Biophysical Mechanisms of Membrane-Thickness-Dependent MscL Gating: An All-Atom Molecular Dynamics Study

The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 35; no. 23; pp. 7432 - 7442
Main Authors Katsuta, Hiroki, Sawada, Yasuyuki, Sokabe, Masahiro
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-di­lauroyl-sn-glycero-3-phos­pho­choline (DLPC)), 1,2-di­myristoyl-glycero-3-phos­phoryl­choline (DMPC), 1,2-di­palmitoyl-sn-glycero-3-phospho­choline (DPPC), and 1,2-distearoyl-sn-glycero-3-phos­pho­choline (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching.
AbstractList The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-di­lauroyl-sn-glycero-3-phos­pho­choline (DLPC)), 1,2-di­myristoyl-glycero-3-phos­phoryl­choline (DMPC), 1,2-di­palmitoyl-sn-glycero-3-phospho­choline (DPPC), and 1,2-distearoyl-sn-glycero-3-phos­pho­choline (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching.
The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)), 1,2-dimyristoyl-glycero-3-phosphorylcholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching.
The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-dilauroyl- sn-glycero-3-phosphocholine (DLPC)), 1,2-dimyristoyl-glycero-3-phosphorylcholine (DMPC), 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl- sn-glycero-3-phosphocholine (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching.The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-dilauroyl- sn-glycero-3-phosphocholine (DLPC)), 1,2-dimyristoyl-glycero-3-phosphorylcholine (DMPC), 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl- sn-glycero-3-phosphocholine (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching.
Author Katsuta, Hiroki
Sawada, Yasuyuki
Sokabe, Masahiro
AuthorAffiliation Department of Physiology
Mechanobiology Laboratory
Nagoya University Graduate School of Medicine
AuthorAffiliation_xml – name: Nagoya University Graduate School of Medicine
– name: Department of Physiology
– name: Mechanobiology Laboratory
Author_xml – sequence: 1
  givenname: Hiroki
  surname: Katsuta
  fullname: Katsuta, Hiroki
– sequence: 2
  givenname: Yasuyuki
  surname: Sawada
  fullname: Sawada, Yasuyuki
– sequence: 3
  givenname: Masahiro
  orcidid: 0000-0001-7791-0166
  surname: Sokabe
  fullname: Sokabe, Masahiro
  email: msokabe@med.nagoya-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30113845$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uGyEUhVGVqnHSvkEUsexm3MvPGCY7N3-tZKuLpusRA0xMwoADMwu_fYjsZJFFs0LA93HFOSfoKMRgETojMCdAyQ-l89yrcD9MLs1lBxQE_4RmpKZQ1ZKKIzQrJ6wSfMGO0UnODwDQMN58QccMCGGS1zO0-enidrPLTiuP11ZvVHB5yDj2ZTd0SQVb3W2cfgw25-rKbm0wNox4nfUK36rRhfsLvAx46X21HOOA19FbPXmV8NUuqMHpjP-Ok9l9RZ975bP9dlhP0b-b67vLX9Xqz-3vy-WqUpyLsbI9F8SArinTtIaFATCiVoY3TBpFherKPwUHxRaE2d7Qpgbe276XtJNaLNgp-r5_d5vi02Tz2A4ua-tLVDZOuaVUEEkZFc3HKMhG1qzMK-j5AZ26wZp2m9yg0q59DbIAfA_oFHNOtn9DCLQvfbWlr_a1r_bQV9Eu3mnajSXVGMaknP9Ihr38cvsQpxRKsP9XngEUN6_C
CitedBy_id crossref_primary_10_1021_acs_jpcb_0c07487
crossref_primary_10_3389_fchem_2023_1162412
crossref_primary_10_1021_acs_jpcb_1c09282
crossref_primary_10_1016_j_csbj_2022_05_022
crossref_primary_10_1016_j_str_2021_12_004
crossref_primary_10_1021_acs_jcim_3c01611
crossref_primary_10_1021_acs_langmuir_9b01206
crossref_primary_10_1016_j_addr_2022_114395
crossref_primary_10_1016_j_devcel_2025_01_004
crossref_primary_10_3390_membranes13020250
crossref_primary_10_1016_j_jbc_2022_102236
crossref_primary_10_1021_acs_jpcb_0c06413
Cites_doi 10.1046/j.1469-7580.1999.19430335.x
10.1529/biophysj.105.072009
10.1002/prot.24550
10.1007/s00249-015-1065-2
10.1007/978-3-642-76690-9_7
10.4161/chan.21895
10.1016/S0006-3495(97)78259-6
10.1016/S0009-2614(02)00839-4
10.1016/S0006-3495(03)74637-2
10.1126/science.282.5397.2220
10.1021/jp101759q
10.1002/jcc.20945
10.1529/biophysj.107.105130
10.1146/annurev.ph.57.030195.002001
10.1016/j.bbamem.2008.08.023
10.1021/bi0509649
10.1096/fj.14-259309
10.1016/S0006-3495(01)75751-7
10.1016/j.bpj.2009.04.013
10.1016/S0006-3495(97)78223-7
10.1085/jgp.113.4.525
10.1016/0926-6542(64)90043-5
10.1007/978-1-4684-8580-6_2
10.1016/S0959-440X(03)00106-4
10.1128/jb.84.6.1260-1267.1962
10.4161/chan.21085
10.1063/1.464397
10.1016/S0006-3495(04)74270-8
10.1021/bi034995k
10.1021/bi00682a001
10.1016/S0006-3495(93)81249-9
10.1098/rspb.1992.0064
10.1016/j.colsurfb.2010.12.010
10.1021/acs.jctc.5b00935
10.1016/j.cell.2009.09.010
10.1016/0263-7855(96)00018-5
10.1529/biophysj.104.045005
10.1002/jcc.23702
10.1021/bi00720a024
10.1016/S0263-7855(97)00009-X
10.1093/bioinformatics/btu037
10.1074/jbc.275.2.1015
10.1016/j.bbamem.2004.05.012
10.1073/pnas.082092599
10.1016/S0014-5793(99)01148-5
10.1016/S0005-2736(98)00165-5
10.1016/S1063-5823(06)58001-9
10.1371/journal.pone.0000880
10.1038/nsb828
10.1016/S0959-4388(96)80060-2
10.1006/jcph.1999.6201
10.1073/pnas.84.8.2297
10.1016/S0006-3495(03)74584-6
10.1002/prot.21810
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.8b02074
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 7442
ExternalDocumentID 30113845
10_1021_acs_langmuir_8b02074
d079494144
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a447t-ef471d0c523c2506d00d75ad4938da27ab207740a3613efd29504feff82b8c763
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 05:28:37 EDT 2025
Fri Jul 11 06:55:47 EDT 2025
Thu Jan 02 22:59:32 EST 2025
Thu Apr 24 23:03:11 EDT 2025
Tue Jul 01 01:34:31 EDT 2025
Thu Aug 27 13:41:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a447t-ef471d0c523c2506d00d75ad4938da27ab207740a3613efd29504feff82b8c763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7791-0166
PMID 30113845
PQID 2089853077
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2271823279
proquest_miscellaneous_2089853077
pubmed_primary_30113845
crossref_primary_10_1021_acs_langmuir_8b02074
crossref_citationtrail_10_1021_acs_langmuir_8b02074
acs_journals_10_1021_acs_langmuir_8b02074
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-11
PublicationDateYYYYMMDD 2019-06-11
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
Marr A. G. (ref53/cit53) 1962; 84
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1046/j.1469-7580.1999.19430335.x
– ident: ref15/cit15
  doi: 10.1529/biophysj.105.072009
– ident: ref44/cit44
  doi: 10.1002/prot.24550
– ident: ref13/cit13
  doi: 10.1007/s00249-015-1065-2
– ident: ref7/cit7
  doi: 10.1007/978-3-642-76690-9_7
– ident: ref12/cit12
  doi: 10.4161/chan.21895
– ident: ref36/cit36
  doi: 10.1016/S0006-3495(97)78259-6
– ident: ref49/cit49
  doi: 10.1016/S0009-2614(02)00839-4
– ident: ref33/cit33
– ident: ref24/cit24
  doi: 10.1016/S0006-3495(03)74637-2
– ident: ref10/cit10
  doi: 10.1126/science.282.5397.2220
– ident: ref37/cit37
  doi: 10.1021/jp101759q
– ident: ref28/cit28
  doi: 10.1002/jcc.20945
– ident: ref20/cit20
  doi: 10.1529/biophysj.107.105130
– ident: ref3/cit3
  doi: 10.1146/annurev.ph.57.030195.002001
– ident: ref54/cit54
  doi: 10.1016/j.bbamem.2008.08.023
– ident: ref55/cit55
  doi: 10.1021/bi0509649
– ident: ref45/cit45
  doi: 10.1096/fj.14-259309
– ident: ref25/cit25
  doi: 10.1016/S0006-3495(01)75751-7
– ident: ref27/cit27
  doi: 10.1016/j.bpj.2009.04.013
– ident: ref16/cit16
  doi: 10.1016/S0006-3495(97)78223-7
– ident: ref39/cit39
  doi: 10.1085/jgp.113.4.525
– ident: ref52/cit52
  doi: 10.1016/0926-6542(64)90043-5
– ident: ref35/cit35
  doi: 10.1007/978-1-4684-8580-6_2
– ident: ref47/cit47
  doi: 10.1016/S0959-440X(03)00106-4
– volume: 84
  start-page: 1260
  issue: 6
  year: 1962
  ident: ref53/cit53
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.84.6.1260-1267.1962
– ident: ref9/cit9
  doi: 10.4161/chan.21085
– ident: ref38/cit38
  doi: 10.1063/1.464397
– ident: ref14/cit14
  doi: 10.1016/S0006-3495(04)74270-8
– ident: ref21/cit21
  doi: 10.1021/bi034995k
– ident: ref42/cit42
  doi: 10.1021/bi00682a001
– ident: ref19/cit19
  doi: 10.1016/S0006-3495(93)81249-9
– ident: ref4/cit4
  doi: 10.1098/rspb.1992.0064
– ident: ref50/cit50
  doi: 10.1016/j.colsurfb.2010.12.010
– ident: ref31/cit31
  doi: 10.1021/acs.jctc.5b00935
– ident: ref5/cit5
  doi: 10.1016/j.cell.2009.09.010
– ident: ref32/cit32
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref48/cit48
  doi: 10.1529/biophysj.104.045005
– ident: ref30/cit30
  doi: 10.1002/jcc.23702
– ident: ref41/cit41
  doi: 10.1021/bi00720a024
– ident: ref40/cit40
  doi: 10.1016/S0263-7855(97)00009-X
– ident: ref43/cit43
  doi: 10.1093/bioinformatics/btu037
– ident: ref26/cit26
  doi: 10.1074/jbc.275.2.1015
– ident: ref17/cit17
  doi: 10.1016/j.bbamem.2004.05.012
– ident: ref8/cit8
  doi: 10.1073/pnas.082092599
– ident: ref18/cit18
  doi: 10.1016/S0014-5793(99)01148-5
– ident: ref51/cit51
  doi: 10.1016/S0005-2736(98)00165-5
– ident: ref11/cit11
  doi: 10.1016/S1063-5823(06)58001-9
– ident: ref29/cit29
  doi: 10.1371/journal.pone.0000880
– ident: ref46/cit46
  doi: 10.1038/nsb828
– ident: ref2/cit2
  doi: 10.1016/S0959-4388(96)80060-2
– ident: ref34/cit34
  doi: 10.1006/jcph.1999.6201
– ident: ref1/cit1
  doi: 10.1073/pnas.84.8.2297
– ident: ref22/cit22
  doi: 10.1016/S0006-3495(03)74584-6
– ident: ref23/cit23
  doi: 10.1002/prot.21810
SSID ssj0009349
Score 2.3652196
Snippet The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7432
SubjectTerms bacteria
lipid bilayers
molecular dynamics
Title Biophysical Mechanisms of Membrane-Thickness-Dependent MscL Gating: An All-Atom Molecular Dynamics Study
URI http://dx.doi.org/10.1021/acs.langmuir.8b02074
https://www.ncbi.nlm.nih.gov/pubmed/30113845
https://www.proquest.com/docview/2089853077
https://www.proquest.com/docview/2271823279
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagDLBwH-WSkVgYXBLHiRO2UigIERigUrfIcRy1ok1Qkw7w63nOUQSIa4xlJ3qH_b4X299D6BiauVCmSbgUlDDpSRLakUvsODaVoJI5BR2Df-dc99hN3-6_J4qfd_CpeSpk1tL_7sbT4aTlhgBvOJtHC9SBeayhUOfhnWTXKuGupt3kzLHqq3LfvEUHJJl9DEjfoMwi2nRX0H19Z6c8ZPLUmuZhS75-pXD8oyCraLkCnrhdesoamlPJOlrs1PXeNtDgfJg-V1bDvtI3gofZOMNpDE9jSKoTRR4HQ_mkF0dyURXPzbGfyVt8JfTx6TPcTnB7NCLtPB1jv668iy_KsvcZ1qcWXzZRr3v52LkmVR0GIhjjOVExRLDIkJCzSkBMTmQYEbdFxDzLjQTlIgRRODOEBdhAxRH1bIPFKo5dGroSFrAt1EjSRO0gbEoBCaXkSmjSGldAumZIg1OlHFt5wmmiE1BTUM2jLCi2yKkZ6MZad0GluyayasMFsiI013U1Rr-MIrNRzyWhxy_9j2qfCMAgejsF9J1Os4AargdgB0T_oQ-F2A-glXtNtF061Oyremm1XGbv_kPmPbQEiE3zRhDT3EeNfDJVB4CK8vCwmApvs40KIQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONALLX3Alj5cqZcevE0cJ064pUvptt1w6VJxixzHERGbBOHsgf76jrPJoiIB4hjLdjLjseeb2P4G4BMWC6ldlwolGeUqUjTz85D6ReFqyRQPOjqG5CSYnvKfZ_7ZBvjDXRj8CIM9mW4T_4ZdwP1iy-wvvGpZXo3DDFGO4E9gC_EIs4YdT37fcO16K9Rr2TcFD7zhxtwdvVi_pMz_fukOsNk5neNn8Gf9ud1Zk4vxss3G6u8tJsdHy_McdnoYSuKV3ezChq5fwPZkyP72Es6_ls1lP4Yk0fZ-cGkqQ5oCnyoMsWtN5-elurBLJT3qU-m2JDFqRr5Le5j6kMQ1iRcLGrdNRZIhDy85uq5lVSpD7BnG61dwevxtPpnSPisDlZyLluoC_VnuKIxgFeKnIHecXPgy55EX5pIJmaEogjvSQ6Sgi5xFvsMLXRQhy0KFy9lr2KybWu8DcZXE8FIJLS2FTSgxeHOUI5jWga8jGYzgM6op7WeVSbsNc-amtnDQXdrrbgTeMH6p6unNbZaNxQOt6LrV5Yre44H6HwfTSHFA7OYK6rtZmpQ5YYTQB0W_pw5DJIAQVkQj2FvZ1fqtdqH1Qu6_eYTMH2B7Ok9m6ezHya8DeIpYzjJKUNd9C5vt1VK_Q7zUZu-72fEPrWsSgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BkYAL5ZuFAkbiwsHbxHHihFu6y1KgWyHRShWXyHFsNeomWdXZQ_n1jLPJFpBKBcdYtpMZj-03GfsNwFssFlL7PhVKMspVomgeFjENjfG1ZIpHHR3D_DDaP-afT8KTX1J94UdY7Ml2QXw3q5eF6RkG_F1X7n7jVavyfBzniHQEvwm3XOTOGXc6-XbJtxuska9j4BQ8CoZbc1f04vYmZX_fm64AnN3GM9uG75tP7s6bnI1XbT5WP_5gc_wvme7DvR6OknRtPw_ghq4fwp3JkAXuEZzulc2yH0sy1-6ecGkrSxqDTxW62rWmR6elOnNLJp32KXVbMrfqgHyU7lD1e5LWJF0saNo2FZkP-XjJ9KKWVakscWcZLx7D8ezD0WSf9tkZqORctFQb3NcKT6EnqxBHRYXnFSKUBU-CuJBMyBxFEdyTASIGbQqWhB432piY5bHCZe0JbNVNrZ8B8ZVEN1MJLR2VTSzRifOUJ5jWUagTGY3gHaop62eXzbrAOfMzVzjoLut1N4JgGMNM9TTnLtvG4ppWdNNquab5uKb-m8E8MhwQF2RBfTcrmzEvThACoeh_qcMQESCUFckInq5ta_NWt-AGMQ-f_4PMr-H21-ksO_h0-OUF3EVI54glqO_vwFZ7vtIvETa1-atugvwEeHAVBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biophysical+Mechanisms+of+Membrane-Thickness-Dependent+MscL+Gating%3A+An+All-Atom+Molecular+Dynamics+Study&rft.jtitle=Langmuir&rft.au=Katsuta%2C+Hiroki&rft.au=Sawada%2C+Yasuyuki&rft.au=Sokabe%2C+Masahiro&rft.date=2019-06-11&rft.issn=1520-5827&rft.volume=35&rft.issue=23+p.7432-7442&rft.spage=7432&rft.epage=7442&rft_id=info:doi/10.1021%2Facs.langmuir.8b02074&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon