Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C–H Bond Functionalization
Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which h...
Saved in:
Published in | Accounts of chemical research Vol. 50; no. 2; pp. 351 - 365 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which have been employed in the industrial synthesis of pharmaceuticals and agrochemicals. So far, the main methods for the synthesis of planar chiral ferrocenes involve diastereoselective directed ortho-metalation (DoM), enantioselective DoM, and chiral resolution. Despite the fact that these approaches are well developed and widely applied, the use of chiral auxiliaries or external stoichiometric chiral bases is required in most cases. Additionally, the practicality of these processes is hampered by the requirement of sensitive organometallic reagents, the poor compatibility with functional groups, and the low atom economy in some cases. Therefore, the development of highly efficient strategies to introduce planar chirality on the backbone of ferrocene that do not possess these limitations is highly desirable. Meanwhile, transition-metal-catalyzed asymmetric C–H bond functionalization reactions have attracted much attention over the past few years owing to their emerging potential for providing a straightforward approach for the preparation of chiral molecules. In addition to the majority of the work focusing on the installation of central chirality, methods for the catalytic asymmetric synthesis of planar chiral compounds via C–H bond functionalization have also been explored. In this Account, we summarize our recent efforts aimed at the development of novel methods to synthesize planar chiral compounds via asymmetric C–H bond functionalization and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of diastereoselective and enantioselective synthesis of planar chiral ferrocenes. Subsequently, asymmetric syntheses of structurally diverse planar chiral ferrocenes via Pd [Pd(II), Pd(0)]-, Ir-, Rh-, Au-, and Pt-catalyzed C–H bond functionalization are described. These methods have impressive advantages over traditional approaches for the synthesis of functionalized planar chiral ferrocenes in terms of both step- and atom-economies. Notably, the products of these processes are easily transformed into a variety of new catalysts or ligands, which have been demonstrated to promote efficient asymmetric reactions. Moreover, DFT calculations have been conducted to explore the origin of the excellent enantioselectivity of Pd-catalyzed enantioselective C–H bond functionalization reactions. Progress made in the area of asymmetric C–H bond functionalization provides an effective platform for the design and synthesis of planar chiral ferrocenes. |
---|---|
AbstractList | Conspectus Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which have been employed in the industrial synthesis of pharmaceuticals and agrochemicals. So far, the main methods for the synthesis of planar chiral ferrocenes involve diastereoselective directed ortho-metalation (DoM), enantioselective DoM, and chiral resolution. Despite the fact that these approaches are well developed and widely applied, the use of chiral auxiliaries or external stoichiometric chiral bases is required in most cases. Additionally, the practicality of these processes is hampered by the requirement of sensitive organometallic reagents, the poor compatibility with functional groups, and the low atom economy in some cases. Therefore, the development of highly efficient strategies to introduce planar chirality on the backbone of ferrocene that do not possess these limitations is highly desirable. Meanwhile, transition-metal-catalyzed asymmetric C-H bond functionalization reactions have attracted much attention over the past few years owing to their emerging potential for providing a straightforward approach for the preparation of chiral molecules. In addition to the majority of the work focusing on the installation of central chirality, methods for the catalytic asymmetric synthesis of planar chiral compounds via C-H bond functionalization have also been explored. In this Account, we summarize our recent efforts aimed at the development of novel methods to synthesize planar chiral compounds via asymmetric C-H bond functionalization and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of diastereoselective and enantioselective synthesis of planar chiral ferrocenes. Subsequently, asymmetric syntheses of structurally diverse planar chiral ferrocenes via Pd [Pd(II), Pd(0)]-, Ir-, Rh-, Au-, and Pt-catalyzed C-H bond functionalization are described. These methods have impressive advantages over traditional approaches for the synthesis of functionalized planar chiral ferrocenes in terms of both step- and atom-economies. Notably, the products of these processes are easily transformed into a variety of new catalysts or ligands, which have been demonstrated to promote efficient asymmetric reactions. Moreover, DFT calculations have been conducted to explore the origin of the excellent enantioselectivity of Pd-catalyzed enantioselective C-H bond functionalization reactions. Progress made in the area of asymmetric C-H bond functionalization provides an effective platform for the design and synthesis of planar chiral ferrocenes. Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which have been employed in the industrial synthesis of pharmaceuticals and agrochemicals. So far, the main methods for the synthesis of planar chiral ferrocenes involve diastereoselective directed ortho-metalation (DoM), enantioselective DoM, and chiral resolution. Despite the fact that these approaches are well developed and widely applied, the use of chiral auxiliaries or external stoichiometric chiral bases is required in most cases. Additionally, the practicality of these processes is hampered by the requirement of sensitive organometallic reagents, the poor compatibility with functional groups, and the low atom economy in some cases. Therefore, the development of highly efficient strategies to introduce planar chirality on the backbone of ferrocene that do not possess these limitations is highly desirable. Meanwhile, transition-metal-catalyzed asymmetric C–H bond functionalization reactions have attracted much attention over the past few years owing to their emerging potential for providing a straightforward approach for the preparation of chiral molecules. In addition to the majority of the work focusing on the installation of central chirality, methods for the catalytic asymmetric synthesis of planar chiral compounds via C–H bond functionalization have also been explored. In this Account, we summarize our recent efforts aimed at the development of novel methods to synthesize planar chiral compounds via asymmetric C–H bond functionalization and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of diastereoselective and enantioselective synthesis of planar chiral ferrocenes. Subsequently, asymmetric syntheses of structurally diverse planar chiral ferrocenes via Pd [Pd(II), Pd(0)]-, Ir-, Rh-, Au-, and Pt-catalyzed C–H bond functionalization are described. These methods have impressive advantages over traditional approaches for the synthesis of functionalized planar chiral ferrocenes in terms of both step- and atom-economies. Notably, the products of these processes are easily transformed into a variety of new catalysts or ligands, which have been demonstrated to promote efficient asymmetric reactions. Moreover, DFT calculations have been conducted to explore the origin of the excellent enantioselectivity of Pd-catalyzed enantioselective C–H bond functionalization reactions. Progress made in the area of asymmetric C–H bond functionalization provides an effective platform for the design and synthesis of planar chiral ferrocenes. Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which have been employed in the industrial synthesis of pharmaceuticals and agrochemicals. So far, the main methods for the synthesis of planar chiral ferrocenes involve diastereoselective directed ortho-metalation (DoM), enantioselective DoM, and chiral resolution. Despite the fact that these approaches are well developed and widely applied, the use of chiral auxiliaries or external stoichiometric chiral bases is required in most cases. Additionally, the practicality of these processes is hampered by the requirement of sensitive organometallic reagents, the poor compatibility with functional groups, and the low atom economy in some cases. Therefore, the development of highly efficient strategies to introduce planar chirality on the backbone of ferrocene that do not possess these limitations is highly desirable. Meanwhile, transition-metal-catalyzed asymmetric C-H bond functionalization reactions have attracted much attention over the past few years owing to their emerging potential for providing a straightforward approach for the preparation of chiral molecules. In addition to the majority of the work focusing on the installation of central chirality, methods for the catalytic asymmetric synthesis of planar chiral compounds via C-H bond functionalization have also been explored. In this Account, we summarize our recent efforts aimed at the development of novel methods to synthesize planar chiral compounds via asymmetric C-H bond functionalization and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of diastereoselective and enantioselective synthesis of planar chiral ferrocenes. Subsequently, asymmetric syntheses of structurally diverse planar chiral ferrocenes via Pd [Pd(II), Pd(0)]-, Ir-, Rh-, Au-, and Pt-catalyzed C-H bond functionalization are described. These methods have impressive advantages over traditional approaches for the synthesis of functionalized planar chiral ferrocenes in terms of both step- and atom-economies. Notably, the products of these processes are easily transformed into a variety of new catalysts or ligands, which have been demonstrated to promote efficient asymmetric reactions. Moreover, DFT calculations have been conducted to explore the origin of the excellent enantioselectivity of Pd-catalyzed enantioselective C-H bond functionalization reactions. Progress made in the area of asymmetric C-H bond functionalization provides an effective platform for the design and synthesis of planar chiral ferrocenes. |
Author | Zheng, Chao You, Shu-Li Gu, Qing Gao, De-Wei |
AuthorAffiliation | Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences State Key Laboratory of Organometallic Chemistry |
AuthorAffiliation_xml | – name: Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences – name: State Key Laboratory of Organometallic Chemistry |
Author_xml | – sequence: 1 givenname: De-Wei surname: Gao fullname: Gao, De-Wei – sequence: 2 givenname: Qing surname: Gu fullname: Gu, Qing – sequence: 3 givenname: Chao orcidid: 0000-0002-7349-262X surname: Zheng fullname: Zheng, Chao – sequence: 4 givenname: Shu-Li orcidid: 0000-0003-4586-8359 surname: You fullname: You, Shu-Li email: slyou@sioc.ac.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28121428$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9Kw0AQxhdRtFbfQGSPXlL3X9L0qNGqoCio5zDZTOhKuqu7iVBPvoNv6JO4pa1HEYaZWfh9s8x8-2TbOouEHHE24kzwU9BhBFq73nZhlFWMpWO5RQY8FSxR-STfJgPGGI-9EntkP4SX-BQqG--SPZFzwZXIB2T2uLDdDIMJ1DX0oQULnhYz46GlU_TeabQY6LsB-uTBBtMZZ5M77KBNCoh58YE1vTAedUeL78-va3rubE2nvdVLFFrzAcvmgOw00AY8XNcheZ5ePhXXye391U1xdpuAUuMuqWPJUNcKm5TJiUZZiUaPcwFcQqMhrbmWrKnkhOUq7qpVBUxWmWBSQKq5HJKT1dxX7956DF05N0FjGzdD14eS5xMZg_P_oJkQuVI8i6haodq7EDw25as3c_CLkrNyaUcZ7Sg3dpRrO6LseP1DX82x_hVt7h8BtgKW8hfX-3iw8PfMH1z-nWg |
CitedBy_id | crossref_primary_10_1021_acs_organomet_8b00185 crossref_primary_10_1021_jacs_2c13542 crossref_primary_10_1021_acs_orglett_7b02968 crossref_primary_10_1002_ange_201713106 crossref_primary_10_1246_bcsj_20170415 crossref_primary_10_1002_anie_201813452 crossref_primary_10_1002_ange_202008437 crossref_primary_10_1021_acs_joc_9b01503 crossref_primary_10_1002_anie_202305278 crossref_primary_10_1021_acs_organomet_7b00659 crossref_primary_10_1039_D3SC03496H crossref_primary_10_1039_D0OB02169E crossref_primary_10_1039_D3CC03592A crossref_primary_10_1002_ange_201813887 crossref_primary_10_1002_ange_201906700 crossref_primary_10_1016_j_gresc_2023_11_011 crossref_primary_10_1021_acs_orglett_7b02973 crossref_primary_10_1016_j_chempr_2020_04_005 crossref_primary_10_1021_acscatal_9b00918 crossref_primary_10_1002_anie_201710317 crossref_primary_10_1002_anie_202009323 crossref_primary_10_1038_s41467_021_24678_5 crossref_primary_10_1002_ejoc_201700358 crossref_primary_10_1039_C8CC02821D crossref_primary_10_1007_s11030_023_10677_9 crossref_primary_10_1021_acs_joc_7b01347 crossref_primary_10_1021_acs_joc_1c02485 crossref_primary_10_1021_acs_orglett_9b00511 crossref_primary_10_1002_ange_201810472 crossref_primary_10_1021_acscatal_0c04077 crossref_primary_10_1021_acs_organomet_7b00799 crossref_primary_10_1021_acs_organomet_9b00490 crossref_primary_10_1039_C7QO00850C crossref_primary_10_1021_acscatal_2c00083 crossref_primary_10_1002_chir_22831 crossref_primary_10_1002_ejoc_201800396 crossref_primary_10_1039_D3QO00069A crossref_primary_10_6023_cjoc202201037 crossref_primary_10_1039_D2DT00903J crossref_primary_10_1002_anie_201904214 crossref_primary_10_1016_j_cclet_2020_10_034 crossref_primary_10_1021_acs_orglett_9b02243 crossref_primary_10_1039_D0SC04597G crossref_primary_10_1002_qua_26252 crossref_primary_10_1039_C9CC02949D crossref_primary_10_1039_D2NJ02224A crossref_primary_10_1002_anie_202212079 crossref_primary_10_1021_acscatal_8b04870 crossref_primary_10_1021_acscatal_9b03887 crossref_primary_10_1002_anie_201901856 crossref_primary_10_1038_s41467_024_48947_1 crossref_primary_10_1016_j_jorganchem_2023_122831 crossref_primary_10_1021_acscatal_0c00142 crossref_primary_10_1002_ange_201813191 crossref_primary_10_1039_C9NJ03780B crossref_primary_10_1055_a_1802_6793 crossref_primary_10_1002_chem_202003225 crossref_primary_10_1021_acs_organomet_7b00691 crossref_primary_10_1039_D2CC00459C crossref_primary_10_1002_cssc_202002397 crossref_primary_10_1021_acs_orglett_0c02216 crossref_primary_10_1002_ange_201811256 crossref_primary_10_1002_anie_201813887 crossref_primary_10_1002_anie_202313388 crossref_primary_10_1002_adsc_202301436 crossref_primary_10_1016_j_tetlet_2022_153821 crossref_primary_10_1039_D1OB01190A crossref_primary_10_1055_a_2089_4934 crossref_primary_10_1002_adsc_202100283 crossref_primary_10_1021_jacs_9b03862 crossref_primary_10_1126_science_ado1246 crossref_primary_10_1002_ange_202009323 crossref_primary_10_1038_s44160_022_00177_3 crossref_primary_10_1039_D3SC02800C crossref_primary_10_1021_acs_joc_8b03221 crossref_primary_10_1021_acs_orglett_2c02888 crossref_primary_10_1021_acs_orglett_8b03938 crossref_primary_10_1039_C9CC06529F crossref_primary_10_1002_tcr_202100102 crossref_primary_10_1021_acs_jafc_2c01407 crossref_primary_10_1021_acs_orglett_1c02775 crossref_primary_10_1002_advs_202304672 crossref_primary_10_3762_bjoc_14_131 crossref_primary_10_1039_D1QO00183C crossref_primary_10_1002_ange_201813452 crossref_primary_10_1002_anie_202001267 crossref_primary_10_1021_acscatal_0c05576 crossref_primary_10_1002_anie_201713106 crossref_primary_10_1021_acs_joc_1c02875 crossref_primary_10_1039_C8DT01147H crossref_primary_10_1016_j_gresc_2024_02_007 crossref_primary_10_1360_TB_2021_1324 crossref_primary_10_3390_M1582 crossref_primary_10_1002_anie_202008437 crossref_primary_10_1039_C9QO00534J crossref_primary_10_1038_s41467_019_12181_x crossref_primary_10_1016_j_mcat_2020_110847 crossref_primary_10_1021_acs_orglett_9b00315 crossref_primary_10_1016_j_jcat_2018_03_007 crossref_primary_10_1002_ange_202001267 crossref_primary_10_1002_anie_201811256 crossref_primary_10_1055_a_2005_5006 crossref_primary_10_1021_acs_orglett_9b01522 crossref_primary_10_1039_C8QO00703A crossref_primary_10_1016_j_trechm_2020_05_003 crossref_primary_10_1021_acs_joc_9b00953 crossref_primary_10_1039_C9DT03646F crossref_primary_10_1038_s41557_023_01176_3 crossref_primary_10_1002_ange_201709075 crossref_primary_10_1002_slct_202001874 crossref_primary_10_6023_cjoc202211039 crossref_primary_10_1021_acs_orglett_2c04169 crossref_primary_10_1038_s41467_022_31178_7 crossref_primary_10_1039_C8CS00201K crossref_primary_10_1021_jacs_0c08205 crossref_primary_10_1021_jacs_0c11735 crossref_primary_10_1002_ejoc_201900050 crossref_primary_10_1021_acs_joc_8b00974 crossref_primary_10_1002_anie_201709075 crossref_primary_10_1021_acs_organomet_8b00457 crossref_primary_10_1016_j_jorganchem_2023_122998 crossref_primary_10_1002_ejoc_202300951 crossref_primary_10_1021_acs_chemrev_3c00149 crossref_primary_10_1038_s41467_021_27441_y crossref_primary_10_1002_ange_201711451 crossref_primary_10_1021_acs_orglett_1c04002 crossref_primary_10_1002_chem_201801765 crossref_primary_10_1038_s41467_020_16098_8 crossref_primary_10_1016_j_scib_2022_12_011 crossref_primary_10_3762_bjoc_17_165 crossref_primary_10_1002_anie_201807610 crossref_primary_10_1016_j_ica_2019_119353 crossref_primary_10_1021_acs_organomet_3c00185 crossref_primary_10_1021_acscatal_8b03912 crossref_primary_10_1021_acs_orglett_2c00542 crossref_primary_10_1021_acs_organomet_9b00422 crossref_primary_10_1021_acs_orglett_8b00348 crossref_primary_10_1002_chem_202102624 crossref_primary_10_1021_acs_orglett_3c01266 crossref_primary_10_1021_acs_organomet_7b00125 crossref_primary_10_1002_chem_201902102 crossref_primary_10_1021_acscentsci_3c00748 crossref_primary_10_1021_acscatal_1c05080 crossref_primary_10_1021_acs_organomet_8b00243 crossref_primary_10_1021_acs_joc_7b00775 crossref_primary_10_1002_cctc_201700557 crossref_primary_10_1039_D1QO01344K crossref_primary_10_1016_j_tet_2019_06_008 crossref_primary_10_1039_C8CC05555F crossref_primary_10_1002_anie_201813191 crossref_primary_10_1021_acs_organomet_7b00143 crossref_primary_10_1021_jacs_8b01754 crossref_primary_10_1002_ejoc_202100335 crossref_primary_10_1016_j_xcrp_2022_100768 crossref_primary_10_1002_adsc_202200409 crossref_primary_10_1021_acscatal_8b01992 crossref_primary_10_1002_ange_202313388 crossref_primary_10_1016_j_trechm_2021_12_005 crossref_primary_10_1021_acscatal_2c00001 crossref_primary_10_1021_acs_organomet_9b00407 crossref_primary_10_1039_C9OB00645A crossref_primary_10_1039_C8CY00367J crossref_primary_10_1002_anie_201810472 crossref_primary_10_1039_D0SC03052J crossref_primary_10_1002_ejic_201801430 crossref_primary_10_3390_catal14020123 crossref_primary_10_1021_acs_joc_3c00212 crossref_primary_10_1055_a_2335_8452 crossref_primary_10_1002_ejic_202100911 crossref_primary_10_1002_ejoc_201901738 crossref_primary_10_1021_acscatal_0c02049 crossref_primary_10_1039_D0CC05374K crossref_primary_10_1039_D1SC04687J crossref_primary_10_1016_j_gresc_2021_05_004 crossref_primary_10_1039_D1QO01884A crossref_primary_10_1021_acs_organomet_7b00704 crossref_primary_10_1016_j_comptc_2020_112832 crossref_primary_10_1016_j_tet_2019_01_059 crossref_primary_10_1021_jacs_0c13166 crossref_primary_10_1002_celc_201801035 crossref_primary_10_1021_acs_orglett_1c01294 crossref_primary_10_1002_anie_201902126 crossref_primary_10_1002_ange_201904214 crossref_primary_10_1021_acscatal_0c02109 crossref_primary_10_1039_D0CC05219A crossref_primary_10_1002_ange_201901856 crossref_primary_10_1002_ange_202212079 crossref_primary_10_1002_tcr_201700069 crossref_primary_10_1039_D0QO01227K crossref_primary_10_1002_anie_201911086 crossref_primary_10_1002_ange_201710317 crossref_primary_10_1021_acscatal_1c02450 crossref_primary_10_1002_anie_201711451 crossref_primary_10_1021_acs_joc_9b03054 crossref_primary_10_1039_D0CS00359J crossref_primary_10_1002_ange_201808595 crossref_primary_10_1021_acs_orglett_9b00363 crossref_primary_10_1039_D1CS00923K crossref_primary_10_1039_C7CC09273C crossref_primary_10_1016_j_jorganchem_2019_02_001 crossref_primary_10_1021_acscatal_0c03317 crossref_primary_10_1002_asia_202000657 crossref_primary_10_1039_C9CC03967H crossref_primary_10_1002_chem_202203006 crossref_primary_10_1016_j_checat_2021_11_001 crossref_primary_10_1039_D2CC06492H crossref_primary_10_1002_ange_202305278 crossref_primary_10_1002_ijch_201800023 crossref_primary_10_1021_jacsau_2c00630 crossref_primary_10_1039_D1NJ04526A crossref_primary_10_1002_ange_201807610 crossref_primary_10_1002_ange_201911086 crossref_primary_10_1021_acscatal_1c05299 crossref_primary_10_1021_acs_orglett_0c03126 crossref_primary_10_1021_acscatal_8b01682 crossref_primary_10_1002_anie_201906700 crossref_primary_10_1002_ange_201811998 crossref_primary_10_1039_D3OB01063E crossref_primary_10_1039_D2OB00558A crossref_primary_10_1002_asia_201901334 crossref_primary_10_1002_ange_201902126 crossref_primary_10_1021_jacs_3c13266 crossref_primary_10_1039_D2GC04337H crossref_primary_10_1021_jacs_1c07635 crossref_primary_10_1021_acs_inorgchem_8b03389 crossref_primary_10_1002_adsc_201901195 crossref_primary_10_1021_acs_joc_9b00311 crossref_primary_10_1016_j_checat_2021_12_017 crossref_primary_10_1007_s40242_019_9013_9 crossref_primary_10_1021_acs_orglett_1c00418 crossref_primary_10_1039_D1QO00056J crossref_primary_10_1002_anie_201811998 crossref_primary_10_1002_ejic_202100841 crossref_primary_10_3987_COM_22_14649 crossref_primary_10_1021_acs_orglett_1c00533 crossref_primary_10_1016_j_checat_2022_07_009 crossref_primary_10_1002_anie_201808595 crossref_primary_10_1002_asia_202200818 crossref_primary_10_1039_D1CC00398D crossref_primary_10_1021_acs_cgd_8b00538 crossref_primary_10_1016_j_polymer_2017_08_022 crossref_primary_10_1021_acs_chemrev_8b00507 crossref_primary_10_1039_C9CC07854A crossref_primary_10_1002_elps_202200148 crossref_primary_10_1021_acscatal_3c05955 |
Cites_doi | 10.6023/cjoc201502027 10.1021/jacs.6b00127 10.1021/ar020153m 10.1021/acs.accounts.5b00092 10.1021/ja01139a527 10.1021/ar030051b 10.3762/bjoc.9.222 10.1002/anie.201502548 10.1039/jr9520000632 10.1021/om010679v 10.1002/ejoc.200700470 10.1021/om400564x 10.1016/j.molcata.2004.11.025 10.1039/b910977c 10.1039/C4RA07832B 10.1039/C5CC00723B 10.1021/ol502509f 10.1039/c3sc50577d 10.1021/om991041a 10.1021/ja909571z 10.1021/ol502520b 10.1002/anie.200905060 10.1039/c3ra46996d 10.1021/om700806e 10.3390/molecules14114747 10.1021/ja500699x 10.1021/ja311082u 10.1021/ja207607s 10.1002/anie.199305681 10.1021/ol991381s 10.1021/ja062616f 10.1038/171121a0 10.1002/chem.201302576 10.1039/9781782621966 10.1021/jo400159y 10.1021/ja504196j 10.1126/science.1258538 10.1021/om5002606 10.1002/anie.199724561 10.1002/anie.201604840 10.3762/bjoc.8.212 10.1002/chem.201501123 10.1021/acs.organomet.6b00020 10.1023/A:1013832630565 10.1002/cctc.201500895 10.1021/ja00783a030 10.1002/9780470985663 10.1002/anie.200801030 10.1039/C6CC02624A 10.1016/j.tetlet.2015.01.130 10.1021/ja208661v 10.1039/b816707a 10.1021/acs.joc.6b00825 10.1021/om9005356 10.1002/9783527627325 10.6023/cjoc201602032 10.1021/acs.orglett.5b01373 10.1021/ja953246q 10.1002/chem.201300116 10.1021/jacs.6b04660 10.1021/ja500444v 10.1021/ar990077w 10.1002/chem.201000011 10.1055/s-1995-4864 10.1021/ol301063k 10.1021/acs.organomet.5b00730 10.1002/9783527619542 10.1107/S0365110X56001091 10.1002/anie.201000799 10.1038/1681039b0 10.1002/anie.201402518 10.1002/(SICI)1521-3773(19990816)38:16<2421::AID-ANIE2421>3.3.CO;2-I 10.1039/C5DT01373A 10.1016/S0022-328X(00)83942-X 10.1021/acs.organomet.6b00569 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/acs.accounts.6b00573 |
DatabaseName | PubMed CrossRef MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 365 |
ExternalDocumentID | 10_1021_acs_accounts_6b00573 28121428 c534733206 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 ABJNI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CUPRZ GGK IH2 NPM XSW ZCA ~02 AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a447t-da446ecd4ef5039ce3b2fc782a13afca5d1c30fb39084152c4ba03b62032a5c13 |
IEDL.DBID | ACS |
ISSN | 0001-4842 |
IngestDate | Fri Oct 25 21:53:02 EDT 2024 Fri Oct 25 06:31:03 EDT 2024 Thu Sep 26 19:16:26 EDT 2024 Sat Sep 28 08:45:58 EDT 2024 Thu Aug 27 13:42:28 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a447t-da446ecd4ef5039ce3b2fc782a13afca5d1c30fb39084152c4ba03b62032a5c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7349-262X 0000-0003-4586-8359 |
PMID | 28121428 |
PQID | 1862284416 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1893893111 proquest_miscellaneous_1862284416 crossref_primary_10_1021_acs_accounts_6b00573 pubmed_primary_28121428 acs_journals_10_1021_acs_accounts_6b00573 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2017-02-21 |
PublicationDateYYYYMMDD | 2017-02-21 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref27/cit27 ref1/cit1e ref1/cit1d ref16/cit16 ref13/cit13b ref13/cit13c ref23/cit23 ref2/cit2c ref2/cit2b ref31/cit31 ref2/cit2a ref1/cit1a ref1/cit1c ref37/cit37 ref1/cit1b ref5/cit5b ref17/cit17 ref5/cit5c Dai L.-X. (ref4/cit4d) 2010 ref10/cit10 ref5/cit5a ref35/cit35 Sokolov V. I. (ref13/cit13a) 1978; 32 ref19/cit19 ref21/cit21 ref3/cit3b ref3/cit3a ref5/cit5j ref5/cit5h ref24/cit24 ref38/cit38 ref5/cit5i ref5/cit5f Togni A. (ref4/cit4b) 1998 ref5/cit5g ref5/cit5d ref5/cit5e ref36/cit36 ref18/cit18 ref9/cit9c ref9/cit9b ref9/cit9a ref11/cit11 ref25/cit25 ref29/cit29 ref8/cit8a ref8/cit8c ref8/cit8b ref8/cit8e ref8/cit8d ref32/cit32 ref8/cit8f Štěpnička P. (ref4/cit4c) 2008 You S.-L. (ref8/cit8g) 2015 ref9/cit9d Ackermann L. (ref20/cit20) 2009 ref28/cit28 ref26/cit26 Hayashi T. (ref4/cit4a) 1995 ref34/cit34b ref34/cit34c ref34/cit34a ref14/cit14a ref12/cit12 ref14/cit14c ref14/cit14b ref15/cit15 ref14/cit14e ref14/cit14d ref14/cit14g ref14/cit14f ref22/cit22 ref33/cit33 ref30/cit30 ref4/cit4e ref6/cit6a ref6/cit6b ref7/cit7 |
References_xml | – ident: ref9/cit9a doi: 10.6023/cjoc201502027 – ident: ref21/cit21 doi: 10.1021/jacs.6b00127 – ident: ref2/cit2b doi: 10.1021/ar020153m – ident: ref8/cit8f doi: 10.1021/acs.accounts.5b00092 – ident: ref1/cit1c doi: 10.1021/ja01139a527 – ident: ref2/cit2c doi: 10.1021/ar030051b – ident: ref19/cit19 doi: 10.3762/bjoc.9.222 – ident: ref34/cit34b doi: 10.1002/anie.201502548 – ident: ref1/cit1b doi: 10.1039/jr9520000632 – ident: ref5/cit5h doi: 10.1021/om010679v – ident: ref24/cit24 doi: 10.1002/ejoc.200700470 – ident: ref4/cit4e doi: 10.1021/om400564x – ident: ref3/cit3b doi: 10.1016/j.molcata.2004.11.025 – ident: ref6/cit6a doi: 10.1039/b910977c – ident: ref28/cit28 doi: 10.1039/C4RA07832B – ident: ref34/cit34a doi: 10.1039/C5CC00723B – ident: ref22/cit22 doi: 10.1021/ol502509f – ident: ref17/cit17 doi: 10.1039/c3sc50577d – ident: ref5/cit5g doi: 10.1021/om991041a – ident: ref14/cit14b doi: 10.1021/ja909571z – ident: ref29/cit29 doi: 10.1021/ol502520b – ident: ref31/cit31 doi: 10.1002/anie.200905060 – ident: ref8/cit8e doi: 10.1039/c3ra46996d – ident: ref10/cit10 doi: 10.1021/om700806e – ident: ref5/cit5j doi: 10.3390/molecules14114747 – ident: ref26/cit26 doi: 10.1021/ja500699x – ident: ref15/cit15 doi: 10.1021/ja311082u – ident: ref14/cit14c doi: 10.1021/ja207607s – ident: ref5/cit5b doi: 10.1002/anie.199305681 – ident: ref5/cit5f doi: 10.1021/ol991381s – ident: ref5/cit5i doi: 10.1021/ja062616f – ident: ref1/cit1d doi: 10.1038/171121a0 – ident: ref8/cit8c doi: 10.1002/chem.201302576 – volume-title: Asymmetric Functionalization of C–H Bonds year: 2015 ident: ref8/cit8g doi: 10.1039/9781782621966 contributor: fullname: You S.-L. – ident: ref8/cit8d doi: 10.1021/jo400159y – ident: ref14/cit14e doi: 10.1021/ja504196j – ident: ref14/cit14f doi: 10.1126/science.1258538 – ident: ref35/cit35 doi: 10.1021/om5002606 – ident: ref12/cit12 doi: 10.1002/anie.199724561 – ident: ref25/cit25 doi: 10.1002/anie.201604840 – ident: ref11/cit11 doi: 10.3762/bjoc.8.212 – ident: ref16/cit16 doi: 10.1002/chem.201501123 – ident: ref36/cit36 doi: 10.1021/acs.organomet.6b00020 – volume: 32 start-page: 122 year: 1978 ident: ref13/cit13a publication-title: Chimia contributor: fullname: Sokolov V. I. – ident: ref3/cit3a doi: 10.1023/A:1013832630565 – ident: ref9/cit9d doi: 10.1002/cctc.201500895 – ident: ref5/cit5a doi: 10.1021/ja00783a030 – volume-title: Ferrocenes year: 2008 ident: ref4/cit4c doi: 10.1002/9780470985663 contributor: fullname: Štěpnička P. – ident: ref14/cit14a doi: 10.1002/anie.200801030 – ident: ref37/cit37 doi: 10.1039/C6CC02624A – ident: ref9/cit9b doi: 10.1016/j.tetlet.2015.01.130 – ident: ref14/cit14d doi: 10.1021/ja208661v – ident: ref8/cit8a doi: 10.1039/b816707a – ident: ref38/cit38 doi: 10.1021/acs.joc.6b00825 – volume-title: Ferrocenes year: 1995 ident: ref4/cit4a contributor: fullname: Hayashi T. – ident: ref13/cit13c doi: 10.1021/om9005356 – volume-title: Modern Arylation Methods year: 2009 ident: ref20/cit20 doi: 10.1002/9783527627325 contributor: fullname: Ackermann L. – ident: ref27/cit27 doi: 10.6023/cjoc201602032 – volume-title: Chiral Ferrocenes in Asymmetric Catalysis year: 2010 ident: ref4/cit4d contributor: fullname: Dai L.-X. – ident: ref34/cit34c doi: 10.1021/acs.orglett.5b01373 – ident: ref5/cit5d doi: 10.1021/ja953246q – ident: ref7/cit7 doi: 10.1002/chem.201300116 – ident: ref14/cit14g doi: 10.1021/jacs.6b04660 – ident: ref23/cit23 doi: 10.1021/ja500444v – ident: ref2/cit2a doi: 10.1021/ar990077w – ident: ref6/cit6b doi: 10.1002/chem.201000011 – ident: ref5/cit5c doi: 10.1055/s-1995-4864 – ident: ref18/cit18 doi: 10.1021/ol301063k – ident: ref30/cit30 doi: 10.1021/acs.organomet.5b00730 – volume-title: Metallocenes year: 1998 ident: ref4/cit4b doi: 10.1002/9783527619542 contributor: fullname: Togni A. – ident: ref1/cit1e doi: 10.1107/S0365110X56001091 – ident: ref8/cit8b doi: 10.1002/anie.201000799 – ident: ref1/cit1a doi: 10.1038/1681039b0 – ident: ref33/cit33 doi: 10.1002/anie.201402518 – ident: ref5/cit5e doi: 10.1002/(SICI)1521-3773(19990816)38:16<2421::AID-ANIE2421>3.3.CO;2-I – ident: ref9/cit9c doi: 10.1039/C5DT01373A – ident: ref13/cit13b doi: 10.1016/S0022-328X(00)83942-X – ident: ref32/cit32 doi: 10.1021/acs.organomet.6b00569 |
SSID | ssj0002467 |
Score | 2.6473317 |
Snippet | Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that... Conspectus Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 351 |
SubjectTerms | Asymmetry Bonding Catalysis Catalysts Chemical bonds Chirality Ferrocenes Synthesis |
Title | Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C–H Bond Functionalization |
URI | http://dx.doi.org/10.1021/acs.accounts.6b00573 https://www.ncbi.nlm.nih.gov/pubmed/28121428 https://search.proquest.com/docview/1862284416 https://search.proquest.com/docview/1893893111 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uB724L-NGBC8eMjZL2_Q4FIdBGD2o4K0kaYqD0JHpjDCe_A_-Q3-JL10UFbdTIaRJ8_Ka73tJ3nsIHflUaiDmkqQy5UQoFREdKenuNNiQp0yEkfNG7p8HvWtxduPfvBuKn0_wGT1RpoCmy8wJRTvQZQS_WTTPQk86Le7El28rLxNBFSMTTGQhBWtc5b5pxQGSKT4C0jcss0Sb7jK6aHx2qksmd-3JWLfN49cQjn8cyApaqokn7lSasopmbL6GFuIm39s6ur2c5sAGi0GBhxl2yYzUCMe3gxG81bUjB3SwLOKHgcIlwJV3vUjfAnsnsdsEmj7aFFdLKI5fnp572OUsxl1AzmrDsXb53EDX3dOruEfqPAxECRGOSQqPwJpU2Mz3eGQs1ywzQC0U5Sozyk-p4V6meeRJxweM0MrjOnDJ2ZVvKN9Ec_kwt9sIS5ppMIRtmEGjNs10aIzkZRENbMBa6BjElNT_UZGUR-SMJq6wkV1Sy66FSDNxyX0VmuOX-ofN7CYgWncwonI7nEAvYNYBTAM3_alO5LgdQEMLbVWq8dYrA5bkItft_OPrd9EicwzBecfTPTQ3Hk3sPvCbsT4olfoVgAr5Jw |
link.rule.ids | 315,783,787,2773,27089,27937,27938,57071,57121 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED6k6eAubfpI6j5ZoEsHOqZIvcZCiOG2cZbYRTaBpCjYCCAHlh0gmfIf-g_7S3pHSS5awC0yCSAokjqe-H1H8u4APoYiMUjME14kheRK65SbVCd0p8HFsghUnJI38uQsGs_U14vwYg_CzhcGB1FjS7U_xP8dXUAcU5luEijUg8j4QH4P4GEYI0YSI8rOtwtwoKImVCZayipRQecxt6MVwiVb_4lLO8imB53RE_i-Ha6_a3I52KzNwN7-Fcnx3t9zAI9bGso-N3rzFPZc9Qx6WZf97TnMz28q5Ib1ombLklFqI71i2XyxwrdGbkWwh4sku15o5uHO3_ziE4dcnme0JXRz6wrWLKgs-3n3Y8wogzEbIY4224-tA-gLmI1OptmYt1kZuFYqXvMCH5GzhXJlOJSpddIEpUWioYXUpdVhIawclkamw4TYgVVGD6WJKFW7Dq2Qh7BfLSv3ElgiSoNmsYtLbNQVpYmtTaQvEpGLgj58QjHl7V9V5_7APBA5FXayy1vZ9YF385dfNYE6_lP_QzfJOYqWjkl05ZYb7AWNPARtZKr_qpMS00Og6MNRoyHbXgPkTBTH7tU9Rv8eeuPp5DQ__XL27TU8Cog7kN-8eAP769XGvUXmszbvvJ7_AnXPAZY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxRBFC5iAupFE9dRY0rw4qHGqaW3Y2htxiVBiIHgpamVDEJPmJ4RkpP_wX_oL_G96u5BAzHoqaHorqp-tXxfLe99hLxMeG6AmOfM5U4ypXXBTKFzvNPgM-mEygr0Rj44TKfH6v1JcvKb1BdUooWc2niIj6P6zIU-wgB_jem6E1Fox6mJwfxukK0k4wLH5H55tJ6EhUq7cJmwWla5EoPX3BW5IDbZ9k9suoJwRuCp7pIv6yrH-yZfx6ulGduLS9Ec_-uftsmdno7S_a7_7JAN39wjt8pBBe4-OT06b4AjtrOWzgNFiSO9oOXpbAFfVX6B8AeTJf020zTCXrwBxg48cHpW4tbQ-YV3tJtYafnz-48pRSVjWgGedtuQvSPoA3Jcvf1cTlmvzsC0UtmSOXik3jrlQzKRhfXSiGCBcGgudbA6cdzKSTCymOTIEqwyeiJNipLtOrFcPiSbzbzxjwnNeTCwPPZZgEy9CyazNpcxiac-FSPyCsxU96OrrePBueA1Jg62q3vbjQgb2rA-6wJ2XPP-i6GhazAtHpfoxs9XUAos9gC8gbH-7Z0CGR8Axog86nrJulQB3Anj2T35h9rvkZuf3lT1x3eHH56S2wIpBLrP82dkc7lY-V0gQEvzPHb1X5NkBBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Planar+Chiral+Ferrocenes+via+Transition-Metal-Catalyzed+Direct+C-H+Bond+Functionalization&rft.jtitle=Accounts+of+chemical+research&rft.au=Gao%2C+De-Wei&rft.au=Gu%2C+Qing&rft.au=Zheng%2C+Chao&rft.au=You%2C+Shu-Li&rft.date=2017-02-21&rft.eissn=1520-4898&rft.volume=50&rft.issue=2&rft.spage=351&rft.epage=365&rft_id=info:doi/10.1021%2Facs.accounts.6b00573&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |