Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C–H Bond Functionalization

Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which h...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 50; no. 2; pp. 351 - 365
Main Authors Gao, De-Wei, Gu, Qing, Zheng, Chao, You, Shu-Li
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which have been employed in the industrial synthesis of pharmaceuticals and agrochemicals. So far, the main methods for the synthesis of planar chiral ferrocenes involve diastereoselective directed ortho-metalation (DoM), enantioselective DoM, and chiral resolution. Despite the fact that these approaches are well developed and widely applied, the use of chiral auxiliaries or external stoichiometric chiral bases is required in most cases. Additionally, the practicality of these processes is hampered by the requirement of sensitive organometallic reagents, the poor compatibility with functional groups, and the low atom economy in some cases. Therefore, the development of highly efficient strategies to introduce planar chirality on the backbone of ferrocene that do not possess these limitations is highly desirable. Meanwhile, transition-metal-catalyzed asymmetric C–H bond functionalization reactions have attracted much attention over the past few years owing to their emerging potential for providing a straightforward approach for the preparation of chiral molecules. In addition to the majority of the work focusing on the installation of central chirality, methods for the catalytic asymmetric synthesis of planar chiral compounds via C–H bond functionalization have also been explored. In this Account, we summarize our recent efforts aimed at the development of novel methods to synthesize planar chiral compounds via asymmetric C–H bond functionalization and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of diastereoselective and enantioselective synthesis of planar chiral ferrocenes. Subsequently, asymmetric syntheses of structurally diverse planar chiral ferrocenes via Pd [Pd­(II), Pd(0)]-, Ir-, Rh-, Au-, and Pt-catalyzed C–H bond functionalization are described. These methods have impressive advantages over traditional approaches for the synthesis of functionalized planar chiral ferrocenes in terms of both step- and atom-economies. Notably, the products of these processes are easily transformed into a variety of new catalysts or ligands, which have been demonstrated to promote efficient asymmetric reactions. Moreover, DFT calculations have been conducted to explore the origin of the excellent enantioselectivity of Pd-catalyzed enantioselective C–H bond functionalization reactions. Progress made in the area of asymmetric C–H bond functionalization provides an effective platform for the design and synthesis of planar chiral ferrocenes.
AbstractList Conspectus Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which have been employed in the industrial synthesis of pharmaceuticals and agrochemicals. So far, the main methods for the synthesis of planar chiral ferrocenes involve diastereoselective directed ortho-metalation (DoM), enantioselective DoM, and chiral resolution. Despite the fact that these approaches are well developed and widely applied, the use of chiral auxiliaries or external stoichiometric chiral bases is required in most cases. Additionally, the practicality of these processes is hampered by the requirement of sensitive organometallic reagents, the poor compatibility with functional groups, and the low atom economy in some cases. Therefore, the development of highly efficient strategies to introduce planar chirality on the backbone of ferrocene that do not possess these limitations is highly desirable. Meanwhile, transition-metal-catalyzed asymmetric C-H bond functionalization reactions have attracted much attention over the past few years owing to their emerging potential for providing a straightforward approach for the preparation of chiral molecules. In addition to the majority of the work focusing on the installation of central chirality, methods for the catalytic asymmetric synthesis of planar chiral compounds via C-H bond functionalization have also been explored. In this Account, we summarize our recent efforts aimed at the development of novel methods to synthesize planar chiral compounds via asymmetric C-H bond functionalization and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of diastereoselective and enantioselective synthesis of planar chiral ferrocenes. Subsequently, asymmetric syntheses of structurally diverse planar chiral ferrocenes via Pd [Pd(II), Pd(0)]-, Ir-, Rh-, Au-, and Pt-catalyzed C-H bond functionalization are described. These methods have impressive advantages over traditional approaches for the synthesis of functionalized planar chiral ferrocenes in terms of both step- and atom-economies. Notably, the products of these processes are easily transformed into a variety of new catalysts or ligands, which have been demonstrated to promote efficient asymmetric reactions. Moreover, DFT calculations have been conducted to explore the origin of the excellent enantioselectivity of Pd-catalyzed enantioselective C-H bond functionalization reactions. Progress made in the area of asymmetric C-H bond functionalization provides an effective platform for the design and synthesis of planar chiral ferrocenes.
Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which have been employed in the industrial synthesis of pharmaceuticals and agrochemicals. So far, the main methods for the synthesis of planar chiral ferrocenes involve diastereoselective directed ortho-metalation (DoM), enantioselective DoM, and chiral resolution. Despite the fact that these approaches are well developed and widely applied, the use of chiral auxiliaries or external stoichiometric chiral bases is required in most cases. Additionally, the practicality of these processes is hampered by the requirement of sensitive organometallic reagents, the poor compatibility with functional groups, and the low atom economy in some cases. Therefore, the development of highly efficient strategies to introduce planar chirality on the backbone of ferrocene that do not possess these limitations is highly desirable. Meanwhile, transition-metal-catalyzed asymmetric C–H bond functionalization reactions have attracted much attention over the past few years owing to their emerging potential for providing a straightforward approach for the preparation of chiral molecules. In addition to the majority of the work focusing on the installation of central chirality, methods for the catalytic asymmetric synthesis of planar chiral compounds via C–H bond functionalization have also been explored. In this Account, we summarize our recent efforts aimed at the development of novel methods to synthesize planar chiral compounds via asymmetric C–H bond functionalization and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of diastereoselective and enantioselective synthesis of planar chiral ferrocenes. Subsequently, asymmetric syntheses of structurally diverse planar chiral ferrocenes via Pd [Pd­(II), Pd(0)]-, Ir-, Rh-, Au-, and Pt-catalyzed C–H bond functionalization are described. These methods have impressive advantages over traditional approaches for the synthesis of functionalized planar chiral ferrocenes in terms of both step- and atom-economies. Notably, the products of these processes are easily transformed into a variety of new catalysts or ligands, which have been demonstrated to promote efficient asymmetric reactions. Moreover, DFT calculations have been conducted to explore the origin of the excellent enantioselectivity of Pd-catalyzed enantioselective C–H bond functionalization reactions. Progress made in the area of asymmetric C–H bond functionalization provides an effective platform for the design and synthesis of planar chiral ferrocenes.
Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which have been employed in the industrial synthesis of pharmaceuticals and agrochemicals. So far, the main methods for the synthesis of planar chiral ferrocenes involve diastereoselective directed ortho-metalation (DoM), enantioselective DoM, and chiral resolution. Despite the fact that these approaches are well developed and widely applied, the use of chiral auxiliaries or external stoichiometric chiral bases is required in most cases. Additionally, the practicality of these processes is hampered by the requirement of sensitive organometallic reagents, the poor compatibility with functional groups, and the low atom economy in some cases. Therefore, the development of highly efficient strategies to introduce planar chirality on the backbone of ferrocene that do not possess these limitations is highly desirable. Meanwhile, transition-metal-catalyzed asymmetric C-H bond functionalization reactions have attracted much attention over the past few years owing to their emerging potential for providing a straightforward approach for the preparation of chiral molecules. In addition to the majority of the work focusing on the installation of central chirality, methods for the catalytic asymmetric synthesis of planar chiral compounds via C-H bond functionalization have also been explored. In this Account, we summarize our recent efforts aimed at the development of novel methods to synthesize planar chiral compounds via asymmetric C-H bond functionalization and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of diastereoselective and enantioselective synthesis of planar chiral ferrocenes. Subsequently, asymmetric syntheses of structurally diverse planar chiral ferrocenes via Pd [Pd(II), Pd(0)]-, Ir-, Rh-, Au-, and Pt-catalyzed C-H bond functionalization are described. These methods have impressive advantages over traditional approaches for the synthesis of functionalized planar chiral ferrocenes in terms of both step- and atom-economies. Notably, the products of these processes are easily transformed into a variety of new catalysts or ligands, which have been demonstrated to promote efficient asymmetric reactions. Moreover, DFT calculations have been conducted to explore the origin of the excellent enantioselectivity of Pd-catalyzed enantioselective C-H bond functionalization reactions. Progress made in the area of asymmetric C-H bond functionalization provides an effective platform for the design and synthesis of planar chiral ferrocenes.
Author Zheng, Chao
You, Shu-Li
Gu, Qing
Gao, De-Wei
AuthorAffiliation Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
State Key Laboratory of Organometallic Chemistry
AuthorAffiliation_xml – name: Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
– name: State Key Laboratory of Organometallic Chemistry
Author_xml – sequence: 1
  givenname: De-Wei
  surname: Gao
  fullname: Gao, De-Wei
– sequence: 2
  givenname: Qing
  surname: Gu
  fullname: Gu, Qing
– sequence: 3
  givenname: Chao
  orcidid: 0000-0002-7349-262X
  surname: Zheng
  fullname: Zheng, Chao
– sequence: 4
  givenname: Shu-Li
  orcidid: 0000-0003-4586-8359
  surname: You
  fullname: You, Shu-Li
  email: slyou@sioc.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28121428$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9Kw0AQxhdRtFbfQGSPXlL3X9L0qNGqoCio5zDZTOhKuqu7iVBPvoNv6JO4pa1HEYaZWfh9s8x8-2TbOouEHHE24kzwU9BhBFq73nZhlFWMpWO5RQY8FSxR-STfJgPGGI-9EntkP4SX-BQqG--SPZFzwZXIB2T2uLDdDIMJ1DX0oQULnhYz46GlU_TeabQY6LsB-uTBBtMZZ5M77KBNCoh58YE1vTAedUeL78-va3rubE2nvdVLFFrzAcvmgOw00AY8XNcheZ5ePhXXye391U1xdpuAUuMuqWPJUNcKm5TJiUZZiUaPcwFcQqMhrbmWrKnkhOUq7qpVBUxWmWBSQKq5HJKT1dxX7956DF05N0FjGzdD14eS5xMZg_P_oJkQuVI8i6haodq7EDw25as3c_CLkrNyaUcZ7Sg3dpRrO6LseP1DX82x_hVt7h8BtgKW8hfX-3iw8PfMH1z-nWg
CitedBy_id crossref_primary_10_1021_acs_organomet_8b00185
crossref_primary_10_1021_jacs_2c13542
crossref_primary_10_1021_acs_orglett_7b02968
crossref_primary_10_1002_ange_201713106
crossref_primary_10_1246_bcsj_20170415
crossref_primary_10_1002_anie_201813452
crossref_primary_10_1002_ange_202008437
crossref_primary_10_1021_acs_joc_9b01503
crossref_primary_10_1002_anie_202305278
crossref_primary_10_1021_acs_organomet_7b00659
crossref_primary_10_1039_D3SC03496H
crossref_primary_10_1039_D0OB02169E
crossref_primary_10_1039_D3CC03592A
crossref_primary_10_1002_ange_201813887
crossref_primary_10_1002_ange_201906700
crossref_primary_10_1016_j_gresc_2023_11_011
crossref_primary_10_1021_acs_orglett_7b02973
crossref_primary_10_1016_j_chempr_2020_04_005
crossref_primary_10_1021_acscatal_9b00918
crossref_primary_10_1002_anie_201710317
crossref_primary_10_1002_anie_202009323
crossref_primary_10_1038_s41467_021_24678_5
crossref_primary_10_1002_ejoc_201700358
crossref_primary_10_1039_C8CC02821D
crossref_primary_10_1007_s11030_023_10677_9
crossref_primary_10_1021_acs_joc_7b01347
crossref_primary_10_1021_acs_joc_1c02485
crossref_primary_10_1021_acs_orglett_9b00511
crossref_primary_10_1002_ange_201810472
crossref_primary_10_1021_acscatal_0c04077
crossref_primary_10_1021_acs_organomet_7b00799
crossref_primary_10_1021_acs_organomet_9b00490
crossref_primary_10_1039_C7QO00850C
crossref_primary_10_1021_acscatal_2c00083
crossref_primary_10_1002_chir_22831
crossref_primary_10_1002_ejoc_201800396
crossref_primary_10_1039_D3QO00069A
crossref_primary_10_6023_cjoc202201037
crossref_primary_10_1039_D2DT00903J
crossref_primary_10_1002_anie_201904214
crossref_primary_10_1016_j_cclet_2020_10_034
crossref_primary_10_1021_acs_orglett_9b02243
crossref_primary_10_1039_D0SC04597G
crossref_primary_10_1002_qua_26252
crossref_primary_10_1039_C9CC02949D
crossref_primary_10_1039_D2NJ02224A
crossref_primary_10_1002_anie_202212079
crossref_primary_10_1021_acscatal_8b04870
crossref_primary_10_1021_acscatal_9b03887
crossref_primary_10_1002_anie_201901856
crossref_primary_10_1038_s41467_024_48947_1
crossref_primary_10_1016_j_jorganchem_2023_122831
crossref_primary_10_1021_acscatal_0c00142
crossref_primary_10_1002_ange_201813191
crossref_primary_10_1039_C9NJ03780B
crossref_primary_10_1055_a_1802_6793
crossref_primary_10_1002_chem_202003225
crossref_primary_10_1021_acs_organomet_7b00691
crossref_primary_10_1039_D2CC00459C
crossref_primary_10_1002_cssc_202002397
crossref_primary_10_1021_acs_orglett_0c02216
crossref_primary_10_1002_ange_201811256
crossref_primary_10_1002_anie_201813887
crossref_primary_10_1002_anie_202313388
crossref_primary_10_1002_adsc_202301436
crossref_primary_10_1016_j_tetlet_2022_153821
crossref_primary_10_1039_D1OB01190A
crossref_primary_10_1055_a_2089_4934
crossref_primary_10_1002_adsc_202100283
crossref_primary_10_1021_jacs_9b03862
crossref_primary_10_1126_science_ado1246
crossref_primary_10_1002_ange_202009323
crossref_primary_10_1038_s44160_022_00177_3
crossref_primary_10_1039_D3SC02800C
crossref_primary_10_1021_acs_joc_8b03221
crossref_primary_10_1021_acs_orglett_2c02888
crossref_primary_10_1021_acs_orglett_8b03938
crossref_primary_10_1039_C9CC06529F
crossref_primary_10_1002_tcr_202100102
crossref_primary_10_1021_acs_jafc_2c01407
crossref_primary_10_1021_acs_orglett_1c02775
crossref_primary_10_1002_advs_202304672
crossref_primary_10_3762_bjoc_14_131
crossref_primary_10_1039_D1QO00183C
crossref_primary_10_1002_ange_201813452
crossref_primary_10_1002_anie_202001267
crossref_primary_10_1021_acscatal_0c05576
crossref_primary_10_1002_anie_201713106
crossref_primary_10_1021_acs_joc_1c02875
crossref_primary_10_1039_C8DT01147H
crossref_primary_10_1016_j_gresc_2024_02_007
crossref_primary_10_1360_TB_2021_1324
crossref_primary_10_3390_M1582
crossref_primary_10_1002_anie_202008437
crossref_primary_10_1039_C9QO00534J
crossref_primary_10_1038_s41467_019_12181_x
crossref_primary_10_1016_j_mcat_2020_110847
crossref_primary_10_1021_acs_orglett_9b00315
crossref_primary_10_1016_j_jcat_2018_03_007
crossref_primary_10_1002_ange_202001267
crossref_primary_10_1002_anie_201811256
crossref_primary_10_1055_a_2005_5006
crossref_primary_10_1021_acs_orglett_9b01522
crossref_primary_10_1039_C8QO00703A
crossref_primary_10_1016_j_trechm_2020_05_003
crossref_primary_10_1021_acs_joc_9b00953
crossref_primary_10_1039_C9DT03646F
crossref_primary_10_1038_s41557_023_01176_3
crossref_primary_10_1002_ange_201709075
crossref_primary_10_1002_slct_202001874
crossref_primary_10_6023_cjoc202211039
crossref_primary_10_1021_acs_orglett_2c04169
crossref_primary_10_1038_s41467_022_31178_7
crossref_primary_10_1039_C8CS00201K
crossref_primary_10_1021_jacs_0c08205
crossref_primary_10_1021_jacs_0c11735
crossref_primary_10_1002_ejoc_201900050
crossref_primary_10_1021_acs_joc_8b00974
crossref_primary_10_1002_anie_201709075
crossref_primary_10_1021_acs_organomet_8b00457
crossref_primary_10_1016_j_jorganchem_2023_122998
crossref_primary_10_1002_ejoc_202300951
crossref_primary_10_1021_acs_chemrev_3c00149
crossref_primary_10_1038_s41467_021_27441_y
crossref_primary_10_1002_ange_201711451
crossref_primary_10_1021_acs_orglett_1c04002
crossref_primary_10_1002_chem_201801765
crossref_primary_10_1038_s41467_020_16098_8
crossref_primary_10_1016_j_scib_2022_12_011
crossref_primary_10_3762_bjoc_17_165
crossref_primary_10_1002_anie_201807610
crossref_primary_10_1016_j_ica_2019_119353
crossref_primary_10_1021_acs_organomet_3c00185
crossref_primary_10_1021_acscatal_8b03912
crossref_primary_10_1021_acs_orglett_2c00542
crossref_primary_10_1021_acs_organomet_9b00422
crossref_primary_10_1021_acs_orglett_8b00348
crossref_primary_10_1002_chem_202102624
crossref_primary_10_1021_acs_orglett_3c01266
crossref_primary_10_1021_acs_organomet_7b00125
crossref_primary_10_1002_chem_201902102
crossref_primary_10_1021_acscentsci_3c00748
crossref_primary_10_1021_acscatal_1c05080
crossref_primary_10_1021_acs_organomet_8b00243
crossref_primary_10_1021_acs_joc_7b00775
crossref_primary_10_1002_cctc_201700557
crossref_primary_10_1039_D1QO01344K
crossref_primary_10_1016_j_tet_2019_06_008
crossref_primary_10_1039_C8CC05555F
crossref_primary_10_1002_anie_201813191
crossref_primary_10_1021_acs_organomet_7b00143
crossref_primary_10_1021_jacs_8b01754
crossref_primary_10_1002_ejoc_202100335
crossref_primary_10_1016_j_xcrp_2022_100768
crossref_primary_10_1002_adsc_202200409
crossref_primary_10_1021_acscatal_8b01992
crossref_primary_10_1002_ange_202313388
crossref_primary_10_1016_j_trechm_2021_12_005
crossref_primary_10_1021_acscatal_2c00001
crossref_primary_10_1021_acs_organomet_9b00407
crossref_primary_10_1039_C9OB00645A
crossref_primary_10_1039_C8CY00367J
crossref_primary_10_1002_anie_201810472
crossref_primary_10_1039_D0SC03052J
crossref_primary_10_1002_ejic_201801430
crossref_primary_10_3390_catal14020123
crossref_primary_10_1021_acs_joc_3c00212
crossref_primary_10_1055_a_2335_8452
crossref_primary_10_1002_ejic_202100911
crossref_primary_10_1002_ejoc_201901738
crossref_primary_10_1021_acscatal_0c02049
crossref_primary_10_1039_D0CC05374K
crossref_primary_10_1039_D1SC04687J
crossref_primary_10_1016_j_gresc_2021_05_004
crossref_primary_10_1039_D1QO01884A
crossref_primary_10_1021_acs_organomet_7b00704
crossref_primary_10_1016_j_comptc_2020_112832
crossref_primary_10_1016_j_tet_2019_01_059
crossref_primary_10_1021_jacs_0c13166
crossref_primary_10_1002_celc_201801035
crossref_primary_10_1021_acs_orglett_1c01294
crossref_primary_10_1002_anie_201902126
crossref_primary_10_1002_ange_201904214
crossref_primary_10_1021_acscatal_0c02109
crossref_primary_10_1039_D0CC05219A
crossref_primary_10_1002_ange_201901856
crossref_primary_10_1002_ange_202212079
crossref_primary_10_1002_tcr_201700069
crossref_primary_10_1039_D0QO01227K
crossref_primary_10_1002_anie_201911086
crossref_primary_10_1002_ange_201710317
crossref_primary_10_1021_acscatal_1c02450
crossref_primary_10_1002_anie_201711451
crossref_primary_10_1021_acs_joc_9b03054
crossref_primary_10_1039_D0CS00359J
crossref_primary_10_1002_ange_201808595
crossref_primary_10_1021_acs_orglett_9b00363
crossref_primary_10_1039_D1CS00923K
crossref_primary_10_1039_C7CC09273C
crossref_primary_10_1016_j_jorganchem_2019_02_001
crossref_primary_10_1021_acscatal_0c03317
crossref_primary_10_1002_asia_202000657
crossref_primary_10_1039_C9CC03967H
crossref_primary_10_1002_chem_202203006
crossref_primary_10_1016_j_checat_2021_11_001
crossref_primary_10_1039_D2CC06492H
crossref_primary_10_1002_ange_202305278
crossref_primary_10_1002_ijch_201800023
crossref_primary_10_1021_jacsau_2c00630
crossref_primary_10_1039_D1NJ04526A
crossref_primary_10_1002_ange_201807610
crossref_primary_10_1002_ange_201911086
crossref_primary_10_1021_acscatal_1c05299
crossref_primary_10_1021_acs_orglett_0c03126
crossref_primary_10_1021_acscatal_8b01682
crossref_primary_10_1002_anie_201906700
crossref_primary_10_1002_ange_201811998
crossref_primary_10_1039_D3OB01063E
crossref_primary_10_1039_D2OB00558A
crossref_primary_10_1002_asia_201901334
crossref_primary_10_1002_ange_201902126
crossref_primary_10_1021_jacs_3c13266
crossref_primary_10_1039_D2GC04337H
crossref_primary_10_1021_jacs_1c07635
crossref_primary_10_1021_acs_inorgchem_8b03389
crossref_primary_10_1002_adsc_201901195
crossref_primary_10_1021_acs_joc_9b00311
crossref_primary_10_1016_j_checat_2021_12_017
crossref_primary_10_1007_s40242_019_9013_9
crossref_primary_10_1021_acs_orglett_1c00418
crossref_primary_10_1039_D1QO00056J
crossref_primary_10_1002_anie_201811998
crossref_primary_10_1002_ejic_202100841
crossref_primary_10_3987_COM_22_14649
crossref_primary_10_1021_acs_orglett_1c00533
crossref_primary_10_1016_j_checat_2022_07_009
crossref_primary_10_1002_anie_201808595
crossref_primary_10_1002_asia_202200818
crossref_primary_10_1039_D1CC00398D
crossref_primary_10_1021_acs_cgd_8b00538
crossref_primary_10_1016_j_polymer_2017_08_022
crossref_primary_10_1021_acs_chemrev_8b00507
crossref_primary_10_1039_C9CC07854A
crossref_primary_10_1002_elps_202200148
crossref_primary_10_1021_acscatal_3c05955
Cites_doi 10.6023/cjoc201502027
10.1021/jacs.6b00127
10.1021/ar020153m
10.1021/acs.accounts.5b00092
10.1021/ja01139a527
10.1021/ar030051b
10.3762/bjoc.9.222
10.1002/anie.201502548
10.1039/jr9520000632
10.1021/om010679v
10.1002/ejoc.200700470
10.1021/om400564x
10.1016/j.molcata.2004.11.025
10.1039/b910977c
10.1039/C4RA07832B
10.1039/C5CC00723B
10.1021/ol502509f
10.1039/c3sc50577d
10.1021/om991041a
10.1021/ja909571z
10.1021/ol502520b
10.1002/anie.200905060
10.1039/c3ra46996d
10.1021/om700806e
10.3390/molecules14114747
10.1021/ja500699x
10.1021/ja311082u
10.1021/ja207607s
10.1002/anie.199305681
10.1021/ol991381s
10.1021/ja062616f
10.1038/171121a0
10.1002/chem.201302576
10.1039/9781782621966
10.1021/jo400159y
10.1021/ja504196j
10.1126/science.1258538
10.1021/om5002606
10.1002/anie.199724561
10.1002/anie.201604840
10.3762/bjoc.8.212
10.1002/chem.201501123
10.1021/acs.organomet.6b00020
10.1023/A:1013832630565
10.1002/cctc.201500895
10.1021/ja00783a030
10.1002/9780470985663
10.1002/anie.200801030
10.1039/C6CC02624A
10.1016/j.tetlet.2015.01.130
10.1021/ja208661v
10.1039/b816707a
10.1021/acs.joc.6b00825
10.1021/om9005356
10.1002/9783527627325
10.6023/cjoc201602032
10.1021/acs.orglett.5b01373
10.1021/ja953246q
10.1002/chem.201300116
10.1021/jacs.6b04660
10.1021/ja500444v
10.1021/ar990077w
10.1002/chem.201000011
10.1055/s-1995-4864
10.1021/ol301063k
10.1021/acs.organomet.5b00730
10.1002/9783527619542
10.1107/S0365110X56001091
10.1002/anie.201000799
10.1038/1681039b0
10.1002/anie.201402518
10.1002/(SICI)1521-3773(19990816)38:16<2421::AID-ANIE2421>3.3.CO;2-I
10.1039/C5DT01373A
10.1016/S0022-328X(00)83942-X
10.1021/acs.organomet.6b00569
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/acs.accounts.6b00573
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 365
ExternalDocumentID 10_1021_acs_accounts_6b00573
28121428
c534733206
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
ABJNI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CUPRZ
GGK
IH2
NPM
XSW
ZCA
~02
AAYXX
CITATION
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a447t-da446ecd4ef5039ce3b2fc782a13afca5d1c30fb39084152c4ba03b62032a5c13
IEDL.DBID ACS
ISSN 0001-4842
IngestDate Fri Oct 25 21:53:02 EDT 2024
Fri Oct 25 06:31:03 EDT 2024
Thu Sep 26 19:16:26 EDT 2024
Sat Sep 28 08:45:58 EDT 2024
Thu Aug 27 13:42:28 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a447t-da446ecd4ef5039ce3b2fc782a13afca5d1c30fb39084152c4ba03b62032a5c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7349-262X
0000-0003-4586-8359
PMID 28121428
PQID 1862284416
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_1893893111
proquest_miscellaneous_1862284416
crossref_primary_10_1021_acs_accounts_6b00573
pubmed_primary_28121428
acs_journals_10_1021_acs_accounts_6b00573
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2017-02-21
PublicationDateYYYYMMDD 2017-02-21
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref27/cit27
ref1/cit1e
ref1/cit1d
ref16/cit16
ref13/cit13b
ref13/cit13c
ref23/cit23
ref2/cit2c
ref2/cit2b
ref31/cit31
ref2/cit2a
ref1/cit1a
ref1/cit1c
ref37/cit37
ref1/cit1b
ref5/cit5b
ref17/cit17
ref5/cit5c
Dai L.-X. (ref4/cit4d) 2010
ref10/cit10
ref5/cit5a
ref35/cit35
Sokolov V. I. (ref13/cit13a) 1978; 32
ref19/cit19
ref21/cit21
ref3/cit3b
ref3/cit3a
ref5/cit5j
ref5/cit5h
ref24/cit24
ref38/cit38
ref5/cit5i
ref5/cit5f
Togni A. (ref4/cit4b) 1998
ref5/cit5g
ref5/cit5d
ref5/cit5e
ref36/cit36
ref18/cit18
ref9/cit9c
ref9/cit9b
ref9/cit9a
ref11/cit11
ref25/cit25
ref29/cit29
ref8/cit8a
ref8/cit8c
ref8/cit8b
ref8/cit8e
ref8/cit8d
ref32/cit32
ref8/cit8f
Štěpnička P. (ref4/cit4c) 2008
You S.-L. (ref8/cit8g) 2015
ref9/cit9d
Ackermann L. (ref20/cit20) 2009
ref28/cit28
ref26/cit26
Hayashi T. (ref4/cit4a) 1995
ref34/cit34b
ref34/cit34c
ref34/cit34a
ref14/cit14a
ref12/cit12
ref14/cit14c
ref14/cit14b
ref15/cit15
ref14/cit14e
ref14/cit14d
ref14/cit14g
ref14/cit14f
ref22/cit22
ref33/cit33
ref30/cit30
ref4/cit4e
ref6/cit6a
ref6/cit6b
ref7/cit7
References_xml – ident: ref9/cit9a
  doi: 10.6023/cjoc201502027
– ident: ref21/cit21
  doi: 10.1021/jacs.6b00127
– ident: ref2/cit2b
  doi: 10.1021/ar020153m
– ident: ref8/cit8f
  doi: 10.1021/acs.accounts.5b00092
– ident: ref1/cit1c
  doi: 10.1021/ja01139a527
– ident: ref2/cit2c
  doi: 10.1021/ar030051b
– ident: ref19/cit19
  doi: 10.3762/bjoc.9.222
– ident: ref34/cit34b
  doi: 10.1002/anie.201502548
– ident: ref1/cit1b
  doi: 10.1039/jr9520000632
– ident: ref5/cit5h
  doi: 10.1021/om010679v
– ident: ref24/cit24
  doi: 10.1002/ejoc.200700470
– ident: ref4/cit4e
  doi: 10.1021/om400564x
– ident: ref3/cit3b
  doi: 10.1016/j.molcata.2004.11.025
– ident: ref6/cit6a
  doi: 10.1039/b910977c
– ident: ref28/cit28
  doi: 10.1039/C4RA07832B
– ident: ref34/cit34a
  doi: 10.1039/C5CC00723B
– ident: ref22/cit22
  doi: 10.1021/ol502509f
– ident: ref17/cit17
  doi: 10.1039/c3sc50577d
– ident: ref5/cit5g
  doi: 10.1021/om991041a
– ident: ref14/cit14b
  doi: 10.1021/ja909571z
– ident: ref29/cit29
  doi: 10.1021/ol502520b
– ident: ref31/cit31
  doi: 10.1002/anie.200905060
– ident: ref8/cit8e
  doi: 10.1039/c3ra46996d
– ident: ref10/cit10
  doi: 10.1021/om700806e
– ident: ref5/cit5j
  doi: 10.3390/molecules14114747
– ident: ref26/cit26
  doi: 10.1021/ja500699x
– ident: ref15/cit15
  doi: 10.1021/ja311082u
– ident: ref14/cit14c
  doi: 10.1021/ja207607s
– ident: ref5/cit5b
  doi: 10.1002/anie.199305681
– ident: ref5/cit5f
  doi: 10.1021/ol991381s
– ident: ref5/cit5i
  doi: 10.1021/ja062616f
– ident: ref1/cit1d
  doi: 10.1038/171121a0
– ident: ref8/cit8c
  doi: 10.1002/chem.201302576
– volume-title: Asymmetric Functionalization of C–H Bonds
  year: 2015
  ident: ref8/cit8g
  doi: 10.1039/9781782621966
  contributor:
    fullname: You S.-L.
– ident: ref8/cit8d
  doi: 10.1021/jo400159y
– ident: ref14/cit14e
  doi: 10.1021/ja504196j
– ident: ref14/cit14f
  doi: 10.1126/science.1258538
– ident: ref35/cit35
  doi: 10.1021/om5002606
– ident: ref12/cit12
  doi: 10.1002/anie.199724561
– ident: ref25/cit25
  doi: 10.1002/anie.201604840
– ident: ref11/cit11
  doi: 10.3762/bjoc.8.212
– ident: ref16/cit16
  doi: 10.1002/chem.201501123
– ident: ref36/cit36
  doi: 10.1021/acs.organomet.6b00020
– volume: 32
  start-page: 122
  year: 1978
  ident: ref13/cit13a
  publication-title: Chimia
  contributor:
    fullname: Sokolov V. I.
– ident: ref3/cit3a
  doi: 10.1023/A:1013832630565
– ident: ref9/cit9d
  doi: 10.1002/cctc.201500895
– ident: ref5/cit5a
  doi: 10.1021/ja00783a030
– volume-title: Ferrocenes
  year: 2008
  ident: ref4/cit4c
  doi: 10.1002/9780470985663
  contributor:
    fullname: Štěpnička P.
– ident: ref14/cit14a
  doi: 10.1002/anie.200801030
– ident: ref37/cit37
  doi: 10.1039/C6CC02624A
– ident: ref9/cit9b
  doi: 10.1016/j.tetlet.2015.01.130
– ident: ref14/cit14d
  doi: 10.1021/ja208661v
– ident: ref8/cit8a
  doi: 10.1039/b816707a
– ident: ref38/cit38
  doi: 10.1021/acs.joc.6b00825
– volume-title: Ferrocenes
  year: 1995
  ident: ref4/cit4a
  contributor:
    fullname: Hayashi T.
– ident: ref13/cit13c
  doi: 10.1021/om9005356
– volume-title: Modern Arylation Methods
  year: 2009
  ident: ref20/cit20
  doi: 10.1002/9783527627325
  contributor:
    fullname: Ackermann L.
– ident: ref27/cit27
  doi: 10.6023/cjoc201602032
– volume-title: Chiral Ferrocenes in Asymmetric Catalysis
  year: 2010
  ident: ref4/cit4d
  contributor:
    fullname: Dai L.-X.
– ident: ref34/cit34c
  doi: 10.1021/acs.orglett.5b01373
– ident: ref5/cit5d
  doi: 10.1021/ja953246q
– ident: ref7/cit7
  doi: 10.1002/chem.201300116
– ident: ref14/cit14g
  doi: 10.1021/jacs.6b04660
– ident: ref23/cit23
  doi: 10.1021/ja500444v
– ident: ref2/cit2a
  doi: 10.1021/ar990077w
– ident: ref6/cit6b
  doi: 10.1002/chem.201000011
– ident: ref5/cit5c
  doi: 10.1055/s-1995-4864
– ident: ref18/cit18
  doi: 10.1021/ol301063k
– ident: ref30/cit30
  doi: 10.1021/acs.organomet.5b00730
– volume-title: Metallocenes
  year: 1998
  ident: ref4/cit4b
  doi: 10.1002/9783527619542
  contributor:
    fullname: Togni A.
– ident: ref1/cit1e
  doi: 10.1107/S0365110X56001091
– ident: ref8/cit8b
  doi: 10.1002/anie.201000799
– ident: ref1/cit1a
  doi: 10.1038/1681039b0
– ident: ref33/cit33
  doi: 10.1002/anie.201402518
– ident: ref5/cit5e
  doi: 10.1002/(SICI)1521-3773(19990816)38:16<2421::AID-ANIE2421>3.3.CO;2-I
– ident: ref9/cit9c
  doi: 10.1039/C5DT01373A
– ident: ref13/cit13b
  doi: 10.1016/S0022-328X(00)83942-X
– ident: ref32/cit32
  doi: 10.1021/acs.organomet.6b00569
SSID ssj0002467
Score 2.6473317
Snippet Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that...
Conspectus Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 351
SubjectTerms Asymmetry
Bonding
Catalysis
Catalysts
Chemical bonds
Chirality
Ferrocenes
Synthesis
Title Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C–H Bond Functionalization
URI http://dx.doi.org/10.1021/acs.accounts.6b00573
https://www.ncbi.nlm.nih.gov/pubmed/28121428
https://search.proquest.com/docview/1862284416
https://search.proquest.com/docview/1893893111
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uB724L-NGBC8eMjZL2_Q4FIdBGD2o4K0kaYqD0JHpjDCe_A_-Q3-JL10UFbdTIaRJ8_Ka73tJ3nsIHflUaiDmkqQy5UQoFREdKenuNNiQp0yEkfNG7p8HvWtxduPfvBuKn0_wGT1RpoCmy8wJRTvQZQS_WTTPQk86Le7El28rLxNBFSMTTGQhBWtc5b5pxQGSKT4C0jcss0Sb7jK6aHx2qksmd-3JWLfN49cQjn8cyApaqokn7lSasopmbL6GFuIm39s6ur2c5sAGi0GBhxl2yYzUCMe3gxG81bUjB3SwLOKHgcIlwJV3vUjfAnsnsdsEmj7aFFdLKI5fnp572OUsxl1AzmrDsXb53EDX3dOruEfqPAxECRGOSQqPwJpU2Mz3eGQs1ywzQC0U5Sozyk-p4V6meeRJxweM0MrjOnDJ2ZVvKN9Ec_kwt9sIS5ppMIRtmEGjNs10aIzkZRENbMBa6BjElNT_UZGUR-SMJq6wkV1Sy66FSDNxyX0VmuOX-ofN7CYgWncwonI7nEAvYNYBTAM3_alO5LgdQEMLbVWq8dYrA5bkItft_OPrd9EicwzBecfTPTQ3Hk3sPvCbsT4olfoVgAr5Jw
link.rule.ids 315,783,787,2773,27089,27937,27938,57071,57121
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED6k6eAubfpI6j5ZoEsHOqZIvcZCiOG2cZbYRTaBpCjYCCAHlh0gmfIf-g_7S3pHSS5awC0yCSAokjqe-H1H8u4APoYiMUjME14kheRK65SbVCd0p8HFsghUnJI38uQsGs_U14vwYg_CzhcGB1FjS7U_xP8dXUAcU5luEijUg8j4QH4P4GEYI0YSI8rOtwtwoKImVCZayipRQecxt6MVwiVb_4lLO8imB53RE_i-Ha6_a3I52KzNwN7-Fcnx3t9zAI9bGso-N3rzFPZc9Qx6WZf97TnMz28q5Ib1ombLklFqI71i2XyxwrdGbkWwh4sku15o5uHO3_ziE4dcnme0JXRz6wrWLKgs-3n3Y8wogzEbIY4224-tA-gLmI1OptmYt1kZuFYqXvMCH5GzhXJlOJSpddIEpUWioYXUpdVhIawclkamw4TYgVVGD6WJKFW7Dq2Qh7BfLSv3ElgiSoNmsYtLbNQVpYmtTaQvEpGLgj58QjHl7V9V5_7APBA5FXayy1vZ9YF385dfNYE6_lP_QzfJOYqWjkl05ZYb7AWNPARtZKr_qpMS00Og6MNRoyHbXgPkTBTH7tU9Rv8eeuPp5DQ__XL27TU8Cog7kN-8eAP769XGvUXmszbvvJ7_AnXPAZY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxRBFC5iAupFE9dRY0rw4qHGqaW3Y2htxiVBiIHgpamVDEJPmJ4RkpP_wX_oL_G96u5BAzHoqaHorqp-tXxfLe99hLxMeG6AmOfM5U4ypXXBTKFzvNPgM-mEygr0Rj44TKfH6v1JcvKb1BdUooWc2niIj6P6zIU-wgB_jem6E1Fox6mJwfxukK0k4wLH5H55tJ6EhUq7cJmwWla5EoPX3BW5IDbZ9k9suoJwRuCp7pIv6yrH-yZfx6ulGduLS9Ec_-uftsmdno7S_a7_7JAN39wjt8pBBe4-OT06b4AjtrOWzgNFiSO9oOXpbAFfVX6B8AeTJf020zTCXrwBxg48cHpW4tbQ-YV3tJtYafnz-48pRSVjWgGedtuQvSPoA3Jcvf1cTlmvzsC0UtmSOXik3jrlQzKRhfXSiGCBcGgudbA6cdzKSTCymOTIEqwyeiJNipLtOrFcPiSbzbzxjwnNeTCwPPZZgEy9CyazNpcxiac-FSPyCsxU96OrrePBueA1Jg62q3vbjQgb2rA-6wJ2XPP-i6GhazAtHpfoxs9XUAos9gC8gbH-7Z0CGR8Axog86nrJulQB3Anj2T35h9rvkZuf3lT1x3eHH56S2wIpBLrP82dkc7lY-V0gQEvzPHb1X5NkBBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Planar+Chiral+Ferrocenes+via+Transition-Metal-Catalyzed+Direct+C-H+Bond+Functionalization&rft.jtitle=Accounts+of+chemical+research&rft.au=Gao%2C+De-Wei&rft.au=Gu%2C+Qing&rft.au=Zheng%2C+Chao&rft.au=You%2C+Shu-Li&rft.date=2017-02-21&rft.eissn=1520-4898&rft.volume=50&rft.issue=2&rft.spage=351&rft.epage=365&rft_id=info:doi/10.1021%2Facs.accounts.6b00573&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon