Comparative genomics of the niche-specific plant pathogen Streptomyces ipomoeae reveal novel genome content and organization
The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest sca...
Saved in:
Published in | Applied and environmental microbiology Vol. 89; no. 12; p. e0030823 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
21.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sweet potato soil rot pathogen
Streptomyces ipomoeae
differs in disease pathology, host range, and virulence factor production from
Streptomyces
species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested
S. ipomoeae
and the oldest scab species,
Streptomyces scabiei
, are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of
S. ipomoeae
has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of
S. ipomoeae,
along with other plant-pathogenic and saprophytic
Streptomyces
spp. The
txt
gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of
S. ipomoeae
, but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of
S. ipomoeae
, and in particular, for its
txt
locus. The
txtR
activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional
bldA
translational control. Ortholog group searches identified genes found only in virulent
S. ipomoeae
strains in our analysis, and genome mining revealed secondary metabolite gene clusters of
S. ipomoeae
, which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by
S. ipomoeae
, and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology.
While most plant-pathogenic
Streptomyces
species cause scab disease on a variety of plant hosts,
Streptomyces ipomoeae
is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent
S. ipomoeae
strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by
S. ipomoeae
to cause disease and to persist in its niche environment. |
---|---|
AbstractList | While most plant-pathogenic
species cause scab disease on a variety of plant hosts,
is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent
strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by
to cause disease and to persist in its niche environment. The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest scab species, Streptomyces scabiei , are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of S. ipomoeae has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of S. ipomoeae, along with other plant-pathogenic and saprophytic Streptomyces spp. The txt gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of S. ipomoeae , but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of S. ipomoeae , and in particular, for its txt locus. The txtR activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional bldA translational control. Ortholog group searches identified genes found only in virulent S. ipomoeae strains in our analysis, and genome mining revealed secondary metabolite gene clusters of S. ipomoeae , which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by S. ipomoeae , and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology. While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment. The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest scab species, Streptomyces scabiei , are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of S. ipomoeae has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of S. ipomoeae, along with other plant-pathogenic and saprophytic Streptomyces spp. The txt gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of S. ipomoeae , but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of S. ipomoeae , and in particular, for its txt locus. The txtR activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional bldA translational control. Ortholog group searches identified genes found only in virulent S. ipomoeae strains in our analysis, and genome mining revealed secondary metabolite gene clusters of S. ipomoeae , which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by S. ipomoeae , and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology. The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest scab species, Streptomyces scabiei, are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of S. ipomoeae has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of S. ipomoeae, along with other plant-pathogenic and saprophytic Streptomyces spp. The txt gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of S. ipomoeae, but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of S. ipomoeae, and in particular, for its txt locus. The txtR activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional bldA translational control. Ortholog group searches identified genes found only in virulent S. ipomoeae strains in our analysis, and genome mining revealed secondary metabolite gene clusters of S. ipomoeae, which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by S. ipomoeae, and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology. While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.IMPORTANCEWhile most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment. The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest scab species, Streptomyces scabiei, are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of S. ipomoeae has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of S. ipomoeae, along with other plant-pathogenic and saprophytic Streptomyces spp. The txt gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of S. ipomoeae, but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of S. ipomoeae, and in particular, for its txt locus. The txtR activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional bldA translational control. Ortholog group searches identified genes found only in virulent S. ipomoeae strains in our analysis, and genome mining revealed secondary metabolite gene clusters of S. ipomoeae, which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by S. ipomoeae, and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology.IMPORTANCEWhile most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment. |
Author | Soares, Natasha R. Clark, Christopher A. Thombal, Raju S. Badger, Jonathan H. Yang, Kuei-Ting Kluchka, Olivia R. Guan, Dongli Huguet-Tapia, José C. Kartika, Rendy Pettis, Gregg S. |
Author_xml | – sequence: 1 givenname: Natasha R. surname: Soares fullname: Soares, Natasha R. organization: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA – sequence: 2 givenname: José C. surname: Huguet-Tapia fullname: Huguet-Tapia, José C. organization: Department of Plant Pathology, University of Florida, Gainesville, Florida, USA – sequence: 3 givenname: Dongli surname: Guan fullname: Guan, Dongli organization: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA – sequence: 4 givenname: Christopher A. surname: Clark fullname: Clark, Christopher A. organization: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA – sequence: 5 givenname: Kuei-Ting surname: Yang fullname: Yang, Kuei-Ting organization: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA – sequence: 6 givenname: Olivia R. surname: Kluchka fullname: Kluchka, Olivia R. organization: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA – sequence: 7 givenname: Raju S. surname: Thombal fullname: Thombal, Raju S. organization: Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA – sequence: 8 givenname: Rendy surname: Kartika fullname: Kartika, Rendy organization: Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA – sequence: 9 givenname: Jonathan H. surname: Badger fullname: Badger, Jonathan H. organization: Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA – sequence: 10 givenname: Gregg S. orcidid: 0000-0002-5468-8870 surname: Pettis fullname: Pettis, Gregg S. organization: Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38009923$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFTEUxYNU7Gt151oCbhScmq9JMqsiD7-g4EJdh0zmznspM8mY5D2o-Meb9tWqRVdZ3N89OeeeE3QUYgCEnlJyRinTry3MZ4RwohvGH6AVJZ1uWs7lEVoR0nUNY4Ico5OcLwkhgkj9CB1zfT1ifIV-rOO82GSL3wPeQIizdxnHEZct4ODdFpq8gPOjd3iZbCh4sWUbK4k_lwRLifOVg4z9EucIFnCCPdgJh7iH6SAI2MVQoK7aMOCYNjb47_XDGB6jh6OdMjy5fU_R13dvv6w_NBef3n9cv7lorBCqNNxyKRkjg1LawQBa90S6Vqm2BmJKy56NmvVk0N049gSU5Lbnre001VJwx0_R-UF32fUzDK56SXYyS_KzTVcmWm_-ngS_NZu4N5QoLkTLqsKLW4UUv-0gFzP77GCqF4G4y4bpTqh6aaYq-vweehl3KdR8hnWUKUGl6Cr18kDZPLPfBCXmulRTSzU3pRrGK_vsT_t3vn-1WIFXB8ClmHOC8Q75jx67hztfbgqp4f3076Wf-DjALg |
CitedBy_id | crossref_primary_10_1139_cjm_2023_0171 |
Cites_doi | 10.1111/mpp.12656 10.1021/jf00044a042 10.1186/s13059-019-1832-y 10.1111/mpp.12296 10.1002/pro.3374 10.1094/MPMI-04-16-0068-R 10.1094/Phyto-74-494 10.1094/MPMI-23-2-0161 10.1111/j.1365-2958.2004.04461.x 10.3390/antibiotics9090553 10.1038/s41598-019-40876-0 10.1111/mpp.12843 10.1038/nbt820 10.1016/0005-2760(87)90088-9 10.1094/MPMI-03-11-0073 10.1038/nature02504 10.1093/nar/gkx343 10.1186/1471-2164-12-175 10.1111/1574-6976.12058 10.1093/bioinformatics/btl369 10.1094/MPMI-09-16-0190-R 10.1094/MPMI-20-6-0599 10.1099/ijs.0.64483-0 10.1093/nar/27.23.4636 10.1111/j.1365-2958.2009.06780.x 10.1007/s10482-008-9231-5 10.1111/j.1364-3703.2009.00561.x 10.1093/nar/25.18.3605 10.1074/jbc.M710461200 10.1111/mmi.14250 10.1099/00207713-43-4-674 10.1128/JB.01010-08 10.4161/psb.5.10.13062 10.1099/mic.0.000818 10.1038/nchembio.1048 10.1093/bioinformatics/btp347 10.1073/pnas.1500873112 10.1016/j.jbiotec.2015.02.004 10.1111/j.1365-2958.2007.05942.x 10.1038/nbt1297 10.1128/JB.01966-07 10.1016/0378-1119(92)90627-2 10.1016/j.plasmid.2010.11.002 10.1094/PHYTO.1998.88.11.1179 10.1128/JB.06767-11 10.1099/mic.0.2006/002998-0 10.1111/1758-2229.12659 10.1093/bioinformatics/btr703 10.1128/genomeA.00062-16 10.1007/s10482-010-9429-1 10.1128/JB.00596-10 10.1099/mic.0.2006/003145-0 10.1099/mic.0.058487-0 10.1038/417141a 10.1111/j.1472-765X.2009.02619.x 10.1111/j.1574-6968.2006.00494.x 10.1094/MPMI-02-14-0037-R 10.1371/journal.pone.0099345 10.1016/j.plasmid.2016.09.004 10.1007/s12275-007-0233-1 10.1128/JB.184.7.2019-2029.2002 10.7164/antibiotics.39.1211 10.1128/AEM.69.4.2201-2208.2003 10.1186/s13059-015-0721-2 10.1093/bioinformatics/btu153 10.1111/j.1365-2958.1994.tb00487.x 10.1093/nar/gky1123 10.1371/journal.pone.0094166 10.1046/j.1365-2958.2000.02170.x 10.1128/AEM.03504-15 10.1093/nar/gkz310 10.1146/annurev.phyto.44.032905.091147 10.1007/s10482-015-0637-6 10.1128/aem.58.2.532-535.1992 10.1016/j.chembiol.2007.11.014 10.1128/JB.00204-08 10.1094/PD-67-907 10.1126/science.287.5461.2196 |
ContentType | Journal Article |
Copyright | Copyright © 2023 American Society for Microbiology. Copyright American Society for Microbiology Dec 2023 Copyright © 2023 American Society for Microbiology. 2023 American Society for Microbiology. |
Copyright_xml | – notice: Copyright © 2023 American Society for Microbiology. – notice: Copyright American Society for Microbiology Dec 2023 – notice: Copyright © 2023 American Society for Microbiology. 2023 American Society for Microbiology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
DOI | 10.1128/aem.00308-23 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
EISSN | 1098-5336 |
Editor | Cann, Isaac |
Editor_xml | – sequence: 1 givenname: Isaac surname: Cann fullname: Cann, Isaac |
ExternalDocumentID | PMC10734452 00308-23 38009923 10_1128_aem_00308_23 |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Agriculture (USDA) grantid: 2007-35600-17813 – fundername: U.S. Department of Agriculture (USDA) grantid: LAB94531 – fundername: U.S. Department of Agriculture (USDA) grantid: LAB94112 – fundername: U.S. Department of Agriculture (USDA) grantid: LAB94337 – fundername: ; grantid: 2007-35600-17813 – fundername: ; grantid: LAB94112 – fundername: ; grantid: LAB94337 – fundername: ; grantid: LAB94531 |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CS3 D0L DIK E.- E3Z EBS F5P GX1 H13 HYE HZ~ K-O KQ8 L7B O9- P2P PQQKQ RHI RNS RPM RSF RXW TAE TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ~02 ~KM CGR CUY CVF ECM EIF NPM AAPBV ABPTK RHF TAF UCJ ZA5 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-a447t-3a366220d778cede88b06c57750042786b2f82b0d89ffb0e763ab35a9818643c3 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 18:37:28 EDT 2025 Thu Jul 10 23:49:41 EDT 2025 Mon Jun 30 10:33:16 EDT 2025 Thu Dec 21 18:25:38 EST 2023 Thu Apr 03 07:05:21 EDT 2025 Thu Apr 24 22:55:13 EDT 2025 Tue Jul 01 04:29:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Streptomyces thaxtomin plant pathogens |
Language | English |
License | All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2 All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a447t-3a366220d778cede88b06c57750042786b2f82b0d89ffb0e763ab35a9818643c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0002-5468-8870 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10734452 |
PMID | 38009923 |
PQID | 2912741649 |
PQPubID | 42251 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10734452 proquest_miscellaneous_2894722427 proquest_journals_2912741649 asm2_journals_10_1128_aem_00308_23 pubmed_primary_38009923 crossref_primary_10_1128_aem_00308_23 crossref_citationtrail_10_1128_aem_00308_23 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec-21 |
PublicationDateYYYYMMDD | 2023-12-21 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC – name: Washington |
PublicationTitle | Applied and environmental microbiology |
PublicationTitleAbbrev | Appl Environ Microbiol |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2023 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_82_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 Clark CA (e_1_3_3_24_2) 1988 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 Person LH (e_1_3_3_30_2) 1940; 30 e_1_3_3_11_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 Labeda, DP, Lyons, AJ (B46) 1992; 58 Funabashi, M, Funa, N, Horinouchi, S (B66) 2008; 283 Zhang, X, Clark, CA, Pettis, GS (B27) 2003; 69 Zhang, Y, Bignell, DRD, Zuo, R, Fan, Q, Huguet-Tapia, JC, Ding, Y, Loria, R (B14) 2016; 29 Tomoda, H, Igarashi, K, Omura, S (B68) 1987; 921 Moyer, JW, Campbell, CL, Echandi, E, Collins, WW (B72) 1984; 74 Goris, J, Konstantinidis, KT, Klappenbach, JA, Coenye, T, Vandamme, P, Tiedje, JM (B44) 2007; 57 Zhang, Y, Loria, R (B16) 2017; 30 Tran, NT, Huang, X, Hong, HJ, Bush, MJ, Chandra, G, Pinto, D, Bibb, MJ, Hutchings, MI, Mascher, T, Buttner, MJ (B60) 2019; 112 Liu, M, Li, X, Xie, Y, Bi, D, Sun, J, Li, J, Tai, C, Deng, Z, Ou, HY (B53) 2019; 47 Guan, D, Pettis, GS (B80) 2009; 49 Rückert, C, Albersmeier, A, Busche, T, Jaenicke, S, Winkler, A, Friðjónsson, ÓH, Hreggviðsson, GÓ, Lambert, C, Badcock, D, Bernaerts, K, Anne, J, Economou, A, Kalinowski, J (B38) 2015; 199 Vrancken, K, Van Mellaert, L, Anné, J (B59) 2008; 190 Rademacher, C, Masepohl, B (B57) 2012; 158 Zhang, Y, Jiang, G, Ding, Y, Loria, R (B15) 2018; 19 Lerat, S, Simao-Beaunoir, AM, Beaulieu, C (B17) 2009; 10 Takasuka, TE, Acheson, JF, Bianchetti, CM, Prom, BM, Bergeman, LF, Book, AJ, Currie, CR, Fox, BG (B41) 2014; 9 Barry, SM, Kers, JA, Johnson, EG, Song, L, Aston, PR, Patel, B, Krasnoff, SB, Crane, BR, Gibson, DM, Loria, R, Challis, GL (B3) 2012; 8 Guan, D, Grau, BL, Clark, CA, Taylor, CM, Loria, R, Pettis, GS (B25) 2012; 25 Bentley, SD, Chater, KF, Cerdeño-Tárraga, A-M, Challis, GL, Thomson, NR, James, KD, Harris, DE, Quail, MA, Kieser, H, Harper, D, Bateman, A, Brown, S, Chandra, G, Chen, CW, Collins, M, Cronin, A, Fraser, A, Goble, A, Hidalgo, J, Hornsby, T, Howarth, S, Huang, C-H, Kieser, T, Larke, L, Murphy, L, Oliver, K, O’Neil, S, Rabbinowitsch, E, Rajandream, M-A, Rutherford, K, Rutter, S, Seeger, K, Saunders, D, Sharp, S, Squares, R, Squares, S, Taylor, K, Warren, T, Wietzorrek, A, Woodward, J, Barrell, BG, Parkhill, J, Hopwood, DA (B35) 2002; 417 Person, LH, Martin, MJ (B29) 1940; 30 Pullan, ST, Chandra, G, Bibb, MJ, Merrick, M (B42) 2011; 12 Blin, K, Shaw, S, Steinke, K, Villebro, R, Ziemert, N, Lee, SY, Medema, MH, Weber, T (B64) 2019; 47 Joshi, M, Rong, X, Moll, S, Kers, J, Franco, C, Loria, R (B19) 2007; 20 Huguet-Tapia, JC, Lefebure, T, Badger, JH, Guan, D, Pettis, GS, Stanhope, MJ, Loria, R (B28) 2016; 82 Li, W, Wu, J, Tao, W, Zhao, C, Wang, Y, He, X, Chandra, G, Zhou, X, Deng, Z, Chater, KF, Tao, M (B73) 2007; 266 Oliynyk, M, Samborskyy, M, Lester, JB, Mironenko, T, Scott, N, Dickens, S, Haydock, SF, Leadlay, PF (B43) 2007; 25 Li, Y, Liu, J, Díaz-Cruz, G, Cheng, Z, Bignell, DRD (B1) 2019; 165 Ohnishi, Y, Ishikawa, J, Hara, H, Suzuki, H, Ikenoya, M, Ikeda, H, Yamashita, A, Hattori, M, Horinouchi, S (B37) 2008; 190 Lautru, S, Oves-Costales, D, Pernodet, JL, Challis, GL (B61) 2007; 153 Healy, FG, Krasnoff, SB, Wach, M, Gibson, DM, Loria, R (B7) 2002; 184 Bignell, DRD, Seipke, RF, Huguet-Tapia, JC, Chambers, AH, Parry, RJ, Loria, R (B40) 2010; 23 Clark, CA, Chen, C, Ward-Rainey, N, Pettis, GS (B26) 1998; 88 Vernikos, GS, Parkhill, J (B71) 2006; 22 Kers, JA, Wach, MJ, Krasnoff, SB, Widom, J, Cameron, KD, Bukhalid, RA, Gibson, DM, Crane, BR, Loria, R (B8) 2004; 429 Clark, CA, Moyer, JW. (B23) 1988 Omura, S, Tomoda, H, Xu, QM, Takahashi, Y, Iwai, Y (B67) 1986; 39 Huguet-Tapia, JC, Bignell, DRD, Loria, R, Vinatzer, BA (B49) 2014; 9 Kers, JA, Cameron, KD, Joshi, MV, Bukhalid, RA, Morello, JE, Wach, MJ, Gibson, DM, Loria, R (B13) 2005; 55 Joshi, MV, Bignell, DRD, Johnson, EG, Sparks, JP, Gibson, DM, Loria, R (B9) 2007; 66 Chapleau, M, Guertin, JF, Farrokhi, A, Lerat, S, Burrus, V, Beaulieu, C (B18) 2016; 17 Thoma, L, Muth, G (B51) 2016; 87–88 Bellanger, X, Payot, S, Leblond-Bourget, N, Guédon, G (B52) 2014; 38 Johnson, EG, Sparks, JP, Dzikovski, B, Crane, BR, Gibson, DM, Loria, R (B56) 2008; 15 Huguet-Tapia, JC, Loria, R (B30) 2012; 194 Myers, EW, Sutton, GG, Delcher, AL, Dew, IM, Fasulo, DP, Flanigan, MJ, Kravitz, SA, Mobarry, CM, Reinert, KH, Remington, KA (B74) 2000; 287 Loria, R, Kers, J, Joshi, M (B2) 2006; 44 Bertelli, C, Laird, MR, Williams, KP, Lau, BY, Hoad, G, Winsor, GL, Brinkman, FS (B70) 2017; 45 Assefa, S, Keane, TM, Otto, TD, Newbold, C, Berriman, M (B77) 2009; 25 Esposito, D, Scocca, JJ (B48) 1997; 25 Healy, FG, Wach, M, Krasnoff, SB, Gibson, DM, Loria, R (B4) 2000; 38 King, RR, Lawrence, CH, Calhoun, LA, Ristaino, JB (B24) 1994; 42 Bignell, DRD, Francis, IM, Fyans, JK, Loria, R (B12) 2014; 27 Delcher, AL, Harmon, D, Kasif, S, White, O, Salzberg, SL (B75) 1999; 27 Baerson, SR, Schröder, J, Cook, D, Rimando, AM, Pan, Z, Dayan, FE, Noonan, BP, Duke, SO (B65) 2010; 5 Alvarez-Carreño, C, Alva, V, Becerra, A, Lazcano, A (B55) 2018; 27 Tomihama, T, Nishi, Y, Sakai, M, Ikenaga, M, Okubo, T, Ikeda, S (B31) 2016; 4 Seipke, RF, Loria, R (B20) 2008; 190 Pettis, GS (B50) 2018; 10 Wolpert, M, Gust, B, Kammerer, B, Heide, L (B62) 2007; 153 Pettis, GS, Cohen, SN (B81) 1994; 13 Chandra, G, Chater, KF (B11) 2008; 94 Bierman, M, Logan, R, O’Brien, K, Seno, ET, Rao, RN, Schoner, BE (B79) 1992; 116 Emms, DM, Kelly, S (B78) 2019; 20 González-Quiñónez, N, Corte-Rodríguez, M, Álvarez-Fernández-García, R, Rioseras, B, López-García, MT, Fernández-García, G, Montes-Bayón, M, Manteca, A, Yagüe, P (B58) 2019; 9 Huguet-Tapia, JC, Badger, JH, Loria, R, Pettis, GS (B21) 2011; 65 Labeda, DP (B36) 2016; 109 Seemann, T (B76) 2014; 30 Ikeda, H, Ishikawa, J, Hanamoto, A, Shinose, M, Kikuchi, H, Shiba, T, Sakaki, Y, Hattori, M, Omura, S (B33) 2003; 21 Clark, CA, Watson, B (B22) 1983; 67 Beyazova, M, Lechevalier, MP (B45) 1993; 43 Carver, T, Harris, SR, Berriman, M, Parkhill, J, McQuillan, JA (B47) 2012; 28 Ju, K-S, Gao, J, Doroghazi, JR, Wang, K-KA, Thibodeaux, CJ, Li, S, Metzger, E, Fudala, J, Su, J, Zhang, JK, Lee, J, Cioni, JP, Evans, BS, Hirota, R, Labeda, DP, van der Donk, WA, Metcalf, WW (B32) 2015; 112 Johnson, EG, Krasnoff, SB, Bignell, DRD, Chung, W-C, Tao, T, Parry, RJ, Loria, R, Gibson, DM (B5) 2009; 73 Bignell, DRD, Huguet-Tapia, JC, Joshi, MV, Pettis, GS, Loria, R (B39) 2010; 98 Wang, XJ, Yan, YJ, Zhang, B, An, J, Wang, JJ, Tian, J, Jiang, L, Chen, YH, Huang, SX, Yin, M, Zhang, J, Gao, AL, Liu, CX, Zhu, ZX, Xiang, WS (B34) 2010; 192 Li, Y, Liu, J, Adekunle, D, Bown, L, Tahlan, K, Bignell, DRD (B6) 2019; 20 Emms, DM, Kelly, S (B54) 2015; 16 Chater, KF, Chandra, G (B10) 2008; 46 Zimina, M, Babich, O, Prosekov, A, Sukhikh, S, Ivanova, S, Shevchenko, M, Noskova, S (B69) 2020; 9 B63 |
References_xml | – ident: e_1_3_3_16_2 doi: 10.1111/mpp.12656 – ident: e_1_3_3_25_2 doi: 10.1021/jf00044a042 – ident: e_1_3_3_79_2 doi: 10.1186/s13059-019-1832-y – ident: e_1_3_3_19_2 doi: 10.1111/mpp.12296 – ident: e_1_3_3_56_2 doi: 10.1002/pro.3374 – ident: e_1_3_3_15_2 doi: 10.1094/MPMI-04-16-0068-R – ident: e_1_3_3_73_2 doi: 10.1094/Phyto-74-494 – ident: e_1_3_3_41_2 doi: 10.1094/MPMI-23-2-0161 – ident: e_1_3_3_14_2 doi: 10.1111/j.1365-2958.2004.04461.x – ident: e_1_3_3_70_2 doi: 10.3390/antibiotics9090553 – ident: e_1_3_3_59_2 doi: 10.1038/s41598-019-40876-0 – ident: e_1_3_3_7_2 doi: 10.1111/mpp.12843 – ident: e_1_3_3_34_2 doi: 10.1038/nbt820 – ident: e_1_3_3_69_2 doi: 10.1016/0005-2760(87)90088-9 – ident: e_1_3_3_26_2 doi: 10.1094/MPMI-03-11-0073 – ident: e_1_3_3_9_2 doi: 10.1038/nature02504 – ident: e_1_3_3_71_2 doi: 10.1093/nar/gkx343 – ident: e_1_3_3_43_2 doi: 10.1186/1471-2164-12-175 – ident: e_1_3_3_53_2 doi: 10.1111/1574-6976.12058 – ident: e_1_3_3_72_2 doi: 10.1093/bioinformatics/btl369 – ident: e_1_3_3_17_2 doi: 10.1094/MPMI-09-16-0190-R – ident: e_1_3_3_20_2 doi: 10.1094/MPMI-20-6-0599 – ident: e_1_3_3_45_2 doi: 10.1099/ijs.0.64483-0 – ident: e_1_3_3_76_2 doi: 10.1093/nar/27.23.4636 – ident: e_1_3_3_6_2 doi: 10.1111/j.1365-2958.2009.06780.x – ident: e_1_3_3_12_2 doi: 10.1007/s10482-008-9231-5 – ident: e_1_3_3_18_2 doi: 10.1111/j.1364-3703.2009.00561.x – ident: e_1_3_3_49_2 doi: 10.1093/nar/25.18.3605 – ident: e_1_3_3_67_2 doi: 10.1074/jbc.M710461200 – volume: 30 start-page: 913 year: 1940 ident: e_1_3_3_30_2 article-title: Soil rot of sweet potatoes in Louisiana publication-title: Phytopathology – ident: e_1_3_3_61_2 doi: 10.1111/mmi.14250 – ident: e_1_3_3_46_2 doi: 10.1099/00207713-43-4-674 – ident: e_1_3_3_21_2 doi: 10.1128/JB.01010-08 – ident: e_1_3_3_66_2 doi: 10.4161/psb.5.10.13062 – ident: e_1_3_3_2_2 doi: 10.1099/mic.0.000818 – ident: e_1_3_3_4_2 doi: 10.1038/nchembio.1048 – ident: e_1_3_3_78_2 doi: 10.1093/bioinformatics/btp347 – ident: e_1_3_3_33_2 doi: 10.1073/pnas.1500873112 – ident: e_1_3_3_39_2 doi: 10.1016/j.jbiotec.2015.02.004 – ident: e_1_3_3_10_2 doi: 10.1111/j.1365-2958.2007.05942.x – ident: e_1_3_3_44_2 doi: 10.1038/nbt1297 – ident: e_1_3_3_60_2 doi: 10.1128/JB.01966-07 – ident: e_1_3_3_80_2 doi: 10.1016/0378-1119(92)90627-2 – ident: e_1_3_3_22_2 doi: 10.1016/j.plasmid.2010.11.002 – ident: e_1_3_3_27_2 doi: 10.1094/PHYTO.1998.88.11.1179 – ident: e_1_3_3_31_2 doi: 10.1128/JB.06767-11 – ident: e_1_3_3_63_2 doi: 10.1099/mic.0.2006/002998-0 – ident: e_1_3_3_51_2 doi: 10.1111/1758-2229.12659 – ident: e_1_3_3_48_2 doi: 10.1093/bioinformatics/btr703 – volume-title: Compendium of sweet potato diseases year: 1988 ident: e_1_3_3_24_2 – ident: e_1_3_3_32_2 doi: 10.1128/genomeA.00062-16 – ident: e_1_3_3_40_2 doi: 10.1007/s10482-010-9429-1 – ident: e_1_3_3_35_2 doi: 10.1128/JB.00596-10 – ident: e_1_3_3_62_2 doi: 10.1099/mic.0.2006/003145-0 – ident: e_1_3_3_58_2 doi: 10.1099/mic.0.058487-0 – ident: e_1_3_3_36_2 doi: 10.1038/417141a – ident: e_1_3_3_81_2 doi: 10.1111/j.1472-765X.2009.02619.x – ident: e_1_3_3_74_2 doi: 10.1111/j.1574-6968.2006.00494.x – ident: e_1_3_3_13_2 doi: 10.1094/MPMI-02-14-0037-R – ident: e_1_3_3_50_2 doi: 10.1371/journal.pone.0099345 – ident: e_1_3_3_52_2 doi: 10.1016/j.plasmid.2016.09.004 – ident: e_1_3_3_11_2 doi: 10.1007/s12275-007-0233-1 – ident: e_1_3_3_8_2 doi: 10.1128/JB.184.7.2019-2029.2002 – ident: e_1_3_3_68_2 doi: 10.7164/antibiotics.39.1211 – ident: e_1_3_3_28_2 doi: 10.1128/AEM.69.4.2201-2208.2003 – ident: e_1_3_3_55_2 doi: 10.1186/s13059-015-0721-2 – ident: e_1_3_3_77_2 doi: 10.1093/bioinformatics/btu153 – ident: e_1_3_3_82_2 doi: 10.1111/j.1365-2958.1994.tb00487.x – ident: e_1_3_3_54_2 doi: 10.1093/nar/gky1123 – ident: e_1_3_3_42_2 doi: 10.1371/journal.pone.0094166 – ident: e_1_3_3_5_2 doi: 10.1046/j.1365-2958.2000.02170.x – ident: e_1_3_3_29_2 doi: 10.1128/AEM.03504-15 – ident: e_1_3_3_65_2 doi: 10.1093/nar/gkz310 – ident: e_1_3_3_3_2 doi: 10.1146/annurev.phyto.44.032905.091147 – ident: e_1_3_3_37_2 doi: 10.1007/s10482-015-0637-6 – ident: e_1_3_3_47_2 doi: 10.1128/aem.58.2.532-535.1992 – ident: e_1_3_3_57_2 doi: 10.1016/j.chembiol.2007.11.014 – ident: e_1_3_3_38_2 doi: 10.1128/JB.00204-08 – ident: e_1_3_3_23_2 doi: 10.1094/PD-67-907 – ident: e_1_3_3_75_2 doi: 10.1126/science.287.5461.2196 – volume: 47 start-page: W81 year: 2019 end-page: W87 ident: B64 article-title: antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz310 – volume: 9 year: 2014 ident: B41 article-title: Biochemical properties and atomic resolution structure of a proteolytically processed beta-mannanase from cellulolytic Streptomyces sp SirexAA-E publication-title: PLoS One doi: 10.1371/journal.pone.0094166 – volume: 190 start-page: 7684 year: 2008 end-page: 7692 ident: B20 article-title: Streptomyces scabies 87-22 possesses a functional tomatinase publication-title: J Bacteriol doi: 10.1128/JB.01010-08 – volume: 57 start-page: 81 year: 2007 end-page: 91 ident: B44 article-title: DNA-DNA hybridization values and their relationship to whole-genome sequence similarities publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.64483-0 – volume: 49 start-page: 67 year: 2009 end-page: 72 ident: B80 article-title: Intergeneric conjugal gene transfer from Escherichia coli to the sweet potato pathogen Streptomyces ipomoeae publication-title: Lett Appl Microbiol doi: 10.1111/j.1472-765X.2009.02619.x – volume: 55 start-page: 1025 year: 2005 end-page: 1033 ident: B13 article-title: A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04461.x – volume: 4 year: 2016 ident: B31 article-title: Draft genome sequences of Streptomyces scabiei S58, Streptomyces turgidiscabies T45, and Streptomyces acidiscabies a10, the pathogens of potato common scab isolated in Japan publication-title: Genome Announc doi: 10.1128/genomeA.00062-16 – volume: 112 start-page: 12175 year: 2015 end-page: 12180 ident: B32 article-title: Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1500873112 – volume: 20 start-page: 1379 year: 2019 end-page: 1393 ident: B6 article-title: TxtH is a key component of the thaxtomin biosynthetic machinery in the potato common scab pathogen Streptomyces scabies publication-title: Mol Plant Pathol doi: 10.1111/mpp.12843 – volume: 30 start-page: 913 year: 1940 end-page: 926 ident: B29 article-title: Soil rot of sweet potatoes in Louisiana publication-title: Phytopathology – volume: 9 year: 2019 ident: B58 article-title: Cytosolic copper is a major modulator of germination, development and secondary metabolism in Streptomyces coelicolor publication-title: Sci Rep doi: 10.1038/s41598-019-40876-0 – volume: 10 start-page: 503 year: 2018 end-page: 510 ident: B50 article-title: Spreading the news about the novel conjugation mechanism in Streptomyces bacteria publication-title: Environ Microbiol Rep doi: 10.1111/1758-2229.12659 – volume: 87–88 start-page: 1 year: 2016 end-page: 9 ident: B51 article-title: Conjugative DNA-transfer in Streptomyces, a mycelial organism publication-title: Plasmid doi: 10.1016/j.plasmid.2016.09.004 – volume: 194 year: 2012 ident: B30 article-title: Draft genome sequence of Streptomyces acidiscabies 84-104, an emergent plant pathogen publication-title: J Bacteriol doi: 10.1128/JB.06767-11 – volume: 58 start-page: 532 year: 1992 end-page: 535 ident: B46 article-title: DNA relatedness among strains of the sweet potato pathogen Streptomyces ipomoea (Person and Martin 1940) Waksman and Henrici 1948 publication-title: Appl Environ Microbiol doi: 10.1128/aem.58.2.532-535.1992 – volume: 25 start-page: 3605 year: 1997 end-page: 3614 ident: B48 article-title: The integrase family of tyrosine recombinases: evolution of a conserved active site domain publication-title: Nucleic Acids Res doi: 10.1093/nar/25.18.3605 – volume: 266 start-page: 20 year: 2007 end-page: 28 ident: B73 article-title: A genetic and bioinformatic analysis of Streptomyces coelicolor genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2006.00494.x – volume: 109 start-page: 349 year: 2016 end-page: 356 ident: B36 article-title: Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS culture collection (NRRL) using multi-locus sequence analysis publication-title: Antonie van Leeuwenhoek doi: 10.1007/s10482-015-0637-6 – volume: 74 start-page: 494 year: 1984 end-page: 497 ident: B72 article-title: Improved methodology for evaluating resistance in sweet potato to Streptomyces Ipomoea publication-title: Phytopathology doi: 10.1094/Phyto-74-494 – volume: 69 start-page: 2201 year: 2003 end-page: 2208 ident: B27 article-title: Interstrain inhibition in the sweet potato pathogen Streptomyces ipomoeae: purification and characterization of a highly specific bacteriocin and cloning of its structural gene publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.4.2201-2208.2003 – volume: 199 start-page: 21 year: 2015 end-page: 22 ident: B38 article-title: Complete genome sequence of Streptomyces lividans TK24 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2015.02.004 – volume: 25 start-page: 447 year: 2007 end-page: 453 ident: B43 article-title: Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338 publication-title: Nat Biotechnol doi: 10.1038/nbt1297 – volume: 30 start-page: 2068 year: 2014 end-page: 2069 ident: B76 article-title: Prokka: rapid prokaryotic genome annotation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu153 – volume: 44 start-page: 469 year: 2006 end-page: 487 ident: B2 article-title: Evolution of plant pathogenicity in Streptomyces publication-title: Annu Rev Phytopathol doi: 10.1146/annurev.phyto.44.032905.091147 – volume: 9 year: 2020 ident: B69 article-title: Overview of global trends in classification, methods of preparation and application of bacteriocins publication-title: Antibiotics (Basel) doi: 10.3390/antibiotics9090553 – volume: 66 start-page: 633 year: 2007 end-page: 642 ident: B9 article-title: The Arac/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2007.05942.x – year: 1988 ident: B23 publication-title: Compendium of sweet potato diseases ;The American Phytopathological Society ;St. Paul, MN – volume: 287 start-page: 2196 year: 2000 end-page: 2204 ident: B74 article-title: A whole-genome assembly of Drosophila publication-title: Science doi: 10.1126/science.287.5461.2196 – volume: 65 start-page: 118 year: 2011 end-page: 124 ident: B21 article-title: Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens publication-title: Plasmid doi: 10.1016/j.plasmid.2010.11.002 – volume: 19 start-page: 1733 year: 2018 end-page: 1741 ident: B15 article-title: Genetic background affects pathogenicity Island function and pathogen emergence in Streptomyces publication-title: Mol Plant Pathol doi: 10.1111/mpp.12656 – volume: 8 start-page: 814 year: 2012 end-page: 816 ident: B3 article-title: Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis publication-title: Nat Chem Biol doi: 10.1038/nchembio.1048 – volume: 15 start-page: 43 year: 2008 end-page: 50 ident: B56 article-title: Plant-pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals publication-title: Chem Biol doi: 10.1016/j.chembiol.2007.11.014 – volume: 184 start-page: 2019 year: 2002 end-page: 2029 ident: B7 article-title: Involvement of a cytochrome P450 monooxygenase in thaxtomin A biosynthesis by Streptomyces acidiscabies publication-title: J Bacteriol doi: 10.1128/JB.184.7.2019-2029.2002 – volume: 45 start-page: W30 year: 2017 end-page: W35 ident: B70 article-title: Islandviewer 4: expanded prediction of Genomic Islands for larger-scale Datasets publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx343 – volume: 73 start-page: 409 year: 2009 end-page: 418 ident: B5 article-title: 4-Nitrotryptophan is a substrate for the non-ribosomal peptide synthetase TxtB in the thaxtomin A biosynthetic pathway publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2009.06780.x – ident: B63 article-title: Guan D. 2011 . Insights into the molecular mechanism of Streptomyces ipomoeae pathogenesis: thaxtomin C biosynthesis and regulation . Ph.D . Louisiana State University , Baton Rouge, LA . – volume: 5 start-page: 1286 year: 2010 end-page: 1289 ident: B65 article-title: Alkylresorcinol biosynthesis in plants: new insights from an ancient enzyme family? publication-title: Plant Signal Behav doi: 10.4161/psb.5.10.13062 – volume: 47 start-page: D660 year: 2019 end-page: D665 ident: B53 article-title: ICEberg 2.0: an updated database of bacterial integrative and conjugative elements publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1123 – volume: 16 year: 2015 ident: B54 article-title: OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy publication-title: Genome Biol doi: 10.1186/s13059-015-0721-2 – volume: 43 start-page: 674 year: 1993 end-page: 682 ident: B45 article-title: Taxonomic utility of restriction endonuclease fingerprinting of large DNA fragments from Streptomyces strains publication-title: Inter J of Sys Bact doi: 10.1099/00207713-43-4-674 – volume: 429 start-page: 79 year: 2004 end-page: 82 ident: B8 article-title: Nitration of a peptide phytotoxin by bacterial nitric oxide synthase publication-title: Nature doi: 10.1038/nature02504 – volume: 9 year: 2014 ident: B49 article-title: Characterization of the integration and modular excision of the integrative conjugative element PAISt in Streptomyces turgidiscabies Car8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0099345 – volume: 921 start-page: 595 year: 1987 end-page: 598 ident: B68 article-title: Inhibition of acyl-CoA synthetase by triacsins publication-title: Biochim Biophys Acta – volume: 10 start-page: 579 year: 2009 end-page: 585 ident: B17 article-title: Genetic and physiological determinants of Streptomyces scabies pathogenicity publication-title: Mol Plant Pathol doi: 10.1111/j.1364-3703.2009.00561.x – volume: 158 start-page: 2451 year: 2012 end-page: 2464 ident: B57 article-title: Copper-responsive gene regulation in bacteria publication-title: Microbiology doi: 10.1099/mic.0.058487-0 – volume: 192 start-page: 4526 year: 2010 end-page: 4527 ident: B34 article-title: Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis publication-title: J Bacteriol doi: 10.1128/JB.00596-10 – volume: 25 start-page: 393 year: 2012 end-page: 401 ident: B25 article-title: Evidence that thaxtomin C is a pathogenicity determinant of Streptomyces ipomoeae, the causative agent of Streptomyces soil rot disease of sweet potato publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-03-11-0073 – volume: 38 start-page: 720 year: 2014 end-page: 760 ident: B52 article-title: Conjugative and mobilizable genomic islands in bacteria: evolution and diversity publication-title: FEMS Microbiol Rev doi: 10.1111/1574-6976.12058 – volume: 88 start-page: 1179 year: 1998 end-page: 1186 ident: B26 article-title: Diversity within Streptomyces ipomoeae based on inhibitory interactions, rep-PCR, and plasmid profiles publication-title: Phytopathology doi: 10.1094/PHYTO.1998.88.11.1179 – volume: 12 year: 2011 ident: B42 article-title: Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes publication-title: BMC Genomics doi: 10.1186/1471-2164-12-175 – volume: 417 start-page: 141 year: 2002 end-page: 147 ident: B35 article-title: Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) publication-title: Nature doi: 10.1038/417141a – volume: 29 start-page: 640 year: 2016 end-page: 650 ident: B14 article-title: Promiscuous pathogenicity islands and phylogeny of pathogenic Streptomyces spp publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-04-16-0068-R – volume: 20 year: 2019 ident: B78 article-title: OrthoFinder: phylogenetic orthology inference for comparative genomics publication-title: Genome Biol doi: 10.1186/s13059-019-1832-y – volume: 21 start-page: 526 year: 2003 end-page: 531 ident: B33 article-title: Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis publication-title: Nat Biotechnol doi: 10.1038/nbt820 – volume: 67 start-page: 907 year: 1983 end-page: 909 ident: B22 article-title: Susceptibility of weed species of Convolvulaceae to root-infecting pathogens of Sweetpotato publication-title: Plant Dis doi: 10.1094/PD-67-907 – volume: 283 start-page: 13983 year: 2008 end-page: 13991 ident: B66 article-title: Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus publication-title: J Biol Chem doi: 10.1074/jbc.M710461200 – volume: 23 start-page: 161 year: 2010 end-page: 175 ident: B40 article-title: Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-23-2-0161 – volume: 42 start-page: 1791 year: 1994 end-page: 1794 ident: B24 article-title: Isolation and characterization of thaxtomin-type phytotoxins associated with Streptomyces ipomoeae publication-title: J Agric Food Chem doi: 10.1021/jf00044a042 – volume: 20 start-page: 599 year: 2007 end-page: 608 ident: B19 article-title: Streptomyces turgidiscabies secretes a novel virulence protein, Nec1, which facilitates infection publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-20-6-0599 – volume: 30 start-page: 72 year: 2017 end-page: 82 ident: B16 article-title: Emergence of novel pathogenic Streptomyces species by site-specific accretion and cis-mobilization of pathogenicity islands publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-09-16-0190-R – volume: 27 start-page: 4636 year: 1999 end-page: 4641 ident: B75 article-title: Improved microbial gene identification with GLIMMER publication-title: Nucleic Acids Res doi: 10.1093/nar/27.23.4636 – volume: 17 start-page: 501 year: 2016 end-page: 509 ident: B18 article-title: Identification of genetic and environmental factors stimulating excision from Streptomyces scabiei chromosome of the toxicogenic region responsible for pathogenicity publication-title: Mol Plant Pathol doi: 10.1111/mpp.12296 – volume: 22 start-page: 2196 year: 2006 end-page: 2203 ident: B71 article-title: Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl369 – volume: 112 start-page: 461 year: 2019 end-page: 481 ident: B60 article-title: Defining the regulon of genes controlled by sigma(E), a key regulator of the cell envelope stress response in Streptomyces coelicolor publication-title: Mol Microbiol doi: 10.1111/mmi.14250 – volume: 46 start-page: 1 year: 2008 end-page: 11 ident: B10 article-title: The use of the rare UUA Codon to define "expression space" for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces publication-title: J Microbiol doi: 10.1007/s12275-007-0233-1 – volume: 13 start-page: 955 year: 1994 end-page: 964 ident: B81 article-title: Transfer of the pIJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1994.tb00487.x – volume: 153 start-page: 1413 year: 2007 end-page: 1423 ident: B62 article-title: Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor publication-title: Microbiology (Reading) doi: 10.1099/mic.0.2006/002998-0 – volume: 25 start-page: 1968 year: 2009 end-page: 1969 ident: B77 article-title: ABACAS: algorithm-based automatic contiguation of assembled sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp347 – volume: 98 start-page: 179 year: 2010 end-page: 194 ident: B39 article-title: What does it take to be a plant pathogen: genomic insights from Streptomyces species publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-010-9429-1 – volume: 190 start-page: 3475 year: 2008 end-page: 3481 ident: B59 article-title: Characterization of the Streptomyces lividans PspA response publication-title: J Bacteriol doi: 10.1128/JB.01966-07 – volume: 82 start-page: 2146 year: 2016 end-page: 2155 ident: B28 article-title: Genome content and phylogenomics reveal both ancestral and lateral evolutionary pathways in plant-pathogenic Streptomyces species publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03504-15 – volume: 190 start-page: 4050 year: 2008 end-page: 4060 ident: B37 article-title: Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350 publication-title: J Bacteriol doi: 10.1128/JB.00204-08 – volume: 28 start-page: 464 year: 2012 end-page: 469 ident: B47 article-title: Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr703 – volume: 165 start-page: 1025 year: 2019 end-page: 1040 ident: B1 article-title: Virulence mechanisms of plant-pathogenic Streptomyces species: An updated review publication-title: Microbiology (Reading) doi: 10.1099/mic.0.000818 – volume: 153 start-page: 1405 year: 2007 end-page: 1412 ident: B61 article-title: MbtH-like protein-mediated cross-talk between non-ribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145 publication-title: Microbiology (Reading) doi: 10.1099/mic.0.2006/003145-0 – volume: 116 start-page: 43 year: 1992 end-page: 49 ident: B79 article-title: Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp publication-title: Gene doi: 10.1016/0378-1119(92)90627-2 – volume: 38 start-page: 794 year: 2000 end-page: 804 ident: B4 article-title: The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2000.02170.x – volume: 94 start-page: 111 year: 2008 end-page: 126 ident: B11 article-title: Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-008-9231-5 – volume: 27 start-page: 875 year: 2014 end-page: 885 ident: B12 article-title: Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-02-14-0037-R – volume: 27 start-page: 848 year: 2018 end-page: 860 ident: B55 article-title: Structure, function and evolution of the hemerythrin-like domain superfamily publication-title: Protein Sci doi: 10.1002/pro.3374 – volume: 39 start-page: 1211 year: 1986 end-page: 1218 ident: B67 article-title: Triacsins, new inhibitors of acyl-CoA synthetase produced by Streptomyces sp publication-title: J Antibiot (Tokyo) doi: 10.7164/antibiotics.39.1211 |
SSID | ssj0004068 |
Score | 2.4548042 |
Snippet | The sweet potato soil rot pathogen
Streptomyces ipomoeae
differs in disease pathology, host range, and virulence factor production from
Streptomyces
species... While most plant-pathogenic species cause scab disease on a variety of plant hosts, is the sole causative agent of soil rot disease of sweet potato and closely... The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species... While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0030823 |
SubjectTerms | Base Sequence Evolutionary and Genomic Microbiology Gene clusters Genomes Genomic analysis Genomic islands Genomics Genomics and Proteomics Host plants Host range Metabolites Niches Pathogenicity Pathogens Phytotoxins Plant Diseases Potatoes Scab Schizura ipomoeae Solanum tuberosum Streptomyces Streptomyces - genetics Virulence Virulence factors |
Title | Comparative genomics of the niche-specific plant pathogen Streptomyces ipomoeae reveal novel genome content and organization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38009923 https://journals.asm.org/doi/10.1128/aem.00308-23 https://www.proquest.com/docview/2912741649 https://www.proquest.com/docview/2894722427 https://pubmed.ncbi.nlm.nih.gov/PMC10734452 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKEAIeEJSvwkAGwRPKSJ2POo9o2lShMV5aqW-R4zh0UhtXNJ00xF_hv3JvbKcudNJAqqIquXKi3BP72r7nXELeqXAkE1bIoCphphOXUgYFF8OAV1LJJJEwZCN3-Mt5Op7Gn2fJrNf75WUtbZriSP7Yyyv5H6_COfArsmT_wbNdo3AC_oN_4QgehuONfHzsSXej2OoSJZftpn-NOZ4BEikxGQirRdcNqqjONVi2m9GrRi-v2oSslV5qJbCAyiXqDNf6Ui1MgyaX3eWha4-46Ue1LpRFG485h8SUi63QU7eYo5HzZLr2RqznYpu0ON5826gmmIiVzeHVa7OTv13MBUybjlIjAbnbQlnYnG9PLMEu09olDRZheojhSdteGEVOIQ61Gtl7ztmu21QfchBlXkesrBDP_lGCIfNBqOVRaxUYs10x7vOv-en07CyfnMwmt8htBrMQ5haDHO02tExL-2SOV8H4R79tGOzFesl2A5-_ZjN_JuV6Uc7kIXlgpyf0k8HaI9JTdZ_cMQVLr_rkruOxr_vkvidl-Zj89LBIHRaprihgke5ikbZYpA6L1McidVikBou0xaJpUFGLRQo4oz4Wn5Dp6cnkeBzYyh6BiONRE0QiSlPGwnI04lKVivMiTGUygvC1rf2SFqzirAhLnlVVESoYBEURJSJD_cU4ktFTclDrWj0nVDAFQSymdlVJHIWZCCtWDjP4VcM4LKMBeYtvP7ef7TpvZ72M5-CivHVRzsDog_NNLq02PpZoWVxj_b6zXhlNmGvsDp2bt7dn2RAVo9I4G5A33WXo03GjTtRKb8CGZ6jhCm9iQJ4ZVHQ3ijhO6rBxvoOXzgD14nev1BfzVjd-CMN5HCfsxQ1u_JLc236Zh-Sg-b5RryD8borX7UfwGxgD4PY |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+genomics+of+the+niche-specific+plant+pathogen+Streptomyces+ipomoeae+reveal+novel+genome+content+and+organization&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Soares%2C+Natasha+R&rft.au=Huguet-Tapia%2C+Jos%C3%A9+C&rft.au=Guan%2C+Dongli&rft.au=Clark%2C+Christopher+A&rft.date=2023-12-21&rft.issn=1098-5336&rft.eissn=1098-5336&rft.volume=89&rft.issue=12&rft.spage=e0030823&rft_id=info:doi/10.1128%2Faem.00308-23&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |