Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo

This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuva...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 7; no. 5; pp. 3926 - 3938
Main Authors Niikura, Kenichi, Matsunaga, Tatsuya, Suzuki, Tadaki, Kobayashi, Shintaro, Yamaguchi, Hiroki, Orba, Yasuko, Kawaguchi, Akira, Hasegawa, Hideki, Kajino, Kiichi, Ninomiya, Takafumi, Ijiro, Kuniharu, Sawa, Hirofumi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes.
AbstractList This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes.
This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 10 nm), and cubic (40 40 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1 beta (IL-1 beta ) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor- alpha (TNF- alpha ), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes.
This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes.This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes.
Author Suzuki, Tadaki
Kobayashi, Shintaro
Yamaguchi, Hiroki
Matsunaga, Tatsuya
Kajino, Kiichi
Ninomiya, Takafumi
Niikura, Kenichi
Orba, Yasuko
Kawaguchi, Akira
Sawa, Hirofumi
Hasegawa, Hideki
Ijiro, Kuniharu
AuthorAffiliation Sapporo Medical University School of Medicine
Hokkaido University
National Institute of Infectious Diseases
AuthorAffiliation_xml – name: National Institute of Infectious Diseases
– name: Sapporo Medical University School of Medicine
– name: Hokkaido University
Author_xml – sequence: 1
  givenname: Kenichi
  surname: Niikura
  fullname: Niikura, Kenichi
  email: kniikura@poly.es.hokudai.ac.jp
– sequence: 2
  givenname: Tatsuya
  surname: Matsunaga
  fullname: Matsunaga, Tatsuya
– sequence: 3
  givenname: Tadaki
  surname: Suzuki
  fullname: Suzuki, Tadaki
– sequence: 4
  givenname: Shintaro
  surname: Kobayashi
  fullname: Kobayashi, Shintaro
– sequence: 5
  givenname: Hiroki
  surname: Yamaguchi
  fullname: Yamaguchi, Hiroki
– sequence: 6
  givenname: Yasuko
  surname: Orba
  fullname: Orba, Yasuko
– sequence: 7
  givenname: Akira
  surname: Kawaguchi
  fullname: Kawaguchi, Akira
– sequence: 8
  givenname: Hideki
  surname: Hasegawa
  fullname: Hasegawa, Hideki
– sequence: 9
  givenname: Kiichi
  surname: Kajino
  fullname: Kajino, Kiichi
– sequence: 10
  givenname: Takafumi
  surname: Ninomiya
  fullname: Ninomiya, Takafumi
– sequence: 11
  givenname: Kuniharu
  surname: Ijiro
  fullname: Ijiro, Kuniharu
– sequence: 12
  givenname: Hirofumi
  surname: Sawa
  fullname: Sawa, Hirofumi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23631767$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1LHTEUBuAglvrRLvwDJRvBLm7Nx2QycSfS6gVpSxXpbjg3c6aNZJIxmSnor2_q1bsoghBITnjOWbxnj2yHGJCQA84-cSb4cQiSKc2Y2iK73Mh6wZr65_bmrfgO2cv5tgDd6Pot2RGyllzXepfM59F39CuEOEKanPWYKZRDb8BaF5B-9zD1MQ0ndBl6P2OwSGNPr9wDUggdvfoNY_kJdDkMc4g-_nIWPP2BeYwhl2ku0Bs3pfioH4s_8R1504PP-P7p3ifXXz5fn10sLr-dL89OLxdQVXpaoAKubG0FMsNWTDBrBK6UEB2vlDU969Bw3YHtTKOKQVsqIeWKGS65kvvkaD12TPFuxjy1g8sWvYeAcc5tiUAwzRvTvE6VrBpmtGKvU6lqo6Q0VaEfnui8GrBrx-QGSPftc_4FfFwDm2LOCfsN4az9t9t2s9tij_-z1k0wuRimBM6_2HG47gCb29s4p1DCfsH9BfoPr4Q
CitedBy_id crossref_primary_10_3390_vaccines10111946
crossref_primary_10_1016_j_biomaterials_2017_01_010
crossref_primary_10_1093_toxsci_kfu005
crossref_primary_10_1002_adma_201606036
crossref_primary_10_1002_smll_202007073
crossref_primary_10_1016_j_msec_2017_02_022
crossref_primary_10_1016_j_jconrel_2021_06_036
crossref_primary_10_1016_j_nantod_2020_100976
crossref_primary_10_2174_1381612826666191219130033
crossref_primary_10_34133_bmr_0086
crossref_primary_10_1016_j_ijbiomac_2019_07_035
crossref_primary_10_1016_j_jconrel_2015_09_069
crossref_primary_10_1007_s11172_022_3686_9
crossref_primary_10_1080_14760584_2022_2148659
crossref_primary_10_1016_j_jconrel_2023_02_015
crossref_primary_10_1016_j_vaccine_2015_11_059
crossref_primary_10_1021_acs_molpharmaceut_8b00810
crossref_primary_10_1039_D0QM00323A
crossref_primary_10_2174_0113862073293557240320065128
crossref_primary_10_1016_j_ejpb_2021_09_004
crossref_primary_10_1039_D2RA03027F
crossref_primary_10_1039_C4RA01821D
crossref_primary_10_1097_ACI_0000000000000282
crossref_primary_10_1517_17425247_2014_950564
crossref_primary_10_2147_IJN_S490661
crossref_primary_10_1016_j_intimp_2024_111543
crossref_primary_10_1002_jbm_a_37281
crossref_primary_10_1021_acs_biomac_6b00027
crossref_primary_10_1016_j_bcab_2021_102056
crossref_primary_10_1021_acsami_1c18117
crossref_primary_10_1002_adma_201700448
crossref_primary_10_1016_j_xphs_2019_08_014
crossref_primary_10_1016_j_polymer_2019_121983
crossref_primary_10_2217_nnm_2017_0332
crossref_primary_10_1007_s11224_016_0838_2
crossref_primary_10_5937_arhfarm1906420K
crossref_primary_10_1016_j_biomaterials_2020_119795
crossref_primary_10_1016_j_bcp_2021_114890
crossref_primary_10_1002_adfm_202411566
crossref_primary_10_3390_pharmaceutics14071358
crossref_primary_10_3390_molecules22050857
crossref_primary_10_1007_s12011_019_01986_y
crossref_primary_10_3390_pharmaceutics16020181
crossref_primary_10_1016_j_nantod_2019_04_005
crossref_primary_10_2174_1389201023666220727105901
crossref_primary_10_1016_j_ejphar_2022_174809
crossref_primary_10_1016_j_nano_2018_09_004
crossref_primary_10_1186_s12951_023_02017_8
crossref_primary_10_1016_j_ijpharm_2021_121212
crossref_primary_10_1021_jp5093465
crossref_primary_10_1039_D1TB02408F
crossref_primary_10_1016_j_lfs_2020_118761
crossref_primary_10_1021_acsanm_1c01903
crossref_primary_10_1002_adhm_202100299
crossref_primary_10_1080_21645515_2022_2119020
crossref_primary_10_4103_mgmj_mgmj_259_24
crossref_primary_10_1002_anie_201709564
crossref_primary_10_1039_C7RA08960K
crossref_primary_10_3390_app112411898
crossref_primary_10_1016_j_phrs_2020_104753
crossref_primary_10_1586_14760584_2014_936852
crossref_primary_10_1016_j_mtadv_2022_100236
crossref_primary_10_1186_s12951_024_02408_5
crossref_primary_10_1002_advs_202301339
crossref_primary_10_1016_j_jconrel_2017_04_024
crossref_primary_10_1002_mabi_202000375
crossref_primary_10_1016_j_jconrel_2017_04_026
crossref_primary_10_1002_btm2_10063
crossref_primary_10_1002_smtd_202201404
crossref_primary_10_1021_acs_chemrev_5b00109
crossref_primary_10_1002_ange_201709564
crossref_primary_10_3390_pharmaceutics13101670
crossref_primary_10_1002_smll_201704465
crossref_primary_10_2217_nnm_2018_0052
crossref_primary_10_1016_j_bioactmat_2022_01_011
crossref_primary_10_1002_slct_202103495
crossref_primary_10_3390_ijms24021175
crossref_primary_10_1002_smll_201401707
crossref_primary_10_1021_acsnano_0c00962
crossref_primary_10_1016_j_biomaterials_2016_01_054
crossref_primary_10_1016_j_addr_2019_09_005
crossref_primary_10_1007_s12094_022_02935_3
crossref_primary_10_1021_acs_macromol_2c00854
crossref_primary_10_1186_s12989_016_0150_8
crossref_primary_10_1186_1475_2859_12_75
crossref_primary_10_3390_ijms19113605
crossref_primary_10_1007_s13238_015_0164_2
crossref_primary_10_1166_jbn_2022_3415
crossref_primary_10_1002_asia_202200310
crossref_primary_10_1080_17435390_2016_1221476
crossref_primary_10_1517_17425247_2014_891582
crossref_primary_10_1016_j_molimm_2017_09_001
crossref_primary_10_1039_C5NR02240A
crossref_primary_10_3390_microorganisms10010110
crossref_primary_10_1002_smll_202001588
crossref_primary_10_1016_j_tibtech_2022_03_011
crossref_primary_10_1016_j_ijpharm_2019_118636
crossref_primary_10_1016_j_vaccine_2018_09_030
crossref_primary_10_3389_fimmu_2018_02224
crossref_primary_10_1039_C5NR08808A
crossref_primary_10_1021_acsami_8b06633
crossref_primary_10_1039_C8CC00327K
crossref_primary_10_1016_j_apsb_2025_03_006
crossref_primary_10_1016_j_apsusc_2018_04_053
crossref_primary_10_3390_scipharm87010006
crossref_primary_10_1016_j_tibtech_2016_07_006
crossref_primary_10_1016_j_addr_2019_04_008
crossref_primary_10_1016_j_ijbiomac_2021_06_024
crossref_primary_10_1142_S1793292020300030
crossref_primary_10_1021_acsnano_4c07306
crossref_primary_10_1186_s40580_022_00310_0
crossref_primary_10_3390_nano8040202
crossref_primary_10_1002_anbr_202000041
crossref_primary_10_1039_C7CS00877E
crossref_primary_10_1038_s41565_020_00782_3
crossref_primary_10_2174_1568026620666200325114400
crossref_primary_10_1039_C7NR04470D
crossref_primary_10_1021_acsami_7b03965
crossref_primary_10_1039_C5TB01825K
crossref_primary_10_1007_s13346_020_00719_2
crossref_primary_10_1007_s40089_020_00323_9
crossref_primary_10_1016_j_nano_2018_03_007
crossref_primary_10_1021_acsabm_2c00716
crossref_primary_10_1016_j_mtadv_2022_100276
crossref_primary_10_1016_j_nano_2019_102037
crossref_primary_10_1021_acsnano_1c10074
crossref_primary_10_1002_smll_202000598
crossref_primary_10_1021_acsbiomaterials_0c01201
crossref_primary_10_1039_D0NR01690J
crossref_primary_10_1021_acsnano_1c01129
crossref_primary_10_1016_j_compscitech_2017_10_021
crossref_primary_10_1039_C6TB01131D
crossref_primary_10_1016_j_addr_2023_114829
crossref_primary_10_1016_j_colcom_2023_100712
crossref_primary_10_1039_C6RA18760A
crossref_primary_10_1021_acsnano_6b05760
crossref_primary_10_1016_j_bbagen_2024_130558
crossref_primary_10_1002_smtd_201700347
crossref_primary_10_1016_j_actbio_2020_03_020
crossref_primary_10_1016_j_nano_2013_09_011
crossref_primary_10_1039_C7TB01065F
crossref_primary_10_1089_vim_2017_0022
crossref_primary_10_1016_j_ejphar_2020_173090
crossref_primary_10_2217_fvl_2017_0086
crossref_primary_10_1016_j_nano_2014_11_004
crossref_primary_10_5772_61132
crossref_primary_10_1080_1061186X_2022_2032095
crossref_primary_10_1016_j_biomaterials_2019_03_034
crossref_primary_10_1021_acsami_1c15361
crossref_primary_10_3390_pharmaceutics11110588
crossref_primary_10_1093_infdis_jiz528
crossref_primary_10_1186_s12951_024_02311_z
crossref_primary_10_1016_j_toxlet_2018_05_038
crossref_primary_10_3389_fbioe_2023_1242126
crossref_primary_10_1039_C6NR03008D
crossref_primary_10_3390_pharmaceutics15051449
crossref_primary_10_1039_C7PY01603D
crossref_primary_10_1016_j_jconrel_2016_05_033
crossref_primary_10_1002_smll_201402179
crossref_primary_10_1021_acsabm_8b00491
crossref_primary_10_1021_acsnano_7b03402
crossref_primary_10_1016_j_actbio_2018_08_011
crossref_primary_10_1186_s12951_023_01989_x
crossref_primary_10_3390_vaccines10010070
crossref_primary_10_1039_C5CC05238F
crossref_primary_10_1038_s41467_024_53359_2
crossref_primary_10_1016_j_vaccine_2015_08_025
crossref_primary_10_1021_acsanm_3c03905
crossref_primary_10_1021_acsnano_8b05950
crossref_primary_10_2174_1568009623666230329085618
crossref_primary_10_3390_vaccines5010006
crossref_primary_10_1039_D1NH00135C
crossref_primary_10_1002_smll_202006000
crossref_primary_10_1016_j_cej_2020_127970
crossref_primary_10_3390_biom10030452
crossref_primary_10_1039_C9TB01338E
crossref_primary_10_1039_C6TB02845D
crossref_primary_10_3390_pharmaceutics16081076
crossref_primary_10_1002_cac2_12255
crossref_primary_10_3389_fbioe_2022_889291
crossref_primary_10_3390_pharmaceutics14030664
crossref_primary_10_1021_acs_nanolett_4c01054
crossref_primary_10_1016_j_nano_2019_01_004
crossref_primary_10_1515_revic_2020_0015
crossref_primary_10_1016_j_ejps_2021_105718
crossref_primary_10_1016_j_biomaterials_2016_08_018
crossref_primary_10_26599_NBE_2024_9290100
crossref_primary_10_1016_j_jconrel_2024_09_039
crossref_primary_10_3389_fimmu_2018_01115
crossref_primary_10_3390_nano11112991
crossref_primary_10_3390_biotech11030042
crossref_primary_10_1016_j_biomaterials_2024_122533
crossref_primary_10_2147_IJN_S457782
crossref_primary_10_1021_acsnano_4c11724
crossref_primary_10_1039_C9RA08410J
crossref_primary_10_1039_D4BM00827H
crossref_primary_10_34084_bshr_1374872
crossref_primary_10_3390_ijms20030636
crossref_primary_10_1016_j_vaccine_2022_08_022
crossref_primary_10_3389_fbioe_2022_867119
crossref_primary_10_3390_vaccines10040505
crossref_primary_10_1039_D4RA07114J
crossref_primary_10_2174_2210303113666230622123933
crossref_primary_10_3390_diseases11040177
crossref_primary_10_1002_adfm_201401358
crossref_primary_10_1002_admi_202202511
crossref_primary_10_1111_1348_0421_12754
crossref_primary_10_1016_j_jconrel_2021_05_021
crossref_primary_10_35229_jaes_970713
crossref_primary_10_1002_wnan_1354
crossref_primary_10_1002_adma_201705328
crossref_primary_10_1016_j_biopha_2025_117844
crossref_primary_10_3390_pharmaceutics13101615
crossref_primary_10_1016_j_nano_2021_102358
crossref_primary_10_1107_S1600577515012473
crossref_primary_10_1016_j_bioactmat_2021_05_030
crossref_primary_10_1016_j_biomaterials_2014_11_045
crossref_primary_10_1016_j_biomaterials_2016_08_036
crossref_primary_10_1002_wnan_1590
crossref_primary_10_1016_j_jconrel_2015_03_002
crossref_primary_10_2174_0929867329666220620164429
crossref_primary_10_1016_j_cej_2024_150356
crossref_primary_10_1002_adtp_202000230
crossref_primary_10_1016_j_apsb_2023_02_003
crossref_primary_10_1208_s12249_020_01908_5
crossref_primary_10_1016_j_heliyon_2018_e00662
crossref_primary_10_1016_j_nantod_2022_101445
crossref_primary_10_1021_acsnano_3c10458
crossref_primary_10_2217_nnm_2018_0147
crossref_primary_10_1002_adhm_202304626
crossref_primary_10_1016_j_addr_2022_114325
crossref_primary_10_1002_smll_202407649
crossref_primary_10_1038_s41598_019_48475_9
crossref_primary_10_1371_journal_pone_0117203
crossref_primary_10_1039_C6NR05723C
crossref_primary_10_3389_fimmu_2017_00239
crossref_primary_10_1002_adma_201907833
crossref_primary_10_1039_C7MD00158D
crossref_primary_10_1021_acsnano_5b07716
crossref_primary_10_1021_acs_chemrev_7b00194
crossref_primary_10_1016_j_nano_2021_102372
crossref_primary_10_1002_jps_24273
crossref_primary_10_3390_pharmaceutics14030505
crossref_primary_10_1016_j_mattod_2017_11_022
crossref_primary_10_1021_acsbiomaterials_0c01287
crossref_primary_10_1021_acs_nanolett_9b02834
crossref_primary_10_1021_acsnano_5b02153
crossref_primary_10_1016_j_biomaterials_2024_122856
crossref_primary_10_1039_C5NR00481K
crossref_primary_10_1002_adma_201706320
crossref_primary_10_1021_acsmacrolett_6b00419
crossref_primary_10_1016_j_bioactmat_2024_02_028
crossref_primary_10_1016_j_biomaterials_2014_07_032
crossref_primary_10_1016_j_biopha_2023_115597
crossref_primary_10_1016_j_jconrel_2018_02_004
crossref_primary_10_1016_j_abb_2020_108592
crossref_primary_10_1016_j_nxmate_2024_100405
crossref_primary_10_3390_vaccines8030554
crossref_primary_10_1016_j_nano_2021_102427
crossref_primary_10_1021_acsnano_2c04871
crossref_primary_10_1021_nn4058787
crossref_primary_10_1016_j_ajps_2022_05_004
crossref_primary_10_1016_j_intimp_2017_11_008
crossref_primary_10_1002_anbr_202200080
crossref_primary_10_1016_j_vaccine_2013_11_069
crossref_primary_10_1016_j_ijpharm_2018_03_029
crossref_primary_10_1021_acsami_7b19708
crossref_primary_10_3390_ijms25073736
crossref_primary_10_1039_D1NR03201A
crossref_primary_10_1021_acs_langmuir_6b02064
crossref_primary_10_1021_acsbiomaterials_9b01135
crossref_primary_10_1016_j_cclet_2022_108098
crossref_primary_10_1016_j_vaccine_2022_06_064
crossref_primary_10_1016_j_ijpharm_2017_09_028
crossref_primary_10_1002_smll_201301998
crossref_primary_10_1586_14760584_2015_1064772
crossref_primary_10_1016_j_apsb_2024_05_010
crossref_primary_10_1016_j_bioorg_2020_103815
crossref_primary_10_1021_acsanm_0c01978
crossref_primary_10_1039_C5SC03892H
crossref_primary_10_1021_acs_biomac_1c00669
crossref_primary_10_1021_acsanm_2c05247
crossref_primary_10_3389_fchem_2020_00543
crossref_primary_10_1186_s12951_022_01545_z
crossref_primary_10_1038_s41565_020_00810_2
crossref_primary_10_1039_C9SC06497D
crossref_primary_10_1080_14760584_2021_1984889
crossref_primary_10_3389_fonc_2018_00404
crossref_primary_10_3390_ijms241512174
crossref_primary_10_1186_s12951_024_02885_8
crossref_primary_10_1039_C7RA09446A
crossref_primary_10_1016_j_ejps_2023_106570
crossref_primary_10_1021_acschembio_1c00998
crossref_primary_10_1021_acsami_8b21791
crossref_primary_10_1002_adhm_201700466
crossref_primary_10_1002_adtp_202100072
crossref_primary_10_2217_nnm_2020_0009
crossref_primary_10_3390_ijms222111596
crossref_primary_10_3762_bjoc_13_100
crossref_primary_10_1016_j_rpor_2018_10_001
crossref_primary_10_1111_jphp_12352
crossref_primary_10_1371_journal_pone_0217022
crossref_primary_10_1517_17425247_2015_963055
crossref_primary_10_3389_fddev_2023_1135209
crossref_primary_10_2217_imt_13_158
crossref_primary_10_3390_vaccines11071172
crossref_primary_10_1002_adhm_201300597
crossref_primary_10_1016_j_biomaterials_2022_121434
crossref_primary_10_1039_C8NR03612H
crossref_primary_10_1021_acsnano_6b07343
crossref_primary_10_1007_s11468_018_0735_1
crossref_primary_10_1088_1361_6528_ac705b
crossref_primary_10_1021_acsbiomaterials_6b00412
crossref_primary_10_3390_molecules28083354
crossref_primary_10_12677_NAT_2024_141001
crossref_primary_10_1016_j_semcancer_2022_03_026
crossref_primary_10_1021_acs_nanolett_8b03434
crossref_primary_10_3389_fchem_2020_597806
crossref_primary_10_1002_wnan_1513
crossref_primary_10_3390_pharmaceutics15071868
crossref_primary_10_1016_j_addr_2022_114615
crossref_primary_10_1016_j_jcis_2016_02_022
crossref_primary_10_1021_acsami_6b01697
crossref_primary_10_1016_j_vaccine_2016_01_020
crossref_primary_10_1093_toxres_tfad001
crossref_primary_10_1021_jacs_8b10904
crossref_primary_10_1039_C6BM00714G
crossref_primary_10_1186_s40824_023_00347_0
crossref_primary_10_1080_17435390_2023_2252899
crossref_primary_10_3390_membranes11120993
crossref_primary_10_1016_j_etap_2023_104353
crossref_primary_10_1007_s11468_022_01754_0
crossref_primary_10_1016_j_procbio_2022_05_011
crossref_primary_10_1080_17425247_2018_1505860
crossref_primary_10_1002_wnan_1403
crossref_primary_10_3390_ijms24032008
crossref_primary_10_1016_j_addr_2014_05_011
crossref_primary_10_1016_j_mtbio_2024_101371
crossref_primary_10_1016_j_biomaterials_2014_07_050
crossref_primary_10_1016_j_nantod_2020_101004
crossref_primary_10_1038_s44222_024_00169_2
crossref_primary_10_1002_adhm_202000845
crossref_primary_10_1016_j_mtbio_2025_101653
crossref_primary_10_1021_acsnano_4c08085
crossref_primary_10_1080_21691401_2018_1529676
crossref_primary_10_1021_acsnano_0c01021
crossref_primary_10_1039_C9NR08958F
crossref_primary_10_1016_j_actbio_2019_05_038
crossref_primary_10_1021_acsami_1c17804
crossref_primary_10_3390_jfb14080407
crossref_primary_10_1016_j_biopha_2021_111875
crossref_primary_10_1080_1061186X_2024_2383688
crossref_primary_10_1002_adhm_202301096
crossref_primary_10_2217_nnm_2015_0012
crossref_primary_10_1021_acs_molpharmaceut_1c00704
crossref_primary_10_1016_j_biomaterials_2022_121686
crossref_primary_10_1016_j_coche_2014_11_003
crossref_primary_10_3390_v14071553
crossref_primary_10_1002_adtp_201900115
crossref_primary_10_1586_14760584_2016_1141054
crossref_primary_10_3390_cells9092061
crossref_primary_10_1002_ppsc_201800109
crossref_primary_10_37349_ei_2023_00107
crossref_primary_10_1039_C9CS00011A
crossref_primary_10_1039_D4BM00439F
crossref_primary_10_1002_cplu_202100519
crossref_primary_10_1007_s10404_023_02667_y
crossref_primary_10_1021_acsami_3c05295
crossref_primary_10_1134_S2635167623700027
crossref_primary_10_3390_vaccines12111290
crossref_primary_10_1007_s12668_023_01297_6
crossref_primary_10_1016_j_ijbiomac_2025_141513
crossref_primary_10_1039_D2CS00647B
crossref_primary_10_1021_acs_nanolett_1c01666
crossref_primary_10_3390_ijms23105763
crossref_primary_10_1002_bit_26083
crossref_primary_10_3389_fnano_2024_1335346
crossref_primary_10_1016_j_addr_2019_08_010
crossref_primary_10_1039_C6SC03631G
crossref_primary_10_4236_ojmm_2014_43020
crossref_primary_10_1155_2022_6856982
crossref_primary_10_3390_vaccines9060563
crossref_primary_10_7774_cevr_2023_12_1_32
crossref_primary_10_1002_anbr_202300068
crossref_primary_10_1038_s41598_017_11735_7
crossref_primary_10_1002_btm2_10005
crossref_primary_10_1002_smtd_202101601
crossref_primary_10_1016_j_nantod_2017_10_008
crossref_primary_10_3390_pathogens10010036
crossref_primary_10_1016_j_it_2017_10_002
crossref_primary_10_1016_j_jconrel_2025_01_078
crossref_primary_10_1016_j_smim_2021_101541
crossref_primary_10_1080_21645515_2018_1489192
crossref_primary_10_1016_j_ijbiomac_2018_11_006
crossref_primary_10_1016_j_sbsr_2016_04_002
crossref_primary_10_1016_j_biomaterials_2013_12_057
crossref_primary_10_1016_j_biomaterials_2017_11_022
crossref_primary_10_1002_smll_202308731
crossref_primary_10_3390_pharmaceutics13122091
crossref_primary_10_1016_j_mtbio_2024_101068
crossref_primary_10_1038_pj_2014_40
crossref_primary_10_1007_s11814_021_0985_z
crossref_primary_10_1080_09506608_2020_1735117
crossref_primary_10_1021_acs_langmuir_4c03688
crossref_primary_10_1088_1361_6528_ab99f1
crossref_primary_10_1016_j_drudis_2021_07_004
crossref_primary_10_1038_s41390_020_01112_y
crossref_primary_10_1016_j_pmatsci_2018_07_005
crossref_primary_10_3390_pharmaceutics14102234
crossref_primary_10_1002_wnan_1959
crossref_primary_10_1002_adhm_201801419
crossref_primary_10_1007_s13205_020_02573_y
crossref_primary_10_1039_C7BM00244K
crossref_primary_10_1016_j_imlet_2019_01_010
crossref_primary_10_1002_wnan_1850
crossref_primary_10_3389_fnano_2023_1256952
crossref_primary_10_1016_j_addr_2021_113889
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2024046712
crossref_primary_10_1039_D2RA04242H
crossref_primary_10_3389_fimmu_2023_1199173
crossref_primary_10_1002_wnan_1857
crossref_primary_10_1039_C4SM02815E
crossref_primary_10_1039_C8CS00028J
crossref_primary_10_1016_j_jcis_2014_09_010
crossref_primary_10_1016_j_biomaterials_2018_05_025
crossref_primary_10_1021_acsbiomaterials_1c00899
crossref_primary_10_1039_D1RA08335J
crossref_primary_10_1002_adhm_201701395
crossref_primary_10_1016_j_ddtec_2021_02_001
crossref_primary_10_1007_s40005_022_00559_x
crossref_primary_10_2174_2211738507666191024162042
crossref_primary_10_3390_vaccines11010111
crossref_primary_10_1021_acsnano_4c09094
crossref_primary_10_1128_mBio_01227_21
crossref_primary_10_1021_acsinfecdis_8b00206
crossref_primary_10_1016_j_scs_2021_103046
crossref_primary_10_1016_j_cell_2021_02_030
crossref_primary_10_1021_acsnano_0c04006
crossref_primary_10_1016_j_ejpb_2018_11_003
crossref_primary_10_1016_j_engreg_2020_06_001
crossref_primary_10_1021_acsnano_3c07632
crossref_primary_10_1039_C7BM00335H
crossref_primary_10_3390_polym14204450
crossref_primary_10_3390_nano11051066
crossref_primary_10_1016_j_jinorgbio_2021_111454
crossref_primary_10_1186_s12951_022_01710_4
crossref_primary_10_1016_j_ijpharm_2020_119403
crossref_primary_10_1371_journal_pone_0241882
crossref_primary_10_1002_adfm_202107826
crossref_primary_10_1002_adma_201901633
crossref_primary_10_1021_acs_chemrev_8b00401
crossref_primary_10_3389_fbioe_2024_1436297
crossref_primary_10_1007_s10570_023_05138_3
crossref_primary_10_3389_fcell_2022_989471
crossref_primary_10_1016_j_cellimm_2021_104412
crossref_primary_10_2217_fvl_2015_0010
crossref_primary_10_1007_s12274_021_3832_y
crossref_primary_10_1016_j_jconrel_2022_03_048
crossref_primary_10_1002_adfm_201900603
crossref_primary_10_1080_17425247_2020_1713746
crossref_primary_10_3390_v15030741
crossref_primary_10_1016_j_ijbiomac_2013_10_026
crossref_primary_10_3389_fddev_2023_1077253
crossref_primary_10_3390_ijms21145174
crossref_primary_10_1093_rb_rbw044
crossref_primary_10_1002_smll_201900262
crossref_primary_10_1016_j_jconrel_2022_01_003
crossref_primary_10_1080_14760584_2020_1758070
crossref_primary_10_1016_j_apsb_2021_03_007
crossref_primary_10_1016_j_ejpb_2017_03_013
crossref_primary_10_1039_C8RA01690A
crossref_primary_10_1002_adfm_202502646
crossref_primary_10_1002_adhm_201300602
crossref_primary_10_1002_mabi_202200520
crossref_primary_10_1007_s13404_015_0165_1
crossref_primary_10_2217_nnm_16_5
crossref_primary_10_1021_jacs_6b12622
crossref_primary_10_1002_adfm_201604139
crossref_primary_10_1088_2632_959X_ab8075
crossref_primary_10_1038_s44222_023_00047_3
crossref_primary_10_1016_j_apmt_2021_101003
crossref_primary_10_3390_en14051278
crossref_primary_10_1016_j_ces_2020_116343
crossref_primary_10_1021_acsabm_8b00505
crossref_primary_10_1002_advs_202303049
crossref_primary_10_1111_cei_13287
Cites_doi 10.1021/nn901372t
10.1016/0006-8993(86)91352-1
10.1021/ja2084338
10.1007/s11671-009-9334-6
10.1038/sj.cdd.4401189
10.1111/j.1462-5822.2008.01131.x
10.4049/jimmunol.171.9.4905
10.1016/j.ejpb.2010.11.010
10.1002/eji.200838549
10.1021/nl052396o
10.1021/nn203596e
10.1128/JVI.01735-06
10.1021/nl2030213
10.1016/S0968-4328(99)00036-0
10.1038/nnano.2012.207
10.1002/anie.201007321
10.1038/ni0311-199
10.1016/j.addr.2011.08.006
10.1073/pnas.0804897106
10.1002/smll.200700217
10.1146/annurev.immunol.20.083001.084359
10.1021/la0513712
10.1021/ja907069u
10.1039/C1CS15166E
10.4049/jimmunol.163.5.2922
10.4049/jimmunol.173.5.3148
10.1021/la7026303
10.1002/adma.200703183
10.1021/nn8008273
10.1021/nn101557e
10.1039/C1CS15233E
10.1126/science.1089316
10.4049/jimmunol.181.1.17
10.1016/S1074-7613(01)00126-1
10.1084/jem.176.6.1693
10.1021/mp060096p
10.1021/nl070363y
10.1111/j.1365-2567.2006.02474.x
10.1016/j.vaccine.2006.12.005
10.1038/nnano.2008.30
10.1146/annurev.immunol.021908.132715
10.1021/ar300015b
10.1182/blood.V87.6.2095.bloodjournal8762095
10.1088/0957-4484/21/19/195101
10.1146/annurev.immunol.18.1.767
10.1021/nn901869f
10.1007/s11051-010-9911-8
10.1021/ja047846d
10.1016/j.vaccine.2010.07.055
10.1016/j.biomaterials.2012.06.016
10.1016/0092-8674(78)90101-0
10.1002/(SICI)1097-0215(20000301)85:5<659::AID-IJC11>3.0.CO;2-5
10.1016/j.biomaterials.2011.07.009
10.1021/la800305j
10.1002/smll.200900126
10.1021/nn1025687
10.4049/jimmunol.170.8.4373
10.1038/nature08604
10.1038/ni.1631
10.1038/nm.2028
10.1021/nn303508c
10.1021/nl202559p
10.1038/nature06939
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn3057005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 3938
ExternalDocumentID 23631767
10_1021_nn3057005
a97752382
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a447t-e5a15c6c2e090b020c92eb522d145c9f0de917dacd985e09ec17d233b0913153
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 04:49:29 EDT 2025
Thu Jul 10 22:24:13 EDT 2025
Fri Jul 11 06:45:17 EDT 2025
Thu Apr 03 07:09:39 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Tue Jul 01 01:33:31 EDT 2025
Thu Aug 27 13:43:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords cytokine
vaccine
antibody
gold nanoparticle
shape dependence
colloid
west nile virus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a447t-e5a15c6c2e090b020c92eb522d145c9f0de917dacd985e09ec17d233b0913153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23631767
PQID 1356953394
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1762071898
proquest_miscellaneous_1534809750
proquest_miscellaneous_1356953394
pubmed_primary_23631767
crossref_primary_10_1021_nn3057005
crossref_citationtrail_10_1021_nn3057005
acs_journals_10_1021_nn3057005
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-28
PublicationDateYYYYMMDD 2013-05-28
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ragupathi G. (ref2/cit2) 2000; 85
Li H. (ref51/cit51) 2008; 181
Vácha R. (ref47/cit47) 2012; 6
Mukhopadhyay S. (ref27/cit27) 2003; 302
Shiosaka S. (ref13/cit13) 1986; 382
Jiang W. (ref15/cit15) 2008; 3
Inaba K. (ref61/cit61) 1992; 176
Thakor A. S. (ref56/cit56) 2011; 11
Walkey C. D. (ref39/cit39) 2012; 134
Hutter E. (ref22/cit22) 2010; 4
Kajino K. (ref62/cit62) 2007; 120
Walkey C. D. (ref31/cit31) 2012; 41
De M. (ref8/cit8) 2008; 20
Dauphin G. (ref23/cit23) 2007; 25
Ghiringhelli F. (ref42/cit42) 2009; 15
Franchi L. (ref54/cit54) 2008; 38
Dinarello C. A. (ref48/cit48) 1996; 87
Gole A. (ref29/cit29) 2008; 24
Yang E. J. (ref45/cit45) 2012; 33
Janeway C. A. (ref19/cit19) 2002; 20
Shukla R. (ref10/cit10) 2005; 21
Zhou C. (ref59/cit59) 2011; 50
Casal E. (ref32/cit32) 2010; 4
Maiorano G. (ref34/cit34) 2010; 4
Rana S. (ref7/cit7) 2012; 64
Bastús N. G. (ref9/cit9) 2009; 3
Chen Y. S. (ref14/cit14) 2009; 4
Chithrani B. D. (ref26/cit26) 2006; 6
Hornung V. (ref46/cit46) 2008; 9
Lunov O. (ref44/cit44) 2011; 5
Chen H. (ref28/cit28) 2008; 24
Raschke W. C. (ref37/cit37) 1978; 15
Gil P. R. (ref35/cit35) 2010; 4
Hou Y. (ref3/cit3) 2003; 170
Mottram P. L. (ref16/cit16) 2007; 4
Yen H. J. (ref21/cit21) 2009; 5
Martinon F. (ref43/cit43) 2009; 27
Perrault S. D. (ref11/cit11) 2009; 131
Wickliffe K. E. (ref52/cit52) 2008; 10
May R. J. (ref4/cit4) 2003; 171
Eisenbarth S. C. (ref50/cit50) 2008; 453
Alkilany A. M. (ref58/cit58) 2010; 12
Alkilany A. M. (ref57/cit57) 2013; 46
Chithrani B. D. (ref24/cit24) 2007; 7
Hubbell J. A. (ref20/cit20) 2009; 462
Kanai R. (ref30/cit30) 2006; 80
Sharp F. A. (ref60/cit60) 2009; 106
Sau T. K. (ref12/cit12) 2004; 126
Zhou R. (ref49/cit49) 2011; 12
Bon A. L. (ref55/cit55) 2001; 14
Dykman L. (ref100/cit100) 2013; 41
Vácha R. (ref41/cit41) 2011; 11
Banchereau J. (ref18/cit18) 2000; 18
Hauck T. S. (ref38/cit38) 2008; 4
Chen Y. S. (ref6/cit6) 2010; 21
Wajant H. (ref53/cit53) 2003; 10
Harris J. R. (ref1/cit1) 1999; 30
Monopoli M. (ref33/cit33) 2012; 7
Wang Y. T. (ref17/cit17) 2011; 32
Fifis T. (ref25/cit25) 2004; 173
Gharavi A. E. (ref5/cit5) 1999; 163
Arnida (ref40/cit40) 2011; 77
Ohatki N. (ref36/cit36) 2010; 28
References_xml – volume: 4
  start-page: 3623
  year: 2010
  ident: ref32/cit32
  publication-title: ACS Nano
  doi: 10.1021/nn901372t
– volume: 382
  start-page: 399
  year: 1986
  ident: ref13/cit13
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(86)91352-1
– volume: 134
  start-page: 2139
  year: 2012
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2084338
– volume: 4
  start-page: 858
  year: 2009
  ident: ref14/cit14
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-009-9334-6
– volume: 10
  start-page: 45
  year: 2003
  ident: ref53/cit53
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401189
– volume: 10
  start-page: 332
  year: 2008
  ident: ref52/cit52
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2008.01131.x
– volume: 171
  start-page: 4905
  year: 2003
  ident: ref4/cit4
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.171.9.4905
– volume: 77
  start-page: 417
  year: 2011
  ident: ref40/cit40
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2010.11.010
– volume: 38
  start-page: 2085
  year: 2008
  ident: ref54/cit54
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200838549
– volume: 6
  start-page: 662
  year: 2006
  ident: ref26/cit26
  publication-title: Nano Lett.
  doi: 10.1021/nl052396o
– volume: 5
  start-page: 9648
  year: 2011
  ident: ref44/cit44
  publication-title: ACS Nano
  doi: 10.1021/nn203596e
– volume: 80
  start-page: 11000
  year: 2006
  ident: ref30/cit30
  publication-title: J. Virol.
  doi: 10.1128/JVI.01735-06
– volume: 11
  start-page: 5391
  year: 2011
  ident: ref41/cit41
  publication-title: Nano Lett.
  doi: 10.1021/nl2030213
– volume: 30
  start-page: 597
  year: 1999
  ident: ref1/cit1
  publication-title: Micron
  doi: 10.1016/S0968-4328(99)00036-0
– volume: 7
  start-page: 779
  year: 2012
  ident: ref33/cit33
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.207
– volume: 50
  start-page: 3168
  year: 2011
  ident: ref59/cit59
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201007321
– volume: 12
  start-page: 199
  year: 2011
  ident: ref49/cit49
  publication-title: Nat. Immunol.
  doi: 10.1038/ni0311-199
– volume: 64
  start-page: 200
  year: 2012
  ident: ref7/cit7
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2011.08.006
– volume: 106
  start-page: 870
  year: 2009
  ident: ref60/cit60
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0804897106
– volume: 4
  start-page: 153
  year: 2008
  ident: ref38/cit38
  publication-title: Small
  doi: 10.1002/smll.200700217
– volume: 20
  start-page: 197
  year: 2002
  ident: ref19/cit19
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.20.083001.084359
– volume: 21
  start-page: 10644
  year: 2005
  ident: ref10/cit10
  publication-title: Langmuir
  doi: 10.1021/la0513712
– volume: 131
  start-page: 17042
  year: 2009
  ident: ref11/cit11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907069u
– volume: 41
  start-page: 2256
  year: 2013
  ident: ref100/cit100
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15166E
– volume: 163
  start-page: 2922
  year: 1999
  ident: ref5/cit5
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.163.5.2922
– volume: 173
  start-page: 3148
  year: 2004
  ident: ref25/cit25
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.173.5.3148
– volume: 24
  start-page: 266
  year: 2008
  ident: ref29/cit29
  publication-title: Langmuir
  doi: 10.1021/la7026303
– volume: 20
  start-page: 4225
  year: 2008
  ident: ref8/cit8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200703183
– volume: 3
  start-page: 1335
  year: 2009
  ident: ref9/cit9
  publication-title: ACS Nano
  doi: 10.1021/nn8008273
– volume: 4
  start-page: 7481
  year: 2010
  ident: ref34/cit34
  publication-title: ACS Nano
  doi: 10.1021/nn101557e
– volume: 41
  start-page: 2780
  year: 2012
  ident: ref31/cit31
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15233E
– volume: 302
  start-page: 248
  year: 2003
  ident: ref27/cit27
  publication-title: Science
  doi: 10.1126/science.1089316
– volume: 181
  start-page: 17
  year: 2008
  ident: ref51/cit51
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.1.17
– volume: 14
  start-page: 461
  year: 2001
  ident: ref55/cit55
  publication-title: Immunity
  doi: 10.1016/S1074-7613(01)00126-1
– volume: 176
  start-page: 1693
  year: 1992
  ident: ref61/cit61
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.176.6.1693
– volume: 4
  start-page: 73
  year: 2007
  ident: ref16/cit16
  publication-title: Mol. Pharmaceutics
  doi: 10.1021/mp060096p
– volume: 7
  start-page: 1542
  year: 2007
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl070363y
– volume: 120
  start-page: 28
  year: 2007
  ident: ref62/cit62
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2006.02474.x
– volume: 25
  start-page: 5563
  year: 2007
  ident: ref23/cit23
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.12.005
– volume: 3
  start-page: 145
  year: 2008
  ident: ref15/cit15
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.30
– volume: 27
  start-page: 229
  year: 2009
  ident: ref43/cit43
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.021908.132715
– volume: 46
  start-page: 650
  year: 2013
  ident: ref57/cit57
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300015b
– volume: 87
  start-page: 2095
  year: 1996
  ident: ref48/cit48
  publication-title: Blood
  doi: 10.1182/blood.V87.6.2095.bloodjournal8762095
– volume: 21
  start-page: 195101
  year: 2010
  ident: ref6/cit6
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/19/195101
– volume: 18
  start-page: 767
  year: 2000
  ident: ref18/cit18
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.18.1.767
– volume: 4
  start-page: 2595
  year: 2010
  ident: ref22/cit22
  publication-title: ACS Nano
  doi: 10.1021/nn901869f
– volume: 12
  start-page: 2313
  year: 2010
  ident: ref58/cit58
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-010-9911-8
– volume: 126
  start-page: 8648
  year: 2004
  ident: ref12/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047846d
– volume: 28
  start-page: 6588
  year: 2010
  ident: ref36/cit36
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2010.07.055
– volume: 33
  start-page: 6858
  year: 2012
  ident: ref45/cit45
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.016
– volume: 15
  start-page: 261
  year: 1978
  ident: ref37/cit37
  publication-title: Cell
  doi: 10.1016/0092-8674(78)90101-0
– volume: 85
  start-page: 659
  year: 2000
  ident: ref2/cit2
  publication-title: Int. J. Cancer
  doi: 10.1002/(SICI)1097-0215(20000301)85:5<659::AID-IJC11>3.0.CO;2-5
– volume: 32
  start-page: 7988
  year: 2011
  ident: ref17/cit17
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.07.009
– volume: 24
  start-page: 5233
  year: 2008
  ident: ref28/cit28
  publication-title: Langmuir
  doi: 10.1021/la800305j
– volume: 5
  start-page: 1553
  year: 2009
  ident: ref21/cit21
  publication-title: Small
  doi: 10.1002/smll.200900126
– volume: 4
  start-page: 5527
  year: 2010
  ident: ref35/cit35
  publication-title: ACS Nano
  doi: 10.1021/nn1025687
– volume: 170
  start-page: 4373
  year: 2003
  ident: ref3/cit3
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.8.4373
– volume: 462
  start-page: 449
  year: 2009
  ident: ref20/cit20
  publication-title: Nature
  doi: 10.1038/nature08604
– volume: 9
  start-page: 847
  year: 2008
  ident: ref46/cit46
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1631
– volume: 15
  start-page: 1170
  year: 2009
  ident: ref42/cit42
  publication-title: Nat. Med.
  doi: 10.1038/nm.2028
– volume: 6
  start-page: 10598
  year: 2012
  ident: ref47/cit47
  publication-title: ACS Nano
  doi: 10.1021/nn303508c
– volume: 11
  start-page: 4029
  year: 2011
  ident: ref56/cit56
  publication-title: Nano Lett.
  doi: 10.1021/nl202559p
– volume: 453
  start-page: 1122
  year: 2008
  ident: ref50/cit50
  publication-title: Nature
  doi: 10.1038/nature06939
SSID ssj0057876
Score 2.5991695
Snippet This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3926
SubjectTerms Animals
Antibodies
Biomedical materials
Bone Marrow Cells - cytology
Cell Line
Cytokines
Cytokines - biosynthesis
Dendritic Cells - cytology
Dendritic Cells - immunology
Dendritic Cells - metabolism
Drug Carriers - chemistry
Drug Stability
Female
Gold - chemistry
In vitro testing
Intracellular Space - metabolism
Macrophages
Macrophages - cytology
Macrophages - immunology
Macrophages - metabolism
Metal Nanoparticles - chemistry
Mice
Particle Size
Protein Transport
Secretions
Structure-Activity Relationship
Surgical implants
Uptakes
Vaccination
Vaccines
Vaccines - chemistry
Vaccines - immunology
Vaccines - metabolism
Viral Envelope Proteins - chemistry
Viral Envelope Proteins - immunology
Viral Envelope Proteins - metabolism
West Nile virus
West Nile virus - chemistry
Title Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo
URI http://dx.doi.org/10.1021/nn3057005
https://www.ncbi.nlm.nih.gov/pubmed/23631767
https://www.proquest.com/docview/1356953394
https://www.proquest.com/docview/1534809750
https://www.proquest.com/docview/1762071898
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT-QwDI4QXOCwPHd3eCksHLiUbdMkTbiNeK8EQgwgblWSptoRo3QEHQ7z63H6GIGAQeolldumtWN_rh0bob1cxjKiJAmokN5B0SYQ1IYwNFLzUIbC-v8dl1f8_I7-e2APM2j3iwg-if46ByKZVHVK5wgXifewuke9Vt16ieN16BhcY8APbfmgt5d602Oe35ueL_BkZVdOF9FxuzunTid5PBiV-sCMPxZrnDblJfSjwZW4WwvCMpqxbgUtvKk2uIpGZ8Ugw6BOwU9u0uGwggPfK-PD6_h6oEqPYQ_xRdu6BBc57vXHFiuX4d5_NYQzDl_4TSWt1sQ3dZot3K3v8H2_fCoq6mrwUqyh29OT26PzoOm6EChKkzKwTEXMcEMscEoDmjSSWA0wLYsoMzIPMwsuXqZMJgUDGmtgROJY-wqjoD9_ollXOPsb4Ty3OpE2J0pp8DqpliqhNuZZrrhhJu-gbeBK2iya57SKh5MonXy-DtpvGZaapmS575wx-Iz0z4R0WNfp-Ixop-V6CqvIh0aUs8UIHh0z7hNtJZ1Cw2IqQgkQawoN2BYAbUKKDvpVi9VkOiTmANZ4sv7da2-geVI13WABEZtotnwa2S2APqXerkT_FYeI-vw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQHAoHaMtraQsu4sAlkDi2E_eGUGG3BYTYBXGLbMcRK1YOYrM98Os7dpItVLykXBxNHMcej7_J2N8gtFOIWESUJAFNhXNQlA5SakIoaqF4KMLUuP8dp2e8e0l_XbPrhibHnYWBRoyhprEP4v9jF4j2rQXNTDxd6RyAEOIcrYPDfmt1neLxOoIMHjLAiJZF6PGjbgXS46cr0Auw0i8vR0t1niLfML-r5HZvUqk9_fAfZ-P7Wv4RLTYoEx_UavEJzRj7GS084h5cRpPjcpRjMK7gNTeb47CEC19J7YLt-HwkK4dof-Bem8gElwXuDx8MljbH_Rt5B3cs7rkjJq0NxRf1pluobWjx1bC6L720L_wpV9Dg6OfgsBs0ORgCSWlSBYbJiGmuiYFxU4AttSBGAWjLI8q0KMLcgMOXS52LlIGM0VAicawc3yhY01U0a0tr1hEuCqMSYQoipQIflCohE2pinheSa6aLDtqE3suaKTTOfHScRNm0-zpotx23TDcE5i6Pxug50e2p6F3N2vGc0Pd28DOYUy5QIq0pJ_DqmHG37VbQV2RYTNNQAOB6RQZWGoBwqUg7aK3WrmlzSMwBuvFk463P3kIfuoPTk-ykd_b7C5onPh0HC0j6Fc1W9xPzDUBRpTb9bPgLIW0DbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqKlXtoQ_oY2kLLuLQSyBxbCfubbXtwvZBEQtob5Ht2OqKlbNisz3w6zt2khWtKCDl4mjiTOyx_U1m_BmhXStSkVCSRTQX3kFROsqpiaGoheKxiHPj_3f8OOKHZ_TrhE1aR9HvhQElFlDTIgTx_aiel7ZlGEj2nQPrzAJl6UMfrvPOVn8w7mZeb3y8iSKDlwxQomMSuv6oX4X04u9V6D_QMiwxw2fo50q5kFlysbes1Z6--oe38f7aP0dPW7SJ-415vEAPjFtHT65xEG6g5UE1KzFMsuA9t0lyWMKFz6X2QXd8PJO1R7af8Kg70ARXFo-nVwZLV-LxLzmHOw6P_FaTbi7FJ03yLdQ2dfh8Wl9WQToUflcv0enwy-ngMGrPYogkpVkdGSYTprkmBvpPAcbUghgF4K1MKNPCxqUBx6-UuhQ5AxmjoUTSVHneUZhVX6E1VznzBmFrjcqEsURKBb4oVUJm1KS8tJJrpm0PbUELFu1QWhQhSk6SYtV8PfSx67tCt0Tm_jyN2U2iOyvRecPecZPQh84AChhbPmAinamW8OqUcZ9-K-gtMiyleSwAeN0iAysOQLlc5D30urGwlTok5QDheLZ512dvo0fHn4fF99HRt7foMQmncrCI5O_QWn25NO8BG9VqKwyIP53iBe8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+nanoparticles+as+a+vaccine+platform%3A+influence+of+size+and+shape+on+immunological+responses+in+vitro+and+in+vivo&rft.jtitle=ACS+nano&rft.au=Niikura%2C+Kenichi&rft.au=Matsunaga%2C+Tatsuya&rft.au=Suzuki%2C+Tadaki&rft.au=Kobayashi%2C+Shintaro&rft.date=2013-05-28&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=7&rft.issue=5&rft.spage=3926&rft_id=info:doi/10.1021%2Fnn3057005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon