Comparative genomics of the niche-specific plant pathogen Streptomyces ipomoeae reveal novel genome content and organization

The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest sca...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 89; no. 12; p. e0030823
Main Authors Soares, Natasha R., Huguet-Tapia, José C., Guan, Dongli, Clark, Christopher A., Yang, Kuei-Ting, Kluchka, Olivia R., Thombal, Raju S., Kartika, Rendy, Badger, Jonathan H., Pettis, Gregg S.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 21.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest scab species, Streptomyces scabiei , are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of S. ipomoeae has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of S. ipomoeae, along with other plant-pathogenic and saprophytic Streptomyces spp. The txt gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of S. ipomoeae , but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of S. ipomoeae , and in particular, for its txt locus. The txtR activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional bldA translational control. Ortholog group searches identified genes found only in virulent S. ipomoeae strains in our analysis, and genome mining revealed secondary metabolite gene clusters of S. ipomoeae , which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by S. ipomoeae , and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology. While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.
AbstractList While most plant-pathogenic species cause scab disease on a variety of plant hosts, is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by to cause disease and to persist in its niche environment.
The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest scab species, Streptomyces scabiei , are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of S. ipomoeae has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of S. ipomoeae, along with other plant-pathogenic and saprophytic Streptomyces spp. The txt gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of S. ipomoeae , but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of S. ipomoeae , and in particular, for its txt locus. The txtR activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional bldA translational control. Ortholog group searches identified genes found only in virulent S. ipomoeae strains in our analysis, and genome mining revealed secondary metabolite gene clusters of S. ipomoeae , which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by S. ipomoeae , and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology. While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.
The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest scab species, Streptomyces scabiei , are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of S. ipomoeae has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of S. ipomoeae, along with other plant-pathogenic and saprophytic Streptomyces spp. The txt gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of S. ipomoeae , but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of S. ipomoeae , and in particular, for its txt locus. The txtR activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional bldA translational control. Ortholog group searches identified genes found only in virulent S. ipomoeae strains in our analysis, and genome mining revealed secondary metabolite gene clusters of S. ipomoeae , which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by S. ipomoeae , and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology.
The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest scab species, Streptomyces scabiei, are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of S. ipomoeae has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of S. ipomoeae, along with other plant-pathogenic and saprophytic Streptomyces spp. The txt gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of S. ipomoeae, but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of S. ipomoeae, and in particular, for its txt locus. The txtR activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional bldA translational control. Ortholog group searches identified genes found only in virulent S. ipomoeae strains in our analysis, and genome mining revealed secondary metabolite gene clusters of S. ipomoeae, which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by S. ipomoeae, and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology.
While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.IMPORTANCEWhile most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.
The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest scab species, Streptomyces scabiei, are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of S. ipomoeae has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of S. ipomoeae, along with other plant-pathogenic and saprophytic Streptomyces spp. The txt gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of S. ipomoeae, but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of S. ipomoeae, and in particular, for its txt locus. The txtR activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional bldA translational control. Ortholog group searches identified genes found only in virulent S. ipomoeae strains in our analysis, and genome mining revealed secondary metabolite gene clusters of S. ipomoeae, which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by S. ipomoeae, and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology.IMPORTANCEWhile most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.
Author Soares, Natasha R.
Clark, Christopher A.
Thombal, Raju S.
Badger, Jonathan H.
Yang, Kuei-Ting
Kluchka, Olivia R.
Guan, Dongli
Huguet-Tapia, José C.
Kartika, Rendy
Pettis, Gregg S.
Author_xml – sequence: 1
  givenname: Natasha R.
  surname: Soares
  fullname: Soares, Natasha R.
  organization: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
– sequence: 2
  givenname: José C.
  surname: Huguet-Tapia
  fullname: Huguet-Tapia, José C.
  organization: Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
– sequence: 3
  givenname: Dongli
  surname: Guan
  fullname: Guan, Dongli
  organization: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
– sequence: 4
  givenname: Christopher A.
  surname: Clark
  fullname: Clark, Christopher A.
  organization: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
– sequence: 5
  givenname: Kuei-Ting
  surname: Yang
  fullname: Yang, Kuei-Ting
  organization: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
– sequence: 6
  givenname: Olivia R.
  surname: Kluchka
  fullname: Kluchka, Olivia R.
  organization: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
– sequence: 7
  givenname: Raju S.
  surname: Thombal
  fullname: Thombal, Raju S.
  organization: Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
– sequence: 8
  givenname: Rendy
  surname: Kartika
  fullname: Kartika, Rendy
  organization: Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
– sequence: 9
  givenname: Jonathan H.
  surname: Badger
  fullname: Badger, Jonathan H.
  organization: Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 10
  givenname: Gregg S.
  orcidid: 0000-0002-5468-8870
  surname: Pettis
  fullname: Pettis, Gregg S.
  organization: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38009923$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFTEUxYNU7Gt151oCbhScmq9JMqsiD7-g4EJdh0zmznspM8mY5D2o-Meb9tWqRVdZ3N89OeeeE3QUYgCEnlJyRinTry3MZ4RwohvGH6AVJZ1uWs7lEVoR0nUNY4Ico5OcLwkhgkj9CB1zfT1ifIV-rOO82GSL3wPeQIizdxnHEZct4ODdFpq8gPOjd3iZbCh4sWUbK4k_lwRLifOVg4z9EucIFnCCPdgJh7iH6SAI2MVQoK7aMOCYNjb47_XDGB6jh6OdMjy5fU_R13dvv6w_NBef3n9cv7lorBCqNNxyKRkjg1LawQBa90S6Vqm2BmJKy56NmvVk0N049gSU5Lbnre001VJwx0_R-UF32fUzDK56SXYyS_KzTVcmWm_-ngS_NZu4N5QoLkTLqsKLW4UUv-0gFzP77GCqF4G4y4bpTqh6aaYq-vweehl3KdR8hnWUKUGl6Cr18kDZPLPfBCXmulRTSzU3pRrGK_vsT_t3vn-1WIFXB8ClmHOC8Q75jx67hztfbgqp4f3076Wf-DjALg
CitedBy_id crossref_primary_10_1139_cjm_2023_0171
Cites_doi 10.1111/mpp.12656
10.1021/jf00044a042
10.1186/s13059-019-1832-y
10.1111/mpp.12296
10.1002/pro.3374
10.1094/MPMI-04-16-0068-R
10.1094/Phyto-74-494
10.1094/MPMI-23-2-0161
10.1111/j.1365-2958.2004.04461.x
10.3390/antibiotics9090553
10.1038/s41598-019-40876-0
10.1111/mpp.12843
10.1038/nbt820
10.1016/0005-2760(87)90088-9
10.1094/MPMI-03-11-0073
10.1038/nature02504
10.1093/nar/gkx343
10.1186/1471-2164-12-175
10.1111/1574-6976.12058
10.1093/bioinformatics/btl369
10.1094/MPMI-09-16-0190-R
10.1094/MPMI-20-6-0599
10.1099/ijs.0.64483-0
10.1093/nar/27.23.4636
10.1111/j.1365-2958.2009.06780.x
10.1007/s10482-008-9231-5
10.1111/j.1364-3703.2009.00561.x
10.1093/nar/25.18.3605
10.1074/jbc.M710461200
10.1111/mmi.14250
10.1099/00207713-43-4-674
10.1128/JB.01010-08
10.4161/psb.5.10.13062
10.1099/mic.0.000818
10.1038/nchembio.1048
10.1093/bioinformatics/btp347
10.1073/pnas.1500873112
10.1016/j.jbiotec.2015.02.004
10.1111/j.1365-2958.2007.05942.x
10.1038/nbt1297
10.1128/JB.01966-07
10.1016/0378-1119(92)90627-2
10.1016/j.plasmid.2010.11.002
10.1094/PHYTO.1998.88.11.1179
10.1128/JB.06767-11
10.1099/mic.0.2006/002998-0
10.1111/1758-2229.12659
10.1093/bioinformatics/btr703
10.1128/genomeA.00062-16
10.1007/s10482-010-9429-1
10.1128/JB.00596-10
10.1099/mic.0.2006/003145-0
10.1099/mic.0.058487-0
10.1038/417141a
10.1111/j.1472-765X.2009.02619.x
10.1111/j.1574-6968.2006.00494.x
10.1094/MPMI-02-14-0037-R
10.1371/journal.pone.0099345
10.1016/j.plasmid.2016.09.004
10.1007/s12275-007-0233-1
10.1128/JB.184.7.2019-2029.2002
10.7164/antibiotics.39.1211
10.1128/AEM.69.4.2201-2208.2003
10.1186/s13059-015-0721-2
10.1093/bioinformatics/btu153
10.1111/j.1365-2958.1994.tb00487.x
10.1093/nar/gky1123
10.1371/journal.pone.0094166
10.1046/j.1365-2958.2000.02170.x
10.1128/AEM.03504-15
10.1093/nar/gkz310
10.1146/annurev.phyto.44.032905.091147
10.1007/s10482-015-0637-6
10.1128/aem.58.2.532-535.1992
10.1016/j.chembiol.2007.11.014
10.1128/JB.00204-08
10.1094/PD-67-907
10.1126/science.287.5461.2196
ContentType Journal Article
Copyright Copyright © 2023 American Society for Microbiology.
Copyright American Society for Microbiology Dec 2023
Copyright © 2023 American Society for Microbiology. 2023 American Society for Microbiology.
Copyright_xml – notice: Copyright © 2023 American Society for Microbiology.
– notice: Copyright American Society for Microbiology Dec 2023
– notice: Copyright © 2023 American Society for Microbiology. 2023 American Society for Microbiology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/aem.00308-23
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

Virology and AIDS Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
Editor Cann, Isaac
Editor_xml – sequence: 1
  givenname: Isaac
  surname: Cann
  fullname: Cann, Isaac
ExternalDocumentID PMC10734452
00308-23
38009923
10_1128_aem_00308_23
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Agriculture (USDA)
  grantid: 2007-35600-17813
– fundername: U.S. Department of Agriculture (USDA)
  grantid: LAB94531
– fundername: U.S. Department of Agriculture (USDA)
  grantid: LAB94112
– fundername: U.S. Department of Agriculture (USDA)
  grantid: LAB94337
– fundername: ;
  grantid: 2007-35600-17813
– fundername: ;
  grantid: LAB94112
– fundername: ;
  grantid: LAB94337
– fundername: ;
  grantid: LAB94531
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAPBV
ABPTK
RHF
TAF
UCJ
ZA5
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-a447t-3a366220d778cede88b06c57750042786b2f82b0d89ffb0e763ab35a9818643c3
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 18:37:28 EDT 2025
Thu Jul 10 23:49:41 EDT 2025
Mon Jun 30 10:33:16 EDT 2025
Thu Dec 21 18:25:38 EST 2023
Thu Apr 03 07:05:21 EDT 2025
Thu Apr 24 22:55:13 EDT 2025
Tue Jul 01 04:29:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Streptomyces
thaxtomin
plant pathogens
Language English
License All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a447t-3a366220d778cede88b06c57750042786b2f82b0d89ffb0e763ab35a9818643c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-5468-8870
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10734452
PMID 38009923
PQID 2912741649
PQPubID 42251
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10734452
proquest_miscellaneous_2894722427
proquest_journals_2912741649
asm2_journals_10_1128_aem_00308_23
pubmed_primary_38009923
crossref_primary_10_1128_aem_00308_23
crossref_citationtrail_10_1128_aem_00308_23
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Dec-21
PublicationDateYYYYMMDD 2023-12-21
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle Applied and environmental microbiology
PublicationTitleAbbrev Appl Environ Microbiol
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2023
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_79_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_82_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_78_2
Clark CA (e_1_3_3_24_2) 1988
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
Person LH (e_1_3_3_30_2) 1940; 30
e_1_3_3_11_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
Labeda, DP, Lyons, AJ (B46) 1992; 58
Funabashi, M, Funa, N, Horinouchi, S (B66) 2008; 283
Zhang, X, Clark, CA, Pettis, GS (B27) 2003; 69
Zhang, Y, Bignell, DRD, Zuo, R, Fan, Q, Huguet-Tapia, JC, Ding, Y, Loria, R (B14) 2016; 29
Tomoda, H, Igarashi, K, Omura, S (B68) 1987; 921
Moyer, JW, Campbell, CL, Echandi, E, Collins, WW (B72) 1984; 74
Goris, J, Konstantinidis, KT, Klappenbach, JA, Coenye, T, Vandamme, P, Tiedje, JM (B44) 2007; 57
Zhang, Y, Loria, R (B16) 2017; 30
Tran, NT, Huang, X, Hong, HJ, Bush, MJ, Chandra, G, Pinto, D, Bibb, MJ, Hutchings, MI, Mascher, T, Buttner, MJ (B60) 2019; 112
Liu, M, Li, X, Xie, Y, Bi, D, Sun, J, Li, J, Tai, C, Deng, Z, Ou, HY (B53) 2019; 47
Guan, D, Pettis, GS (B80) 2009; 49
Rückert, C, Albersmeier, A, Busche, T, Jaenicke, S, Winkler, A, Friðjónsson, ÓH, Hreggviðsson, GÓ, Lambert, C, Badcock, D, Bernaerts, K, Anne, J, Economou, A, Kalinowski, J (B38) 2015; 199
Vrancken, K, Van Mellaert, L, Anné, J (B59) 2008; 190
Rademacher, C, Masepohl, B (B57) 2012; 158
Zhang, Y, Jiang, G, Ding, Y, Loria, R (B15) 2018; 19
Lerat, S, Simao-Beaunoir, AM, Beaulieu, C (B17) 2009; 10
Takasuka, TE, Acheson, JF, Bianchetti, CM, Prom, BM, Bergeman, LF, Book, AJ, Currie, CR, Fox, BG (B41) 2014; 9
Barry, SM, Kers, JA, Johnson, EG, Song, L, Aston, PR, Patel, B, Krasnoff, SB, Crane, BR, Gibson, DM, Loria, R, Challis, GL (B3) 2012; 8
Guan, D, Grau, BL, Clark, CA, Taylor, CM, Loria, R, Pettis, GS (B25) 2012; 25
Bentley, SD, Chater, KF, Cerdeño-Tárraga, A-M, Challis, GL, Thomson, NR, James, KD, Harris, DE, Quail, MA, Kieser, H, Harper, D, Bateman, A, Brown, S, Chandra, G, Chen, CW, Collins, M, Cronin, A, Fraser, A, Goble, A, Hidalgo, J, Hornsby, T, Howarth, S, Huang, C-H, Kieser, T, Larke, L, Murphy, L, Oliver, K, O’Neil, S, Rabbinowitsch, E, Rajandream, M-A, Rutherford, K, Rutter, S, Seeger, K, Saunders, D, Sharp, S, Squares, R, Squares, S, Taylor, K, Warren, T, Wietzorrek, A, Woodward, J, Barrell, BG, Parkhill, J, Hopwood, DA (B35) 2002; 417
Person, LH, Martin, MJ (B29) 1940; 30
Pullan, ST, Chandra, G, Bibb, MJ, Merrick, M (B42) 2011; 12
Blin, K, Shaw, S, Steinke, K, Villebro, R, Ziemert, N, Lee, SY, Medema, MH, Weber, T (B64) 2019; 47
Joshi, M, Rong, X, Moll, S, Kers, J, Franco, C, Loria, R (B19) 2007; 20
Huguet-Tapia, JC, Lefebure, T, Badger, JH, Guan, D, Pettis, GS, Stanhope, MJ, Loria, R (B28) 2016; 82
Li, W, Wu, J, Tao, W, Zhao, C, Wang, Y, He, X, Chandra, G, Zhou, X, Deng, Z, Chater, KF, Tao, M (B73) 2007; 266
Oliynyk, M, Samborskyy, M, Lester, JB, Mironenko, T, Scott, N, Dickens, S, Haydock, SF, Leadlay, PF (B43) 2007; 25
Li, Y, Liu, J, Díaz-Cruz, G, Cheng, Z, Bignell, DRD (B1) 2019; 165
Ohnishi, Y, Ishikawa, J, Hara, H, Suzuki, H, Ikenoya, M, Ikeda, H, Yamashita, A, Hattori, M, Horinouchi, S (B37) 2008; 190
Lautru, S, Oves-Costales, D, Pernodet, JL, Challis, GL (B61) 2007; 153
Healy, FG, Krasnoff, SB, Wach, M, Gibson, DM, Loria, R (B7) 2002; 184
Bignell, DRD, Seipke, RF, Huguet-Tapia, JC, Chambers, AH, Parry, RJ, Loria, R (B40) 2010; 23
Clark, CA, Chen, C, Ward-Rainey, N, Pettis, GS (B26) 1998; 88
Vernikos, GS, Parkhill, J (B71) 2006; 22
Kers, JA, Wach, MJ, Krasnoff, SB, Widom, J, Cameron, KD, Bukhalid, RA, Gibson, DM, Crane, BR, Loria, R (B8) 2004; 429
Clark, CA, Moyer, JW. (B23) 1988
Omura, S, Tomoda, H, Xu, QM, Takahashi, Y, Iwai, Y (B67) 1986; 39
Huguet-Tapia, JC, Bignell, DRD, Loria, R, Vinatzer, BA (B49) 2014; 9
Kers, JA, Cameron, KD, Joshi, MV, Bukhalid, RA, Morello, JE, Wach, MJ, Gibson, DM, Loria, R (B13) 2005; 55
Joshi, MV, Bignell, DRD, Johnson, EG, Sparks, JP, Gibson, DM, Loria, R (B9) 2007; 66
Chapleau, M, Guertin, JF, Farrokhi, A, Lerat, S, Burrus, V, Beaulieu, C (B18) 2016; 17
Thoma, L, Muth, G (B51) 2016; 87–88
Bellanger, X, Payot, S, Leblond-Bourget, N, Guédon, G (B52) 2014; 38
Johnson, EG, Sparks, JP, Dzikovski, B, Crane, BR, Gibson, DM, Loria, R (B56) 2008; 15
Huguet-Tapia, JC, Loria, R (B30) 2012; 194
Myers, EW, Sutton, GG, Delcher, AL, Dew, IM, Fasulo, DP, Flanigan, MJ, Kravitz, SA, Mobarry, CM, Reinert, KH, Remington, KA (B74) 2000; 287
Loria, R, Kers, J, Joshi, M (B2) 2006; 44
Bertelli, C, Laird, MR, Williams, KP, Lau, BY, Hoad, G, Winsor, GL, Brinkman, FS (B70) 2017; 45
Assefa, S, Keane, TM, Otto, TD, Newbold, C, Berriman, M (B77) 2009; 25
Esposito, D, Scocca, JJ (B48) 1997; 25
Healy, FG, Wach, M, Krasnoff, SB, Gibson, DM, Loria, R (B4) 2000; 38
King, RR, Lawrence, CH, Calhoun, LA, Ristaino, JB (B24) 1994; 42
Bignell, DRD, Francis, IM, Fyans, JK, Loria, R (B12) 2014; 27
Delcher, AL, Harmon, D, Kasif, S, White, O, Salzberg, SL (B75) 1999; 27
Baerson, SR, Schröder, J, Cook, D, Rimando, AM, Pan, Z, Dayan, FE, Noonan, BP, Duke, SO (B65) 2010; 5
Alvarez-Carreño, C, Alva, V, Becerra, A, Lazcano, A (B55) 2018; 27
Tomihama, T, Nishi, Y, Sakai, M, Ikenaga, M, Okubo, T, Ikeda, S (B31) 2016; 4
Seipke, RF, Loria, R (B20) 2008; 190
Pettis, GS (B50) 2018; 10
Wolpert, M, Gust, B, Kammerer, B, Heide, L (B62) 2007; 153
Pettis, GS, Cohen, SN (B81) 1994; 13
Chandra, G, Chater, KF (B11) 2008; 94
Bierman, M, Logan, R, O’Brien, K, Seno, ET, Rao, RN, Schoner, BE (B79) 1992; 116
Emms, DM, Kelly, S (B78) 2019; 20
González-Quiñónez, N, Corte-Rodríguez, M, Álvarez-Fernández-García, R, Rioseras, B, López-García, MT, Fernández-García, G, Montes-Bayón, M, Manteca, A, Yagüe, P (B58) 2019; 9
Huguet-Tapia, JC, Badger, JH, Loria, R, Pettis, GS (B21) 2011; 65
Labeda, DP (B36) 2016; 109
Seemann, T (B76) 2014; 30
Ikeda, H, Ishikawa, J, Hanamoto, A, Shinose, M, Kikuchi, H, Shiba, T, Sakaki, Y, Hattori, M, Omura, S (B33) 2003; 21
Clark, CA, Watson, B (B22) 1983; 67
Beyazova, M, Lechevalier, MP (B45) 1993; 43
Carver, T, Harris, SR, Berriman, M, Parkhill, J, McQuillan, JA (B47) 2012; 28
Ju, K-S, Gao, J, Doroghazi, JR, Wang, K-KA, Thibodeaux, CJ, Li, S, Metzger, E, Fudala, J, Su, J, Zhang, JK, Lee, J, Cioni, JP, Evans, BS, Hirota, R, Labeda, DP, van der Donk, WA, Metcalf, WW (B32) 2015; 112
Johnson, EG, Krasnoff, SB, Bignell, DRD, Chung, W-C, Tao, T, Parry, RJ, Loria, R, Gibson, DM (B5) 2009; 73
Bignell, DRD, Huguet-Tapia, JC, Joshi, MV, Pettis, GS, Loria, R (B39) 2010; 98
Wang, XJ, Yan, YJ, Zhang, B, An, J, Wang, JJ, Tian, J, Jiang, L, Chen, YH, Huang, SX, Yin, M, Zhang, J, Gao, AL, Liu, CX, Zhu, ZX, Xiang, WS (B34) 2010; 192
Li, Y, Liu, J, Adekunle, D, Bown, L, Tahlan, K, Bignell, DRD (B6) 2019; 20
Emms, DM, Kelly, S (B54) 2015; 16
Chater, KF, Chandra, G (B10) 2008; 46
Zimina, M, Babich, O, Prosekov, A, Sukhikh, S, Ivanova, S, Shevchenko, M, Noskova, S (B69) 2020; 9
B63
References_xml – ident: e_1_3_3_16_2
  doi: 10.1111/mpp.12656
– ident: e_1_3_3_25_2
  doi: 10.1021/jf00044a042
– ident: e_1_3_3_79_2
  doi: 10.1186/s13059-019-1832-y
– ident: e_1_3_3_19_2
  doi: 10.1111/mpp.12296
– ident: e_1_3_3_56_2
  doi: 10.1002/pro.3374
– ident: e_1_3_3_15_2
  doi: 10.1094/MPMI-04-16-0068-R
– ident: e_1_3_3_73_2
  doi: 10.1094/Phyto-74-494
– ident: e_1_3_3_41_2
  doi: 10.1094/MPMI-23-2-0161
– ident: e_1_3_3_14_2
  doi: 10.1111/j.1365-2958.2004.04461.x
– ident: e_1_3_3_70_2
  doi: 10.3390/antibiotics9090553
– ident: e_1_3_3_59_2
  doi: 10.1038/s41598-019-40876-0
– ident: e_1_3_3_7_2
  doi: 10.1111/mpp.12843
– ident: e_1_3_3_34_2
  doi: 10.1038/nbt820
– ident: e_1_3_3_69_2
  doi: 10.1016/0005-2760(87)90088-9
– ident: e_1_3_3_26_2
  doi: 10.1094/MPMI-03-11-0073
– ident: e_1_3_3_9_2
  doi: 10.1038/nature02504
– ident: e_1_3_3_71_2
  doi: 10.1093/nar/gkx343
– ident: e_1_3_3_43_2
  doi: 10.1186/1471-2164-12-175
– ident: e_1_3_3_53_2
  doi: 10.1111/1574-6976.12058
– ident: e_1_3_3_72_2
  doi: 10.1093/bioinformatics/btl369
– ident: e_1_3_3_17_2
  doi: 10.1094/MPMI-09-16-0190-R
– ident: e_1_3_3_20_2
  doi: 10.1094/MPMI-20-6-0599
– ident: e_1_3_3_45_2
  doi: 10.1099/ijs.0.64483-0
– ident: e_1_3_3_76_2
  doi: 10.1093/nar/27.23.4636
– ident: e_1_3_3_6_2
  doi: 10.1111/j.1365-2958.2009.06780.x
– ident: e_1_3_3_12_2
  doi: 10.1007/s10482-008-9231-5
– ident: e_1_3_3_18_2
  doi: 10.1111/j.1364-3703.2009.00561.x
– ident: e_1_3_3_49_2
  doi: 10.1093/nar/25.18.3605
– ident: e_1_3_3_67_2
  doi: 10.1074/jbc.M710461200
– volume: 30
  start-page: 913
  year: 1940
  ident: e_1_3_3_30_2
  article-title: Soil rot of sweet potatoes in Louisiana
  publication-title: Phytopathology
– ident: e_1_3_3_61_2
  doi: 10.1111/mmi.14250
– ident: e_1_3_3_46_2
  doi: 10.1099/00207713-43-4-674
– ident: e_1_3_3_21_2
  doi: 10.1128/JB.01010-08
– ident: e_1_3_3_66_2
  doi: 10.4161/psb.5.10.13062
– ident: e_1_3_3_2_2
  doi: 10.1099/mic.0.000818
– ident: e_1_3_3_4_2
  doi: 10.1038/nchembio.1048
– ident: e_1_3_3_78_2
  doi: 10.1093/bioinformatics/btp347
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.1500873112
– ident: e_1_3_3_39_2
  doi: 10.1016/j.jbiotec.2015.02.004
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1365-2958.2007.05942.x
– ident: e_1_3_3_44_2
  doi: 10.1038/nbt1297
– ident: e_1_3_3_60_2
  doi: 10.1128/JB.01966-07
– ident: e_1_3_3_80_2
  doi: 10.1016/0378-1119(92)90627-2
– ident: e_1_3_3_22_2
  doi: 10.1016/j.plasmid.2010.11.002
– ident: e_1_3_3_27_2
  doi: 10.1094/PHYTO.1998.88.11.1179
– ident: e_1_3_3_31_2
  doi: 10.1128/JB.06767-11
– ident: e_1_3_3_63_2
  doi: 10.1099/mic.0.2006/002998-0
– ident: e_1_3_3_51_2
  doi: 10.1111/1758-2229.12659
– ident: e_1_3_3_48_2
  doi: 10.1093/bioinformatics/btr703
– volume-title: Compendium of sweet potato diseases
  year: 1988
  ident: e_1_3_3_24_2
– ident: e_1_3_3_32_2
  doi: 10.1128/genomeA.00062-16
– ident: e_1_3_3_40_2
  doi: 10.1007/s10482-010-9429-1
– ident: e_1_3_3_35_2
  doi: 10.1128/JB.00596-10
– ident: e_1_3_3_62_2
  doi: 10.1099/mic.0.2006/003145-0
– ident: e_1_3_3_58_2
  doi: 10.1099/mic.0.058487-0
– ident: e_1_3_3_36_2
  doi: 10.1038/417141a
– ident: e_1_3_3_81_2
  doi: 10.1111/j.1472-765X.2009.02619.x
– ident: e_1_3_3_74_2
  doi: 10.1111/j.1574-6968.2006.00494.x
– ident: e_1_3_3_13_2
  doi: 10.1094/MPMI-02-14-0037-R
– ident: e_1_3_3_50_2
  doi: 10.1371/journal.pone.0099345
– ident: e_1_3_3_52_2
  doi: 10.1016/j.plasmid.2016.09.004
– ident: e_1_3_3_11_2
  doi: 10.1007/s12275-007-0233-1
– ident: e_1_3_3_8_2
  doi: 10.1128/JB.184.7.2019-2029.2002
– ident: e_1_3_3_68_2
  doi: 10.7164/antibiotics.39.1211
– ident: e_1_3_3_28_2
  doi: 10.1128/AEM.69.4.2201-2208.2003
– ident: e_1_3_3_55_2
  doi: 10.1186/s13059-015-0721-2
– ident: e_1_3_3_77_2
  doi: 10.1093/bioinformatics/btu153
– ident: e_1_3_3_82_2
  doi: 10.1111/j.1365-2958.1994.tb00487.x
– ident: e_1_3_3_54_2
  doi: 10.1093/nar/gky1123
– ident: e_1_3_3_42_2
  doi: 10.1371/journal.pone.0094166
– ident: e_1_3_3_5_2
  doi: 10.1046/j.1365-2958.2000.02170.x
– ident: e_1_3_3_29_2
  doi: 10.1128/AEM.03504-15
– ident: e_1_3_3_65_2
  doi: 10.1093/nar/gkz310
– ident: e_1_3_3_3_2
  doi: 10.1146/annurev.phyto.44.032905.091147
– ident: e_1_3_3_37_2
  doi: 10.1007/s10482-015-0637-6
– ident: e_1_3_3_47_2
  doi: 10.1128/aem.58.2.532-535.1992
– ident: e_1_3_3_57_2
  doi: 10.1016/j.chembiol.2007.11.014
– ident: e_1_3_3_38_2
  doi: 10.1128/JB.00204-08
– ident: e_1_3_3_23_2
  doi: 10.1094/PD-67-907
– ident: e_1_3_3_75_2
  doi: 10.1126/science.287.5461.2196
– volume: 47
  start-page: W81
  year: 2019
  end-page: W87
  ident: B64
  article-title: antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz310
– volume: 9
  year: 2014
  ident: B41
  article-title: Biochemical properties and atomic resolution structure of a proteolytically processed beta-mannanase from cellulolytic Streptomyces sp SirexAA-E
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094166
– volume: 190
  start-page: 7684
  year: 2008
  end-page: 7692
  ident: B20
  article-title: Streptomyces scabies 87-22 possesses a functional tomatinase
  publication-title: J Bacteriol
  doi: 10.1128/JB.01010-08
– volume: 57
  start-page: 81
  year: 2007
  end-page: 91
  ident: B44
  article-title: DNA-DNA hybridization values and their relationship to whole-genome sequence similarities
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.64483-0
– volume: 49
  start-page: 67
  year: 2009
  end-page: 72
  ident: B80
  article-title: Intergeneric conjugal gene transfer from Escherichia coli to the sweet potato pathogen Streptomyces ipomoeae
  publication-title: Lett Appl Microbiol
  doi: 10.1111/j.1472-765X.2009.02619.x
– volume: 55
  start-page: 1025
  year: 2005
  end-page: 1033
  ident: B13
  article-title: A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04461.x
– volume: 4
  year: 2016
  ident: B31
  article-title: Draft genome sequences of Streptomyces scabiei S58, Streptomyces turgidiscabies T45, and Streptomyces acidiscabies a10, the pathogens of potato common scab isolated in Japan
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00062-16
– volume: 112
  start-page: 12175
  year: 2015
  end-page: 12180
  ident: B32
  article-title: Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1500873112
– volume: 20
  start-page: 1379
  year: 2019
  end-page: 1393
  ident: B6
  article-title: TxtH is a key component of the thaxtomin biosynthetic machinery in the potato common scab pathogen Streptomyces scabies
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12843
– volume: 30
  start-page: 913
  year: 1940
  end-page: 926
  ident: B29
  article-title: Soil rot of sweet potatoes in Louisiana
  publication-title: Phytopathology
– volume: 9
  year: 2019
  ident: B58
  article-title: Cytosolic copper is a major modulator of germination, development and secondary metabolism in Streptomyces coelicolor
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-40876-0
– volume: 10
  start-page: 503
  year: 2018
  end-page: 510
  ident: B50
  article-title: Spreading the news about the novel conjugation mechanism in Streptomyces bacteria
  publication-title: Environ Microbiol Rep
  doi: 10.1111/1758-2229.12659
– volume: 87–88
  start-page: 1
  year: 2016
  end-page: 9
  ident: B51
  article-title: Conjugative DNA-transfer in Streptomyces, a mycelial organism
  publication-title: Plasmid
  doi: 10.1016/j.plasmid.2016.09.004
– volume: 194
  year: 2012
  ident: B30
  article-title: Draft genome sequence of Streptomyces acidiscabies 84-104, an emergent plant pathogen
  publication-title: J Bacteriol
  doi: 10.1128/JB.06767-11
– volume: 58
  start-page: 532
  year: 1992
  end-page: 535
  ident: B46
  article-title: DNA relatedness among strains of the sweet potato pathogen Streptomyces ipomoea (Person and Martin 1940) Waksman and Henrici 1948
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.58.2.532-535.1992
– volume: 25
  start-page: 3605
  year: 1997
  end-page: 3614
  ident: B48
  article-title: The integrase family of tyrosine recombinases: evolution of a conserved active site domain
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.18.3605
– volume: 266
  start-page: 20
  year: 2007
  end-page: 28
  ident: B73
  article-title: A genetic and bioinformatic analysis of Streptomyces coelicolor genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2006.00494.x
– volume: 109
  start-page: 349
  year: 2016
  end-page: 356
  ident: B36
  article-title: Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS culture collection (NRRL) using multi-locus sequence analysis
  publication-title: Antonie van Leeuwenhoek
  doi: 10.1007/s10482-015-0637-6
– volume: 74
  start-page: 494
  year: 1984
  end-page: 497
  ident: B72
  article-title: Improved methodology for evaluating resistance in sweet potato to Streptomyces Ipomoea
  publication-title: Phytopathology
  doi: 10.1094/Phyto-74-494
– volume: 69
  start-page: 2201
  year: 2003
  end-page: 2208
  ident: B27
  article-title: Interstrain inhibition in the sweet potato pathogen Streptomyces ipomoeae: purification and characterization of a highly specific bacteriocin and cloning of its structural gene
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.4.2201-2208.2003
– volume: 199
  start-page: 21
  year: 2015
  end-page: 22
  ident: B38
  article-title: Complete genome sequence of Streptomyces lividans TK24
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2015.02.004
– volume: 25
  start-page: 447
  year: 2007
  end-page: 453
  ident: B43
  article-title: Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1297
– volume: 30
  start-page: 2068
  year: 2014
  end-page: 2069
  ident: B76
  article-title: Prokka: rapid prokaryotic genome annotation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu153
– volume: 44
  start-page: 469
  year: 2006
  end-page: 487
  ident: B2
  article-title: Evolution of plant pathogenicity in Streptomyces
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.phyto.44.032905.091147
– volume: 9
  year: 2020
  ident: B69
  article-title: Overview of global trends in classification, methods of preparation and application of bacteriocins
  publication-title: Antibiotics (Basel)
  doi: 10.3390/antibiotics9090553
– volume: 66
  start-page: 633
  year: 2007
  end-page: 642
  ident: B9
  article-title: The Arac/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2007.05942.x
– year: 1988
  ident: B23
  publication-title: Compendium of sweet potato diseases ;The American Phytopathological Society ;St. Paul, MN
– volume: 287
  start-page: 2196
  year: 2000
  end-page: 2204
  ident: B74
  article-title: A whole-genome assembly of Drosophila
  publication-title: Science
  doi: 10.1126/science.287.5461.2196
– volume: 65
  start-page: 118
  year: 2011
  end-page: 124
  ident: B21
  article-title: Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens
  publication-title: Plasmid
  doi: 10.1016/j.plasmid.2010.11.002
– volume: 19
  start-page: 1733
  year: 2018
  end-page: 1741
  ident: B15
  article-title: Genetic background affects pathogenicity Island function and pathogen emergence in Streptomyces
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12656
– volume: 8
  start-page: 814
  year: 2012
  end-page: 816
  ident: B3
  article-title: Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1048
– volume: 15
  start-page: 43
  year: 2008
  end-page: 50
  ident: B56
  article-title: Plant-pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2007.11.014
– volume: 184
  start-page: 2019
  year: 2002
  end-page: 2029
  ident: B7
  article-title: Involvement of a cytochrome P450 monooxygenase in thaxtomin A biosynthesis by Streptomyces acidiscabies
  publication-title: J Bacteriol
  doi: 10.1128/JB.184.7.2019-2029.2002
– volume: 45
  start-page: W30
  year: 2017
  end-page: W35
  ident: B70
  article-title: Islandviewer 4: expanded prediction of Genomic Islands for larger-scale Datasets
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx343
– volume: 73
  start-page: 409
  year: 2009
  end-page: 418
  ident: B5
  article-title: 4-Nitrotryptophan is a substrate for the non-ribosomal peptide synthetase TxtB in the thaxtomin A biosynthetic pathway
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2009.06780.x
– ident: B63
  article-title: Guan D. 2011 . Insights into the molecular mechanism of Streptomyces ipomoeae pathogenesis: thaxtomin C biosynthesis and regulation . Ph.D . Louisiana State University , Baton Rouge, LA .
– volume: 5
  start-page: 1286
  year: 2010
  end-page: 1289
  ident: B65
  article-title: Alkylresorcinol biosynthesis in plants: new insights from an ancient enzyme family?
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.5.10.13062
– volume: 47
  start-page: D660
  year: 2019
  end-page: D665
  ident: B53
  article-title: ICEberg 2.0: an updated database of bacterial integrative and conjugative elements
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1123
– volume: 16
  year: 2015
  ident: B54
  article-title: OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0721-2
– volume: 43
  start-page: 674
  year: 1993
  end-page: 682
  ident: B45
  article-title: Taxonomic utility of restriction endonuclease fingerprinting of large DNA fragments from Streptomyces strains
  publication-title: Inter J of Sys Bact
  doi: 10.1099/00207713-43-4-674
– volume: 429
  start-page: 79
  year: 2004
  end-page: 82
  ident: B8
  article-title: Nitration of a peptide phytotoxin by bacterial nitric oxide synthase
  publication-title: Nature
  doi: 10.1038/nature02504
– volume: 9
  year: 2014
  ident: B49
  article-title: Characterization of the integration and modular excision of the integrative conjugative element PAISt in Streptomyces turgidiscabies Car8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099345
– volume: 921
  start-page: 595
  year: 1987
  end-page: 598
  ident: B68
  article-title: Inhibition of acyl-CoA synthetase by triacsins
  publication-title: Biochim Biophys Acta
– volume: 10
  start-page: 579
  year: 2009
  end-page: 585
  ident: B17
  article-title: Genetic and physiological determinants of Streptomyces scabies pathogenicity
  publication-title: Mol Plant Pathol
  doi: 10.1111/j.1364-3703.2009.00561.x
– volume: 158
  start-page: 2451
  year: 2012
  end-page: 2464
  ident: B57
  article-title: Copper-responsive gene regulation in bacteria
  publication-title: Microbiology
  doi: 10.1099/mic.0.058487-0
– volume: 192
  start-page: 4526
  year: 2010
  end-page: 4527
  ident: B34
  article-title: Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis
  publication-title: J Bacteriol
  doi: 10.1128/JB.00596-10
– volume: 25
  start-page: 393
  year: 2012
  end-page: 401
  ident: B25
  article-title: Evidence that thaxtomin C is a pathogenicity determinant of Streptomyces ipomoeae, the causative agent of Streptomyces soil rot disease of sweet potato
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-03-11-0073
– volume: 38
  start-page: 720
  year: 2014
  end-page: 760
  ident: B52
  article-title: Conjugative and mobilizable genomic islands in bacteria: evolution and diversity
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/1574-6976.12058
– volume: 88
  start-page: 1179
  year: 1998
  end-page: 1186
  ident: B26
  article-title: Diversity within Streptomyces ipomoeae based on inhibitory interactions, rep-PCR, and plasmid profiles
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.1998.88.11.1179
– volume: 12
  year: 2011
  ident: B42
  article-title: Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-175
– volume: 417
  start-page: 141
  year: 2002
  end-page: 147
  ident: B35
  article-title: Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)
  publication-title: Nature
  doi: 10.1038/417141a
– volume: 29
  start-page: 640
  year: 2016
  end-page: 650
  ident: B14
  article-title: Promiscuous pathogenicity islands and phylogeny of pathogenic Streptomyces spp
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-04-16-0068-R
– volume: 20
  year: 2019
  ident: B78
  article-title: OrthoFinder: phylogenetic orthology inference for comparative genomics
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1832-y
– volume: 21
  start-page: 526
  year: 2003
  end-page: 531
  ident: B33
  article-title: Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt820
– volume: 67
  start-page: 907
  year: 1983
  end-page: 909
  ident: B22
  article-title: Susceptibility of weed species of Convolvulaceae to root-infecting pathogens of Sweetpotato
  publication-title: Plant Dis
  doi: 10.1094/PD-67-907
– volume: 283
  start-page: 13983
  year: 2008
  end-page: 13991
  ident: B66
  article-title: Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M710461200
– volume: 23
  start-page: 161
  year: 2010
  end-page: 175
  ident: B40
  article-title: Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-23-2-0161
– volume: 42
  start-page: 1791
  year: 1994
  end-page: 1794
  ident: B24
  article-title: Isolation and characterization of thaxtomin-type phytotoxins associated with Streptomyces ipomoeae
  publication-title: J Agric Food Chem
  doi: 10.1021/jf00044a042
– volume: 20
  start-page: 599
  year: 2007
  end-page: 608
  ident: B19
  article-title: Streptomyces turgidiscabies secretes a novel virulence protein, Nec1, which facilitates infection
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-20-6-0599
– volume: 30
  start-page: 72
  year: 2017
  end-page: 82
  ident: B16
  article-title: Emergence of novel pathogenic Streptomyces species by site-specific accretion and cis-mobilization of pathogenicity islands
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-09-16-0190-R
– volume: 27
  start-page: 4636
  year: 1999
  end-page: 4641
  ident: B75
  article-title: Improved microbial gene identification with GLIMMER
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.23.4636
– volume: 17
  start-page: 501
  year: 2016
  end-page: 509
  ident: B18
  article-title: Identification of genetic and environmental factors stimulating excision from Streptomyces scabiei chromosome of the toxicogenic region responsible for pathogenicity
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12296
– volume: 22
  start-page: 2196
  year: 2006
  end-page: 2203
  ident: B71
  article-title: Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl369
– volume: 112
  start-page: 461
  year: 2019
  end-page: 481
  ident: B60
  article-title: Defining the regulon of genes controlled by sigma(E), a key regulator of the cell envelope stress response in Streptomyces coelicolor
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.14250
– volume: 46
  start-page: 1
  year: 2008
  end-page: 11
  ident: B10
  article-title: The use of the rare UUA Codon to define "expression space" for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces
  publication-title: J Microbiol
  doi: 10.1007/s12275-007-0233-1
– volume: 13
  start-page: 955
  year: 1994
  end-page: 964
  ident: B81
  article-title: Transfer of the pIJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1994.tb00487.x
– volume: 153
  start-page: 1413
  year: 2007
  end-page: 1423
  ident: B62
  article-title: Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.2006/002998-0
– volume: 25
  start-page: 1968
  year: 2009
  end-page: 1969
  ident: B77
  article-title: ABACAS: algorithm-based automatic contiguation of assembled sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp347
– volume: 98
  start-page: 179
  year: 2010
  end-page: 194
  ident: B39
  article-title: What does it take to be a plant pathogen: genomic insights from Streptomyces species
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-010-9429-1
– volume: 190
  start-page: 3475
  year: 2008
  end-page: 3481
  ident: B59
  article-title: Characterization of the Streptomyces lividans PspA response
  publication-title: J Bacteriol
  doi: 10.1128/JB.01966-07
– volume: 82
  start-page: 2146
  year: 2016
  end-page: 2155
  ident: B28
  article-title: Genome content and phylogenomics reveal both ancestral and lateral evolutionary pathways in plant-pathogenic Streptomyces species
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03504-15
– volume: 190
  start-page: 4050
  year: 2008
  end-page: 4060
  ident: B37
  article-title: Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350
  publication-title: J Bacteriol
  doi: 10.1128/JB.00204-08
– volume: 28
  start-page: 464
  year: 2012
  end-page: 469
  ident: B47
  article-title: Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr703
– volume: 165
  start-page: 1025
  year: 2019
  end-page: 1040
  ident: B1
  article-title: Virulence mechanisms of plant-pathogenic Streptomyces species: An updated review
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.000818
– volume: 153
  start-page: 1405
  year: 2007
  end-page: 1412
  ident: B61
  article-title: MbtH-like protein-mediated cross-talk between non-ribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.2006/003145-0
– volume: 116
  start-page: 43
  year: 1992
  end-page: 49
  ident: B79
  article-title: Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp
  publication-title: Gene
  doi: 10.1016/0378-1119(92)90627-2
– volume: 38
  start-page: 794
  year: 2000
  end-page: 804
  ident: B4
  article-title: The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.02170.x
– volume: 94
  start-page: 111
  year: 2008
  end-page: 126
  ident: B11
  article-title: Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-008-9231-5
– volume: 27
  start-page: 875
  year: 2014
  end-page: 885
  ident: B12
  article-title: Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-02-14-0037-R
– volume: 27
  start-page: 848
  year: 2018
  end-page: 860
  ident: B55
  article-title: Structure, function and evolution of the hemerythrin-like domain superfamily
  publication-title: Protein Sci
  doi: 10.1002/pro.3374
– volume: 39
  start-page: 1211
  year: 1986
  end-page: 1218
  ident: B67
  article-title: Triacsins, new inhibitors of acyl-CoA synthetase produced by Streptomyces sp
  publication-title: J Antibiot (Tokyo)
  doi: 10.7164/antibiotics.39.1211
SSID ssj0004068
Score 2.4548042
Snippet The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species...
While most plant-pathogenic species cause scab disease on a variety of plant hosts, is the sole causative agent of soil rot disease of sweet potato and closely...
The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species...
While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0030823
SubjectTerms Base Sequence
Evolutionary and Genomic Microbiology
Gene clusters
Genomes
Genomic analysis
Genomic islands
Genomics
Genomics and Proteomics
Host plants
Host range
Metabolites
Niches
Pathogenicity
Pathogens
Phytotoxins
Plant Diseases
Potatoes
Scab
Schizura ipomoeae
Solanum tuberosum
Streptomyces
Streptomyces - genetics
Virulence
Virulence factors
Title Comparative genomics of the niche-specific plant pathogen Streptomyces ipomoeae reveal novel genome content and organization
URI https://www.ncbi.nlm.nih.gov/pubmed/38009923
https://journals.asm.org/doi/10.1128/aem.00308-23
https://www.proquest.com/docview/2912741649
https://www.proquest.com/docview/2894722427
https://pubmed.ncbi.nlm.nih.gov/PMC10734452
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKEAIeEJSvwkAGwRPKSJ2POo9o2lShMV5aqW-R4zh0UhtXNJ00xF_hv3JvbKcudNJAqqIquXKi3BP72r7nXELeqXAkE1bIoCphphOXUgYFF8OAV1LJJJEwZCN3-Mt5Op7Gn2fJrNf75WUtbZriSP7Yyyv5H6_COfArsmT_wbNdo3AC_oN_4QgehuONfHzsSXej2OoSJZftpn-NOZ4BEikxGQirRdcNqqjONVi2m9GrRi-v2oSslV5qJbCAyiXqDNf6Ui1MgyaX3eWha4-46Ue1LpRFG485h8SUi63QU7eYo5HzZLr2RqznYpu0ON5826gmmIiVzeHVa7OTv13MBUybjlIjAbnbQlnYnG9PLMEu09olDRZheojhSdteGEVOIQ61Gtl7ztmu21QfchBlXkesrBDP_lGCIfNBqOVRaxUYs10x7vOv-en07CyfnMwmt8htBrMQ5haDHO02tExL-2SOV8H4R79tGOzFesl2A5-_ZjN_JuV6Uc7kIXlgpyf0k8HaI9JTdZ_cMQVLr_rkruOxr_vkvidl-Zj89LBIHRaprihgke5ikbZYpA6L1McidVikBou0xaJpUFGLRQo4oz4Wn5Dp6cnkeBzYyh6BiONRE0QiSlPGwnI04lKVivMiTGUygvC1rf2SFqzirAhLnlVVESoYBEURJSJD_cU4ktFTclDrWj0nVDAFQSymdlVJHIWZCCtWDjP4VcM4LKMBeYtvP7ef7TpvZ72M5-CivHVRzsDog_NNLq02PpZoWVxj_b6zXhlNmGvsDp2bt7dn2RAVo9I4G5A33WXo03GjTtRKb8CGZ6jhCm9iQJ4ZVHQ3ijhO6rBxvoOXzgD14nev1BfzVjd-CMN5HCfsxQ1u_JLc236Zh-Sg-b5RryD8borX7UfwGxgD4PY
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+genomics+of+the+niche-specific+plant+pathogen+Streptomyces+ipomoeae+reveal+novel+genome+content+and+organization&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Soares%2C+Natasha+R&rft.au=Huguet-Tapia%2C+Jos%C3%A9+C&rft.au=Guan%2C+Dongli&rft.au=Clark%2C+Christopher+A&rft.date=2023-12-21&rft.issn=1098-5336&rft.eissn=1098-5336&rft.volume=89&rft.issue=12&rft.spage=e0030823&rft_id=info:doi/10.1128%2Faem.00308-23&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon