Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo
This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuva...
Saved in:
Published in | ACS nano Vol. 7; no. 5; pp. 3926 - 3938 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes. |
---|---|
AbstractList | This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes. This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 10 nm), and cubic (40 40 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1 beta (IL-1 beta ) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor- alpha (TNF- alpha ), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes. This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes.This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes. |
Author | Suzuki, Tadaki Kobayashi, Shintaro Yamaguchi, Hiroki Matsunaga, Tatsuya Kajino, Kiichi Ninomiya, Takafumi Niikura, Kenichi Orba, Yasuko Kawaguchi, Akira Sawa, Hirofumi Hasegawa, Hideki Ijiro, Kuniharu |
AuthorAffiliation | Sapporo Medical University School of Medicine Hokkaido University National Institute of Infectious Diseases |
AuthorAffiliation_xml | – name: National Institute of Infectious Diseases – name: Sapporo Medical University School of Medicine – name: Hokkaido University |
Author_xml | – sequence: 1 givenname: Kenichi surname: Niikura fullname: Niikura, Kenichi email: kniikura@poly.es.hokudai.ac.jp – sequence: 2 givenname: Tatsuya surname: Matsunaga fullname: Matsunaga, Tatsuya – sequence: 3 givenname: Tadaki surname: Suzuki fullname: Suzuki, Tadaki – sequence: 4 givenname: Shintaro surname: Kobayashi fullname: Kobayashi, Shintaro – sequence: 5 givenname: Hiroki surname: Yamaguchi fullname: Yamaguchi, Hiroki – sequence: 6 givenname: Yasuko surname: Orba fullname: Orba, Yasuko – sequence: 7 givenname: Akira surname: Kawaguchi fullname: Kawaguchi, Akira – sequence: 8 givenname: Hideki surname: Hasegawa fullname: Hasegawa, Hideki – sequence: 9 givenname: Kiichi surname: Kajino fullname: Kajino, Kiichi – sequence: 10 givenname: Takafumi surname: Ninomiya fullname: Ninomiya, Takafumi – sequence: 11 givenname: Kuniharu surname: Ijiro fullname: Ijiro, Kuniharu – sequence: 12 givenname: Hirofumi surname: Sawa fullname: Sawa, Hirofumi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23631767$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1LHTEUBuAglvrRLvwDJRvBLm7Nx2QycSfS6gVpSxXpbjg3c6aNZJIxmSnor2_q1bsoghBITnjOWbxnj2yHGJCQA84-cSb4cQiSKc2Y2iK73Mh6wZr65_bmrfgO2cv5tgDd6Pot2RGyllzXepfM59F39CuEOEKanPWYKZRDb8BaF5B-9zD1MQ0ndBl6P2OwSGNPr9wDUggdvfoNY_kJdDkMc4g-_nIWPP2BeYwhl2ku0Bs3pfioH4s_8R1504PP-P7p3ifXXz5fn10sLr-dL89OLxdQVXpaoAKubG0FMsNWTDBrBK6UEB2vlDU969Bw3YHtTKOKQVsqIeWKGS65kvvkaD12TPFuxjy1g8sWvYeAcc5tiUAwzRvTvE6VrBpmtGKvU6lqo6Q0VaEfnui8GrBrx-QGSPftc_4FfFwDm2LOCfsN4az9t9t2s9tij_-z1k0wuRimBM6_2HG47gCb29s4p1DCfsH9BfoPr4Q |
CitedBy_id | crossref_primary_10_3390_vaccines10111946 crossref_primary_10_1016_j_biomaterials_2017_01_010 crossref_primary_10_1093_toxsci_kfu005 crossref_primary_10_1002_adma_201606036 crossref_primary_10_1002_smll_202007073 crossref_primary_10_1016_j_msec_2017_02_022 crossref_primary_10_1016_j_jconrel_2021_06_036 crossref_primary_10_1016_j_nantod_2020_100976 crossref_primary_10_2174_1381612826666191219130033 crossref_primary_10_34133_bmr_0086 crossref_primary_10_1016_j_ijbiomac_2019_07_035 crossref_primary_10_1016_j_jconrel_2015_09_069 crossref_primary_10_1007_s11172_022_3686_9 crossref_primary_10_1080_14760584_2022_2148659 crossref_primary_10_1016_j_jconrel_2023_02_015 crossref_primary_10_1016_j_vaccine_2015_11_059 crossref_primary_10_1021_acs_molpharmaceut_8b00810 crossref_primary_10_1039_D0QM00323A crossref_primary_10_2174_0113862073293557240320065128 crossref_primary_10_1016_j_ejpb_2021_09_004 crossref_primary_10_1039_D2RA03027F crossref_primary_10_1039_C4RA01821D crossref_primary_10_1097_ACI_0000000000000282 crossref_primary_10_1517_17425247_2014_950564 crossref_primary_10_2147_IJN_S490661 crossref_primary_10_1016_j_intimp_2024_111543 crossref_primary_10_1002_jbm_a_37281 crossref_primary_10_1021_acs_biomac_6b00027 crossref_primary_10_1016_j_bcab_2021_102056 crossref_primary_10_1021_acsami_1c18117 crossref_primary_10_1002_adma_201700448 crossref_primary_10_1016_j_xphs_2019_08_014 crossref_primary_10_1016_j_polymer_2019_121983 crossref_primary_10_2217_nnm_2017_0332 crossref_primary_10_1007_s11224_016_0838_2 crossref_primary_10_5937_arhfarm1906420K crossref_primary_10_1016_j_biomaterials_2020_119795 crossref_primary_10_1016_j_bcp_2021_114890 crossref_primary_10_1002_adfm_202411566 crossref_primary_10_3390_pharmaceutics14071358 crossref_primary_10_3390_molecules22050857 crossref_primary_10_1007_s12011_019_01986_y crossref_primary_10_3390_pharmaceutics16020181 crossref_primary_10_1016_j_nantod_2019_04_005 crossref_primary_10_2174_1389201023666220727105901 crossref_primary_10_1016_j_ejphar_2022_174809 crossref_primary_10_1016_j_nano_2018_09_004 crossref_primary_10_1186_s12951_023_02017_8 crossref_primary_10_1016_j_ijpharm_2021_121212 crossref_primary_10_1021_jp5093465 crossref_primary_10_1039_D1TB02408F crossref_primary_10_1016_j_lfs_2020_118761 crossref_primary_10_1021_acsanm_1c01903 crossref_primary_10_1002_adhm_202100299 crossref_primary_10_1080_21645515_2022_2119020 crossref_primary_10_4103_mgmj_mgmj_259_24 crossref_primary_10_1002_anie_201709564 crossref_primary_10_1039_C7RA08960K crossref_primary_10_3390_app112411898 crossref_primary_10_1016_j_phrs_2020_104753 crossref_primary_10_1586_14760584_2014_936852 crossref_primary_10_1016_j_mtadv_2022_100236 crossref_primary_10_1186_s12951_024_02408_5 crossref_primary_10_1002_advs_202301339 crossref_primary_10_1016_j_jconrel_2017_04_024 crossref_primary_10_1002_mabi_202000375 crossref_primary_10_1016_j_jconrel_2017_04_026 crossref_primary_10_1002_btm2_10063 crossref_primary_10_1002_smtd_202201404 crossref_primary_10_1021_acs_chemrev_5b00109 crossref_primary_10_1002_ange_201709564 crossref_primary_10_3390_pharmaceutics13101670 crossref_primary_10_1002_smll_201704465 crossref_primary_10_2217_nnm_2018_0052 crossref_primary_10_1016_j_bioactmat_2022_01_011 crossref_primary_10_1002_slct_202103495 crossref_primary_10_3390_ijms24021175 crossref_primary_10_1002_smll_201401707 crossref_primary_10_1021_acsnano_0c00962 crossref_primary_10_1016_j_biomaterials_2016_01_054 crossref_primary_10_1016_j_addr_2019_09_005 crossref_primary_10_1007_s12094_022_02935_3 crossref_primary_10_1021_acs_macromol_2c00854 crossref_primary_10_1186_s12989_016_0150_8 crossref_primary_10_1186_1475_2859_12_75 crossref_primary_10_3390_ijms19113605 crossref_primary_10_1007_s13238_015_0164_2 crossref_primary_10_1166_jbn_2022_3415 crossref_primary_10_1002_asia_202200310 crossref_primary_10_1080_17435390_2016_1221476 crossref_primary_10_1517_17425247_2014_891582 crossref_primary_10_1016_j_molimm_2017_09_001 crossref_primary_10_1039_C5NR02240A crossref_primary_10_3390_microorganisms10010110 crossref_primary_10_1002_smll_202001588 crossref_primary_10_1016_j_tibtech_2022_03_011 crossref_primary_10_1016_j_ijpharm_2019_118636 crossref_primary_10_1016_j_vaccine_2018_09_030 crossref_primary_10_3389_fimmu_2018_02224 crossref_primary_10_1039_C5NR08808A crossref_primary_10_1021_acsami_8b06633 crossref_primary_10_1039_C8CC00327K crossref_primary_10_1016_j_apsb_2025_03_006 crossref_primary_10_1016_j_apsusc_2018_04_053 crossref_primary_10_3390_scipharm87010006 crossref_primary_10_1016_j_tibtech_2016_07_006 crossref_primary_10_1016_j_addr_2019_04_008 crossref_primary_10_1016_j_ijbiomac_2021_06_024 crossref_primary_10_1142_S1793292020300030 crossref_primary_10_1021_acsnano_4c07306 crossref_primary_10_1186_s40580_022_00310_0 crossref_primary_10_3390_nano8040202 crossref_primary_10_1002_anbr_202000041 crossref_primary_10_1039_C7CS00877E crossref_primary_10_1038_s41565_020_00782_3 crossref_primary_10_2174_1568026620666200325114400 crossref_primary_10_1039_C7NR04470D crossref_primary_10_1021_acsami_7b03965 crossref_primary_10_1039_C5TB01825K crossref_primary_10_1007_s13346_020_00719_2 crossref_primary_10_1007_s40089_020_00323_9 crossref_primary_10_1016_j_nano_2018_03_007 crossref_primary_10_1021_acsabm_2c00716 crossref_primary_10_1016_j_mtadv_2022_100276 crossref_primary_10_1016_j_nano_2019_102037 crossref_primary_10_1021_acsnano_1c10074 crossref_primary_10_1002_smll_202000598 crossref_primary_10_1021_acsbiomaterials_0c01201 crossref_primary_10_1039_D0NR01690J crossref_primary_10_1021_acsnano_1c01129 crossref_primary_10_1016_j_compscitech_2017_10_021 crossref_primary_10_1039_C6TB01131D crossref_primary_10_1016_j_addr_2023_114829 crossref_primary_10_1016_j_colcom_2023_100712 crossref_primary_10_1039_C6RA18760A crossref_primary_10_1021_acsnano_6b05760 crossref_primary_10_1016_j_bbagen_2024_130558 crossref_primary_10_1002_smtd_201700347 crossref_primary_10_1016_j_actbio_2020_03_020 crossref_primary_10_1016_j_nano_2013_09_011 crossref_primary_10_1039_C7TB01065F crossref_primary_10_1089_vim_2017_0022 crossref_primary_10_1016_j_ejphar_2020_173090 crossref_primary_10_2217_fvl_2017_0086 crossref_primary_10_1016_j_nano_2014_11_004 crossref_primary_10_5772_61132 crossref_primary_10_1080_1061186X_2022_2032095 crossref_primary_10_1016_j_biomaterials_2019_03_034 crossref_primary_10_1021_acsami_1c15361 crossref_primary_10_3390_pharmaceutics11110588 crossref_primary_10_1093_infdis_jiz528 crossref_primary_10_1186_s12951_024_02311_z crossref_primary_10_1016_j_toxlet_2018_05_038 crossref_primary_10_3389_fbioe_2023_1242126 crossref_primary_10_1039_C6NR03008D crossref_primary_10_3390_pharmaceutics15051449 crossref_primary_10_1039_C7PY01603D crossref_primary_10_1016_j_jconrel_2016_05_033 crossref_primary_10_1002_smll_201402179 crossref_primary_10_1021_acsabm_8b00491 crossref_primary_10_1021_acsnano_7b03402 crossref_primary_10_1016_j_actbio_2018_08_011 crossref_primary_10_1186_s12951_023_01989_x crossref_primary_10_3390_vaccines10010070 crossref_primary_10_1039_C5CC05238F crossref_primary_10_1038_s41467_024_53359_2 crossref_primary_10_1016_j_vaccine_2015_08_025 crossref_primary_10_1021_acsanm_3c03905 crossref_primary_10_1021_acsnano_8b05950 crossref_primary_10_2174_1568009623666230329085618 crossref_primary_10_3390_vaccines5010006 crossref_primary_10_1039_D1NH00135C crossref_primary_10_1002_smll_202006000 crossref_primary_10_1016_j_cej_2020_127970 crossref_primary_10_3390_biom10030452 crossref_primary_10_1039_C9TB01338E crossref_primary_10_1039_C6TB02845D crossref_primary_10_3390_pharmaceutics16081076 crossref_primary_10_1002_cac2_12255 crossref_primary_10_3389_fbioe_2022_889291 crossref_primary_10_3390_pharmaceutics14030664 crossref_primary_10_1021_acs_nanolett_4c01054 crossref_primary_10_1016_j_nano_2019_01_004 crossref_primary_10_1515_revic_2020_0015 crossref_primary_10_1016_j_ejps_2021_105718 crossref_primary_10_1016_j_biomaterials_2016_08_018 crossref_primary_10_26599_NBE_2024_9290100 crossref_primary_10_1016_j_jconrel_2024_09_039 crossref_primary_10_3389_fimmu_2018_01115 crossref_primary_10_3390_nano11112991 crossref_primary_10_3390_biotech11030042 crossref_primary_10_1016_j_biomaterials_2024_122533 crossref_primary_10_2147_IJN_S457782 crossref_primary_10_1021_acsnano_4c11724 crossref_primary_10_1039_C9RA08410J crossref_primary_10_1039_D4BM00827H crossref_primary_10_34084_bshr_1374872 crossref_primary_10_3390_ijms20030636 crossref_primary_10_1016_j_vaccine_2022_08_022 crossref_primary_10_3389_fbioe_2022_867119 crossref_primary_10_3390_vaccines10040505 crossref_primary_10_1039_D4RA07114J crossref_primary_10_2174_2210303113666230622123933 crossref_primary_10_3390_diseases11040177 crossref_primary_10_1002_adfm_201401358 crossref_primary_10_1002_admi_202202511 crossref_primary_10_1111_1348_0421_12754 crossref_primary_10_1016_j_jconrel_2021_05_021 crossref_primary_10_35229_jaes_970713 crossref_primary_10_1002_wnan_1354 crossref_primary_10_1002_adma_201705328 crossref_primary_10_1016_j_biopha_2025_117844 crossref_primary_10_3390_pharmaceutics13101615 crossref_primary_10_1016_j_nano_2021_102358 crossref_primary_10_1107_S1600577515012473 crossref_primary_10_1016_j_bioactmat_2021_05_030 crossref_primary_10_1016_j_biomaterials_2014_11_045 crossref_primary_10_1016_j_biomaterials_2016_08_036 crossref_primary_10_1002_wnan_1590 crossref_primary_10_1016_j_jconrel_2015_03_002 crossref_primary_10_2174_0929867329666220620164429 crossref_primary_10_1016_j_cej_2024_150356 crossref_primary_10_1002_adtp_202000230 crossref_primary_10_1016_j_apsb_2023_02_003 crossref_primary_10_1208_s12249_020_01908_5 crossref_primary_10_1016_j_heliyon_2018_e00662 crossref_primary_10_1016_j_nantod_2022_101445 crossref_primary_10_1021_acsnano_3c10458 crossref_primary_10_2217_nnm_2018_0147 crossref_primary_10_1002_adhm_202304626 crossref_primary_10_1016_j_addr_2022_114325 crossref_primary_10_1002_smll_202407649 crossref_primary_10_1038_s41598_019_48475_9 crossref_primary_10_1371_journal_pone_0117203 crossref_primary_10_1039_C6NR05723C crossref_primary_10_3389_fimmu_2017_00239 crossref_primary_10_1002_adma_201907833 crossref_primary_10_1039_C7MD00158D crossref_primary_10_1021_acsnano_5b07716 crossref_primary_10_1021_acs_chemrev_7b00194 crossref_primary_10_1016_j_nano_2021_102372 crossref_primary_10_1002_jps_24273 crossref_primary_10_3390_pharmaceutics14030505 crossref_primary_10_1016_j_mattod_2017_11_022 crossref_primary_10_1021_acsbiomaterials_0c01287 crossref_primary_10_1021_acs_nanolett_9b02834 crossref_primary_10_1021_acsnano_5b02153 crossref_primary_10_1016_j_biomaterials_2024_122856 crossref_primary_10_1039_C5NR00481K crossref_primary_10_1002_adma_201706320 crossref_primary_10_1021_acsmacrolett_6b00419 crossref_primary_10_1016_j_bioactmat_2024_02_028 crossref_primary_10_1016_j_biomaterials_2014_07_032 crossref_primary_10_1016_j_biopha_2023_115597 crossref_primary_10_1016_j_jconrel_2018_02_004 crossref_primary_10_1016_j_abb_2020_108592 crossref_primary_10_1016_j_nxmate_2024_100405 crossref_primary_10_3390_vaccines8030554 crossref_primary_10_1016_j_nano_2021_102427 crossref_primary_10_1021_acsnano_2c04871 crossref_primary_10_1021_nn4058787 crossref_primary_10_1016_j_ajps_2022_05_004 crossref_primary_10_1016_j_intimp_2017_11_008 crossref_primary_10_1002_anbr_202200080 crossref_primary_10_1016_j_vaccine_2013_11_069 crossref_primary_10_1016_j_ijpharm_2018_03_029 crossref_primary_10_1021_acsami_7b19708 crossref_primary_10_3390_ijms25073736 crossref_primary_10_1039_D1NR03201A crossref_primary_10_1021_acs_langmuir_6b02064 crossref_primary_10_1021_acsbiomaterials_9b01135 crossref_primary_10_1016_j_cclet_2022_108098 crossref_primary_10_1016_j_vaccine_2022_06_064 crossref_primary_10_1016_j_ijpharm_2017_09_028 crossref_primary_10_1002_smll_201301998 crossref_primary_10_1586_14760584_2015_1064772 crossref_primary_10_1016_j_apsb_2024_05_010 crossref_primary_10_1016_j_bioorg_2020_103815 crossref_primary_10_1021_acsanm_0c01978 crossref_primary_10_1039_C5SC03892H crossref_primary_10_1021_acs_biomac_1c00669 crossref_primary_10_1021_acsanm_2c05247 crossref_primary_10_3389_fchem_2020_00543 crossref_primary_10_1186_s12951_022_01545_z crossref_primary_10_1038_s41565_020_00810_2 crossref_primary_10_1039_C9SC06497D crossref_primary_10_1080_14760584_2021_1984889 crossref_primary_10_3389_fonc_2018_00404 crossref_primary_10_3390_ijms241512174 crossref_primary_10_1186_s12951_024_02885_8 crossref_primary_10_1039_C7RA09446A crossref_primary_10_1016_j_ejps_2023_106570 crossref_primary_10_1021_acschembio_1c00998 crossref_primary_10_1021_acsami_8b21791 crossref_primary_10_1002_adhm_201700466 crossref_primary_10_1002_adtp_202100072 crossref_primary_10_2217_nnm_2020_0009 crossref_primary_10_3390_ijms222111596 crossref_primary_10_3762_bjoc_13_100 crossref_primary_10_1016_j_rpor_2018_10_001 crossref_primary_10_1111_jphp_12352 crossref_primary_10_1371_journal_pone_0217022 crossref_primary_10_1517_17425247_2015_963055 crossref_primary_10_3389_fddev_2023_1135209 crossref_primary_10_2217_imt_13_158 crossref_primary_10_3390_vaccines11071172 crossref_primary_10_1002_adhm_201300597 crossref_primary_10_1016_j_biomaterials_2022_121434 crossref_primary_10_1039_C8NR03612H crossref_primary_10_1021_acsnano_6b07343 crossref_primary_10_1007_s11468_018_0735_1 crossref_primary_10_1088_1361_6528_ac705b crossref_primary_10_1021_acsbiomaterials_6b00412 crossref_primary_10_3390_molecules28083354 crossref_primary_10_12677_NAT_2024_141001 crossref_primary_10_1016_j_semcancer_2022_03_026 crossref_primary_10_1021_acs_nanolett_8b03434 crossref_primary_10_3389_fchem_2020_597806 crossref_primary_10_1002_wnan_1513 crossref_primary_10_3390_pharmaceutics15071868 crossref_primary_10_1016_j_addr_2022_114615 crossref_primary_10_1016_j_jcis_2016_02_022 crossref_primary_10_1021_acsami_6b01697 crossref_primary_10_1016_j_vaccine_2016_01_020 crossref_primary_10_1093_toxres_tfad001 crossref_primary_10_1021_jacs_8b10904 crossref_primary_10_1039_C6BM00714G crossref_primary_10_1186_s40824_023_00347_0 crossref_primary_10_1080_17435390_2023_2252899 crossref_primary_10_3390_membranes11120993 crossref_primary_10_1016_j_etap_2023_104353 crossref_primary_10_1007_s11468_022_01754_0 crossref_primary_10_1016_j_procbio_2022_05_011 crossref_primary_10_1080_17425247_2018_1505860 crossref_primary_10_1002_wnan_1403 crossref_primary_10_3390_ijms24032008 crossref_primary_10_1016_j_addr_2014_05_011 crossref_primary_10_1016_j_mtbio_2024_101371 crossref_primary_10_1016_j_biomaterials_2014_07_050 crossref_primary_10_1016_j_nantod_2020_101004 crossref_primary_10_1038_s44222_024_00169_2 crossref_primary_10_1002_adhm_202000845 crossref_primary_10_1016_j_mtbio_2025_101653 crossref_primary_10_1021_acsnano_4c08085 crossref_primary_10_1080_21691401_2018_1529676 crossref_primary_10_1021_acsnano_0c01021 crossref_primary_10_1039_C9NR08958F crossref_primary_10_1016_j_actbio_2019_05_038 crossref_primary_10_1021_acsami_1c17804 crossref_primary_10_3390_jfb14080407 crossref_primary_10_1016_j_biopha_2021_111875 crossref_primary_10_1080_1061186X_2024_2383688 crossref_primary_10_1002_adhm_202301096 crossref_primary_10_2217_nnm_2015_0012 crossref_primary_10_1021_acs_molpharmaceut_1c00704 crossref_primary_10_1016_j_biomaterials_2022_121686 crossref_primary_10_1016_j_coche_2014_11_003 crossref_primary_10_3390_v14071553 crossref_primary_10_1002_adtp_201900115 crossref_primary_10_1586_14760584_2016_1141054 crossref_primary_10_3390_cells9092061 crossref_primary_10_1002_ppsc_201800109 crossref_primary_10_37349_ei_2023_00107 crossref_primary_10_1039_C9CS00011A crossref_primary_10_1039_D4BM00439F crossref_primary_10_1002_cplu_202100519 crossref_primary_10_1007_s10404_023_02667_y crossref_primary_10_1021_acsami_3c05295 crossref_primary_10_1134_S2635167623700027 crossref_primary_10_3390_vaccines12111290 crossref_primary_10_1007_s12668_023_01297_6 crossref_primary_10_1016_j_ijbiomac_2025_141513 crossref_primary_10_1039_D2CS00647B crossref_primary_10_1021_acs_nanolett_1c01666 crossref_primary_10_3390_ijms23105763 crossref_primary_10_1002_bit_26083 crossref_primary_10_3389_fnano_2024_1335346 crossref_primary_10_1016_j_addr_2019_08_010 crossref_primary_10_1039_C6SC03631G crossref_primary_10_4236_ojmm_2014_43020 crossref_primary_10_1155_2022_6856982 crossref_primary_10_3390_vaccines9060563 crossref_primary_10_7774_cevr_2023_12_1_32 crossref_primary_10_1002_anbr_202300068 crossref_primary_10_1038_s41598_017_11735_7 crossref_primary_10_1002_btm2_10005 crossref_primary_10_1002_smtd_202101601 crossref_primary_10_1016_j_nantod_2017_10_008 crossref_primary_10_3390_pathogens10010036 crossref_primary_10_1016_j_it_2017_10_002 crossref_primary_10_1016_j_jconrel_2025_01_078 crossref_primary_10_1016_j_smim_2021_101541 crossref_primary_10_1080_21645515_2018_1489192 crossref_primary_10_1016_j_ijbiomac_2018_11_006 crossref_primary_10_1016_j_sbsr_2016_04_002 crossref_primary_10_1016_j_biomaterials_2013_12_057 crossref_primary_10_1016_j_biomaterials_2017_11_022 crossref_primary_10_1002_smll_202308731 crossref_primary_10_3390_pharmaceutics13122091 crossref_primary_10_1016_j_mtbio_2024_101068 crossref_primary_10_1038_pj_2014_40 crossref_primary_10_1007_s11814_021_0985_z crossref_primary_10_1080_09506608_2020_1735117 crossref_primary_10_1021_acs_langmuir_4c03688 crossref_primary_10_1088_1361_6528_ab99f1 crossref_primary_10_1016_j_drudis_2021_07_004 crossref_primary_10_1038_s41390_020_01112_y crossref_primary_10_1016_j_pmatsci_2018_07_005 crossref_primary_10_3390_pharmaceutics14102234 crossref_primary_10_1002_wnan_1959 crossref_primary_10_1002_adhm_201801419 crossref_primary_10_1007_s13205_020_02573_y crossref_primary_10_1039_C7BM00244K crossref_primary_10_1016_j_imlet_2019_01_010 crossref_primary_10_1002_wnan_1850 crossref_primary_10_3389_fnano_2023_1256952 crossref_primary_10_1016_j_addr_2021_113889 crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2024046712 crossref_primary_10_1039_D2RA04242H crossref_primary_10_3389_fimmu_2023_1199173 crossref_primary_10_1002_wnan_1857 crossref_primary_10_1039_C4SM02815E crossref_primary_10_1039_C8CS00028J crossref_primary_10_1016_j_jcis_2014_09_010 crossref_primary_10_1016_j_biomaterials_2018_05_025 crossref_primary_10_1021_acsbiomaterials_1c00899 crossref_primary_10_1039_D1RA08335J crossref_primary_10_1002_adhm_201701395 crossref_primary_10_1016_j_ddtec_2021_02_001 crossref_primary_10_1007_s40005_022_00559_x crossref_primary_10_2174_2211738507666191024162042 crossref_primary_10_3390_vaccines11010111 crossref_primary_10_1021_acsnano_4c09094 crossref_primary_10_1128_mBio_01227_21 crossref_primary_10_1021_acsinfecdis_8b00206 crossref_primary_10_1016_j_scs_2021_103046 crossref_primary_10_1016_j_cell_2021_02_030 crossref_primary_10_1021_acsnano_0c04006 crossref_primary_10_1016_j_ejpb_2018_11_003 crossref_primary_10_1016_j_engreg_2020_06_001 crossref_primary_10_1021_acsnano_3c07632 crossref_primary_10_1039_C7BM00335H crossref_primary_10_3390_polym14204450 crossref_primary_10_3390_nano11051066 crossref_primary_10_1016_j_jinorgbio_2021_111454 crossref_primary_10_1186_s12951_022_01710_4 crossref_primary_10_1016_j_ijpharm_2020_119403 crossref_primary_10_1371_journal_pone_0241882 crossref_primary_10_1002_adfm_202107826 crossref_primary_10_1002_adma_201901633 crossref_primary_10_1021_acs_chemrev_8b00401 crossref_primary_10_3389_fbioe_2024_1436297 crossref_primary_10_1007_s10570_023_05138_3 crossref_primary_10_3389_fcell_2022_989471 crossref_primary_10_1016_j_cellimm_2021_104412 crossref_primary_10_2217_fvl_2015_0010 crossref_primary_10_1007_s12274_021_3832_y crossref_primary_10_1016_j_jconrel_2022_03_048 crossref_primary_10_1002_adfm_201900603 crossref_primary_10_1080_17425247_2020_1713746 crossref_primary_10_3390_v15030741 crossref_primary_10_1016_j_ijbiomac_2013_10_026 crossref_primary_10_3389_fddev_2023_1077253 crossref_primary_10_3390_ijms21145174 crossref_primary_10_1093_rb_rbw044 crossref_primary_10_1002_smll_201900262 crossref_primary_10_1016_j_jconrel_2022_01_003 crossref_primary_10_1080_14760584_2020_1758070 crossref_primary_10_1016_j_apsb_2021_03_007 crossref_primary_10_1016_j_ejpb_2017_03_013 crossref_primary_10_1039_C8RA01690A crossref_primary_10_1002_adfm_202502646 crossref_primary_10_1002_adhm_201300602 crossref_primary_10_1002_mabi_202200520 crossref_primary_10_1007_s13404_015_0165_1 crossref_primary_10_2217_nnm_16_5 crossref_primary_10_1021_jacs_6b12622 crossref_primary_10_1002_adfm_201604139 crossref_primary_10_1088_2632_959X_ab8075 crossref_primary_10_1038_s44222_023_00047_3 crossref_primary_10_1016_j_apmt_2021_101003 crossref_primary_10_3390_en14051278 crossref_primary_10_1016_j_ces_2020_116343 crossref_primary_10_1021_acsabm_8b00505 crossref_primary_10_1002_advs_202303049 crossref_primary_10_1111_cei_13287 |
Cites_doi | 10.1021/nn901372t 10.1016/0006-8993(86)91352-1 10.1021/ja2084338 10.1007/s11671-009-9334-6 10.1038/sj.cdd.4401189 10.1111/j.1462-5822.2008.01131.x 10.4049/jimmunol.171.9.4905 10.1016/j.ejpb.2010.11.010 10.1002/eji.200838549 10.1021/nl052396o 10.1021/nn203596e 10.1128/JVI.01735-06 10.1021/nl2030213 10.1016/S0968-4328(99)00036-0 10.1038/nnano.2012.207 10.1002/anie.201007321 10.1038/ni0311-199 10.1016/j.addr.2011.08.006 10.1073/pnas.0804897106 10.1002/smll.200700217 10.1146/annurev.immunol.20.083001.084359 10.1021/la0513712 10.1021/ja907069u 10.1039/C1CS15166E 10.4049/jimmunol.163.5.2922 10.4049/jimmunol.173.5.3148 10.1021/la7026303 10.1002/adma.200703183 10.1021/nn8008273 10.1021/nn101557e 10.1039/C1CS15233E 10.1126/science.1089316 10.4049/jimmunol.181.1.17 10.1016/S1074-7613(01)00126-1 10.1084/jem.176.6.1693 10.1021/mp060096p 10.1021/nl070363y 10.1111/j.1365-2567.2006.02474.x 10.1016/j.vaccine.2006.12.005 10.1038/nnano.2008.30 10.1146/annurev.immunol.021908.132715 10.1021/ar300015b 10.1182/blood.V87.6.2095.bloodjournal8762095 10.1088/0957-4484/21/19/195101 10.1146/annurev.immunol.18.1.767 10.1021/nn901869f 10.1007/s11051-010-9911-8 10.1021/ja047846d 10.1016/j.vaccine.2010.07.055 10.1016/j.biomaterials.2012.06.016 10.1016/0092-8674(78)90101-0 10.1002/(SICI)1097-0215(20000301)85:5<659::AID-IJC11>3.0.CO;2-5 10.1016/j.biomaterials.2011.07.009 10.1021/la800305j 10.1002/smll.200900126 10.1021/nn1025687 10.4049/jimmunol.170.8.4373 10.1038/nature08604 10.1038/ni.1631 10.1038/nm.2028 10.1021/nn303508c 10.1021/nl202559p 10.1038/nature06939 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn3057005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 3938 |
ExternalDocumentID | 23631767 10_1021_nn3057005 a97752382 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a447t-e5a15c6c2e090b020c92eb522d145c9f0de917dacd985e09ec17d233b0913153 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 04:49:29 EDT 2025 Thu Jul 10 22:24:13 EDT 2025 Fri Jul 11 06:45:17 EDT 2025 Thu Apr 03 07:09:39 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Tue Jul 01 01:33:31 EDT 2025 Thu Aug 27 13:43:39 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | cytokine vaccine antibody gold nanoparticle shape dependence colloid west nile virus |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a447t-e5a15c6c2e090b020c92eb522d145c9f0de917dacd985e09ec17d233b0913153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23631767 |
PQID | 1356953394 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1762071898 proquest_miscellaneous_1534809750 proquest_miscellaneous_1356953394 pubmed_primary_23631767 crossref_primary_10_1021_nn3057005 crossref_citationtrail_10_1021_nn3057005 acs_journals_10_1021_nn3057005 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-28 |
PublicationDateYYYYMMDD | 2013-05-28 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ragupathi G. (ref2/cit2) 2000; 85 Li H. (ref51/cit51) 2008; 181 Vácha R. (ref47/cit47) 2012; 6 Mukhopadhyay S. (ref27/cit27) 2003; 302 Shiosaka S. (ref13/cit13) 1986; 382 Jiang W. (ref15/cit15) 2008; 3 Inaba K. (ref61/cit61) 1992; 176 Thakor A. S. (ref56/cit56) 2011; 11 Walkey C. D. (ref39/cit39) 2012; 134 Hutter E. (ref22/cit22) 2010; 4 Kajino K. (ref62/cit62) 2007; 120 Walkey C. D. (ref31/cit31) 2012; 41 De M. (ref8/cit8) 2008; 20 Dauphin G. (ref23/cit23) 2007; 25 Ghiringhelli F. (ref42/cit42) 2009; 15 Franchi L. (ref54/cit54) 2008; 38 Dinarello C. A. (ref48/cit48) 1996; 87 Gole A. (ref29/cit29) 2008; 24 Yang E. J. (ref45/cit45) 2012; 33 Janeway C. A. (ref19/cit19) 2002; 20 Shukla R. (ref10/cit10) 2005; 21 Zhou C. (ref59/cit59) 2011; 50 Casal E. (ref32/cit32) 2010; 4 Maiorano G. (ref34/cit34) 2010; 4 Rana S. (ref7/cit7) 2012; 64 Bastús N. G. (ref9/cit9) 2009; 3 Chen Y. S. (ref14/cit14) 2009; 4 Chithrani B. D. (ref26/cit26) 2006; 6 Hornung V. (ref46/cit46) 2008; 9 Lunov O. (ref44/cit44) 2011; 5 Chen H. (ref28/cit28) 2008; 24 Raschke W. C. (ref37/cit37) 1978; 15 Gil P. R. (ref35/cit35) 2010; 4 Hou Y. (ref3/cit3) 2003; 170 Mottram P. L. (ref16/cit16) 2007; 4 Yen H. J. (ref21/cit21) 2009; 5 Martinon F. (ref43/cit43) 2009; 27 Perrault S. D. (ref11/cit11) 2009; 131 Wickliffe K. E. (ref52/cit52) 2008; 10 May R. J. (ref4/cit4) 2003; 171 Eisenbarth S. C. (ref50/cit50) 2008; 453 Alkilany A. M. (ref58/cit58) 2010; 12 Alkilany A. M. (ref57/cit57) 2013; 46 Chithrani B. D. (ref24/cit24) 2007; 7 Hubbell J. A. (ref20/cit20) 2009; 462 Kanai R. (ref30/cit30) 2006; 80 Sharp F. A. (ref60/cit60) 2009; 106 Sau T. K. (ref12/cit12) 2004; 126 Zhou R. (ref49/cit49) 2011; 12 Bon A. L. (ref55/cit55) 2001; 14 Dykman L. (ref100/cit100) 2013; 41 Vácha R. (ref41/cit41) 2011; 11 Banchereau J. (ref18/cit18) 2000; 18 Hauck T. S. (ref38/cit38) 2008; 4 Chen Y. S. (ref6/cit6) 2010; 21 Wajant H. (ref53/cit53) 2003; 10 Harris J. R. (ref1/cit1) 1999; 30 Monopoli M. (ref33/cit33) 2012; 7 Wang Y. T. (ref17/cit17) 2011; 32 Fifis T. (ref25/cit25) 2004; 173 Gharavi A. E. (ref5/cit5) 1999; 163 Arnida (ref40/cit40) 2011; 77 Ohatki N. (ref36/cit36) 2010; 28 |
References_xml | – volume: 4 start-page: 3623 year: 2010 ident: ref32/cit32 publication-title: ACS Nano doi: 10.1021/nn901372t – volume: 382 start-page: 399 year: 1986 ident: ref13/cit13 publication-title: Brain Res. doi: 10.1016/0006-8993(86)91352-1 – volume: 134 start-page: 2139 year: 2012 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2084338 – volume: 4 start-page: 858 year: 2009 ident: ref14/cit14 publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-009-9334-6 – volume: 10 start-page: 45 year: 2003 ident: ref53/cit53 publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401189 – volume: 10 start-page: 332 year: 2008 ident: ref52/cit52 publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2008.01131.x – volume: 171 start-page: 4905 year: 2003 ident: ref4/cit4 publication-title: J. Immunol. doi: 10.4049/jimmunol.171.9.4905 – volume: 77 start-page: 417 year: 2011 ident: ref40/cit40 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2010.11.010 – volume: 38 start-page: 2085 year: 2008 ident: ref54/cit54 publication-title: Eur. J. Immunol. doi: 10.1002/eji.200838549 – volume: 6 start-page: 662 year: 2006 ident: ref26/cit26 publication-title: Nano Lett. doi: 10.1021/nl052396o – volume: 5 start-page: 9648 year: 2011 ident: ref44/cit44 publication-title: ACS Nano doi: 10.1021/nn203596e – volume: 80 start-page: 11000 year: 2006 ident: ref30/cit30 publication-title: J. Virol. doi: 10.1128/JVI.01735-06 – volume: 11 start-page: 5391 year: 2011 ident: ref41/cit41 publication-title: Nano Lett. doi: 10.1021/nl2030213 – volume: 30 start-page: 597 year: 1999 ident: ref1/cit1 publication-title: Micron doi: 10.1016/S0968-4328(99)00036-0 – volume: 7 start-page: 779 year: 2012 ident: ref33/cit33 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.207 – volume: 50 start-page: 3168 year: 2011 ident: ref59/cit59 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201007321 – volume: 12 start-page: 199 year: 2011 ident: ref49/cit49 publication-title: Nat. Immunol. doi: 10.1038/ni0311-199 – volume: 64 start-page: 200 year: 2012 ident: ref7/cit7 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2011.08.006 – volume: 106 start-page: 870 year: 2009 ident: ref60/cit60 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0804897106 – volume: 4 start-page: 153 year: 2008 ident: ref38/cit38 publication-title: Small doi: 10.1002/smll.200700217 – volume: 20 start-page: 197 year: 2002 ident: ref19/cit19 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.20.083001.084359 – volume: 21 start-page: 10644 year: 2005 ident: ref10/cit10 publication-title: Langmuir doi: 10.1021/la0513712 – volume: 131 start-page: 17042 year: 2009 ident: ref11/cit11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907069u – volume: 41 start-page: 2256 year: 2013 ident: ref100/cit100 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15166E – volume: 163 start-page: 2922 year: 1999 ident: ref5/cit5 publication-title: J. Immunol. doi: 10.4049/jimmunol.163.5.2922 – volume: 173 start-page: 3148 year: 2004 ident: ref25/cit25 publication-title: J. Immunol. doi: 10.4049/jimmunol.173.5.3148 – volume: 24 start-page: 266 year: 2008 ident: ref29/cit29 publication-title: Langmuir doi: 10.1021/la7026303 – volume: 20 start-page: 4225 year: 2008 ident: ref8/cit8 publication-title: Adv. Mater. doi: 10.1002/adma.200703183 – volume: 3 start-page: 1335 year: 2009 ident: ref9/cit9 publication-title: ACS Nano doi: 10.1021/nn8008273 – volume: 4 start-page: 7481 year: 2010 ident: ref34/cit34 publication-title: ACS Nano doi: 10.1021/nn101557e – volume: 41 start-page: 2780 year: 2012 ident: ref31/cit31 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15233E – volume: 302 start-page: 248 year: 2003 ident: ref27/cit27 publication-title: Science doi: 10.1126/science.1089316 – volume: 181 start-page: 17 year: 2008 ident: ref51/cit51 publication-title: J. Immunol. doi: 10.4049/jimmunol.181.1.17 – volume: 14 start-page: 461 year: 2001 ident: ref55/cit55 publication-title: Immunity doi: 10.1016/S1074-7613(01)00126-1 – volume: 176 start-page: 1693 year: 1992 ident: ref61/cit61 publication-title: J. Exp. Med. doi: 10.1084/jem.176.6.1693 – volume: 4 start-page: 73 year: 2007 ident: ref16/cit16 publication-title: Mol. Pharmaceutics doi: 10.1021/mp060096p – volume: 7 start-page: 1542 year: 2007 ident: ref24/cit24 publication-title: Nano Lett. doi: 10.1021/nl070363y – volume: 120 start-page: 28 year: 2007 ident: ref62/cit62 publication-title: Immunology doi: 10.1111/j.1365-2567.2006.02474.x – volume: 25 start-page: 5563 year: 2007 ident: ref23/cit23 publication-title: Vaccine doi: 10.1016/j.vaccine.2006.12.005 – volume: 3 start-page: 145 year: 2008 ident: ref15/cit15 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.30 – volume: 27 start-page: 229 year: 2009 ident: ref43/cit43 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.021908.132715 – volume: 46 start-page: 650 year: 2013 ident: ref57/cit57 publication-title: Acc. Chem. Res. doi: 10.1021/ar300015b – volume: 87 start-page: 2095 year: 1996 ident: ref48/cit48 publication-title: Blood doi: 10.1182/blood.V87.6.2095.bloodjournal8762095 – volume: 21 start-page: 195101 year: 2010 ident: ref6/cit6 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/19/195101 – volume: 18 start-page: 767 year: 2000 ident: ref18/cit18 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.18.1.767 – volume: 4 start-page: 2595 year: 2010 ident: ref22/cit22 publication-title: ACS Nano doi: 10.1021/nn901869f – volume: 12 start-page: 2313 year: 2010 ident: ref58/cit58 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-010-9911-8 – volume: 126 start-page: 8648 year: 2004 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047846d – volume: 28 start-page: 6588 year: 2010 ident: ref36/cit36 publication-title: Vaccine doi: 10.1016/j.vaccine.2010.07.055 – volume: 33 start-page: 6858 year: 2012 ident: ref45/cit45 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.016 – volume: 15 start-page: 261 year: 1978 ident: ref37/cit37 publication-title: Cell doi: 10.1016/0092-8674(78)90101-0 – volume: 85 start-page: 659 year: 2000 ident: ref2/cit2 publication-title: Int. J. Cancer doi: 10.1002/(SICI)1097-0215(20000301)85:5<659::AID-IJC11>3.0.CO;2-5 – volume: 32 start-page: 7988 year: 2011 ident: ref17/cit17 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.07.009 – volume: 24 start-page: 5233 year: 2008 ident: ref28/cit28 publication-title: Langmuir doi: 10.1021/la800305j – volume: 5 start-page: 1553 year: 2009 ident: ref21/cit21 publication-title: Small doi: 10.1002/smll.200900126 – volume: 4 start-page: 5527 year: 2010 ident: ref35/cit35 publication-title: ACS Nano doi: 10.1021/nn1025687 – volume: 170 start-page: 4373 year: 2003 ident: ref3/cit3 publication-title: J. Immunol. doi: 10.4049/jimmunol.170.8.4373 – volume: 462 start-page: 449 year: 2009 ident: ref20/cit20 publication-title: Nature doi: 10.1038/nature08604 – volume: 9 start-page: 847 year: 2008 ident: ref46/cit46 publication-title: Nat. Immunol. doi: 10.1038/ni.1631 – volume: 15 start-page: 1170 year: 2009 ident: ref42/cit42 publication-title: Nat. Med. doi: 10.1038/nm.2028 – volume: 6 start-page: 10598 year: 2012 ident: ref47/cit47 publication-title: ACS Nano doi: 10.1021/nn303508c – volume: 11 start-page: 4029 year: 2011 ident: ref56/cit56 publication-title: Nano Lett. doi: 10.1021/nl202559p – volume: 453 start-page: 1122 year: 2008 ident: ref50/cit50 publication-title: Nature doi: 10.1038/nature06939 |
SSID | ssj0057876 |
Score | 2.5991695 |
Snippet | This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3926 |
SubjectTerms | Animals Antibodies Biomedical materials Bone Marrow Cells - cytology Cell Line Cytokines Cytokines - biosynthesis Dendritic Cells - cytology Dendritic Cells - immunology Dendritic Cells - metabolism Drug Carriers - chemistry Drug Stability Female Gold - chemistry In vitro testing Intracellular Space - metabolism Macrophages Macrophages - cytology Macrophages - immunology Macrophages - metabolism Metal Nanoparticles - chemistry Mice Particle Size Protein Transport Secretions Structure-Activity Relationship Surgical implants Uptakes Vaccination Vaccines Vaccines - chemistry Vaccines - immunology Vaccines - metabolism Viral Envelope Proteins - chemistry Viral Envelope Proteins - immunology Viral Envelope Proteins - metabolism West Nile virus West Nile virus - chemistry |
Title | Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo |
URI | http://dx.doi.org/10.1021/nn3057005 https://www.ncbi.nlm.nih.gov/pubmed/23631767 https://www.proquest.com/docview/1356953394 https://www.proquest.com/docview/1534809750 https://www.proquest.com/docview/1762071898 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT-QwDI4QXOCwPHd3eCksHLiUbdMkTbiNeK8EQgwgblWSptoRo3QEHQ7z63H6GIGAQeolldumtWN_rh0bob1cxjKiJAmokN5B0SYQ1IYwNFLzUIbC-v8dl1f8_I7-e2APM2j3iwg-if46ByKZVHVK5wgXifewuke9Vt16ieN16BhcY8APbfmgt5d602Oe35ueL_BkZVdOF9FxuzunTid5PBiV-sCMPxZrnDblJfSjwZW4WwvCMpqxbgUtvKk2uIpGZ8Ugw6BOwU9u0uGwggPfK-PD6_h6oEqPYQ_xRdu6BBc57vXHFiuX4d5_NYQzDl_4TSWt1sQ3dZot3K3v8H2_fCoq6mrwUqyh29OT26PzoOm6EChKkzKwTEXMcEMscEoDmjSSWA0wLYsoMzIPMwsuXqZMJgUDGmtgROJY-wqjoD9_ollXOPsb4Ty3OpE2J0pp8DqpliqhNuZZrrhhJu-gbeBK2iya57SKh5MonXy-DtpvGZaapmS575wx-Iz0z4R0WNfp-Ixop-V6CqvIh0aUs8UIHh0z7hNtJZ1Cw2IqQgkQawoN2BYAbUKKDvpVi9VkOiTmANZ4sv7da2-geVI13WABEZtotnwa2S2APqXerkT_FYeI-vw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQHAoHaMtraQsu4sAlkDi2E_eGUGG3BYTYBXGLbMcRK1YOYrM98Os7dpItVLykXBxNHMcej7_J2N8gtFOIWESUJAFNhXNQlA5SakIoaqF4KMLUuP8dp2e8e0l_XbPrhibHnYWBRoyhprEP4v9jF4j2rQXNTDxd6RyAEOIcrYPDfmt1neLxOoIMHjLAiJZF6PGjbgXS46cr0Auw0i8vR0t1niLfML-r5HZvUqk9_fAfZ-P7Wv4RLTYoEx_UavEJzRj7GS084h5cRpPjcpRjMK7gNTeb47CEC19J7YLt-HwkK4dof-Bem8gElwXuDx8MljbH_Rt5B3cs7rkjJq0NxRf1pluobWjx1bC6L720L_wpV9Dg6OfgsBs0ORgCSWlSBYbJiGmuiYFxU4AttSBGAWjLI8q0KMLcgMOXS52LlIGM0VAicawc3yhY01U0a0tr1hEuCqMSYQoipQIflCohE2pinheSa6aLDtqE3suaKTTOfHScRNm0-zpotx23TDcE5i6Pxug50e2p6F3N2vGc0Pd28DOYUy5QIq0pJ_DqmHG37VbQV2RYTNNQAOB6RQZWGoBwqUg7aK3WrmlzSMwBuvFk463P3kIfuoPTk-ykd_b7C5onPh0HC0j6Fc1W9xPzDUBRpTb9bPgLIW0DbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqKlXtoQ_oY2kLLuLQSyBxbCfubbXtwvZBEQtob5Ht2OqKlbNisz3w6zt2khWtKCDl4mjiTOyx_U1m_BmhXStSkVCSRTQX3kFROsqpiaGoheKxiHPj_3f8OOKHZ_TrhE1aR9HvhQElFlDTIgTx_aiel7ZlGEj2nQPrzAJl6UMfrvPOVn8w7mZeb3y8iSKDlwxQomMSuv6oX4X04u9V6D_QMiwxw2fo50q5kFlysbes1Z6--oe38f7aP0dPW7SJ-415vEAPjFtHT65xEG6g5UE1KzFMsuA9t0lyWMKFz6X2QXd8PJO1R7af8Kg70ARXFo-nVwZLV-LxLzmHOw6P_FaTbi7FJ03yLdQ2dfh8Wl9WQToUflcv0enwy-ngMGrPYogkpVkdGSYTprkmBvpPAcbUghgF4K1MKNPCxqUBx6-UuhQ5AxmjoUTSVHneUZhVX6E1VznzBmFrjcqEsURKBb4oVUJm1KS8tJJrpm0PbUELFu1QWhQhSk6SYtV8PfSx67tCt0Tm_jyN2U2iOyvRecPecZPQh84AChhbPmAinamW8OqUcZ9-K-gtMiyleSwAeN0iAysOQLlc5D30urGwlTok5QDheLZ512dvo0fHn4fF99HRt7foMQmncrCI5O_QWn25NO8BG9VqKwyIP53iBe8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+nanoparticles+as+a+vaccine+platform%3A+influence+of+size+and+shape+on+immunological+responses+in+vitro+and+in+vivo&rft.jtitle=ACS+nano&rft.au=Niikura%2C+Kenichi&rft.au=Matsunaga%2C+Tatsuya&rft.au=Suzuki%2C+Tadaki&rft.au=Kobayashi%2C+Shintaro&rft.date=2013-05-28&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=7&rft.issue=5&rft.spage=3926&rft_id=info:doi/10.1021%2Fnn3057005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |