Nonthermal Microwave Effects Revisited: On the Importance of Internal Temperature Monitoring and Agitation in Microwave Chemistry
The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (pol...
Saved in:
Published in | Journal of organic chemistry Vol. 73; no. 1; pp. 36 - 47 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
04.01.2008
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels−Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field. |
---|---|
AbstractList | The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field. The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field. The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels−Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field. [GRAPHICS] The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing, the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement.,applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field. |
Author | Herrero, M. Antonia Kremsner, Jennifer M Kappe, C. Oliver |
Author_xml | – sequence: 1 givenname: M. Antonia surname: Herrero fullname: Herrero, M. Antonia – sequence: 2 givenname: Jennifer M surname: Kremsner fullname: Kremsner, Jennifer M – sequence: 3 givenname: C. Oliver surname: Kappe fullname: Kappe, C. Oliver |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19977161$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18062704$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URKeFBS-AvAEJoVDH8U_CrhqVMtDSdhjWkZPctC6JPdhOS3cs2PCaPAkeTZhBqAu8sWR951zrnLuHdow1gNDTlLxOCU0Prq0klIpCPkCTlFOSiIKwHTQh8TXJqMh20Z731yQezvkjtJvmRFBJ2AT9-GhNuALXqw6f6trZW3UD-KhtoQ4ez-FGex2gefPr-098ZnBE8axfWheUqQHbFs9MAGeiegH9EpwKgwN8ao0O1mlziZVp8OGlDipoa7A2f02ZXkGvfXB3j9HDVnUenoz3Pvr89mgxfZecnB3PpocniWJMhqTK2jZvGGeCSMEBgOVVUwBXNMuzNqU5r-qmYY3iOWOsySpRNSqHgnImGRdZto9erH2Xzn4dwIcyzq-h65QBO_hSklSIjKURfDaCQ9VDUy6d7pW7K__kFoHnI6B8rbrWxTi033JFIWUqVkb5mruFyra-1hBj22CxDxrrYkKsqhHTMaWpHUyI0lf_L430yzUdw_XeQbv9CylXS1JuliSyB_-w9Tg5OKW7exXJWhHrgm8ba-W-lEJmkpeL80_l_OKYfpifX5Tvt_Go2kebYbUg_h7f3ylg2H0 |
CODEN | JOCEAH |
CitedBy_id | crossref_primary_10_1111_j_1750_3841_2011_02515_x crossref_primary_10_1016_j_biortech_2013_10_065 crossref_primary_10_1039_c2ce06649a crossref_primary_10_1039_b916123f crossref_primary_10_3390_molecules26020470 crossref_primary_10_1002_pola_24385 crossref_primary_10_1016_j_tet_2016_07_041 crossref_primary_10_1021_cc900084s crossref_primary_10_1039_b804100h crossref_primary_10_1039_C4GC00037D crossref_primary_10_1002_anie_201300854 crossref_primary_10_12925_jkocs_2014_31_3_525 crossref_primary_10_1016_j_jiec_2014_02_025 crossref_primary_10_1039_b916124b crossref_primary_10_1002_jhet_2550 crossref_primary_10_17721_fujcV3I1P73_81 crossref_primary_10_1002_chem_201103560 crossref_primary_10_1080_00397910902957407 crossref_primary_10_1016_j_lwt_2021_112280 crossref_primary_10_1038_srep11308 crossref_primary_10_1002_ange_201204103 crossref_primary_10_1016_j_energy_2013_03_016 crossref_primary_10_1016_j_tetlet_2011_11_021 crossref_primary_10_1016_j_lwt_2020_109861 crossref_primary_10_1021_acs_oprd_2c00180 crossref_primary_10_1002_anie_201101274 crossref_primary_10_3987_COM_20_14350 crossref_primary_10_1021_ol901893p crossref_primary_10_1080_09168451_2014_891931 crossref_primary_10_1002_ange_201202354 crossref_primary_10_1016_j_wasman_2021_01_010 crossref_primary_10_1016_j_chemosphere_2022_136451 crossref_primary_10_1002_anie_201204103 crossref_primary_10_1016_j_progpolymsci_2011_07_005 crossref_primary_10_1039_C1GC16119A crossref_primary_10_1002_ejoc_201101717 crossref_primary_10_1039_c3cs00010a crossref_primary_10_1016_j_carbpol_2013_01_077 crossref_primary_10_1039_C7RA05028C crossref_primary_10_1039_D0CC04584E crossref_primary_10_1016_j_matchemphys_2020_123654 crossref_primary_10_1016_j_micromeso_2017_10_028 crossref_primary_10_1016_j_cep_2016_01_011 crossref_primary_10_1021_jo1011703 crossref_primary_10_1021_la903743n crossref_primary_10_1016_j_jprot_2012_07_043 crossref_primary_10_1071_CH16643 crossref_primary_10_12677_HJCET_2014_44007 crossref_primary_10_1016_j_biopha_2011_12_006 crossref_primary_10_1016_j_tet_2008_06_016 crossref_primary_10_1007_s11030_009_9138_8 crossref_primary_10_1016_j_fuel_2024_133423 crossref_primary_10_1080_00268976_2022_2152744 crossref_primary_10_1038_s41598_018_28458_y crossref_primary_10_1016_j_ces_2023_118493 crossref_primary_10_1021_op200090k crossref_primary_10_1016_j_cej_2009_09_036 crossref_primary_10_1021_acsnano_7b04040 crossref_primary_10_1021_cc800113d crossref_primary_10_1080_15533174_2014_988794 crossref_primary_10_1016_j_jprot_2013_01_005 crossref_primary_10_1080_10426507_2010_544270 crossref_primary_10_1246_cl_160200 crossref_primary_10_1080_10601325_2018_1424549 crossref_primary_10_1016_j_compstruct_2021_114765 crossref_primary_10_1021_cc800101k crossref_primary_10_1021_jo702413n crossref_primary_10_1039_b803001b crossref_primary_10_1016_j_molcatb_2015_03_007 crossref_primary_10_1021_acs_joc_6b02242 crossref_primary_10_1021_jacs_8b10355 crossref_primary_10_1016_j_materresbull_2018_08_045 crossref_primary_10_1016_j_molliq_2017_04_118 crossref_primary_10_1021_jo8009402 crossref_primary_10_1039_D1CY00020A crossref_primary_10_1039_C6RA11727A crossref_primary_10_1039_b716534j crossref_primary_10_2115_fiber_78_106 crossref_primary_10_1016_j_apcata_2011_11_008 crossref_primary_10_1246_cl_200617 crossref_primary_10_1002_ejoc_201300295 crossref_primary_10_1016_j_apenergy_2013_09_029 crossref_primary_10_1088_0957_0233_21_4_045108 crossref_primary_10_1021_jp2086939 crossref_primary_10_1002_aic_13848 crossref_primary_10_1016_j_ijheatmasstransfer_2012_02_065 crossref_primary_10_1016_j_cplett_2022_139541 crossref_primary_10_1007_s11356_021_17018_z crossref_primary_10_1038_s41598_022_15853_9 crossref_primary_10_1299_jtst_7_58 crossref_primary_10_1016_j_biortech_2014_03_011 crossref_primary_10_1111_1541_4337_13154 crossref_primary_10_1021_acs_iecr_9b01137 crossref_primary_10_1002_chem_201103548 crossref_primary_10_1002_aic_13713 crossref_primary_10_3390_molecules20045276 crossref_primary_10_2174_1385272823666190213114104 crossref_primary_10_1002_anie_201202354 crossref_primary_10_1016_j_tet_2016_09_048 crossref_primary_10_3390_molecules22030503 crossref_primary_10_1021_jo900245v crossref_primary_10_1016_j_cej_2010_11_100 crossref_primary_10_1021_acsomega_4c07013 crossref_primary_10_3390_ijms25179729 crossref_primary_10_1002_app_53887 crossref_primary_10_1134_S1070363208100162 crossref_primary_10_1038_srep41244 crossref_primary_10_1039_C4CP05448B crossref_primary_10_1063_1_4875280 crossref_primary_10_1039_B808750D crossref_primary_10_1016_j_tetlet_2013_01_103 crossref_primary_10_1627_jpi_61_98 crossref_primary_10_1080_10426507_2014_980907 crossref_primary_10_1111_1556_4029_12238 crossref_primary_10_1002_psc_1191 crossref_primary_10_1016_j_tet_2013_11_031 crossref_primary_10_1039_b910591c crossref_primary_10_1080_00958972_2010_521818 crossref_primary_10_1016_j_jtice_2021_09_024 crossref_primary_10_1039_b820740b crossref_primary_10_1016_j_jfoodeng_2018_04_009 crossref_primary_10_1016_j_compositesb_2013_08_066 crossref_primary_10_1039_C5RA26425A crossref_primary_10_1021_ic200381f crossref_primary_10_1016_j_tetlet_2009_03_208 crossref_primary_10_1002_ange_200904185 crossref_primary_10_1021_op100202j crossref_primary_10_2174_1570178615666180912115007 crossref_primary_10_1071_CH08510 crossref_primary_10_1016_j_tifs_2022_03_016 crossref_primary_10_1039_D2RA00381C crossref_primary_10_1002_ange_201101274 crossref_primary_10_1246_bcsj_20220254 crossref_primary_10_1007_s11030_010_9242_9 crossref_primary_10_1021_ar300318c crossref_primary_10_1021_op900287j crossref_primary_10_1016_j_jid_2018_04_037 crossref_primary_10_36107_hfb_2021_i1_s107 crossref_primary_10_1016_j_jaap_2012_03_018 crossref_primary_10_1039_c3gc41042k crossref_primary_10_1016_j_ces_2012_11_039 crossref_primary_10_1002_fam_3103 crossref_primary_10_1016_j_rser_2019_109316 crossref_primary_10_1039_b904044g crossref_primary_10_3390_w13131784 crossref_primary_10_1039_c3ob40790j crossref_primary_10_1002_ejoc_201200469 crossref_primary_10_1252_jcej_11we210 crossref_primary_10_1016_j_carres_2013_04_013 crossref_primary_10_1007_s00044_010_9410_6 crossref_primary_10_1002_chem_201503858 crossref_primary_10_1108_COMPEL_09_2018_0346 crossref_primary_10_3390_molecules18010097 crossref_primary_10_1016_j_molcatb_2010_07_015 crossref_primary_10_1016_j_chroma_2009_06_035 crossref_primary_10_1002_chem_201000438 crossref_primary_10_1016_j_mtcomm_2022_103890 crossref_primary_10_1039_C8PY01804A crossref_primary_10_5059_yukigoseikyokaishi_81_341 crossref_primary_10_1111_jfpp_15950 crossref_primary_10_15406_japlr_2018_07_00295 crossref_primary_10_1039_C1CS15214A crossref_primary_10_1039_C5CP00476D crossref_primary_10_1016_j_aca_2011_09_011 crossref_primary_10_1016_j_biortech_2012_10_084 crossref_primary_10_3390_polym4021183 crossref_primary_10_1039_b821970b crossref_primary_10_1016_j_snb_2016_03_156 crossref_primary_10_1080_1061186X_2018_1428810 crossref_primary_10_1016_j_scp_2018_05_004 crossref_primary_10_1039_b922730j crossref_primary_10_1016_j_tetlet_2009_07_072 crossref_primary_10_1016_j_foodchem_2021_131217 crossref_primary_10_1021_acssuschemeng_8b03286 crossref_primary_10_1016_j_enzmictec_2014_11_002 crossref_primary_10_1016_j_biombioe_2014_11_007 crossref_primary_10_1002_slct_201702325 crossref_primary_10_1016_j_cej_2018_10_050 crossref_primary_10_1039_C6RA19535K crossref_primary_10_1002_mren_201300127 crossref_primary_10_1002_mren_202100044 crossref_primary_10_1016_j_cej_2013_12_088 crossref_primary_10_1039_b810142f crossref_primary_10_1186_2043_7129_1_5 crossref_primary_10_1246_cl_160982 crossref_primary_10_1039_B816723K crossref_primary_10_1016_j_ultsonch_2014_12_004 crossref_primary_10_1063_5_0011181 crossref_primary_10_1002_open_201402123 crossref_primary_10_1002_prep_201100044 crossref_primary_10_1016_j_apcata_2020_117620 crossref_primary_10_1080_08327823_2018_1494470 crossref_primary_10_1007_s41981_018_0021_6 crossref_primary_10_1002_ceat_200900207 crossref_primary_10_1002_pola_25916 crossref_primary_10_1002_asia_201402288 crossref_primary_10_1021_ma102825r crossref_primary_10_1002_macp_201200008 crossref_primary_10_1021_jo5000779 crossref_primary_10_1002_pola_23731 crossref_primary_10_1002_ceat_201400581 crossref_primary_10_1016_j_cplett_2010_04_011 crossref_primary_10_1002_cssc_202000966 crossref_primary_10_1007_s11694_022_01730_6 crossref_primary_10_3762_bjoc_5_24 crossref_primary_10_1016_j_matpr_2018_06_018 crossref_primary_10_1039_C7CE00882A crossref_primary_10_1246_cl_170604 crossref_primary_10_1002_tcr_201800045 crossref_primary_10_1016_j_fuel_2013_05_094 crossref_primary_10_1039_C5RA27261K crossref_primary_10_1039_C9CP06239D crossref_primary_10_1002_ceat_201400118 crossref_primary_10_1016_j_jes_2021_06_020 crossref_primary_10_1039_b922797k crossref_primary_10_1002_adem_201900762 crossref_primary_10_1063_1_4935277 crossref_primary_10_1016_j_jpba_2011_07_042 crossref_primary_10_1016_j_ces_2021_117354 crossref_primary_10_1016_j_cej_2021_131898 crossref_primary_10_1021_jo501153r crossref_primary_10_1021_acs_jpca_2c01487 crossref_primary_10_1016_j_carbpol_2013_04_033 crossref_primary_10_1016_j_tet_2009_04_065 crossref_primary_10_1021_acssuschemeng_9b03580 crossref_primary_10_1071_CH08460 crossref_primary_10_1088_1748_0221_6_02_T02001 crossref_primary_10_1039_C7TA06339C crossref_primary_10_1021_ie200095y crossref_primary_10_1002_cssc_201901934 crossref_primary_10_1007_s10593_023_03207_w crossref_primary_10_1002_anie_201100856 crossref_primary_10_3390_inorganics2020191 crossref_primary_10_1007_s40726_022_00247_2 crossref_primary_10_1246_cl_2013_165 crossref_primary_10_5059_yukigoseikyokaishi_70_1145 crossref_primary_10_1021_jo900960a crossref_primary_10_1016_j_tifs_2017_02_014 crossref_primary_10_1016_j_tet_2008_08_011 crossref_primary_10_1002_pola_22730 crossref_primary_10_1021_op900194z crossref_primary_10_1155_2015_879531 crossref_primary_10_1002_ejoc_200800325 crossref_primary_10_1002_ejoc_201301854 crossref_primary_10_1039_C9RA00617F crossref_primary_10_1063_1_4732514 crossref_primary_10_1002_macp_201200449 crossref_primary_10_1016_j_colsurfa_2009_04_032 crossref_primary_10_1039_b812536h crossref_primary_10_1016_j_polymdegradstab_2011_12_009 crossref_primary_10_1039_c0gc00823k crossref_primary_10_1007_s11030_009_9167_3 crossref_primary_10_1016_j_tet_2012_10_007 crossref_primary_10_1039_c3cc44610g crossref_primary_10_1016_j_tetlet_2019_151060 crossref_primary_10_4018_ijcce_2013070104 crossref_primary_10_1021_cr9001098 crossref_primary_10_3390_molecules201219793 crossref_primary_10_1002_tcr_201800121 crossref_primary_10_1021_acs_jpcc_9b11179 crossref_primary_10_1088_0957_0233_26_8_085105 crossref_primary_10_1002_ejoc_202000092 crossref_primary_10_1016_j_polymdegradstab_2020_109427 crossref_primary_10_1021_acs_jpcb_0c06383 crossref_primary_10_1021_op900297e crossref_primary_10_3390_catal7030089 crossref_primary_10_1627_jpi_61_121 crossref_primary_10_1016_j_molliq_2019_111678 crossref_primary_10_1039_C9GC00467J crossref_primary_10_1021_acs_jpclett_9b00629 crossref_primary_10_1038_s41598_018_21846_4 crossref_primary_10_1134_S003602441201030X crossref_primary_10_1039_C6CC01149G crossref_primary_10_3390_catal10101175 crossref_primary_10_1039_C6OB01141A crossref_primary_10_1016_j_tetlet_2012_09_058 crossref_primary_10_1016_j_tetlet_2009_11_096 crossref_primary_10_1039_B918407D crossref_primary_10_1016_j_tetlet_2008_03_094 crossref_primary_10_1039_C4SC03372H crossref_primary_10_1002_cssc_200800187 crossref_primary_10_3390_molecules28062547 crossref_primary_10_1002_adfm_202316212 crossref_primary_10_1246_bcsj_20160104 crossref_primary_10_1021_jo102094h crossref_primary_10_1038_srep39040 crossref_primary_10_3390_molecules25225373 crossref_primary_10_1021_ol4036825 crossref_primary_10_1002_chem_201001703 crossref_primary_10_1016_j_foodp_2025_100048 crossref_primary_10_5897_AJBR2014_0808 crossref_primary_10_2174_2213335607666200115164318 crossref_primary_10_1002_chem_200802200 crossref_primary_10_1109_JSTQE_2017_2660882 crossref_primary_10_1016_j_cep_2015_05_002 crossref_primary_10_1039_c004729e crossref_primary_10_1021_jo9021315 crossref_primary_10_1016_j_tetlet_2008_09_135 crossref_primary_10_1021_jp900394u crossref_primary_10_1111_jace_16061 crossref_primary_10_1039_c2ob06833h crossref_primary_10_1016_j_crci_2008_06_022 crossref_primary_10_3390_catal13030622 crossref_primary_10_1016_j_ica_2016_06_043 crossref_primary_10_1016_j_polymer_2011_04_051 crossref_primary_10_1038_s41598_021_93274_w crossref_primary_10_1080_00397911_2013_828755 crossref_primary_10_1016_j_conbuildmat_2021_123491 crossref_primary_10_1071_CH11125 crossref_primary_10_1021_ja802404g crossref_primary_10_1007_s11837_021_04677_z crossref_primary_10_1071_CH09064 crossref_primary_10_1080_00397911_2013_796383 crossref_primary_10_1021_op100181u crossref_primary_10_1016_j_eurpolymj_2009_04_006 crossref_primary_10_1021_jo8021567 crossref_primary_10_1007_s10311_018_0739_2 crossref_primary_10_1039_c0gc00024h crossref_primary_10_1016_j_tetlet_2012_03_104 crossref_primary_10_1002_ange_201100856 crossref_primary_10_1002_jctb_4012 crossref_primary_10_1021_jo800825c crossref_primary_10_1016_j_chemphys_2020_110977 crossref_primary_10_1002_ijch_201100140 crossref_primary_10_1016_j_cej_2016_04_064 crossref_primary_10_1002_aic_14575 crossref_primary_10_1021_ja9046075 crossref_primary_10_1016_j_enzmictec_2015_10_003 crossref_primary_10_3390_molecules16108733 crossref_primary_10_1039_c1gc16243h crossref_primary_10_1016_j_tetlet_2010_04_062 crossref_primary_10_1016_j_biortech_2011_11_059 crossref_primary_10_1016_j_jaap_2013_02_003 crossref_primary_10_1021_jo1014382 crossref_primary_10_1016_j_ces_2011_08_003 crossref_primary_10_1021_jp306638r crossref_primary_10_1111_1541_4337_12940 crossref_primary_10_1016_j_spmi_2013_08_023 crossref_primary_10_1080_00397910902985515 crossref_primary_10_3762_bjoc_10_24 crossref_primary_10_1002_anie_200904185 crossref_primary_10_2174_2213335609666220516112247 crossref_primary_10_3390_polym10020215 crossref_primary_10_1080_09593330_2017_1385647 crossref_primary_10_1039_c0nr00141d crossref_primary_10_1016_j_molstruc_2019_127087 crossref_primary_10_1039_C6CP02034H crossref_primary_10_1007_s10593_012_1030_2 crossref_primary_10_4236_fns_2019_103024 crossref_primary_10_1021_acssuschemeng_4c05008 crossref_primary_10_1246_cl_2010_574 crossref_primary_10_1246_bcsj_20110164 crossref_primary_10_1016_j_compositesb_2016_06_032 crossref_primary_10_1021_jp2076269 crossref_primary_10_4155_fmc_09_144 crossref_primary_10_1016_j_ijheatmasstransfer_2012_09_037 crossref_primary_10_1021_jp100374x crossref_primary_10_1021_jo8013897 crossref_primary_10_1002_chem_200902044 crossref_primary_10_1039_C6RA09841J crossref_primary_10_1021_acscatal_0c02468 crossref_primary_10_1021_om8008926 crossref_primary_10_1002_tcr_201800057 crossref_primary_10_1016_j_jmapro_2019_03_038 crossref_primary_10_1063_1_3139519 crossref_primary_10_1039_b908937c crossref_primary_10_3390_ijms17020210 crossref_primary_10_1007_s11947_018_2109_2 crossref_primary_10_1016_j_chemphys_2019_110523 crossref_primary_10_1016_j_carres_2014_09_006 crossref_primary_10_1021_acs_energyfuels_0c02006 crossref_primary_10_1002_ejoc_201601487 crossref_primary_10_1016_j_saa_2022_121877 crossref_primary_10_1039_C4CY00038B crossref_primary_10_1134_S1023193514090110 crossref_primary_10_1126_science_aba5901 crossref_primary_10_1080_15435075_2018_1529575 crossref_primary_10_1016_j_jorganchem_2009_08_028 crossref_primary_10_1557_jmr_2018_465 crossref_primary_10_1021_ic101651p crossref_primary_10_1109_ACCESS_2019_2959848 crossref_primary_10_1021_jo100136r crossref_primary_10_1016_j_tetlet_2010_10_090 crossref_primary_10_1002_tcr_201800064 crossref_primary_10_1016_j_tet_2009_01_105 crossref_primary_10_1039_c2sc01003h crossref_primary_10_1039_D0ME00043D crossref_primary_10_1002_asmb_2243 crossref_primary_10_1016_j_chroma_2010_10_062 crossref_primary_10_1002_ange_201300854 crossref_primary_10_3390_en5104209 |
Cites_doi | 10.1002/1521-3773(20020603)41:11<1863::AID-ANIE1863>3.0.CO;2-L 10.1002/macp.200400422 10.1016/j.tetlet.2006.03.199 10.1016/S0040-4039(00)85103-5 10.1002/3527606556 10.1016/j.tetlet.2007.06.147 10.1016/S0040-4020(02)00628-2 10.1016/S1359-6446(01)01735-4 10.1021/ja070259i 10.1002/9780470390276 10.1139/v04-103 10.1039/b002697m 10.1002/1521-3773(20021004)41:19<3589::AID-ANIE3589>3.0.CO;2-Q 10.1002/chem.200700098 10.1016/S1359-6446(02)02178-5 10.1016/j.tet.2005.01.105 10.1002/1099-0690(200103)2001:5<919::AID-EJOC919>3.0.CO;2-V 10.1039/a827213z 10.1021/op700080t 10.1016/j.tet.2006.01.102 10.1016/S0040-4020(01)01216-9 10.1351/pac200173010161 10.1016/S0040-4039(00)83996-9 10.1038/nrd1926 10.1002/mas.20140 10.1021/jo060692v 10.1351/pac200173010193 10.1016/j.tetlet.2007.02.052 10.1016/j.tet.2004.11.068 10.1039/b617084f 10.1002/chem.200400417 10.1002/marc.200400313 10.1055/s-1998-6083 10.1055/s-1993-22508 10.1016/j.tet.2003.11.042 10.1081/SCC-100106048 10.1016/0040-4020(96)00241-4 10.1021/om060605p 10.1021/ol036091x 10.1016/S0040-4020(02)01622-8 10.1016/S0040-4020(02)00085-6 10.1002/ceat.200500136 10.1002/marc.200600749 10.1016/0969-806X(94)00072-R 10.2174/1386207043328562 10.1021/cc060138z 10.1016/j.tetlet.2005.03.146 10.1246/cl.1990.347 10.1002/anie.200353101 10.1016/j.tet.2005.12.062 10.1021/jo0624187 10.1039/cs9912000001 10.1002/anie.200400655 10.1002/adma.200502422 10.1021/cc010043r 10.1039/B310502D 10.1021/jo035135c 10.1351/pac200173010147 10.2174/1389557033488042 10.1039/a808223e 10.1002/marc.200300154 10.1002/adfm.200301006 10.1016/j.ddtec.2005.05.002 10.1007/128_051 10.1139/V04-103 10.1039/b615597a 10.1039/b707692d 10.1039/b310502d 10.1039/b411438h 10.1021/ar040278m 10.1007/b11051 10.1055/s-2006-958428 10.1021/ol061803f 10.1007/128_048 10.1016/j.tet.2006.07.038 10.1007/11535799 |
ContentType | Journal Article |
Copyright | Copyright © 2008 American Chemical Society 2008 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2008 American Chemical Society – notice: 2008 INIST-CNRS |
DBID | BSCLL AAYXX CITATION 17B 1KM BLEPL DTL EGQ GAYFB IQODW NPM 7X8 |
DOI | 10.1021/jo7022697 |
DatabaseName | Istex CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2008 Pascal-Francis PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6904 |
EndPage | 47 |
ExternalDocumentID | 18062704 19977161 000252046600006 10_1021_jo7022697 ark_67375_TPS_RQG2KRPQ_J f68042309 |
Genre | Journal Article |
GroupedDBID | - .K2 186 29L 4.4 53G 55A 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFMIJ ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CJ0 CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 OHM P2P PZZ ROL RXW TAE TAF TN5 UI2 UKR UPT UQL VF5 VG9 VQA W1F WH7 X XFK YQJ YZZ ZCG --- -DZ -~X 6TJ AAHBH AAYOK ABJNI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK IH2 XSW YQT ZCA AAYXX ABBLG ABLBI ACRPL ADNMO ADXHL AEYZD AGQPQ ANPPW CITATION YR5 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE .GJ .HR 123 1WB 3EH 41~ ABHMW ACBNA ACTDY AI. AIDAL D0S IQODW MVM NHB OHT RNS T9H UBC UMD VH1 X7L XOL XXG YXA YXE YYP ZE2 ZGI NPM 7X8 |
ID | FETCH-LOGICAL-a447t-b3ff8d45460765eee48bd9e5a2383f1285bcdd4da58444d3b6bda8e9254745633 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 441 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000252046600006 |
ISSN | 0022-3263 |
IngestDate | Thu Jul 10 22:36:03 EDT 2025 Mon Jul 21 05:45:10 EDT 2025 Mon Jul 21 09:11:01 EDT 2025 Wed Aug 06 03:32:18 EDT 2025 Fri Aug 29 15:46:10 EDT 2025 Tue Jul 01 01:52:31 EDT 2025 Thu Apr 24 23:03:03 EDT 2025 Wed Oct 30 09:22:15 EDT 2024 Thu Aug 27 13:42:28 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | IRRADIATION SCALE-UP REAGENTS PROMOTED ORGANIC-SYNTHESIS IONIC LIQUIDS EFFICIENT ASSISTED POLYMER SYNTHESIS ORGANOPHOSPHORUS CHEMISTRY SOLVENT-FREE SYNTHESIS PARALLEL Nitrogen heterocycle Stirring Measurement sensor Temperature effect Microwave Diels Alder addition Selectivity Thermal reaction Microwave heating Experimental study Alkylation Temperature gradient Cycloaddition Electric field Carboxamide Infrared radiation Reactor Chemical synthesis Polar molecule |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a447t-b3ff8d45460765eee48bd9e5a2383f1285bcdd4da58444d3b6bda8e9254745633 |
Notes | istex:C541520C2D5533C0C6D3AEFC843FA139486028E4 ark:/67375/TPS-RQG2KRPQ-J ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2983-6007 0000-0002-8860-9325 |
PMID | 18062704 |
PQID | 70166341 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1021_jo7022697 crossref_citationtrail_10_1021_jo7022697 proquest_miscellaneous_70166341 pubmed_primary_18062704 webofscience_primary_000252046600006 pascalfrancis_primary_19977161 istex_primary_ark_67375_TPS_RQG2KRPQ_J webofscience_primary_000252046600006CitationCount acs_journals_10_1021_jo7022697 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01-04 |
PublicationDateYYYYMMDD | 2008-01-04 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-04 day: 04 |
PublicationDecade | 2000 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: Washington, DC – name: United States |
PublicationTitle | Journal of organic chemistry |
PublicationTitleAbbrev | J ORG CHEM |
PublicationTitleAlternate | J. Org. Chem |
PublicationYear | 2008 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | Mingos D. M. P. (jo7022697b00026/jo7022697b00026_2) 1991; 20 Collins J. M. (jo7022697b00009/jo7022697b00009_1) 2007; 5 Zhu Y.-J. (jo7022697b00007/jo7022697b00007_2) 2004; 43 Leadbeater N. E. (jo7022697b00018/jo7022697b00018_3) 2005; 61 Ianelli M. (jo7022697b00043/jo7022697b00043_2) 2005; 206 Strauss C. R. (jo7022697b00014/jo7022697b00014_2) 2002; 41 Hoogenboom R. (jo7022697b00006/jo7022697b00006_3) 2007; 28 Microwave Methods (jo7022697b00002/jo7022697b00002_6) 2006 Bogdal D. (jo7022697b00006/jo7022697b00006_4) 2007 Koopmans C. (jo7022697b00045/jo7022697b00045_1) 2006; 62 Ianelli M. (jo7022697b00042/jo7022697b00042_1) 2005; 61 Bogdal D. (jo7022697b00006/jo7022697b00006_1) 2003; 163 Microwave-Assisted Synthesis (jo7022697b00002/jo7022697b00002_7) 2006 Baxendale I. R. (jo7022697b00004/jo7022697b00004_1) 2002; 58 Artman D. D. (jo7022697b00004/jo7022697b00004_2) 2007; 129 Nüchter M. (jo7022697b00018/jo7022697b00018_2) 2005; 28 Wathey B. (jo7022697b00005/jo7022697b00005_2) 2002; 7 Loupy A. (jo7022697b00022/jo7022697b00022_1) 1998 Shipe W. D. (jo7022697b00005/jo7022697b00005_4) 2005 Kremsner J. M. (jo7022697b00032/jo7022697b00032_1) 2007; 9 For (jo7022697b00037/jo7022697b00037_1) 2000; 3745 Microwaves (jo7022697b00002/jo7022697b00002_1) 2002 Difficulties (jo7022697b00039/jo7022697b00039_1) 2006; 47 Perreux L. (jo7022697b00041/jo7022697b00041_2) 2002; 58 Cvengros J. (jo7022697b00030/jo7022697b00030_1) 2004; 82 Tsuji M. (jo7022697b00008/jo7022697b00008_1) 2005; 11 For (jo7022697b00010/jo7022697b00010_1) 2006 Lill J. R. (jo7022697b00009/jo7022697b00009_2) 2007; 26 Loupy A. (jo7022697b00033/jo7022697b00033_1) 2001; 73 Vasquez-Tato M. P. (jo7022697b00041/jo7022697b00041_4) 1993 Kremsner J. M. (jo7022697b00016/jo7022697b00016_1) 2006; 71 For (jo7022697b00034/jo7022697b00034_1) 2003; 59 Barlow S. (jo7022697b00007/jo7022697b00007_1) 2003; 13 Recent (jo7022697b00003/jo7022697b00003_1) 2004; 43 For (jo7022697b00019/jo7022697b00019_1) 2006; 62 For (jo7022697b00011/jo7022697b00011_1) 2005 Garbacia S. (jo7022697b00015/jo7022697b00015_4) 2003; 68 (jo7022697b00002/jo7022697b00002_5) 2006 Kondolff I. (jo7022697b00047/jo7022697b00047_1) 2006; 25 Hayes B. L. (jo7022697b00002/jo7022697b00002_2) 2002 Appukkuttan P. (jo7022697b00004/jo7022697b00004_3) 2006 For (jo7022697b00020/jo7022697b00020_1) 2003; 5 Al-Obeidi F. (jo7022697b00005/jo7022697b00005_3) 2003; 3 Stadler A. (jo7022697b00015/jo7022697b00015_2) 2001 Varma R. S. (jo7022697b00022/jo7022697b00022_4) 2001; 73 Varma R. S. (jo7022697b00022/jo7022697b00022_5) 2002; 58 Hosseini M. (jo7022697b00017/jo7022697b00017_1) 2007; 72 Kappe C. O. (jo7022697b00005/jo7022697b00005_5) 2006; 5 Smith K. (jo7022697b00036/jo7022697b00036_1) 1990 Stadler A. (jo7022697b00015/jo7022697b00015_1) 2000 For (jo7022697b00040/jo7022697b00040_1) 2004; 7 Nüchter M. (jo7022697b00018/jo7022697b00018_1) 2004; 6 For (jo7022697b00012/jo7022697b00012_1) 2001 Strohmeier G. A. (jo7022697b00015/jo7022697b00015_3) 2002; 4 For (jo7022697b00029/jo7022697b00029_1) 2007; 48 For (jo7022697b00023/jo7022697b00023_1) 1996; 52 Kidawi M. (jo7022697b00022/jo7022697b00022_3) 2001; 73 Solvents 0. (jo7022697b00027/jo7022697b00027_1) Gabriel C. (jo7022697b00026/jo7022697b00026_1) 1998; 27 Perelaer J. (jo7022697b00007/jo7022697b00007_3) 2006; 18 Loupy A. (jo7022697b00028/jo7022697b00028_1) 2004; 60 For (jo7022697b00021/jo7022697b00021_1) 1995; 45 Microwave-Assisted Organic (jo7022697b00002/jo7022697b00002_3) 2005 Kuhnert N. (jo7022697b00014/jo7022697b00014_1) 2002; 41 By (jo7022697b00035/jo7022697b00035_1) Gedye R. (jo7022697b00001/jo7022697b00001_1) 1986; 27 Goretzki C. (jo7022697b00043/jo7022697b00043_1) 2004; 25 For (jo7022697b00031/jo7022697b00031_1) 2001; 31 Giguere R. J. (jo7022697b00001/jo7022697b00001_2) 1986; 27 Wiesbrock F. (jo7022697b00006/jo7022697b00006_2) 2004; 25 Massicot F. (jo7022697b00041/jo7022697b00041_3) 2001 Varma R. S. (jo7022697b00022/jo7022697b00022_2) 1999 jo7022697b00038/jo7022697b00038_1 Jhung S. H. (jo7022697b00007/jo7022697b00007_4) 2007; 13 Gelens E. (jo7022697b00041/jo7022697b00041_1) 2005; 46 For (jo7022697b00025/jo7022697b00025_1) 2007; 48 Larhed M. (jo7022697b00005/jo7022697b00005_1) 2001; 6 Kappe C. O. (jo7022697b00002/jo7022697b00002_4) 2005 For (jo7022697b00046/jo7022697b00046_1) 2007; 11 Garbacia, S (WOS:000186489000058) 2003; 68 Koopmans, C (WOS:000237126500012) 2006; 62 Loupy, A (WOS:000168165700023) 2001; 73 Stadler, A (WOS:000167272700007) 2001; 2001 Cvengros, J (WOS:000225268700007) 2004; 82 Kappe, CO (WOS:000225575600006) 2004; 43 Kappe, CO (WOS:000298579000011) 2005; 52 SMITH, K (WOS:A1990CV45400006) 1990 Vanier, GS (WOS:000244257400028) 2007 PERREUX L (WOS:000252046600006.71) 2002 Leadbeater, NE (WOS:000227930800013) 2005; 61 GIGUERE, RJ (WOS:A1986E375800004) 1986; 27 MASSICOT F (WOS:000252046600006.62) 1993 Iannelli, M (WOS:000226765600013) 2005; 61 Al-Obeidi, F (WOS:000210554300006) 2003; 3 Varma, RS (WOS:000174339600001) 2002; 58 Roberts, BA (WOS:000231462100006) 2005; 38 Kappe, CO (WOS:000234555300017) 2006; 5 Loupy, A (WOS:000188785600030) 2004; 60 Artman, GD (WOS:000246415100050) 2007; 129 Kondolff, I (WOS:000241232800009) 2006; 25 Strauss, CR (WOS:000178609900007) 2002; 41 BOGDAL D (WOS:000252046600006.9) 2007 Kremsner, JM (WOS:000238029300039) 2006; 71 Tsuji, M (WOS:000226333500001) 2005; 11 KAISER NFK (WOS:000252046600006.33) 2001 Lill, JR (WOS:000248859000002) 2007; 26 Gautun, OR (WOS:000165469500012) 2000; 2000 Moseley, JD (WOS:000248985800003) 2007; 48 Iannelli, M (WOS:000227008000004) 2005; 206 Hayes, BL (WOS:000223606500002) 2004; 37 Kidwai, M (WOS:000168165700021) 2001; 73 Baxendale, IR (WOS:000177217500006) 2002; 58 Zhu, YJ (WOS:000220266000025) 2004; 43 LOUPY A (WOS:000252046600006.57) 2002 BERLAN, J (WOS:A1995QM67500006) 1995; 45 Strohmeier, GA (WOS:000174633500010) 2002; 4 (WOS:000243218100008) 2006; 266 Leadbeater, NE (WOS:000240654700052) 2006; 8 de la Hoz, A (WOS:000226522500006) 2005; 34 Barlow, S (WOS:000184079800002) 2003; 13 Nuchter, M (WOS:000220001800003) 2004; 6 Leadbeater, NE (WOS:000248731600018) 2007; 5 Shipe, William D (MEDLINE:24981843) 2005; 2 Bogdal, D (WOS:000186351000004) 2003; 163 Hosseini, M (WOS:000244071100046) 2007; 72 Bogdal, D (WOS:000240818100015) 2006; 62 Goretzki, C (WOS:000189323200008) 2004; 25 Perez, ER (WOS:000180777200019) 2003; 59 Leadbeater, NE (WOS:000223486200011) 2004; 7 Razzaq, T (WOS:000245563300016) 2007; 48 Wiesbrock, F (WOS:000224948200001) 2004; 25 Gabriel, C (WOS:000074059200006) 1998; 27 Kiddle, JJ (WOS:000085617000008) 2000; 41 Kremsner, JM (WOS:000243218100007) 2006; 266 Habermann, J (WOS:000227898900002) 2005; 2 Hostyn, S (WOS:000237126500007) 2006; 62 Perreux, L (WOS:000172060500001) 2001; 57 Perelaer, J (WOS:000240408600003) 2006; 18 Leadbeater, NE (WOS:000244354300013) 2007; 5 Lebouvier, N (WOS:000240090200035) 2006; 47 Varma, RS (WOS:000168165700028) 2001; 73 Kremsner, JM (WOS:000244799100015) 2007; 9 PERREUX L (WOS:000252046600006.72) 2006 Stuerga, D (WOS:A1996UD90900021) 1996; 52 HAYES BL (WOS:000252046600006.26) 2002 Kuhnert, N (WOS:000176045200004) 2002; 41 Kiddle, JJ (WOS:000171281500020) 2001; 31 Appukkuttan, P (WOS:000243218100001) 2006; 266 GEDYE, R (WOS:A1986AYF2700004) 1986; 27 Gelens, E (WOS:000228872400033) 2005; 46 SAILLARD, R (WOS:A1995QR16100008) 1995; 51 MINGOS, DMP (WOS:A1991FL34100001) 1991; 20 Larhed, M (WOS:000168558900009) 2001; 6 Nuchter, M (WOS:000231319700005) 2005; 28 Loupy, A (WOS:000075952000001) 1998 Dressen, MHCL (WOS:000249697700009) 2007; 11 DELAHOZ A (WOS:000252046600006.14) 2006 Perreux, L (WOS:000174682900011) 2002; 58 Varma, RS (WOS:000082435600020) 1999; 1 Enquist, PA (WOS:000187038300031) 2003; 5 Stadler, A (WOS:000088760500012) 2000 LOUPY A (WOS:000252046600006.59) 2006 Collins, JM (WOS:000245439800001) 2007; 5 LIDSTROM P (WOS:000252046600006.55) 2005 Jhung, SH (WOS:000246981600003) 2007; 13 Wathey, B (WOS:000174360300019) 2002; 7 ONDRUSCHKA B (WOS:000252046600006.67) 2006 VANDEREYCKEN E (WOS:000252046600006.85) 2006 ABENHAIM, D (WOS:A1994NE08900012) 1994; 38 Hoogenboom, R (WOS:000244853800002) 2007; 28 KAPPE CO (WOS:000252046600006.35) 2005 |
References_xml | – volume: 41 start-page: 1863 year: 2002 ident: jo7022697b00014/jo7022697b00014_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020603)41:11<1863::AID-ANIE1863>3.0.CO;2-L – volume: 206 start-page: 349 year: 2005 ident: jo7022697b00043/jo7022697b00043_2 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200400422 – volume: 47 start-page: 6479 year: 2006 ident: jo7022697b00039/jo7022697b00039_1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2006.03.199 – volume: 27 start-page: 4945 year: 1986 ident: jo7022697b00001/jo7022697b00001_2 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)85103-5 – volume-title: Microwaves in Organic and Medicinal Chemistry year: 2005 ident: jo7022697b00002/jo7022697b00002_4 doi: 10.1002/3527606556 – volume: 48 start-page: 6084 year: 2007 ident: jo7022697b00025/jo7022697b00025_1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2007.06.147 – volume-title: DMSO, methanol, formic acid), medium (tan δ 0.1−0.5 ident: jo7022697b00027/jo7022697b00027_1 – start-page: 2441 year: 2001 ident: jo7022697b00041/jo7022697b00041_3 publication-title: Synthesis – volume: 58 start-page: 6285 year: 2002 ident: jo7022697b00004/jo7022697b00004_1 publication-title: Tetrahedron doi: 10.1016/S0040-4020(02)00628-2 – volume: 6 start-page: 406 year: 2001 ident: jo7022697b00005/jo7022697b00005_1 publication-title: Drug Discovery Today doi: 10.1016/S1359-6446(01)01735-4 – start-page: 114 volume-title: L. year: 2001 ident: jo7022697b00012/jo7022697b00012_1 – volume: 129 start-page: 6336 year: 2007 ident: jo7022697b00004/jo7022697b00004_2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja070259i – volume-title: Microwave-Enhanced Polymer Chemistry and Technology year: 2007 ident: jo7022697b00006/jo7022697b00006_4 doi: 10.1002/9780470390276 – volume: 82 start-page: 1365 year: 2004 ident: jo7022697b00030/jo7022697b00030_1 publication-title: Can. J. Chem. doi: 10.1139/v04-103 – start-page: 1363 year: 2000 ident: jo7022697b00015/jo7022697b00015_1 publication-title: J. Chem. Soc., Perkin Trans. 2 doi: 10.1039/b002697m – volume: 41 start-page: 3589 year: 2002 ident: jo7022697b00014/jo7022697b00014_2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20021004)41:19<3589::AID-ANIE3589>3.0.CO;2-Q – volume: 13 start-page: 4410 year: 2007 ident: jo7022697b00007/jo7022697b00007_4 publication-title: Chem. Eur. J. doi: 10.1002/chem.200700098 – volume: 7 start-page: 373 year: 2002 ident: jo7022697b00005/jo7022697b00005_2 publication-title: Drug Discovery Today doi: 10.1016/S1359-6446(02)02178-5 – volume: 61 start-page: 3565 year: 2005 ident: jo7022697b00018/jo7022697b00018_3 publication-title: Tetrahedron doi: 10.1016/j.tet.2005.01.105 – start-page: 919 year: 2001 ident: jo7022697b00015/jo7022697b00015_2 publication-title: Eur. J. Org. Chem. doi: 10.1002/1099-0690(200103)2001:5<919::AID-EJOC919>3.0.CO;2-V – volume: 27 start-page: 213 year: 1998 ident: jo7022697b00026/jo7022697b00026_1 publication-title: Chem. Soc. Rev. doi: 10.1039/a827213z – volume: 11 start-page: 865 year: 2007 ident: jo7022697b00046/jo7022697b00046_1 publication-title: Org. Process Res. Dev. doi: 10.1021/op700080t – volume-title: Germany year: 2006 ident: jo7022697b00002/jo7022697b00002_6 – volume: 62 start-page: 4709 year: 2006 ident: jo7022697b00045/jo7022697b00045_1 publication-title: Tetrahedron doi: 10.1016/j.tet.2006.01.102 – start-page: 28 volume-title: C. O. year: 2005 ident: jo7022697b00011/jo7022697b00011_1 – volume: 58 start-page: 1235 year: 2002 ident: jo7022697b00022/jo7022697b00022_5 publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)01216-9 – ident: jo7022697b00038/jo7022697b00038_1 – volume: 73 start-page: 161 year: 2001 ident: jo7022697b00033/jo7022697b00033_1 publication-title: Pure Appl. Chem. doi: 10.1351/pac200173010161 – volume: 27 start-page: 279 year: 1986 ident: jo7022697b00001/jo7022697b00001_1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)83996-9 – volume: 5 start-page: 51 year: 2006 ident: jo7022697b00005/jo7022697b00005_5 publication-title: Nature Rev. Drug Discov. doi: 10.1038/nrd1926 – volume-title: Drug Discovery Today: Technol year: 2005 ident: jo7022697b00005/jo7022697b00005_4 – volume: 26 start-page: 657 year: 2007 ident: jo7022697b00009/jo7022697b00009_2 publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.20140 – volume: 71 start-page: 4651 year: 2006 ident: jo7022697b00016/jo7022697b00016_1 publication-title: J. Org. Chem. doi: 10.1021/jo060692v – volume: 73 start-page: 193 year: 2001 ident: jo7022697b00022/jo7022697b00022_4 publication-title: Pure Appl. Chem. doi: 10.1351/pac200173010193 – volume: 48 start-page: 2513 year: 2007 ident: jo7022697b00029/jo7022697b00029_1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2007.02.052 – volume-title: Springer year: 2006 ident: jo7022697b00002/jo7022697b00002_7 – volume: 61 start-page: 1509 year: 2005 ident: jo7022697b00042/jo7022697b00042_1 publication-title: Tetrahedron doi: 10.1016/j.tet.2004.11.068 – volume: 5 start-page: 1141 year: 2007 ident: jo7022697b00009/jo7022697b00009_1 publication-title: Org. Biomol. Chem. doi: 10.1039/b617084f – volume: 11 start-page: 440 year: 2005 ident: jo7022697b00008/jo7022697b00008_1 publication-title: Chem. Eur. J. doi: 10.1002/chem.200400417 – volume: 3745 start-page: 3748 year: 2000 ident: jo7022697b00037/jo7022697b00037_1 publication-title: Eur. J. Org. Chem. – volume: 25 start-page: 1739 year: 2004 ident: jo7022697b00006/jo7022697b00006_2 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200400313 – start-page: 1213 year: 1998 ident: jo7022697b00022/jo7022697b00022_1 publication-title: Synthesis doi: 10.1055/s-1998-6083 – start-page: 62 volume-title: J. M. year: 2006 ident: jo7022697b00010/jo7022697b00010_1 – start-page: 506 year: 1993 ident: jo7022697b00041/jo7022697b00041_4 publication-title: Synlett doi: 10.1055/s-1993-22508 – volume: 60 start-page: 1683 year: 2004 ident: jo7022697b00028/jo7022697b00028_1 publication-title: Tetrahedron doi: 10.1016/j.tet.2003.11.042 – volume: 31 start-page: 3377 year: 2001 ident: jo7022697b00031/jo7022697b00031_1 publication-title: J. Synth. Commun. doi: 10.1081/SCC-100106048 – volume: 52 start-page: 5505 year: 1996 ident: jo7022697b00023/jo7022697b00023_1 publication-title: Tetrahedron doi: 10.1016/0040-4020(96)00241-4 – volume: 25 start-page: 5219 year: 2006 ident: jo7022697b00047/jo7022697b00047_1 publication-title: Organometallics doi: 10.1021/om060605p – volume: 5 start-page: 4875 year: 2003 ident: jo7022697b00020/jo7022697b00020_1 publication-title: Org. Lett. doi: 10.1021/ol036091x – volume-title: U.K. year: 2005 ident: jo7022697b00002/jo7022697b00002_3 – volume: 59 start-page: 865 year: 2003 ident: jo7022697b00034/jo7022697b00034_1 publication-title: J. Tetrahedron doi: 10.1016/S0040-4020(02)01622-8 – volume: 58 start-page: 2155 year: 2002 ident: jo7022697b00041/jo7022697b00041_2 publication-title: Tetrahedron doi: 10.1016/S0040-4020(02)00085-6 – volume: 28 start-page: 871 year: 2005 ident: jo7022697b00018/jo7022697b00018_2 publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.200500136 – volume-title: Microwave Synthesis: Chemistry at the Speed of Light year: 2002 ident: jo7022697b00002/jo7022697b00002_2 – volume-title: (e) Microwaves in Organic Synthesis year: 2006 ident: jo7022697b00002/jo7022697b00002_5 – volume: 28 start-page: 368 year: 2007 ident: jo7022697b00006/jo7022697b00006_3 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200600749 – volume: 45 start-page: 581 year: 1995 ident: jo7022697b00021/jo7022697b00021_1 publication-title: Rad. Phys. Chem. doi: 10.1016/0969-806X(94)00072-R – volume: 7 start-page: 511 year: 2004 ident: jo7022697b00040/jo7022697b00040_1 publication-title: Comb. Chem. High Throughput Screen. doi: 10.2174/1386207043328562 – volume: 9 start-page: 285 year: 2007 ident: jo7022697b00032/jo7022697b00032_1 publication-title: J. Comb. Chem. doi: 10.1021/cc060138z – volume: 46 start-page: 3751 year: 2005 ident: jo7022697b00041/jo7022697b00041_1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2005.03.146 – start-page: 347 year: 1990 ident: jo7022697b00036/jo7022697b00036_1 publication-title: Chem. Lett. doi: 10.1246/cl.1990.347 – volume: 43 start-page: 1410 year: 2004 ident: jo7022697b00007/jo7022697b00007_2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200353101 – volume-title: Germany year: 2002 ident: jo7022697b00002/jo7022697b00002_1 – volume: 62 start-page: 4676 year: 2006 ident: jo7022697b00019/jo7022697b00019_1 publication-title: Tetrahedron doi: 10.1016/j.tet.2005.12.062 – start-page: 47 volume-title: Microwave Methods in Organic Synthesis year: 2006 ident: jo7022697b00004/jo7022697b00004_3 – volume: 72 start-page: 1417 year: 2007 ident: jo7022697b00017/jo7022697b00017_1 publication-title: J. Org. Chem. doi: 10.1021/jo0624187 – volume: 20 start-page: 1 year: 1991 ident: jo7022697b00026/jo7022697b00026_2 publication-title: Chem. Soc. Rev. doi: 10.1039/cs9912000001 – volume: 43 start-page: 6250 year: 2004 ident: jo7022697b00003/jo7022697b00003_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200400655 – volume: 18 start-page: 2101 year: 2006 ident: jo7022697b00007/jo7022697b00007_3 publication-title: Adv. Mater. doi: 10.1002/adma.200502422 – volume: 163 start-page: 193 year: 2003 ident: jo7022697b00006/jo7022697b00006_1 publication-title: Adv. Polym. Sci. – volume: 4 start-page: 154 year: 2002 ident: jo7022697b00015/jo7022697b00015_3 publication-title: J. Comb. Chem. doi: 10.1021/cc010043r – volume: 6 start-page: 128 year: 2004 ident: jo7022697b00018/jo7022697b00018_1 publication-title: Green Chem. doi: 10.1039/B310502D – volume: 68 start-page: 9136 year: 2003 ident: jo7022697b00015/jo7022697b00015_4 publication-title: J. Org. Chem. doi: 10.1021/jo035135c – volume: 73 start-page: 147 year: 2001 ident: jo7022697b00022/jo7022697b00022_3 publication-title: Pure Appl. Chem. doi: 10.1351/pac200173010147 – volume: 3 start-page: 449 year: 2003 ident: jo7022697b00005/jo7022697b00005_3 publication-title: Mini-Rev. Med. Chem. doi: 10.2174/1389557033488042 – start-page: 43 year: 1999 ident: jo7022697b00022/jo7022697b00022_2 publication-title: Green Chem. doi: 10.1039/a808223e – volume: 25 start-page: 513 year: 2004 ident: jo7022697b00043/jo7022697b00043_1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200300154 – volume: 13 start-page: 517 year: 2003 ident: jo7022697b00007/jo7022697b00007_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200301006 – volume-title: “reaction temperature ident: jo7022697b00035/jo7022697b00035_1 – year: 2005 ident: WOS:000252046600006.55 publication-title: MICROWAVE ASSISTED O – volume: 6 start-page: 406 year: 2001 ident: WOS:000168558900009 article-title: Microwave-assisted high-speed chemistry: a new technique in drug discovery publication-title: DRUG DISCOVERY TODAY – volume: 71 start-page: 4651 year: 2006 ident: WOS:000238029300039 article-title: Silicon carbide passive heating elements in microwave-assisted organic synthesis publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo060692v – volume: 2 start-page: 155 year: 2005 ident: MEDLINE:24981843 article-title: Accelerating lead development by microwave-enhanced medicinal chemistry. publication-title: Drug discovery today. Technologies doi: 10.1016/j.ddtec.2005.05.002 – volume: 7 start-page: 373 year: 2002 ident: WOS:000174360300019 article-title: The impact of microwave-assisted organic chemistry on drug discovery publication-title: DRUG DISCOVERY TODAY – volume: 58 start-page: 2155 year: 2002 ident: WOS:000174682900011 article-title: Solvent-free preparation of amides from acids and primary amines under microwave irradiation publication-title: TETRAHEDRON – volume: 59 start-page: 865 year: 2003 ident: WOS:000180777200019 article-title: Clean and efficient microwave-solvent-free synthesis of 1-(2 ',4 '-dichlorophenacyl) azoles publication-title: TETRAHEDRON – volume: 28 start-page: 871 year: 2005 ident: WOS:000231319700005 article-title: Contribution to the qualification of technical microwave systems and to the validation of microwave-assisted reactions and processes publication-title: CHEMICAL ENGINEERING & TECHNOLOGY doi: 10.1002/ceat.200500136 – year: 2007 ident: WOS:000252046600006.9 publication-title: MICROWAVE ENHANCED P – volume: 266 start-page: 1 year: 2006 ident: WOS:000243218100001 article-title: Microwave-assisted natural product chemistry publication-title: MICROWAVE METHODS IN ORGANIC SYNTHESIS doi: 10.1007/128_051 – volume: 61 start-page: 3565 year: 2005 ident: WOS:000227930800013 article-title: An assessment of the technique of simultaneous cooling in conjunction with microwave heating for organic synthesis publication-title: TETRAHEDRON doi: 10.1016/j.tet.2005.01.105 – start-page: 9 year: 2005 ident: WOS:000252046600006.35 publication-title: MICROWAVES ORGANIC M – volume: 82 start-page: 1365 year: 2004 ident: WOS:000225268700007 article-title: Synthesis of phosphonium salts under microwave activation - Leaving group and phosphine substituents effects publication-title: CANADIAN JOURNAL OF CHEMISTRY doi: 10.1139/V04-103 – start-page: 62 year: 2006 ident: WOS:000252046600006.67 publication-title: MICROWAVES ORGANIC S – volume: 5 start-page: 1141 year: 2007 ident: WOS:000245439800001 article-title: Microwave energy: a versatile tool for the biosciences publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/b617084f – volume: 5 start-page: 51 year: 2006 ident: WOS:000234555300017 article-title: The impact of microwave synthesis on drug discovery publication-title: NATURE REVIEWS DRUG DISCOVERY doi: 10.1038/nrd1926 – start-page: 134 year: 2006 ident: WOS:000252046600006.72 publication-title: MICROWAVES ORGANIC S – volume: 47 start-page: 6479 year: 2006 ident: WOS:000240090200035 article-title: Efficient microwave-assisted synthesis of 1-(1H-indol-1-yl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)-propan-2-ols as antifungal agents publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2006.03.199 – volume: 9 start-page: 285 year: 2007 ident: WOS:000244799100015 article-title: High-throughput microwave-assisted organic synthesis: Moving from automated sequential to parallel library-generation formats in silicon carbide microtiter plates publication-title: JOURNAL OF COMBINATORIAL CHEMISTRY doi: 10.1021/cc060138z – volume: 5 start-page: 822 year: 2007 ident: WOS:000244354300013 article-title: Using in situ Raman monitoring as a tool for rapid optimisation and scale-up of microwave-promoted organic synthesis: esterification as an example publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/b615597a – volume: 41 start-page: 1339 year: 2000 ident: WOS:000085617000008 article-title: Microwave irradiation in organophosphorus chemistry. Part 2: Synthesis of phosphonium salts publication-title: TETRAHEDRON LETTERS – volume: 37 start-page: 66 year: 2004 ident: WOS:000223606500002 article-title: Recent advances in microwave-assisted synthesis publication-title: ALDRICHIMICA ACTA – volume: 5 start-page: 2770 year: 2007 ident: WOS:000248731600018 article-title: In situ Raman spectroscopy as a probe for the effect of power on microwave-promoted Suzuki coupling reactions publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/b707692d – volume: 6 start-page: 128 year: 2004 ident: WOS:000220001800003 article-title: Microwave assisted synthesis - a critical technology overview publication-title: GREEN CHEMISTRY doi: 10.1039/b310502d – year: 2006 ident: WOS:000252046600006.85 publication-title: MICROWAVE ASSISTED S – volume: 3 start-page: 449 year: 2003 ident: WOS:000210554300006 article-title: Microwave-Assisted Solid-phase Synthesis (MASS): Parallel and Combinatorial Chemical Library Synthesis publication-title: MINI-REVIEWS IN MEDICINAL CHEMISTRY doi: 10.2174/1389557033488042 – volume: 34 start-page: 164 year: 2005 ident: WOS:000226522500006 article-title: Microwaves in organic synthesis. Thermal and non-thermal microwave effects publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b411438h – volume: 52 start-page: 1 year: 2005 ident: WOS:000298579000011 article-title: Microwaves in Organic and Medicinal Chemistry publication-title: MICROWAVES IN ORGANIC AND MEDICINAL CHEMISTRY doi: 10.1002/3527606556 – volume: 51 start-page: 4033 year: 1995 ident: WOS:A1995QR16100008 article-title: MICROWAVE-HEATING OF ORGANIC-SOLVENTS - THERMAL EFFECTS AND FIELD MODELING publication-title: TETRAHEDRON – volume: 25 start-page: 513 year: 2004 ident: WOS:000189323200008 article-title: Green polymer chemistry: Microwave-assisted single-step synthesis of various (meth)acrylamides and poly(meth)acrylamides directly from (meth)acrylic acid and amines publication-title: MACROMOLECULAR RAPID COMMUNICATIONS doi: 10.1002/marc.200300154 – volume: 31 start-page: 3377 year: 2001 ident: WOS:000171281500020 article-title: Microwave irradiation in organophosphorus chemistry. III. Moderate scale synthesis of reagents for olefin formation publication-title: SYNTHETIC COMMUNICATIONS – volume: 28 start-page: 368 year: 2007 ident: WOS:000244853800002 article-title: Microwave-assisted polymer synthesis: Recent developments in a rapidly expanding field of research publication-title: MACROMOLECULAR RAPID COMMUNICATIONS doi: 10.1002/marc.200600749 – year: 2002 ident: WOS:000252046600006.26 publication-title: MICROWAVE SYNTHESIS – volume: 58 start-page: 1235 year: 2002 ident: WOS:000174339600001 article-title: Clay and clay-supported reagents in organic synthesis publication-title: TETRAHEDRON – volume: 129 start-page: 6336 year: 2007 ident: WOS:000246415100050 article-title: Concise, asymmetric, stereocontrolled total synthesis of stephacidins A, B and notoamide B publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja070259i – volume: 2001 start-page: 919 year: 2001 ident: WOS:000167272700007 article-title: High-speed couplings and cleavages in microwave-heated, solid-phase reactions at high temperatures publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY – volume: 57 start-page: 9199 year: 2001 ident: WOS:000172060500001 article-title: A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations publication-title: TETRAHEDRON – year: 2002 ident: WOS:000252046600006.57 publication-title: MICROWAVES ORGANIC S – volume: 73 start-page: 193 year: 2001 ident: WOS:000168165700028 article-title: Solvent-free accelerated organic syntheses using microwaves publication-title: PURE AND APPLIED CHEMISTRY – volume: 11 start-page: 440 year: 2005 ident: WOS:000226333500001 article-title: Microwave-assisted synthesis of metallic nanostructures in solution publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200400417 – volume: 43 start-page: 6250 year: 2004 ident: WOS:000225575600006 article-title: Controlled microwave heating in modern organic synthesis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200400655 – volume: 26 start-page: 657 year: 2007 ident: WOS:000248859000002 article-title: Microwave-assisted proteomics publication-title: MASS SPECTROMETRY REVIEWS doi: 10.1002/mas.20140 – start-page: 37 year: 2001 ident: WOS:000252046600006.33 publication-title: THEISS UPPSALA U – volume: 62 start-page: 4709 year: 2006 ident: WOS:000237126500012 article-title: Microwave-assisted polymer chemistry: Heck-reaction, transesterification, Baeyer-Villiger oxidation, oxazoline polymerization, acrylamides, and porous materials publication-title: TETRAHEDRON doi: 10.1016/j.tet.2006.01.102 – volume: 58 start-page: 6285 year: 2002 ident: WOS:000177217500006 article-title: Total synthesis of the amaryllidaceae alkaloid (+)-plicamine using solid-supported reagents publication-title: TETRAHEDRON – volume: 60 start-page: 1683 year: 2004 ident: WOS:000188785600030 article-title: Improvements in Diels-Alder cycloadditions with some acetylenic compounds under solvent-free microwave-assisted conditions: experimental results and theoretical approaches publication-title: TETRAHEDRON doi: 10.1016/j.tet.2003.11.042 – volume: 61 start-page: 1509 year: 2005 ident: WOS:000226765600013 article-title: Selective microwave-accelerated synthesis and polymerization of chiral methacrylamide directly from methacrylic acid and (R)-1-phenyl-ethylamine publication-title: TETRAHEDRON doi: 10.1016/j.tet.2004.11.068 – volume: 1 start-page: 43 year: 1999 ident: WOS:000082435600020 article-title: Solvent-free organic syntheses - using supported reagents and microwave irradiation publication-title: GREEN CHEMISTRY – volume: 52 start-page: 5505 year: 1996 ident: WOS:A1996UD90900021 article-title: Microwave heating as a new way to induce localized enhancements of reaction rate. Non-isothermal and heterogeneous kinetics publication-title: TETRAHEDRON – volume: 38 start-page: 653 year: 2005 ident: WOS:000231462100006 article-title: Toward rapid, "green", predictable microwave-assisted synthesis publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar040278m – volume: 73 start-page: 161 year: 2001 ident: WOS:000168165700023 article-title: Reactivity and selectivity under microwaves in organic chemistry. Relation with medium effects and reaction mechanisms publication-title: PURE AND APPLIED CHEMISTRY – volume: 45 start-page: 581 year: 1995 ident: WOS:A1995QM67500006 article-title: MICROWAVES IN CHEMISTRY - ANOTHER WAY OF HEATING REACTION MIXTURES publication-title: RADIATION PHYSICS AND CHEMISTRY – volume: 68 start-page: 9136 year: 2003 ident: WOS:000186489000058 article-title: Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo035135c – volume: 38 start-page: 793 year: 1994 ident: WOS:A1994NE08900012 article-title: SELECTIVE ALKYLATIONS OF 1,2,4-TRIAZOLE AND BENZOTRIAZOLE IN THE ABSENCE OF SOLVENT publication-title: HETEROCYCLES – volume: 163 start-page: 193 year: 2003 ident: WOS:000186351000004 article-title: Microwave assisted synthesis, crosslinking, and processing of polymeric materials publication-title: LIQUID CHROMATOGRAPHY FTIR MICROSPECTROSCOPY MICROWAVE ASSISTED SYNTHESIS doi: 10.1007/b11051 – volume: 43 start-page: 1410 year: 2004 ident: WOS:000220266000025 article-title: Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200353101 – volume: 206 start-page: 349 year: 2005 ident: WOS:000227008000004 article-title: Microwave-assisted direct synthesis and polymerization of chiral acrylamide publication-title: MACROMOLECULAR CHEMISTRY AND PHYSICS doi: 10.1002/macp.200400422 – volume: 11 start-page: 865 year: 2007 ident: WOS:000249697700009 article-title: Vanishing microwave effects: Influence of heterogeneity publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT doi: 10.1021/op700080t – volume: 73 start-page: 147 year: 2001 ident: WOS:000168165700021 article-title: Dry media reactions publication-title: PURE AND APPLIED CHEMISTRY – volume: 25 start-page: 5219 year: 2006 ident: WOS:000241232800009 article-title: Palladium-tetraphosphine as catalyst precursor for high-turnover-number Negishi cross-coupling of alkyl- or phenylzinc derivatives with aryl bromides publication-title: ORGANOMETALLICS doi: 10.1021/om060605p – volume: 13 start-page: 517 year: 2003 ident: WOS:000184079800002 article-title: Single-mode microwave synthesis in organic materials chemistry publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.200301006 – volume: 27 start-page: 4945 year: 1986 ident: WOS:A1986E375800004 article-title: APPLICATION OF COMMERCIAL MICROWAVE-OVENS TO ORGANIC-SYNTHESIS publication-title: TETRAHEDRON LETTERS – start-page: 131 year: 2007 ident: WOS:000244257400028 article-title: Simple and efficient microwave-assisted hydrogenation reactions at moderate temperature and pressure publication-title: SYNLETT doi: 10.1055/s-2006-958428 – volume: 27 start-page: 213 year: 1998 ident: WOS:000074059200006 article-title: Dielectric parameters relevant to microwave dielectric heating publication-title: CHEMICAL SOCIETY REVIEWS – volume: 4 start-page: 154 year: 2002 ident: WOS:000174633500010 article-title: Rapid parallel synthesis of polymer-bound enones utilizing microwave-assisted solid-phase chemistry publication-title: JOURNAL OF COMBINATORIAL CHEMISTRY doi: 10.1021/cc010043r – volume: 27 start-page: 279 year: 1986 ident: WOS:A1986AYF2700004 article-title: THE USE OF MICROWAVE-OVENS FOR RAPID ORGANIC-SYNTHESIS publication-title: TETRAHEDRON LETTERS – start-page: 61 year: 2002 ident: WOS:000252046600006.71 publication-title: MICROWAVES ORGANIC S – volume: 5 start-page: 4875 year: 2003 ident: WOS:000187038300031 article-title: Ultrafast chemistry: Cobalt carbonyl-mediated synthesis of diaryl ketones under microwave irradiation publication-title: ORGANIC LETTERS doi: 10.1021/ol036091x – volume: 72 start-page: 1417 year: 2007 ident: WOS:000244071100046 article-title: Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo0624187 – year: 2006 ident: WOS:000252046600006.59 publication-title: MICROWAVES ORGANIC S – start-page: 1213 year: 1998 ident: WOS:000075952000001 article-title: New solvent free organic synthesis using focused microwaves publication-title: SYNTHESIS-STUTTGART – volume: 41 start-page: 1863 year: 2002 ident: WOS:000176045200004 article-title: Microwave-assisted reactions in organic synthesis - Are there any nonthermal microwave effects? publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 7 start-page: 511 year: 2004 ident: WOS:000223486200011 article-title: Microwave-promoted organic synthesis using ionic liquids: A mini review publication-title: COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING – volume: 8 start-page: 4588 year: 2006 ident: WOS:000240654700052 article-title: Real-time monitoring of microwave-promoted Suzuki coupling reactions using in situ Raman spectroscopy publication-title: ORGANIC LETTERS doi: 10.1021/ol061803f – volume: 48 start-page: 6084 year: 2007 ident: WOS:000248985800003 article-title: The importance of agitation and fill volume in small scale scientific microwave reactors publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2007.06.147 – volume: 266 start-page: 233 year: 2006 ident: WOS:000243218100007 article-title: The scale-up of microwave-assisted organic synthesis publication-title: MICROWAVE METHODS IN ORGANIC SYNTHESIS doi: 10.1007/128_048 – start-page: 347 year: 1990 ident: WOS:A1990CV45400006 article-title: REGIOSPECIFIC SYNTHESIS OF 1-SUBSTITUTED 1,2,4-TRIAZOLES INVOLVING ISOMERIZATION OF THE CORRESPONDING 4-SUBSTITUTED COMPOUNDS publication-title: CHEMISTRY LETTERS – volume: 62 start-page: 4676 year: 2006 ident: WOS:000237126500007 article-title: Synthesis of 7H-indolo[2,3-c]quinolines: Study of the Pd-catalyzed intramolecular arylation of 3-(2-bromophenylamino)quinolines under microwave irradiation publication-title: TETRAHEDRON doi: 10.1016/j.tet.2005.12.062 – volume: 48 start-page: 2513 year: 2007 ident: WOS:000245563300016 article-title: Rapid preparation of pyranoquinolines using microwave dielectric heating in combination with fractional product distillation publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2007.02.052 – volume: 13 start-page: 4410 year: 2007 ident: WOS:000246981600003 article-title: Microwave effect in the fast synthesis of microporous materials: Which stage between nucleation and crystal growth is accelerated by microwave irradiation? publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200700098 – start-page: 1363 year: 2000 ident: WOS:000088760500012 article-title: Microwave-mediated Biginelli reactions revisited. On the nature of rate and yield enhancements publication-title: JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2 doi: 10.1039/b002697m – volume: 2 start-page: 125 year: 2005 ident: WOS:000227898900002 article-title: Organic chemistry in ionic liquids using non-thermal energy-transfer processes publication-title: MINI-REVIEWS IN ORGANIC CHEMISTRY – volume: 62 start-page: 9440 year: 2006 ident: WOS:000240818100015 article-title: Microwave induced thermal gradients in solventless reaction systems publication-title: TETRAHEDRON doi: 10.1016/j.tet.2006.07.038 – volume: 46 start-page: 3751 year: 2005 ident: WOS:000228872400033 article-title: An atom efficient and solvent-free synthesis of structurally diverse amides using microwaves publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2005.03.146 – volume: 266 start-page: 1 year: 2006 ident: WOS:000243218100008 article-title: Microwave Methods in Organic Synthesis publication-title: MICROWAVE METHODS IN ORGANIC SYNTHESIS doi: 10.1007/11535799 – start-page: 219 year: 2006 ident: WOS:000252046600006.14 publication-title: MICROWAVES ORGANIC S – volume: 20 start-page: 1 year: 1991 ident: WOS:A1991FL34100001 article-title: APPLICATIONS OF MICROWAVE DIELECTRIC HEATING EFFECTS TO SYNTHETIC PROBLEMS IN CHEMISTRY publication-title: CHEMICAL SOCIETY REVIEWS – start-page: 506 year: 1993 ident: WOS:000252046600006.62 publication-title: SYNLETT – volume: 41 start-page: 3589 year: 2002 ident: WOS:000178609900007 article-title: Microwave-assisted reactions in organic synthesis - Are there any nonthermal microwave effects? Response publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 18 start-page: 2101 year: 2006 ident: WOS:000240408600003 article-title: Ink-jet printing and microwave sintering of conductive silver tracks publication-title: ADVANCED MATERIALS doi: 10.1002/adma.200502422 – volume: 25 start-page: 1739 year: 2004 ident: WOS:000224948200001 article-title: Microwave-assisted polymer synthesis: State-of-the-art and future perspectives publication-title: MACROMOLECULAR RAPID COMMUNICATIONS doi: 10.1002/marc.200400313 – volume: 2000 start-page: 3745 year: 2000 ident: WOS:000165469500012 article-title: Thermal rearrangement of 4-alkyl-4H-1,2,4-triazoles to 1-alkyl-1H-1,2,4-triazoles - A study of the mechanism by cross-over experiments publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY |
SSID | ssj0000555 |
Score | 2.4489214 |
Snippet | The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific... [GRAPHICS] The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the... |
Source | Web of Science |
SourceID | proquest pubmed pascalfrancis webofscience crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 36 |
SubjectTerms | Chemistry Chemistry, Organic Exact sciences and technology Kinetics and mechanisms Organic chemistry Physical Sciences Reactivity and mechanisms Science & Technology |
Title | Nonthermal Microwave Effects Revisited: On the Importance of Internal Temperature Monitoring and Agitation in Microwave Chemistry |
URI | http://dx.doi.org/10.1021/jo7022697 https://api.istex.fr/ark:/67375/TPS-RQG2KRPQ-J/fulltext.pdf http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000252046600006 https://www.ncbi.nlm.nih.gov/pubmed/18062704 https://www.proquest.com/docview/70166341 |
Volume | 73 |
WOS | 000252046600006 |
WOSCitedRecordID | wos000252046600006 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LU9RAEMe7EA56Ad_EB04pZXkJJplX4m1rFRELhGWp4paaZCYUAglFsmp58uDFr-knsSevXcr1cd5OdtLppH-d6fkPwHrElJHSVy71EixQaKDdKAhSN_GkwXLEZJzaxck7u2LrkG0f8aMFePaHGfzAf_mxkJhnRCSvwVIgQmkrrMHwYPq65Zz3kuCBoJ180OyhNvWk5ZXUs2S9-MW2QqoSvZE121jM48y5KalOP5sr8LpbxNN0nZxuTKpkI_36u6bj367sJiy3-EkGTbzcggWT34brw27XtzvwfbfILROeo9WObdb7rD4Z0mgcl2RUr0VHSH3189sP8iEnaErendcMj4MmRUbaT4xnZGyQyBvFZtK8OewnRKJyTQbHrTI4Ocln_qUfxl043HwzHm657U4NrmJMVm5CsyzUjDPhScGNMSxMdGS4QiCgGaZAnqRaM60QdxjTNBGJVqGJsDqVSHCU3oPFvMjNKhDfTz2GyO-laYrFJp7IV9TTlOrQN8hCDqzhrYzbJ62M60n0AIuYzpkOvOjucpy2V2O32zibZ_q0N71oxD3mGT2vQ6W3UJenthtO8ni8dxCP9t8G70d7-_E2juxKLE1PGSFkI1k78KQLrhjdaWdmVG6KSRlLBG-BPOHA_SbmpseGVkfaYw6szwZh_7vNaDzwmBA1eTjg_4_ZsPWL1T2oHvzLow_hRtMl47seewSL1eXEPEYUq5K1-lH8BU9wK5s |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V7aFceD_Mo12hgri42OtdP5A4RIGSNE1o01Tqzay9awRtbVQ7FDhx4MJf4K_wb_glzPqVFEWCSyXOmWw2s-OZ71vPfguwETChPM8WpmNFSFAcKs2A0tiMLE8hHVEJd_Th5OHI7R2w7UN-uAQ_mrMwOIkcR8rLl_gzdQH76fvMw3LjBl7dQDlQn8-QnuXP-y9wLR9RuvVy0u2Z9Q0CpmDMK8zISRJfMs5cpOtcKcX8SAaKCyxUToKpmUexlEwKLMOMSSdyIyl8FSBr8hBZ6M1OTO8rCHqoJnad7v4sy3POWyVy6jqNatH8VHXFi_NzFW9FL94n3YEpclyEpLo9YxG8XVgJy6q3dQV-tv4qm12ONqdFtBl_-UNK8v906FW4XINt0qmejmuwpNLrsNpt7ri7Ad9GWaoR8AlaDXVr4pn4qEil6JyTcXnyHiH5s19fv5PXKUFT0j8pGQv6imQJqTdUj8lEIf-o9KlJlSf1hikRqSSdt7UOOnmXzv1KO42bcHAhTrgFy2mWqjtAbDu2GBIcK45jpNY4kC0cSzqO9G2FyM-ANVy7sM4reVi2DFCkbM3iGfCkCa4wrv-NvlzkeJHpw9b0QyVlssjocRmhrYU4PdK9fx4PJ7v74XjvFR2Md_fCbZzZuRCeDRkgpUAeYcB6E9MhulO_hxKpyqZ56CHNcBE9GXC7CvXZd32tmm0xAzbmY7_9XNdvTi3muiXOMsD-F7Nu7Ret8lDc_ZtH12G1NxnuhDv90eAeXKr6g2zTYvdhuTidqgcIQotorcwGBN5c9NPyG8j2jiU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB5VrQRcyj81P-0KFcTFre3dtWMkDlFKaBoa0jSVejNr7xpBW7uqHQqcOHDhJXgV3oUnYdZ_SVEkuFTinMlmMzM7M9_u7LcA6z4TyvNsYVIrRIBCHWn6jhOZoeUphCMq5lRfTt4duNsHbOeQHy7Aj_ouDE4iw5Gy4hBfr-pTGVcMA_bmh9TDlOP6XtVE2VefzxGiZS96W2jPJ47TfTnubJvVKwKmYMzLzZDGcUsyzlyE7FwpxVqh9BUXmKxojOGZh5GUTApMxYxJGrqhFC3lI3LysLrQG54Y4pf08aAGd-3O_jTSc84bNnLHpTVz0exUddaLsgtZb0kb8JPuwhQZGiIuX9CYV-LOzYZF5uteh5-NzoqGl6ONSR5uRF_-oJP8f5V6A5aropu0y1VyExZUcguuduq37m7Dt0Ga6Er4BKV2dYviufioSMnsnJFRcQMfS_Pnv75-J28SgqKkd1IgF9QXSWNSbawek7FCHFLyVJMyXuqNUyISSdrvKj508j6Z-ZVmGnfg4FKUcBcWkzRRK0BsO7IYAh0riiKE2DiQLaglKZUtW2EFaMAq2i-o4ksWFK0DDkK32ngGPKsdLIiqf6MfGTmeJ_q4ET0tKU3mCT0tvLSREGdHugfQ48F4uB-M9l45_dFwL9jBmV1w4-mQPkILxBMGrNV-HaA69XmUSFQ6yQIP4YaLVZQB90p3n363pdmzLWbA-qz_N5_rPM4di7luUW8ZYP-LWKfSi2Z7yO__TaNrcGW41Q1e9wb9B3CtbBOyTYs9hMX8bKIeYS2ah6tFQCDw9rIXy2_QaJCo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonthermal+microwave+effects+revisited%3A+on+the+importance+of+internal+temperature+monitoring+and+agitation+in+microwave+chemistry&rft.jtitle=Journal+of+organic+chemistry&rft.au=Herrero%2C+M+Antonia&rft.au=Kremsner%2C+Jennifer+M&rft.au=Kappe%2C+C+Oliver&rft.date=2008-01-04&rft.issn=0022-3263&rft.volume=73&rft.issue=1&rft.spage=36&rft_id=info:doi/10.1021%2Fjo7022697&rft_id=info%3Apmid%2F18062704&rft.externalDocID=18062704 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3263&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3263&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3263&client=summon |