaP-afT8KTX1J94UdY7Ml2QXw3q5eF6RkG_F1X7n7jVavyfBzniHQEvwm3XOTOGXc6-XbJtxuska9j4BQ8CoZbc1f04vYmZX_fm64AnN3GM9uG75tP7s6bnI1XbT5WP_5gc_wvme7DvR6OknRtPw_ghq4fwp3JkAXuEZzulc2yH0sy1-6ecGkrSxqDTxW62rWmR6elOnNLJp32KXVbMrfqgHyU7lD1e5LWJF0saNo2FZkP-XjJ9KKWVakscWcZLx7D8ezD0WSf9tkZqORctFQb3NcKT6EnqxBHRYXnFSKUBU-CuJBMyBxFEdyTASIGbQqWhB432piY5bHCZe0JbNVNrZ8B8ZVEN1MJLR2VTSzRifOUJ5jWUagTGY3gHaop62eXzbrAOfMzVzjoLut1N4JgGMNM9TTnLtvG4ppWdNNquab5uKb-m8E8MhwQF2RBfTcrmzEvThACoeh_qcMQESCUFckInq5ta_NWt-AGMQ-f_4PMr-H21-ksO_h0-OUF3EVI54glqO_vwFZ7vtIvETa1-atugvwEeHAVBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biophysical+Mechanisms+of+Membrane-Thickness-Dependent+MscL+Gating%3A+An+All-Atom+Molecular+Dynamics+Study&rft.jtitle=Langmuir&rft.au=Katsuta%2C+Hiroki&rft.au=Sawada%2C+Yasuyuki&rft.au=Sokabe%2C+Masahiro&rft.date=2019-06-11&rft.issn=1520-5827&rft.volume=35&rft.issue=23+p.7432-7442&rft.spage=7432&rft.epage=7442&rft_id=info:doi/10.1021%2Facs.langmuir.8b02074&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |