Nonthermal Microwave Effects Revisited:  On the Importance of Internal Temperature Monitoring and Agitation in Microwave Chemistry

The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (pol...

Full description

Saved in:
Bibliographic Details
Published inJournal of organic chemistry Vol. 73; no. 1; pp. 36 - 47
Main Authors Herrero, M. Antonia, Kremsner, Jennifer M, Kappe, C. Oliver
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 04.01.2008
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels−Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.
AbstractList The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.
The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.
The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels−Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.
[GRAPHICS] The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing, the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement.,applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.
Author Herrero, M. Antonia
Kremsner, Jennifer M
Kappe, C. Oliver
Author_xml – sequence: 1
  givenname: M. Antonia
  surname: Herrero
  fullname: Herrero, M. Antonia
– sequence: 2
  givenname: Jennifer M
  surname: Kremsner
  fullname: Kremsner, Jennifer M
– sequence: 3
  givenname: C. Oliver
  surname: Kappe
  fullname: Kappe, C. Oliver
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19977161$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18062704$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFBS-AvAEJoVDH8U_CrhqVMtDSdhjWkZPctC6JPdhOS3cs2PCaPAkeTZhBqAu8sWR951zrnLuHdow1gNDTlLxOCU0Prq0klIpCPkCTlFOSiIKwHTQh8TXJqMh20Z731yQezvkjtJvmRFBJ2AT9-GhNuALXqw6f6trZW3UD-KhtoQ4ez-FGex2gefPr-098ZnBE8axfWheUqQHbFs9MAGeiegH9EpwKgwN8ao0O1mlziZVp8OGlDipoa7A2f02ZXkGvfXB3j9HDVnUenoz3Pvr89mgxfZecnB3PpocniWJMhqTK2jZvGGeCSMEBgOVVUwBXNMuzNqU5r-qmYY3iOWOsySpRNSqHgnImGRdZto9erH2Xzn4dwIcyzq-h65QBO_hSklSIjKURfDaCQ9VDUy6d7pW7K__kFoHnI6B8rbrWxTi033JFIWUqVkb5mruFyra-1hBj22CxDxrrYkKsqhHTMaWpHUyI0lf_L430yzUdw_XeQbv9CylXS1JuliSyB_-w9Tg5OKW7exXJWhHrgm8ba-W-lEJmkpeL80_l_OKYfpifX5Tvt_Go2kebYbUg_h7f3ylg2H0
CODEN JOCEAH
CitedBy_id crossref_primary_10_1111_j_1750_3841_2011_02515_x
crossref_primary_10_1016_j_biortech_2013_10_065
crossref_primary_10_1039_c2ce06649a
crossref_primary_10_1039_b916123f
crossref_primary_10_3390_molecules26020470
crossref_primary_10_1002_pola_24385
crossref_primary_10_1016_j_tet_2016_07_041
crossref_primary_10_1021_cc900084s
crossref_primary_10_1039_b804100h
crossref_primary_10_1039_C4GC00037D
crossref_primary_10_1002_anie_201300854
crossref_primary_10_12925_jkocs_2014_31_3_525
crossref_primary_10_1016_j_jiec_2014_02_025
crossref_primary_10_1039_b916124b
crossref_primary_10_1002_jhet_2550
crossref_primary_10_17721_fujcV3I1P73_81
crossref_primary_10_1002_chem_201103560
crossref_primary_10_1080_00397910902957407
crossref_primary_10_1016_j_lwt_2021_112280
crossref_primary_10_1038_srep11308
crossref_primary_10_1002_ange_201204103
crossref_primary_10_1016_j_energy_2013_03_016
crossref_primary_10_1016_j_tetlet_2011_11_021
crossref_primary_10_1016_j_lwt_2020_109861
crossref_primary_10_1021_acs_oprd_2c00180
crossref_primary_10_1002_anie_201101274
crossref_primary_10_3987_COM_20_14350
crossref_primary_10_1021_ol901893p
crossref_primary_10_1080_09168451_2014_891931
crossref_primary_10_1002_ange_201202354
crossref_primary_10_1016_j_wasman_2021_01_010
crossref_primary_10_1016_j_chemosphere_2022_136451
crossref_primary_10_1002_anie_201204103
crossref_primary_10_1016_j_progpolymsci_2011_07_005
crossref_primary_10_1039_C1GC16119A
crossref_primary_10_1002_ejoc_201101717
crossref_primary_10_1039_c3cs00010a
crossref_primary_10_1016_j_carbpol_2013_01_077
crossref_primary_10_1039_C7RA05028C
crossref_primary_10_1039_D0CC04584E
crossref_primary_10_1016_j_matchemphys_2020_123654
crossref_primary_10_1016_j_micromeso_2017_10_028
crossref_primary_10_1016_j_cep_2016_01_011
crossref_primary_10_1021_jo1011703
crossref_primary_10_1021_la903743n
crossref_primary_10_1016_j_jprot_2012_07_043
crossref_primary_10_1071_CH16643
crossref_primary_10_12677_HJCET_2014_44007
crossref_primary_10_1016_j_biopha_2011_12_006
crossref_primary_10_1016_j_tet_2008_06_016
crossref_primary_10_1007_s11030_009_9138_8
crossref_primary_10_1016_j_fuel_2024_133423
crossref_primary_10_1080_00268976_2022_2152744
crossref_primary_10_1038_s41598_018_28458_y
crossref_primary_10_1016_j_ces_2023_118493
crossref_primary_10_1021_op200090k
crossref_primary_10_1016_j_cej_2009_09_036
crossref_primary_10_1021_acsnano_7b04040
crossref_primary_10_1021_cc800113d
crossref_primary_10_1080_15533174_2014_988794
crossref_primary_10_1016_j_jprot_2013_01_005
crossref_primary_10_1080_10426507_2010_544270
crossref_primary_10_1246_cl_160200
crossref_primary_10_1080_10601325_2018_1424549
crossref_primary_10_1016_j_compstruct_2021_114765
crossref_primary_10_1021_cc800101k
crossref_primary_10_1021_jo702413n
crossref_primary_10_1039_b803001b
crossref_primary_10_1016_j_molcatb_2015_03_007
crossref_primary_10_1021_acs_joc_6b02242
crossref_primary_10_1021_jacs_8b10355
crossref_primary_10_1016_j_materresbull_2018_08_045
crossref_primary_10_1016_j_molliq_2017_04_118
crossref_primary_10_1021_jo8009402
crossref_primary_10_1039_D1CY00020A
crossref_primary_10_1039_C6RA11727A
crossref_primary_10_1039_b716534j
crossref_primary_10_2115_fiber_78_106
crossref_primary_10_1016_j_apcata_2011_11_008
crossref_primary_10_1246_cl_200617
crossref_primary_10_1002_ejoc_201300295
crossref_primary_10_1016_j_apenergy_2013_09_029
crossref_primary_10_1088_0957_0233_21_4_045108
crossref_primary_10_1021_jp2086939
crossref_primary_10_1002_aic_13848
crossref_primary_10_1016_j_ijheatmasstransfer_2012_02_065
crossref_primary_10_1016_j_cplett_2022_139541
crossref_primary_10_1007_s11356_021_17018_z
crossref_primary_10_1038_s41598_022_15853_9
crossref_primary_10_1299_jtst_7_58
crossref_primary_10_1016_j_biortech_2014_03_011
crossref_primary_10_1111_1541_4337_13154
crossref_primary_10_1021_acs_iecr_9b01137
crossref_primary_10_1002_chem_201103548
crossref_primary_10_1002_aic_13713
crossref_primary_10_3390_molecules20045276
crossref_primary_10_2174_1385272823666190213114104
crossref_primary_10_1002_anie_201202354
crossref_primary_10_1016_j_tet_2016_09_048
crossref_primary_10_3390_molecules22030503
crossref_primary_10_1021_jo900245v
crossref_primary_10_1016_j_cej_2010_11_100
crossref_primary_10_1021_acsomega_4c07013
crossref_primary_10_3390_ijms25179729
crossref_primary_10_1002_app_53887
crossref_primary_10_1134_S1070363208100162
crossref_primary_10_1038_srep41244
crossref_primary_10_1039_C4CP05448B
crossref_primary_10_1063_1_4875280
crossref_primary_10_1039_B808750D
crossref_primary_10_1016_j_tetlet_2013_01_103
crossref_primary_10_1627_jpi_61_98
crossref_primary_10_1080_10426507_2014_980907
crossref_primary_10_1111_1556_4029_12238
crossref_primary_10_1002_psc_1191
crossref_primary_10_1016_j_tet_2013_11_031
crossref_primary_10_1039_b910591c
crossref_primary_10_1080_00958972_2010_521818
crossref_primary_10_1016_j_jtice_2021_09_024
crossref_primary_10_1039_b820740b
crossref_primary_10_1016_j_jfoodeng_2018_04_009
crossref_primary_10_1016_j_compositesb_2013_08_066
crossref_primary_10_1039_C5RA26425A
crossref_primary_10_1021_ic200381f
crossref_primary_10_1016_j_tetlet_2009_03_208
crossref_primary_10_1002_ange_200904185
crossref_primary_10_1021_op100202j
crossref_primary_10_2174_1570178615666180912115007
crossref_primary_10_1071_CH08510
crossref_primary_10_1016_j_tifs_2022_03_016
crossref_primary_10_1039_D2RA00381C
crossref_primary_10_1002_ange_201101274
crossref_primary_10_1246_bcsj_20220254
crossref_primary_10_1007_s11030_010_9242_9
crossref_primary_10_1021_ar300318c
crossref_primary_10_1021_op900287j
crossref_primary_10_1016_j_jid_2018_04_037
crossref_primary_10_36107_hfb_2021_i1_s107
crossref_primary_10_1016_j_jaap_2012_03_018
crossref_primary_10_1039_c3gc41042k
crossref_primary_10_1016_j_ces_2012_11_039
crossref_primary_10_1002_fam_3103
crossref_primary_10_1016_j_rser_2019_109316
crossref_primary_10_1039_b904044g
crossref_primary_10_3390_w13131784
crossref_primary_10_1039_c3ob40790j
crossref_primary_10_1002_ejoc_201200469
crossref_primary_10_1252_jcej_11we210
crossref_primary_10_1016_j_carres_2013_04_013
crossref_primary_10_1007_s00044_010_9410_6
crossref_primary_10_1002_chem_201503858
crossref_primary_10_1108_COMPEL_09_2018_0346
crossref_primary_10_3390_molecules18010097
crossref_primary_10_1016_j_molcatb_2010_07_015
crossref_primary_10_1016_j_chroma_2009_06_035
crossref_primary_10_1002_chem_201000438
crossref_primary_10_1016_j_mtcomm_2022_103890
crossref_primary_10_1039_C8PY01804A
crossref_primary_10_5059_yukigoseikyokaishi_81_341
crossref_primary_10_1111_jfpp_15950
crossref_primary_10_15406_japlr_2018_07_00295
crossref_primary_10_1039_C1CS15214A
crossref_primary_10_1039_C5CP00476D
crossref_primary_10_1016_j_aca_2011_09_011
crossref_primary_10_1016_j_biortech_2012_10_084
crossref_primary_10_3390_polym4021183
crossref_primary_10_1039_b821970b
crossref_primary_10_1016_j_snb_2016_03_156
crossref_primary_10_1080_1061186X_2018_1428810
crossref_primary_10_1016_j_scp_2018_05_004
crossref_primary_10_1039_b922730j
crossref_primary_10_1016_j_tetlet_2009_07_072
crossref_primary_10_1016_j_foodchem_2021_131217
crossref_primary_10_1021_acssuschemeng_8b03286
crossref_primary_10_1016_j_enzmictec_2014_11_002
crossref_primary_10_1016_j_biombioe_2014_11_007
crossref_primary_10_1002_slct_201702325
crossref_primary_10_1016_j_cej_2018_10_050
crossref_primary_10_1039_C6RA19535K
crossref_primary_10_1002_mren_201300127
crossref_primary_10_1002_mren_202100044
crossref_primary_10_1016_j_cej_2013_12_088
crossref_primary_10_1039_b810142f
crossref_primary_10_1186_2043_7129_1_5
crossref_primary_10_1246_cl_160982
crossref_primary_10_1039_B816723K
crossref_primary_10_1016_j_ultsonch_2014_12_004
crossref_primary_10_1063_5_0011181
crossref_primary_10_1002_open_201402123
crossref_primary_10_1002_prep_201100044
crossref_primary_10_1016_j_apcata_2020_117620
crossref_primary_10_1080_08327823_2018_1494470
crossref_primary_10_1007_s41981_018_0021_6
crossref_primary_10_1002_ceat_200900207
crossref_primary_10_1002_pola_25916
crossref_primary_10_1002_asia_201402288
crossref_primary_10_1021_ma102825r
crossref_primary_10_1002_macp_201200008
crossref_primary_10_1021_jo5000779
crossref_primary_10_1002_pola_23731
crossref_primary_10_1002_ceat_201400581
crossref_primary_10_1016_j_cplett_2010_04_011
crossref_primary_10_1002_cssc_202000966
crossref_primary_10_1007_s11694_022_01730_6
crossref_primary_10_3762_bjoc_5_24
crossref_primary_10_1016_j_matpr_2018_06_018
crossref_primary_10_1039_C7CE00882A
crossref_primary_10_1246_cl_170604
crossref_primary_10_1002_tcr_201800045
crossref_primary_10_1016_j_fuel_2013_05_094
crossref_primary_10_1039_C5RA27261K
crossref_primary_10_1039_C9CP06239D
crossref_primary_10_1002_ceat_201400118
crossref_primary_10_1016_j_jes_2021_06_020
crossref_primary_10_1039_b922797k
crossref_primary_10_1002_adem_201900762
crossref_primary_10_1063_1_4935277
crossref_primary_10_1016_j_jpba_2011_07_042
crossref_primary_10_1016_j_ces_2021_117354
crossref_primary_10_1016_j_cej_2021_131898
crossref_primary_10_1021_jo501153r
crossref_primary_10_1021_acs_jpca_2c01487
crossref_primary_10_1016_j_carbpol_2013_04_033
crossref_primary_10_1016_j_tet_2009_04_065
crossref_primary_10_1021_acssuschemeng_9b03580
crossref_primary_10_1071_CH08460
crossref_primary_10_1088_1748_0221_6_02_T02001
crossref_primary_10_1039_C7TA06339C
crossref_primary_10_1021_ie200095y
crossref_primary_10_1002_cssc_201901934
crossref_primary_10_1007_s10593_023_03207_w
crossref_primary_10_1002_anie_201100856
crossref_primary_10_3390_inorganics2020191
crossref_primary_10_1007_s40726_022_00247_2
crossref_primary_10_1246_cl_2013_165
crossref_primary_10_5059_yukigoseikyokaishi_70_1145
crossref_primary_10_1021_jo900960a
crossref_primary_10_1016_j_tifs_2017_02_014
crossref_primary_10_1016_j_tet_2008_08_011
crossref_primary_10_1002_pola_22730
crossref_primary_10_1021_op900194z
crossref_primary_10_1155_2015_879531
crossref_primary_10_1002_ejoc_200800325
crossref_primary_10_1002_ejoc_201301854
crossref_primary_10_1039_C9RA00617F
crossref_primary_10_1063_1_4732514
crossref_primary_10_1002_macp_201200449
crossref_primary_10_1016_j_colsurfa_2009_04_032
crossref_primary_10_1039_b812536h
crossref_primary_10_1016_j_polymdegradstab_2011_12_009
crossref_primary_10_1039_c0gc00823k
crossref_primary_10_1007_s11030_009_9167_3
crossref_primary_10_1016_j_tet_2012_10_007
crossref_primary_10_1039_c3cc44610g
crossref_primary_10_1016_j_tetlet_2019_151060
crossref_primary_10_4018_ijcce_2013070104
crossref_primary_10_1021_cr9001098
crossref_primary_10_3390_molecules201219793
crossref_primary_10_1002_tcr_201800121
crossref_primary_10_1021_acs_jpcc_9b11179
crossref_primary_10_1088_0957_0233_26_8_085105
crossref_primary_10_1002_ejoc_202000092
crossref_primary_10_1016_j_polymdegradstab_2020_109427
crossref_primary_10_1021_acs_jpcb_0c06383
crossref_primary_10_1021_op900297e
crossref_primary_10_3390_catal7030089
crossref_primary_10_1627_jpi_61_121
crossref_primary_10_1016_j_molliq_2019_111678
crossref_primary_10_1039_C9GC00467J
crossref_primary_10_1021_acs_jpclett_9b00629
crossref_primary_10_1038_s41598_018_21846_4
crossref_primary_10_1134_S003602441201030X
crossref_primary_10_1039_C6CC01149G
crossref_primary_10_3390_catal10101175
crossref_primary_10_1039_C6OB01141A
crossref_primary_10_1016_j_tetlet_2012_09_058
crossref_primary_10_1016_j_tetlet_2009_11_096
crossref_primary_10_1039_B918407D
crossref_primary_10_1016_j_tetlet_2008_03_094
crossref_primary_10_1039_C4SC03372H
crossref_primary_10_1002_cssc_200800187
crossref_primary_10_3390_molecules28062547
crossref_primary_10_1002_adfm_202316212
crossref_primary_10_1246_bcsj_20160104
crossref_primary_10_1021_jo102094h
crossref_primary_10_1038_srep39040
crossref_primary_10_3390_molecules25225373
crossref_primary_10_1021_ol4036825
crossref_primary_10_1002_chem_201001703
crossref_primary_10_1016_j_foodp_2025_100048
crossref_primary_10_5897_AJBR2014_0808
crossref_primary_10_2174_2213335607666200115164318
crossref_primary_10_1002_chem_200802200
crossref_primary_10_1109_JSTQE_2017_2660882
crossref_primary_10_1016_j_cep_2015_05_002
crossref_primary_10_1039_c004729e
crossref_primary_10_1021_jo9021315
crossref_primary_10_1016_j_tetlet_2008_09_135
crossref_primary_10_1021_jp900394u
crossref_primary_10_1111_jace_16061
crossref_primary_10_1039_c2ob06833h
crossref_primary_10_1016_j_crci_2008_06_022
crossref_primary_10_3390_catal13030622
crossref_primary_10_1016_j_ica_2016_06_043
crossref_primary_10_1016_j_polymer_2011_04_051
crossref_primary_10_1038_s41598_021_93274_w
crossref_primary_10_1080_00397911_2013_828755
crossref_primary_10_1016_j_conbuildmat_2021_123491
crossref_primary_10_1071_CH11125
crossref_primary_10_1021_ja802404g
crossref_primary_10_1007_s11837_021_04677_z
crossref_primary_10_1071_CH09064
crossref_primary_10_1080_00397911_2013_796383
crossref_primary_10_1021_op100181u
crossref_primary_10_1016_j_eurpolymj_2009_04_006
crossref_primary_10_1021_jo8021567
crossref_primary_10_1007_s10311_018_0739_2
crossref_primary_10_1039_c0gc00024h
crossref_primary_10_1016_j_tetlet_2012_03_104
crossref_primary_10_1002_ange_201100856
crossref_primary_10_1002_jctb_4012
crossref_primary_10_1021_jo800825c
crossref_primary_10_1016_j_chemphys_2020_110977
crossref_primary_10_1002_ijch_201100140
crossref_primary_10_1016_j_cej_2016_04_064
crossref_primary_10_1002_aic_14575
crossref_primary_10_1021_ja9046075
crossref_primary_10_1016_j_enzmictec_2015_10_003
crossref_primary_10_3390_molecules16108733
crossref_primary_10_1039_c1gc16243h
crossref_primary_10_1016_j_tetlet_2010_04_062
crossref_primary_10_1016_j_biortech_2011_11_059
crossref_primary_10_1016_j_jaap_2013_02_003
crossref_primary_10_1021_jo1014382
crossref_primary_10_1016_j_ces_2011_08_003
crossref_primary_10_1021_jp306638r
crossref_primary_10_1111_1541_4337_12940
crossref_primary_10_1016_j_spmi_2013_08_023
crossref_primary_10_1080_00397910902985515
crossref_primary_10_3762_bjoc_10_24
crossref_primary_10_1002_anie_200904185
crossref_primary_10_2174_2213335609666220516112247
crossref_primary_10_3390_polym10020215
crossref_primary_10_1080_09593330_2017_1385647
crossref_primary_10_1039_c0nr00141d
crossref_primary_10_1016_j_molstruc_2019_127087
crossref_primary_10_1039_C6CP02034H
crossref_primary_10_1007_s10593_012_1030_2
crossref_primary_10_4236_fns_2019_103024
crossref_primary_10_1021_acssuschemeng_4c05008
crossref_primary_10_1246_cl_2010_574
crossref_primary_10_1246_bcsj_20110164
crossref_primary_10_1016_j_compositesb_2016_06_032
crossref_primary_10_1021_jp2076269
crossref_primary_10_4155_fmc_09_144
crossref_primary_10_1016_j_ijheatmasstransfer_2012_09_037
crossref_primary_10_1021_jp100374x
crossref_primary_10_1021_jo8013897
crossref_primary_10_1002_chem_200902044
crossref_primary_10_1039_C6RA09841J
crossref_primary_10_1021_acscatal_0c02468
crossref_primary_10_1021_om8008926
crossref_primary_10_1002_tcr_201800057
crossref_primary_10_1016_j_jmapro_2019_03_038
crossref_primary_10_1063_1_3139519
crossref_primary_10_1039_b908937c
crossref_primary_10_3390_ijms17020210
crossref_primary_10_1007_s11947_018_2109_2
crossref_primary_10_1016_j_chemphys_2019_110523
crossref_primary_10_1016_j_carres_2014_09_006
crossref_primary_10_1021_acs_energyfuels_0c02006
crossref_primary_10_1002_ejoc_201601487
crossref_primary_10_1016_j_saa_2022_121877
crossref_primary_10_1039_C4CY00038B
crossref_primary_10_1134_S1023193514090110
crossref_primary_10_1126_science_aba5901
crossref_primary_10_1080_15435075_2018_1529575
crossref_primary_10_1016_j_jorganchem_2009_08_028
crossref_primary_10_1557_jmr_2018_465
crossref_primary_10_1021_ic101651p
crossref_primary_10_1109_ACCESS_2019_2959848
crossref_primary_10_1021_jo100136r
crossref_primary_10_1016_j_tetlet_2010_10_090
crossref_primary_10_1002_tcr_201800064
crossref_primary_10_1016_j_tet_2009_01_105
crossref_primary_10_1039_c2sc01003h
crossref_primary_10_1039_D0ME00043D
crossref_primary_10_1002_asmb_2243
crossref_primary_10_1016_j_chroma_2010_10_062
crossref_primary_10_1002_ange_201300854
crossref_primary_10_3390_en5104209
Cites_doi 10.1002/1521-3773(20020603)41:11<1863::AID-ANIE1863>3.0.CO;2-L
10.1002/macp.200400422
10.1016/j.tetlet.2006.03.199
10.1016/S0040-4039(00)85103-5
10.1002/3527606556
10.1016/j.tetlet.2007.06.147
10.1016/S0040-4020(02)00628-2
10.1016/S1359-6446(01)01735-4
10.1021/ja070259i
10.1002/9780470390276
10.1139/v04-103
10.1039/b002697m
10.1002/1521-3773(20021004)41:19<3589::AID-ANIE3589>3.0.CO;2-Q
10.1002/chem.200700098
10.1016/S1359-6446(02)02178-5
10.1016/j.tet.2005.01.105
10.1002/1099-0690(200103)2001:5<919::AID-EJOC919>3.0.CO;2-V
10.1039/a827213z
10.1021/op700080t
10.1016/j.tet.2006.01.102
10.1016/S0040-4020(01)01216-9
10.1351/pac200173010161
10.1016/S0040-4039(00)83996-9
10.1038/nrd1926
10.1002/mas.20140
10.1021/jo060692v
10.1351/pac200173010193
10.1016/j.tetlet.2007.02.052
10.1016/j.tet.2004.11.068
10.1039/b617084f
10.1002/chem.200400417
10.1002/marc.200400313
10.1055/s-1998-6083
10.1055/s-1993-22508
10.1016/j.tet.2003.11.042
10.1081/SCC-100106048
10.1016/0040-4020(96)00241-4
10.1021/om060605p
10.1021/ol036091x
10.1016/S0040-4020(02)01622-8
10.1016/S0040-4020(02)00085-6
10.1002/ceat.200500136
10.1002/marc.200600749
10.1016/0969-806X(94)00072-R
10.2174/1386207043328562
10.1021/cc060138z
10.1016/j.tetlet.2005.03.146
10.1246/cl.1990.347
10.1002/anie.200353101
10.1016/j.tet.2005.12.062
10.1021/jo0624187
10.1039/cs9912000001
10.1002/anie.200400655
10.1002/adma.200502422
10.1021/cc010043r
10.1039/B310502D
10.1021/jo035135c
10.1351/pac200173010147
10.2174/1389557033488042
10.1039/a808223e
10.1002/marc.200300154
10.1002/adfm.200301006
10.1016/j.ddtec.2005.05.002
10.1007/128_051
10.1139/V04-103
10.1039/b615597a
10.1039/b707692d
10.1039/b310502d
10.1039/b411438h
10.1021/ar040278m
10.1007/b11051
10.1055/s-2006-958428
10.1021/ol061803f
10.1007/128_048
10.1016/j.tet.2006.07.038
10.1007/11535799
ContentType Journal Article
Copyright Copyright © 2008 American Chemical Society
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 American Chemical Society
– notice: 2008 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
GAYFB
IQODW
NPM
7X8
DOI 10.1021/jo7022697
DatabaseName Istex
CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2008
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6904
EndPage 47
ExternalDocumentID 18062704
19977161
000252046600006
10_1021_jo7022697
ark_67375_TPS_RQG2KRPQ_J
f68042309
Genre Journal Article
GroupedDBID -
.K2
186
29L
4.4
53G
55A
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFMIJ
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
OHM
P2P
PZZ
ROL
RXW
TAE
TAF
TN5
UI2
UKR
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
YQJ
YZZ
ZCG
---
-DZ
-~X
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
IH2
XSW
YQT
ZCA
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
ADXHL
AEYZD
AGQPQ
ANPPW
CITATION
YR5
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
.GJ
.HR
123
1WB
3EH
41~
ABHMW
ACBNA
ACTDY
AI.
AIDAL
D0S
IQODW
MVM
NHB
OHT
RNS
T9H
UBC
UMD
VH1
X7L
XOL
XXG
YXA
YXE
YYP
ZE2
ZGI
NPM
7X8
ID FETCH-LOGICAL-a447t-b3ff8d45460765eee48bd9e5a2383f1285bcdd4da58444d3b6bda8e9254745633
IEDL.DBID ACS
ISICitedReferencesCount 441
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000252046600006
ISSN 0022-3263
IngestDate Thu Jul 10 22:36:03 EDT 2025
Mon Jul 21 05:45:10 EDT 2025
Mon Jul 21 09:11:01 EDT 2025
Wed Aug 06 03:32:18 EDT 2025
Fri Aug 29 15:46:10 EDT 2025
Tue Jul 01 01:52:31 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Wed Oct 30 09:22:15 EDT 2024
Thu Aug 27 13:42:28 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords IRRADIATION
SCALE-UP
REAGENTS
PROMOTED ORGANIC-SYNTHESIS
IONIC LIQUIDS
EFFICIENT
ASSISTED POLYMER SYNTHESIS
ORGANOPHOSPHORUS CHEMISTRY
SOLVENT-FREE SYNTHESIS
PARALLEL
Nitrogen heterocycle
Stirring
Measurement sensor
Temperature effect
Microwave
Diels Alder addition
Selectivity
Thermal reaction
Microwave heating
Experimental study
Alkylation
Temperature gradient
Cycloaddition
Electric field
Carboxamide
Infrared radiation
Reactor
Chemical synthesis
Polar molecule
Language English
License CC BY 4.0
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a447t-b3ff8d45460765eee48bd9e5a2383f1285bcdd4da58444d3b6bda8e9254745633
Notes istex:C541520C2D5533C0C6D3AEFC843FA139486028E4
ark:/67375/TPS-RQG2KRPQ-J
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2983-6007
0000-0002-8860-9325
PMID 18062704
PQID 70166341
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1021_jo7022697
crossref_citationtrail_10_1021_jo7022697
proquest_miscellaneous_70166341
pubmed_primary_18062704
webofscience_primary_000252046600006
pascalfrancis_primary_19977161
istex_primary_ark_67375_TPS_RQG2KRPQ_J
webofscience_primary_000252046600006CitationCount
acs_journals_10_1021_jo7022697
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-04
PublicationDateYYYYMMDD 2008-01-04
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-04
  day: 04
PublicationDecade 2000
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: Washington, DC
– name: United States
PublicationTitle Journal of organic chemistry
PublicationTitleAbbrev J ORG CHEM
PublicationTitleAlternate J. Org. Chem
PublicationYear 2008
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References Mingos D. M. P. (jo7022697b00026/jo7022697b00026_2) 1991; 20
Collins J. M. (jo7022697b00009/jo7022697b00009_1) 2007; 5
Zhu Y.-J. (jo7022697b00007/jo7022697b00007_2) 2004; 43
Leadbeater N. E. (jo7022697b00018/jo7022697b00018_3) 2005; 61
Ianelli M. (jo7022697b00043/jo7022697b00043_2) 2005; 206
Strauss C. R. (jo7022697b00014/jo7022697b00014_2) 2002; 41
Hoogenboom R. (jo7022697b00006/jo7022697b00006_3) 2007; 28
Microwave Methods (jo7022697b00002/jo7022697b00002_6) 2006
Bogdal D. (jo7022697b00006/jo7022697b00006_4) 2007
Koopmans C. (jo7022697b00045/jo7022697b00045_1) 2006; 62
Ianelli M. (jo7022697b00042/jo7022697b00042_1) 2005; 61
Bogdal D. (jo7022697b00006/jo7022697b00006_1) 2003; 163
Microwave-Assisted Synthesis (jo7022697b00002/jo7022697b00002_7) 2006
Baxendale I. R. (jo7022697b00004/jo7022697b00004_1) 2002; 58
Artman D. D. (jo7022697b00004/jo7022697b00004_2) 2007; 129
Nüchter M. (jo7022697b00018/jo7022697b00018_2) 2005; 28
Wathey B. (jo7022697b00005/jo7022697b00005_2) 2002; 7
Loupy A. (jo7022697b00022/jo7022697b00022_1) 1998
Shipe W. D. (jo7022697b00005/jo7022697b00005_4) 2005
Kremsner J. M. (jo7022697b00032/jo7022697b00032_1) 2007; 9
For (jo7022697b00037/jo7022697b00037_1) 2000; 3745
Microwaves (jo7022697b00002/jo7022697b00002_1) 2002
Difficulties (jo7022697b00039/jo7022697b00039_1) 2006; 47
Perreux L. (jo7022697b00041/jo7022697b00041_2) 2002; 58
Cvengros J. (jo7022697b00030/jo7022697b00030_1) 2004; 82
Tsuji M. (jo7022697b00008/jo7022697b00008_1) 2005; 11
For (jo7022697b00010/jo7022697b00010_1) 2006
Lill J. R. (jo7022697b00009/jo7022697b00009_2) 2007; 26
Loupy A. (jo7022697b00033/jo7022697b00033_1) 2001; 73
Vasquez-Tato M. P. (jo7022697b00041/jo7022697b00041_4) 1993
Kremsner J. M. (jo7022697b00016/jo7022697b00016_1) 2006; 71
For (jo7022697b00034/jo7022697b00034_1) 2003; 59
Barlow S. (jo7022697b00007/jo7022697b00007_1) 2003; 13
Recent (jo7022697b00003/jo7022697b00003_1) 2004; 43
For (jo7022697b00019/jo7022697b00019_1) 2006; 62
For (jo7022697b00011/jo7022697b00011_1) 2005
Garbacia S. (jo7022697b00015/jo7022697b00015_4) 2003; 68
(jo7022697b00002/jo7022697b00002_5) 2006
Kondolff I. (jo7022697b00047/jo7022697b00047_1) 2006; 25
Hayes B. L. (jo7022697b00002/jo7022697b00002_2) 2002
Appukkuttan P. (jo7022697b00004/jo7022697b00004_3) 2006
For (jo7022697b00020/jo7022697b00020_1) 2003; 5
Al-Obeidi F. (jo7022697b00005/jo7022697b00005_3) 2003; 3
Stadler A. (jo7022697b00015/jo7022697b00015_2) 2001
Varma R. S. (jo7022697b00022/jo7022697b00022_4) 2001; 73
Varma R. S. (jo7022697b00022/jo7022697b00022_5) 2002; 58
Hosseini M. (jo7022697b00017/jo7022697b00017_1) 2007; 72
Kappe C. O. (jo7022697b00005/jo7022697b00005_5) 2006; 5
Smith K. (jo7022697b00036/jo7022697b00036_1) 1990
Stadler A. (jo7022697b00015/jo7022697b00015_1) 2000
For (jo7022697b00040/jo7022697b00040_1) 2004; 7
Nüchter M. (jo7022697b00018/jo7022697b00018_1) 2004; 6
For (jo7022697b00012/jo7022697b00012_1) 2001
Strohmeier G. A. (jo7022697b00015/jo7022697b00015_3) 2002; 4
For (jo7022697b00029/jo7022697b00029_1) 2007; 48
For (jo7022697b00023/jo7022697b00023_1) 1996; 52
Kidawi M. (jo7022697b00022/jo7022697b00022_3) 2001; 73
Solvents 0. (jo7022697b00027/jo7022697b00027_1)
Gabriel C. (jo7022697b00026/jo7022697b00026_1) 1998; 27
Perelaer J. (jo7022697b00007/jo7022697b00007_3) 2006; 18
Loupy A. (jo7022697b00028/jo7022697b00028_1) 2004; 60
For (jo7022697b00021/jo7022697b00021_1) 1995; 45
Microwave-Assisted Organic (jo7022697b00002/jo7022697b00002_3) 2005
Kuhnert N. (jo7022697b00014/jo7022697b00014_1) 2002; 41
By (jo7022697b00035/jo7022697b00035_1)
Gedye R. (jo7022697b00001/jo7022697b00001_1) 1986; 27
Goretzki C. (jo7022697b00043/jo7022697b00043_1) 2004; 25
For (jo7022697b00031/jo7022697b00031_1) 2001; 31
Giguere R. J. (jo7022697b00001/jo7022697b00001_2) 1986; 27
Wiesbrock F. (jo7022697b00006/jo7022697b00006_2) 2004; 25
Massicot F. (jo7022697b00041/jo7022697b00041_3) 2001
Varma R. S. (jo7022697b00022/jo7022697b00022_2) 1999
jo7022697b00038/jo7022697b00038_1
Jhung S. H. (jo7022697b00007/jo7022697b00007_4) 2007; 13
Gelens E. (jo7022697b00041/jo7022697b00041_1) 2005; 46
For (jo7022697b00025/jo7022697b00025_1) 2007; 48
Larhed M. (jo7022697b00005/jo7022697b00005_1) 2001; 6
Kappe C. O. (jo7022697b00002/jo7022697b00002_4) 2005
For (jo7022697b00046/jo7022697b00046_1) 2007; 11
Garbacia, S (WOS:000186489000058) 2003; 68
Koopmans, C (WOS:000237126500012) 2006; 62
Loupy, A (WOS:000168165700023) 2001; 73
Stadler, A (WOS:000167272700007) 2001; 2001
Cvengros, J (WOS:000225268700007) 2004; 82
Kappe, CO (WOS:000225575600006) 2004; 43
Kappe, CO (WOS:000298579000011) 2005; 52
SMITH, K (WOS:A1990CV45400006) 1990
Vanier, GS (WOS:000244257400028) 2007
PERREUX L (WOS:000252046600006.71) 2002
Leadbeater, NE (WOS:000227930800013) 2005; 61
GIGUERE, RJ (WOS:A1986E375800004) 1986; 27
MASSICOT F (WOS:000252046600006.62) 1993
Iannelli, M (WOS:000226765600013) 2005; 61
Al-Obeidi, F (WOS:000210554300006) 2003; 3
Varma, RS (WOS:000174339600001) 2002; 58
Roberts, BA (WOS:000231462100006) 2005; 38
Kappe, CO (WOS:000234555300017) 2006; 5
Loupy, A (WOS:000188785600030) 2004; 60
Artman, GD (WOS:000246415100050) 2007; 129
Kondolff, I (WOS:000241232800009) 2006; 25
Strauss, CR (WOS:000178609900007) 2002; 41
BOGDAL D (WOS:000252046600006.9) 2007
Kremsner, JM (WOS:000238029300039) 2006; 71
Tsuji, M (WOS:000226333500001) 2005; 11
KAISER NFK (WOS:000252046600006.33) 2001
Lill, JR (WOS:000248859000002) 2007; 26
Gautun, OR (WOS:000165469500012) 2000; 2000
Moseley, JD (WOS:000248985800003) 2007; 48
Iannelli, M (WOS:000227008000004) 2005; 206
Hayes, BL (WOS:000223606500002) 2004; 37
Kidwai, M (WOS:000168165700021) 2001; 73
Baxendale, IR (WOS:000177217500006) 2002; 58
Zhu, YJ (WOS:000220266000025) 2004; 43
LOUPY A (WOS:000252046600006.57) 2002
BERLAN, J (WOS:A1995QM67500006) 1995; 45
Strohmeier, GA (WOS:000174633500010) 2002; 4
(WOS:000243218100008) 2006; 266
Leadbeater, NE (WOS:000240654700052) 2006; 8
de la Hoz, A (WOS:000226522500006) 2005; 34
Barlow, S (WOS:000184079800002) 2003; 13
Nuchter, M (WOS:000220001800003) 2004; 6
Leadbeater, NE (WOS:000248731600018) 2007; 5
Shipe, William D (MEDLINE:24981843) 2005; 2
Bogdal, D (WOS:000186351000004) 2003; 163
Hosseini, M (WOS:000244071100046) 2007; 72
Bogdal, D (WOS:000240818100015) 2006; 62
Goretzki, C (WOS:000189323200008) 2004; 25
Perez, ER (WOS:000180777200019) 2003; 59
Leadbeater, NE (WOS:000223486200011) 2004; 7
Razzaq, T (WOS:000245563300016) 2007; 48
Wiesbrock, F (WOS:000224948200001) 2004; 25
Gabriel, C (WOS:000074059200006) 1998; 27
Kiddle, JJ (WOS:000085617000008) 2000; 41
Kremsner, JM (WOS:000243218100007) 2006; 266
Habermann, J (WOS:000227898900002) 2005; 2
Hostyn, S (WOS:000237126500007) 2006; 62
Perreux, L (WOS:000172060500001) 2001; 57
Perelaer, J (WOS:000240408600003) 2006; 18
Leadbeater, NE (WOS:000244354300013) 2007; 5
Lebouvier, N (WOS:000240090200035) 2006; 47
Varma, RS (WOS:000168165700028) 2001; 73
Kremsner, JM (WOS:000244799100015) 2007; 9
PERREUX L (WOS:000252046600006.72) 2006
Stuerga, D (WOS:A1996UD90900021) 1996; 52
HAYES BL (WOS:000252046600006.26) 2002
Kuhnert, N (WOS:000176045200004) 2002; 41
Kiddle, JJ (WOS:000171281500020) 2001; 31
Appukkuttan, P (WOS:000243218100001) 2006; 266
GEDYE, R (WOS:A1986AYF2700004) 1986; 27
Gelens, E (WOS:000228872400033) 2005; 46
SAILLARD, R (WOS:A1995QR16100008) 1995; 51
MINGOS, DMP (WOS:A1991FL34100001) 1991; 20
Larhed, M (WOS:000168558900009) 2001; 6
Nuchter, M (WOS:000231319700005) 2005; 28
Loupy, A (WOS:000075952000001) 1998
Dressen, MHCL (WOS:000249697700009) 2007; 11
DELAHOZ A (WOS:000252046600006.14) 2006
Perreux, L (WOS:000174682900011) 2002; 58
Varma, RS (WOS:000082435600020) 1999; 1
Enquist, PA (WOS:000187038300031) 2003; 5
Stadler, A (WOS:000088760500012) 2000
LOUPY A (WOS:000252046600006.59) 2006
Collins, JM (WOS:000245439800001) 2007; 5
LIDSTROM P (WOS:000252046600006.55) 2005
Jhung, SH (WOS:000246981600003) 2007; 13
Wathey, B (WOS:000174360300019) 2002; 7
ONDRUSCHKA B (WOS:000252046600006.67) 2006
VANDEREYCKEN E (WOS:000252046600006.85) 2006
ABENHAIM, D (WOS:A1994NE08900012) 1994; 38
Hoogenboom, R (WOS:000244853800002) 2007; 28
KAPPE CO (WOS:000252046600006.35) 2005
References_xml – volume: 41
  start-page: 1863
  year: 2002
  ident: jo7022697b00014/jo7022697b00014_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020603)41:11<1863::AID-ANIE1863>3.0.CO;2-L
– volume: 206
  start-page: 349
  year: 2005
  ident: jo7022697b00043/jo7022697b00043_2
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200400422
– volume: 47
  start-page: 6479
  year: 2006
  ident: jo7022697b00039/jo7022697b00039_1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2006.03.199
– volume: 27
  start-page: 4945
  year: 1986
  ident: jo7022697b00001/jo7022697b00001_2
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)85103-5
– volume-title: Microwaves in Organic and Medicinal Chemistry
  year: 2005
  ident: jo7022697b00002/jo7022697b00002_4
  doi: 10.1002/3527606556
– volume: 48
  start-page: 6084
  year: 2007
  ident: jo7022697b00025/jo7022697b00025_1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2007.06.147
– volume-title: DMSO, methanol, formic acid), medium (tan δ 0.1−0.5
  ident: jo7022697b00027/jo7022697b00027_1
– start-page: 2441
  year: 2001
  ident: jo7022697b00041/jo7022697b00041_3
  publication-title: Synthesis
– volume: 58
  start-page: 6285
  year: 2002
  ident: jo7022697b00004/jo7022697b00004_1
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(02)00628-2
– volume: 6
  start-page: 406
  year: 2001
  ident: jo7022697b00005/jo7022697b00005_1
  publication-title: Drug Discovery Today
  doi: 10.1016/S1359-6446(01)01735-4
– start-page: 114
  volume-title: L.
  year: 2001
  ident: jo7022697b00012/jo7022697b00012_1
– volume: 129
  start-page: 6336
  year: 2007
  ident: jo7022697b00004/jo7022697b00004_2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja070259i
– volume-title: Microwave-Enhanced Polymer Chemistry and Technology
  year: 2007
  ident: jo7022697b00006/jo7022697b00006_4
  doi: 10.1002/9780470390276
– volume: 82
  start-page: 1365
  year: 2004
  ident: jo7022697b00030/jo7022697b00030_1
  publication-title: Can. J. Chem.
  doi: 10.1139/v04-103
– start-page: 1363
  year: 2000
  ident: jo7022697b00015/jo7022697b00015_1
  publication-title: J. Chem. Soc., Perkin Trans. 2
  doi: 10.1039/b002697m
– volume: 41
  start-page: 3589
  year: 2002
  ident: jo7022697b00014/jo7022697b00014_2
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20021004)41:19<3589::AID-ANIE3589>3.0.CO;2-Q
– volume: 13
  start-page: 4410
  year: 2007
  ident: jo7022697b00007/jo7022697b00007_4
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200700098
– volume: 7
  start-page: 373
  year: 2002
  ident: jo7022697b00005/jo7022697b00005_2
  publication-title: Drug Discovery Today
  doi: 10.1016/S1359-6446(02)02178-5
– volume: 61
  start-page: 3565
  year: 2005
  ident: jo7022697b00018/jo7022697b00018_3
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2005.01.105
– start-page: 919
  year: 2001
  ident: jo7022697b00015/jo7022697b00015_2
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/1099-0690(200103)2001:5<919::AID-EJOC919>3.0.CO;2-V
– volume: 27
  start-page: 213
  year: 1998
  ident: jo7022697b00026/jo7022697b00026_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/a827213z
– volume: 11
  start-page: 865
  year: 2007
  ident: jo7022697b00046/jo7022697b00046_1
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op700080t
– volume-title: Germany
  year: 2006
  ident: jo7022697b00002/jo7022697b00002_6
– volume: 62
  start-page: 4709
  year: 2006
  ident: jo7022697b00045/jo7022697b00045_1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2006.01.102
– start-page: 28
  volume-title: C. O.
  year: 2005
  ident: jo7022697b00011/jo7022697b00011_1
– volume: 58
  start-page: 1235
  year: 2002
  ident: jo7022697b00022/jo7022697b00022_5
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)01216-9
– ident: jo7022697b00038/jo7022697b00038_1
– volume: 73
  start-page: 161
  year: 2001
  ident: jo7022697b00033/jo7022697b00033_1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200173010161
– volume: 27
  start-page: 279
  year: 1986
  ident: jo7022697b00001/jo7022697b00001_1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)83996-9
– volume: 5
  start-page: 51
  year: 2006
  ident: jo7022697b00005/jo7022697b00005_5
  publication-title: Nature Rev. Drug Discov.
  doi: 10.1038/nrd1926
– volume-title: Drug Discovery Today:  Technol
  year: 2005
  ident: jo7022697b00005/jo7022697b00005_4
– volume: 26
  start-page: 657
  year: 2007
  ident: jo7022697b00009/jo7022697b00009_2
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.20140
– volume: 71
  start-page: 4651
  year: 2006
  ident: jo7022697b00016/jo7022697b00016_1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo060692v
– volume: 73
  start-page: 193
  year: 2001
  ident: jo7022697b00022/jo7022697b00022_4
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200173010193
– volume: 48
  start-page: 2513
  year: 2007
  ident: jo7022697b00029/jo7022697b00029_1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2007.02.052
– volume-title: Springer
  year: 2006
  ident: jo7022697b00002/jo7022697b00002_7
– volume: 61
  start-page: 1509
  year: 2005
  ident: jo7022697b00042/jo7022697b00042_1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2004.11.068
– volume: 5
  start-page: 1141
  year: 2007
  ident: jo7022697b00009/jo7022697b00009_1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b617084f
– volume: 11
  start-page: 440
  year: 2005
  ident: jo7022697b00008/jo7022697b00008_1
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200400417
– volume: 3745
  start-page: 3748
  year: 2000
  ident: jo7022697b00037/jo7022697b00037_1
  publication-title: Eur. J. Org. Chem.
– volume: 25
  start-page: 1739
  year: 2004
  ident: jo7022697b00006/jo7022697b00006_2
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200400313
– start-page: 1213
  year: 1998
  ident: jo7022697b00022/jo7022697b00022_1
  publication-title: Synthesis
  doi: 10.1055/s-1998-6083
– start-page: 62
  volume-title: J. M.
  year: 2006
  ident: jo7022697b00010/jo7022697b00010_1
– start-page: 506
  year: 1993
  ident: jo7022697b00041/jo7022697b00041_4
  publication-title: Synlett
  doi: 10.1055/s-1993-22508
– volume: 60
  start-page: 1683
  year: 2004
  ident: jo7022697b00028/jo7022697b00028_1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2003.11.042
– volume: 31
  start-page: 3377
  year: 2001
  ident: jo7022697b00031/jo7022697b00031_1
  publication-title: J. Synth. Commun.
  doi: 10.1081/SCC-100106048
– volume: 52
  start-page: 5505
  year: 1996
  ident: jo7022697b00023/jo7022697b00023_1
  publication-title: Tetrahedron
  doi: 10.1016/0040-4020(96)00241-4
– volume: 25
  start-page: 5219
  year: 2006
  ident: jo7022697b00047/jo7022697b00047_1
  publication-title: Organometallics
  doi: 10.1021/om060605p
– volume: 5
  start-page: 4875
  year: 2003
  ident: jo7022697b00020/jo7022697b00020_1
  publication-title: Org. Lett.
  doi: 10.1021/ol036091x
– volume-title: U.K.
  year: 2005
  ident: jo7022697b00002/jo7022697b00002_3
– volume: 59
  start-page: 865
  year: 2003
  ident: jo7022697b00034/jo7022697b00034_1
  publication-title: J. Tetrahedron
  doi: 10.1016/S0040-4020(02)01622-8
– volume: 58
  start-page: 2155
  year: 2002
  ident: jo7022697b00041/jo7022697b00041_2
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(02)00085-6
– volume: 28
  start-page: 871
  year: 2005
  ident: jo7022697b00018/jo7022697b00018_2
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.200500136
– volume-title: Microwave Synthesis:  Chemistry at the Speed of Light
  year: 2002
  ident: jo7022697b00002/jo7022697b00002_2
– volume-title: (e) Microwaves in Organic Synthesis
  year: 2006
  ident: jo7022697b00002/jo7022697b00002_5
– volume: 28
  start-page: 368
  year: 2007
  ident: jo7022697b00006/jo7022697b00006_3
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200600749
– volume: 45
  start-page: 581
  year: 1995
  ident: jo7022697b00021/jo7022697b00021_1
  publication-title: Rad. Phys. Chem.
  doi: 10.1016/0969-806X(94)00072-R
– volume: 7
  start-page: 511
  year: 2004
  ident: jo7022697b00040/jo7022697b00040_1
  publication-title: Comb. Chem. High Throughput Screen.
  doi: 10.2174/1386207043328562
– volume: 9
  start-page: 285
  year: 2007
  ident: jo7022697b00032/jo7022697b00032_1
  publication-title: J. Comb. Chem.
  doi: 10.1021/cc060138z
– volume: 46
  start-page: 3751
  year: 2005
  ident: jo7022697b00041/jo7022697b00041_1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2005.03.146
– start-page: 347
  year: 1990
  ident: jo7022697b00036/jo7022697b00036_1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1990.347
– volume: 43
  start-page: 1410
  year: 2004
  ident: jo7022697b00007/jo7022697b00007_2
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200353101
– volume-title: Germany
  year: 2002
  ident: jo7022697b00002/jo7022697b00002_1
– volume: 62
  start-page: 4676
  year: 2006
  ident: jo7022697b00019/jo7022697b00019_1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2005.12.062
– start-page: 47
  volume-title: Microwave Methods in Organic Synthesis
  year: 2006
  ident: jo7022697b00004/jo7022697b00004_3
– volume: 72
  start-page: 1417
  year: 2007
  ident: jo7022697b00017/jo7022697b00017_1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0624187
– volume: 20
  start-page: 1
  year: 1991
  ident: jo7022697b00026/jo7022697b00026_2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9912000001
– volume: 43
  start-page: 6250
  year: 2004
  ident: jo7022697b00003/jo7022697b00003_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200400655
– volume: 18
  start-page: 2101
  year: 2006
  ident: jo7022697b00007/jo7022697b00007_3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502422
– volume: 163
  start-page: 193
  year: 2003
  ident: jo7022697b00006/jo7022697b00006_1
  publication-title: Adv. Polym. Sci.
– volume: 4
  start-page: 154
  year: 2002
  ident: jo7022697b00015/jo7022697b00015_3
  publication-title: J. Comb. Chem.
  doi: 10.1021/cc010043r
– volume: 6
  start-page: 128
  year: 2004
  ident: jo7022697b00018/jo7022697b00018_1
  publication-title: Green Chem.
  doi: 10.1039/B310502D
– volume: 68
  start-page: 9136
  year: 2003
  ident: jo7022697b00015/jo7022697b00015_4
  publication-title: J. Org. Chem.
  doi: 10.1021/jo035135c
– volume: 73
  start-page: 147
  year: 2001
  ident: jo7022697b00022/jo7022697b00022_3
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200173010147
– volume: 3
  start-page: 449
  year: 2003
  ident: jo7022697b00005/jo7022697b00005_3
  publication-title: Mini-Rev. Med. Chem.
  doi: 10.2174/1389557033488042
– start-page: 43
  year: 1999
  ident: jo7022697b00022/jo7022697b00022_2
  publication-title: Green Chem.
  doi: 10.1039/a808223e
– volume: 25
  start-page: 513
  year: 2004
  ident: jo7022697b00043/jo7022697b00043_1
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200300154
– volume: 13
  start-page: 517
  year: 2003
  ident: jo7022697b00007/jo7022697b00007_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200301006
– volume-title: “reaction temperature
  ident: jo7022697b00035/jo7022697b00035_1
– year: 2005
  ident: WOS:000252046600006.55
  publication-title: MICROWAVE ASSISTED O
– volume: 6
  start-page: 406
  year: 2001
  ident: WOS:000168558900009
  article-title: Microwave-assisted high-speed chemistry: a new technique in drug discovery
  publication-title: DRUG DISCOVERY TODAY
– volume: 71
  start-page: 4651
  year: 2006
  ident: WOS:000238029300039
  article-title: Silicon carbide passive heating elements in microwave-assisted organic synthesis
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo060692v
– volume: 2
  start-page: 155
  year: 2005
  ident: MEDLINE:24981843
  article-title: Accelerating lead development by microwave-enhanced medicinal chemistry.
  publication-title: Drug discovery today. Technologies
  doi: 10.1016/j.ddtec.2005.05.002
– volume: 7
  start-page: 373
  year: 2002
  ident: WOS:000174360300019
  article-title: The impact of microwave-assisted organic chemistry on drug discovery
  publication-title: DRUG DISCOVERY TODAY
– volume: 58
  start-page: 2155
  year: 2002
  ident: WOS:000174682900011
  article-title: Solvent-free preparation of amides from acids and primary amines under microwave irradiation
  publication-title: TETRAHEDRON
– volume: 59
  start-page: 865
  year: 2003
  ident: WOS:000180777200019
  article-title: Clean and efficient microwave-solvent-free synthesis of 1-(2 ',4 '-dichlorophenacyl) azoles
  publication-title: TETRAHEDRON
– volume: 28
  start-page: 871
  year: 2005
  ident: WOS:000231319700005
  article-title: Contribution to the qualification of technical microwave systems and to the validation of microwave-assisted reactions and processes
  publication-title: CHEMICAL ENGINEERING & TECHNOLOGY
  doi: 10.1002/ceat.200500136
– year: 2007
  ident: WOS:000252046600006.9
  publication-title: MICROWAVE ENHANCED P
– volume: 266
  start-page: 1
  year: 2006
  ident: WOS:000243218100001
  article-title: Microwave-assisted natural product chemistry
  publication-title: MICROWAVE METHODS IN ORGANIC SYNTHESIS
  doi: 10.1007/128_051
– volume: 61
  start-page: 3565
  year: 2005
  ident: WOS:000227930800013
  article-title: An assessment of the technique of simultaneous cooling in conjunction with microwave heating for organic synthesis
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2005.01.105
– start-page: 9
  year: 2005
  ident: WOS:000252046600006.35
  publication-title: MICROWAVES ORGANIC M
– volume: 82
  start-page: 1365
  year: 2004
  ident: WOS:000225268700007
  article-title: Synthesis of phosphonium salts under microwave activation - Leaving group and phosphine substituents effects
  publication-title: CANADIAN JOURNAL OF CHEMISTRY
  doi: 10.1139/V04-103
– start-page: 62
  year: 2006
  ident: WOS:000252046600006.67
  publication-title: MICROWAVES ORGANIC S
– volume: 5
  start-page: 1141
  year: 2007
  ident: WOS:000245439800001
  article-title: Microwave energy: a versatile tool for the biosciences
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/b617084f
– volume: 5
  start-page: 51
  year: 2006
  ident: WOS:000234555300017
  article-title: The impact of microwave synthesis on drug discovery
  publication-title: NATURE REVIEWS DRUG DISCOVERY
  doi: 10.1038/nrd1926
– start-page: 134
  year: 2006
  ident: WOS:000252046600006.72
  publication-title: MICROWAVES ORGANIC S
– volume: 47
  start-page: 6479
  year: 2006
  ident: WOS:000240090200035
  article-title: Efficient microwave-assisted synthesis of 1-(1H-indol-1-yl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)-propan-2-ols as antifungal agents
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2006.03.199
– volume: 9
  start-page: 285
  year: 2007
  ident: WOS:000244799100015
  article-title: High-throughput microwave-assisted organic synthesis: Moving from automated sequential to parallel library-generation formats in silicon carbide microtiter plates
  publication-title: JOURNAL OF COMBINATORIAL CHEMISTRY
  doi: 10.1021/cc060138z
– volume: 5
  start-page: 822
  year: 2007
  ident: WOS:000244354300013
  article-title: Using in situ Raman monitoring as a tool for rapid optimisation and scale-up of microwave-promoted organic synthesis: esterification as an example
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/b615597a
– volume: 41
  start-page: 1339
  year: 2000
  ident: WOS:000085617000008
  article-title: Microwave irradiation in organophosphorus chemistry. Part 2: Synthesis of phosphonium salts
  publication-title: TETRAHEDRON LETTERS
– volume: 37
  start-page: 66
  year: 2004
  ident: WOS:000223606500002
  article-title: Recent advances in microwave-assisted synthesis
  publication-title: ALDRICHIMICA ACTA
– volume: 5
  start-page: 2770
  year: 2007
  ident: WOS:000248731600018
  article-title: In situ Raman spectroscopy as a probe for the effect of power on microwave-promoted Suzuki coupling reactions
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/b707692d
– volume: 6
  start-page: 128
  year: 2004
  ident: WOS:000220001800003
  article-title: Microwave assisted synthesis - a critical technology overview
  publication-title: GREEN CHEMISTRY
  doi: 10.1039/b310502d
– year: 2006
  ident: WOS:000252046600006.85
  publication-title: MICROWAVE ASSISTED S
– volume: 3
  start-page: 449
  year: 2003
  ident: WOS:000210554300006
  article-title: Microwave-Assisted Solid-phase Synthesis (MASS): Parallel and Combinatorial Chemical Library Synthesis
  publication-title: MINI-REVIEWS IN MEDICINAL CHEMISTRY
  doi: 10.2174/1389557033488042
– volume: 34
  start-page: 164
  year: 2005
  ident: WOS:000226522500006
  article-title: Microwaves in organic synthesis. Thermal and non-thermal microwave effects
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/b411438h
– volume: 52
  start-page: 1
  year: 2005
  ident: WOS:000298579000011
  article-title: Microwaves in Organic and Medicinal Chemistry
  publication-title: MICROWAVES IN ORGANIC AND MEDICINAL CHEMISTRY
  doi: 10.1002/3527606556
– volume: 51
  start-page: 4033
  year: 1995
  ident: WOS:A1995QR16100008
  article-title: MICROWAVE-HEATING OF ORGANIC-SOLVENTS - THERMAL EFFECTS AND FIELD MODELING
  publication-title: TETRAHEDRON
– volume: 25
  start-page: 513
  year: 2004
  ident: WOS:000189323200008
  article-title: Green polymer chemistry: Microwave-assisted single-step synthesis of various (meth)acrylamides and poly(meth)acrylamides directly from (meth)acrylic acid and amines
  publication-title: MACROMOLECULAR RAPID COMMUNICATIONS
  doi: 10.1002/marc.200300154
– volume: 31
  start-page: 3377
  year: 2001
  ident: WOS:000171281500020
  article-title: Microwave irradiation in organophosphorus chemistry. III. Moderate scale synthesis of reagents for olefin formation
  publication-title: SYNTHETIC COMMUNICATIONS
– volume: 28
  start-page: 368
  year: 2007
  ident: WOS:000244853800002
  article-title: Microwave-assisted polymer synthesis: Recent developments in a rapidly expanding field of research
  publication-title: MACROMOLECULAR RAPID COMMUNICATIONS
  doi: 10.1002/marc.200600749
– year: 2002
  ident: WOS:000252046600006.26
  publication-title: MICROWAVE SYNTHESIS
– volume: 58
  start-page: 1235
  year: 2002
  ident: WOS:000174339600001
  article-title: Clay and clay-supported reagents in organic synthesis
  publication-title: TETRAHEDRON
– volume: 129
  start-page: 6336
  year: 2007
  ident: WOS:000246415100050
  article-title: Concise, asymmetric, stereocontrolled total synthesis of stephacidins A, B and notoamide B
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja070259i
– volume: 2001
  start-page: 919
  year: 2001
  ident: WOS:000167272700007
  article-title: High-speed couplings and cleavages in microwave-heated, solid-phase reactions at high temperatures
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
– volume: 57
  start-page: 9199
  year: 2001
  ident: WOS:000172060500001
  article-title: A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations
  publication-title: TETRAHEDRON
– year: 2002
  ident: WOS:000252046600006.57
  publication-title: MICROWAVES ORGANIC S
– volume: 73
  start-page: 193
  year: 2001
  ident: WOS:000168165700028
  article-title: Solvent-free accelerated organic syntheses using microwaves
  publication-title: PURE AND APPLIED CHEMISTRY
– volume: 11
  start-page: 440
  year: 2005
  ident: WOS:000226333500001
  article-title: Microwave-assisted synthesis of metallic nanostructures in solution
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.200400417
– volume: 43
  start-page: 6250
  year: 2004
  ident: WOS:000225575600006
  article-title: Controlled microwave heating in modern organic synthesis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200400655
– volume: 26
  start-page: 657
  year: 2007
  ident: WOS:000248859000002
  article-title: Microwave-assisted proteomics
  publication-title: MASS SPECTROMETRY REVIEWS
  doi: 10.1002/mas.20140
– start-page: 37
  year: 2001
  ident: WOS:000252046600006.33
  publication-title: THEISS UPPSALA U
– volume: 62
  start-page: 4709
  year: 2006
  ident: WOS:000237126500012
  article-title: Microwave-assisted polymer chemistry: Heck-reaction, transesterification, Baeyer-Villiger oxidation, oxazoline polymerization, acrylamides, and porous materials
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2006.01.102
– volume: 58
  start-page: 6285
  year: 2002
  ident: WOS:000177217500006
  article-title: Total synthesis of the amaryllidaceae alkaloid (+)-plicamine using solid-supported reagents
  publication-title: TETRAHEDRON
– volume: 60
  start-page: 1683
  year: 2004
  ident: WOS:000188785600030
  article-title: Improvements in Diels-Alder cycloadditions with some acetylenic compounds under solvent-free microwave-assisted conditions: experimental results and theoretical approaches
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2003.11.042
– volume: 61
  start-page: 1509
  year: 2005
  ident: WOS:000226765600013
  article-title: Selective microwave-accelerated synthesis and polymerization of chiral methacrylamide directly from methacrylic acid and (R)-1-phenyl-ethylamine
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2004.11.068
– volume: 1
  start-page: 43
  year: 1999
  ident: WOS:000082435600020
  article-title: Solvent-free organic syntheses - using supported reagents and microwave irradiation
  publication-title: GREEN CHEMISTRY
– volume: 52
  start-page: 5505
  year: 1996
  ident: WOS:A1996UD90900021
  article-title: Microwave heating as a new way to induce localized enhancements of reaction rate. Non-isothermal and heterogeneous kinetics
  publication-title: TETRAHEDRON
– volume: 38
  start-page: 653
  year: 2005
  ident: WOS:000231462100006
  article-title: Toward rapid, "green", predictable microwave-assisted synthesis
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar040278m
– volume: 73
  start-page: 161
  year: 2001
  ident: WOS:000168165700023
  article-title: Reactivity and selectivity under microwaves in organic chemistry. Relation with medium effects and reaction mechanisms
  publication-title: PURE AND APPLIED CHEMISTRY
– volume: 45
  start-page: 581
  year: 1995
  ident: WOS:A1995QM67500006
  article-title: MICROWAVES IN CHEMISTRY - ANOTHER WAY OF HEATING REACTION MIXTURES
  publication-title: RADIATION PHYSICS AND CHEMISTRY
– volume: 68
  start-page: 9136
  year: 2003
  ident: WOS:000186489000058
  article-title: Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo035135c
– volume: 38
  start-page: 793
  year: 1994
  ident: WOS:A1994NE08900012
  article-title: SELECTIVE ALKYLATIONS OF 1,2,4-TRIAZOLE AND BENZOTRIAZOLE IN THE ABSENCE OF SOLVENT
  publication-title: HETEROCYCLES
– volume: 163
  start-page: 193
  year: 2003
  ident: WOS:000186351000004
  article-title: Microwave assisted synthesis, crosslinking, and processing of polymeric materials
  publication-title: LIQUID CHROMATOGRAPHY FTIR MICROSPECTROSCOPY MICROWAVE ASSISTED SYNTHESIS
  doi: 10.1007/b11051
– volume: 43
  start-page: 1410
  year: 2004
  ident: WOS:000220266000025
  article-title: Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200353101
– volume: 206
  start-page: 349
  year: 2005
  ident: WOS:000227008000004
  article-title: Microwave-assisted direct synthesis and polymerization of chiral acrylamide
  publication-title: MACROMOLECULAR CHEMISTRY AND PHYSICS
  doi: 10.1002/macp.200400422
– volume: 11
  start-page: 865
  year: 2007
  ident: WOS:000249697700009
  article-title: Vanishing microwave effects: Influence of heterogeneity
  publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT
  doi: 10.1021/op700080t
– volume: 73
  start-page: 147
  year: 2001
  ident: WOS:000168165700021
  article-title: Dry media reactions
  publication-title: PURE AND APPLIED CHEMISTRY
– volume: 25
  start-page: 5219
  year: 2006
  ident: WOS:000241232800009
  article-title: Palladium-tetraphosphine as catalyst precursor for high-turnover-number Negishi cross-coupling of alkyl- or phenylzinc derivatives with aryl bromides
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om060605p
– volume: 13
  start-page: 517
  year: 2003
  ident: WOS:000184079800002
  article-title: Single-mode microwave synthesis in organic materials chemistry
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.200301006
– volume: 27
  start-page: 4945
  year: 1986
  ident: WOS:A1986E375800004
  article-title: APPLICATION OF COMMERCIAL MICROWAVE-OVENS TO ORGANIC-SYNTHESIS
  publication-title: TETRAHEDRON LETTERS
– start-page: 131
  year: 2007
  ident: WOS:000244257400028
  article-title: Simple and efficient microwave-assisted hydrogenation reactions at moderate temperature and pressure
  publication-title: SYNLETT
  doi: 10.1055/s-2006-958428
– volume: 27
  start-page: 213
  year: 1998
  ident: WOS:000074059200006
  article-title: Dielectric parameters relevant to microwave dielectric heating
  publication-title: CHEMICAL SOCIETY REVIEWS
– volume: 4
  start-page: 154
  year: 2002
  ident: WOS:000174633500010
  article-title: Rapid parallel synthesis of polymer-bound enones utilizing microwave-assisted solid-phase chemistry
  publication-title: JOURNAL OF COMBINATORIAL CHEMISTRY
  doi: 10.1021/cc010043r
– volume: 27
  start-page: 279
  year: 1986
  ident: WOS:A1986AYF2700004
  article-title: THE USE OF MICROWAVE-OVENS FOR RAPID ORGANIC-SYNTHESIS
  publication-title: TETRAHEDRON LETTERS
– start-page: 61
  year: 2002
  ident: WOS:000252046600006.71
  publication-title: MICROWAVES ORGANIC S
– volume: 5
  start-page: 4875
  year: 2003
  ident: WOS:000187038300031
  article-title: Ultrafast chemistry: Cobalt carbonyl-mediated synthesis of diaryl ketones under microwave irradiation
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol036091x
– volume: 72
  start-page: 1417
  year: 2007
  ident: WOS:000244071100046
  article-title: Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo0624187
– year: 2006
  ident: WOS:000252046600006.59
  publication-title: MICROWAVES ORGANIC S
– start-page: 1213
  year: 1998
  ident: WOS:000075952000001
  article-title: New solvent free organic synthesis using focused microwaves
  publication-title: SYNTHESIS-STUTTGART
– volume: 41
  start-page: 1863
  year: 2002
  ident: WOS:000176045200004
  article-title: Microwave-assisted reactions in organic synthesis - Are there any nonthermal microwave effects?
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
– volume: 7
  start-page: 511
  year: 2004
  ident: WOS:000223486200011
  article-title: Microwave-promoted organic synthesis using ionic liquids: A mini review
  publication-title: COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING
– volume: 8
  start-page: 4588
  year: 2006
  ident: WOS:000240654700052
  article-title: Real-time monitoring of microwave-promoted Suzuki coupling reactions using in situ Raman spectroscopy
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol061803f
– volume: 48
  start-page: 6084
  year: 2007
  ident: WOS:000248985800003
  article-title: The importance of agitation and fill volume in small scale scientific microwave reactors
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2007.06.147
– volume: 266
  start-page: 233
  year: 2006
  ident: WOS:000243218100007
  article-title: The scale-up of microwave-assisted organic synthesis
  publication-title: MICROWAVE METHODS IN ORGANIC SYNTHESIS
  doi: 10.1007/128_048
– start-page: 347
  year: 1990
  ident: WOS:A1990CV45400006
  article-title: REGIOSPECIFIC SYNTHESIS OF 1-SUBSTITUTED 1,2,4-TRIAZOLES INVOLVING ISOMERIZATION OF THE CORRESPONDING 4-SUBSTITUTED COMPOUNDS
  publication-title: CHEMISTRY LETTERS
– volume: 62
  start-page: 4676
  year: 2006
  ident: WOS:000237126500007
  article-title: Synthesis of 7H-indolo[2,3-c]quinolines: Study of the Pd-catalyzed intramolecular arylation of 3-(2-bromophenylamino)quinolines under microwave irradiation
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2005.12.062
– volume: 48
  start-page: 2513
  year: 2007
  ident: WOS:000245563300016
  article-title: Rapid preparation of pyranoquinolines using microwave dielectric heating in combination with fractional product distillation
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2007.02.052
– volume: 13
  start-page: 4410
  year: 2007
  ident: WOS:000246981600003
  article-title: Microwave effect in the fast synthesis of microporous materials: Which stage between nucleation and crystal growth is accelerated by microwave irradiation?
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.200700098
– start-page: 1363
  year: 2000
  ident: WOS:000088760500012
  article-title: Microwave-mediated Biginelli reactions revisited. On the nature of rate and yield enhancements
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
  doi: 10.1039/b002697m
– volume: 2
  start-page: 125
  year: 2005
  ident: WOS:000227898900002
  article-title: Organic chemistry in ionic liquids using non-thermal energy-transfer processes
  publication-title: MINI-REVIEWS IN ORGANIC CHEMISTRY
– volume: 62
  start-page: 9440
  year: 2006
  ident: WOS:000240818100015
  article-title: Microwave induced thermal gradients in solventless reaction systems
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2006.07.038
– volume: 46
  start-page: 3751
  year: 2005
  ident: WOS:000228872400033
  article-title: An atom efficient and solvent-free synthesis of structurally diverse amides using microwaves
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2005.03.146
– volume: 266
  start-page: 1
  year: 2006
  ident: WOS:000243218100008
  article-title: Microwave Methods in Organic Synthesis
  publication-title: MICROWAVE METHODS IN ORGANIC SYNTHESIS
  doi: 10.1007/11535799
– start-page: 219
  year: 2006
  ident: WOS:000252046600006.14
  publication-title: MICROWAVES ORGANIC S
– volume: 20
  start-page: 1
  year: 1991
  ident: WOS:A1991FL34100001
  article-title: APPLICATIONS OF MICROWAVE DIELECTRIC HEATING EFFECTS TO SYNTHETIC PROBLEMS IN CHEMISTRY
  publication-title: CHEMICAL SOCIETY REVIEWS
– start-page: 506
  year: 1993
  ident: WOS:000252046600006.62
  publication-title: SYNLETT
– volume: 41
  start-page: 3589
  year: 2002
  ident: WOS:000178609900007
  article-title: Microwave-assisted reactions in organic synthesis - Are there any nonthermal microwave effects? Response
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
– volume: 18
  start-page: 2101
  year: 2006
  ident: WOS:000240408600003
  article-title: Ink-jet printing and microwave sintering of conductive silver tracks
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.200502422
– volume: 25
  start-page: 1739
  year: 2004
  ident: WOS:000224948200001
  article-title: Microwave-assisted polymer synthesis: State-of-the-art and future perspectives
  publication-title: MACROMOLECULAR RAPID COMMUNICATIONS
  doi: 10.1002/marc.200400313
– volume: 2000
  start-page: 3745
  year: 2000
  ident: WOS:000165469500012
  article-title: Thermal rearrangement of 4-alkyl-4H-1,2,4-triazoles to 1-alkyl-1H-1,2,4-triazoles - A study of the mechanism by cross-over experiments
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
SSID ssj0000555
Score 2.4489214
Snippet The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific...
[GRAPHICS] The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the...
Source Web of Science
SourceID proquest
pubmed
pascalfrancis
webofscience
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms Chemistry
Chemistry, Organic
Exact sciences and technology
Kinetics and mechanisms
Organic chemistry
Physical Sciences
Reactivity and mechanisms
Science & Technology
Title Nonthermal Microwave Effects Revisited:  On the Importance of Internal Temperature Monitoring and Agitation in Microwave Chemistry
URI http://dx.doi.org/10.1021/jo7022697
https://api.istex.fr/ark:/67375/TPS-RQG2KRPQ-J/fulltext.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000252046600006
https://www.ncbi.nlm.nih.gov/pubmed/18062704
https://www.proquest.com/docview/70166341
Volume 73
WOS 000252046600006
WOSCitedRecordID wos000252046600006
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LU9RAEMe7EA56Ad_EB04pZXkJJplX4m1rFRELhGWp4paaZCYUAglFsmp58uDFr-knsSevXcr1cd5OdtLppH-d6fkPwHrElJHSVy71EixQaKDdKAhSN_GkwXLEZJzaxck7u2LrkG0f8aMFePaHGfzAf_mxkJhnRCSvwVIgQmkrrMHwYPq65Zz3kuCBoJ180OyhNvWk5ZXUs2S9-MW2QqoSvZE121jM48y5KalOP5sr8LpbxNN0nZxuTKpkI_36u6bj367sJiy3-EkGTbzcggWT34brw27XtzvwfbfILROeo9WObdb7rD4Z0mgcl2RUr0VHSH3189sP8iEnaErendcMj4MmRUbaT4xnZGyQyBvFZtK8OewnRKJyTQbHrTI4Ocln_qUfxl043HwzHm657U4NrmJMVm5CsyzUjDPhScGNMSxMdGS4QiCgGaZAnqRaM60QdxjTNBGJVqGJsDqVSHCU3oPFvMjNKhDfTz2GyO-laYrFJp7IV9TTlOrQN8hCDqzhrYzbJ62M60n0AIuYzpkOvOjucpy2V2O32zibZ_q0N71oxD3mGT2vQ6W3UJenthtO8ni8dxCP9t8G70d7-_E2juxKLE1PGSFkI1k78KQLrhjdaWdmVG6KSRlLBG-BPOHA_SbmpseGVkfaYw6szwZh_7vNaDzwmBA1eTjg_4_ZsPWL1T2oHvzLow_hRtMl47seewSL1eXEPEYUq5K1-lH8BU9wK5s
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V7aFceD_Mo12hgri42OtdP5A4RIGSNE1o01Tqzay9awRtbVQ7FDhx4MJf4K_wb_glzPqVFEWCSyXOmWw2s-OZ71vPfguwETChPM8WpmNFSFAcKs2A0tiMLE8hHVEJd_Th5OHI7R2w7UN-uAQ_mrMwOIkcR8rLl_gzdQH76fvMw3LjBl7dQDlQn8-QnuXP-y9wLR9RuvVy0u2Z9Q0CpmDMK8zISRJfMs5cpOtcKcX8SAaKCyxUToKpmUexlEwKLMOMSSdyIyl8FSBr8hBZ6M1OTO8rCHqoJnad7v4sy3POWyVy6jqNatH8VHXFi_NzFW9FL94n3YEpclyEpLo9YxG8XVgJy6q3dQV-tv4qm12ONqdFtBl_-UNK8v906FW4XINt0qmejmuwpNLrsNpt7ri7Ad9GWaoR8AlaDXVr4pn4qEil6JyTcXnyHiH5s19fv5PXKUFT0j8pGQv6imQJqTdUj8lEIf-o9KlJlSf1hikRqSSdt7UOOnmXzv1KO42bcHAhTrgFy2mWqjtAbDu2GBIcK45jpNY4kC0cSzqO9G2FyM-ANVy7sM4reVi2DFCkbM3iGfCkCa4wrv-NvlzkeJHpw9b0QyVlssjocRmhrYU4PdK9fx4PJ7v74XjvFR2Md_fCbZzZuRCeDRkgpUAeYcB6E9MhulO_hxKpyqZ56CHNcBE9GXC7CvXZd32tmm0xAzbmY7_9XNdvTi3muiXOMsD-F7Nu7Ret8lDc_ZtH12G1NxnuhDv90eAeXKr6g2zTYvdhuTidqgcIQotorcwGBN5c9NPyG8j2jiU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB5VrQRcyj81P-0KFcTFre3dtWMkDlFKaBoa0jSVejNr7xpBW7uqHQqcOHDhJXgV3oUnYdZ_SVEkuFTinMlmMzM7M9_u7LcA6z4TyvNsYVIrRIBCHWn6jhOZoeUphCMq5lRfTt4duNsHbOeQHy7Aj_ouDE4iw5Gy4hBfr-pTGVcMA_bmh9TDlOP6XtVE2VefzxGiZS96W2jPJ47TfTnubJvVKwKmYMzLzZDGcUsyzlyE7FwpxVqh9BUXmKxojOGZh5GUTApMxYxJGrqhFC3lI3LysLrQG54Y4pf08aAGd-3O_jTSc84bNnLHpTVz0exUddaLsgtZb0kb8JPuwhQZGiIuX9CYV-LOzYZF5uteh5-NzoqGl6ONSR5uRF_-oJP8f5V6A5aropu0y1VyExZUcguuduq37m7Dt0Ga6Er4BKV2dYviufioSMnsnJFRcQMfS_Pnv75-J28SgqKkd1IgF9QXSWNSbawek7FCHFLyVJMyXuqNUyISSdrvKj508j6Z-ZVmGnfg4FKUcBcWkzRRK0BsO7IYAh0riiKE2DiQLaglKZUtW2EFaMAq2i-o4ksWFK0DDkK32ngGPKsdLIiqf6MfGTmeJ_q4ET0tKU3mCT0tvLSREGdHugfQ48F4uB-M9l45_dFwL9jBmV1w4-mQPkILxBMGrNV-HaA69XmUSFQ6yQIP4YaLVZQB90p3n363pdmzLWbA-qz_N5_rPM4di7luUW8ZYP-LWKfSi2Z7yO__TaNrcGW41Q1e9wb9B3CtbBOyTYs9hMX8bKIeYS2ah6tFQCDw9rIXy2_QaJCo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonthermal+microwave+effects+revisited%3A+on+the+importance+of+internal+temperature+monitoring+and+agitation+in+microwave+chemistry&rft.jtitle=Journal+of+organic+chemistry&rft.au=Herrero%2C+M+Antonia&rft.au=Kremsner%2C+Jennifer+M&rft.au=Kappe%2C+C+Oliver&rft.date=2008-01-04&rft.issn=0022-3263&rft.volume=73&rft.issue=1&rft.spage=36&rft_id=info:doi/10.1021%2Fjo7022697&rft_id=info%3Apmid%2F18062704&rft.externalDocID=18062704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3263&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3263&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3263&client=summon