Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth
Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction...
Saved in:
Published in | JACS Au Vol. 4; no. 10; pp. 3921 - 3930 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2691-3704 2691-3704 |
DOI | 10.1021/jacsau.4c00621 |
Cover
Loading…
Abstract | Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency. |
---|---|
AbstractList | Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency. Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 10 2 A/W, and a specific detectivity of 4.18 × 10 10 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n -type and extrinsic p -type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency. Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 10 A/W, and a specific detectivity of 4.18 × 10 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic -type and extrinsic -type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency. Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency.Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency. |
Author | Rao, Yi Huang-Fu, Zhi-Chao Qian, Yuqin Fisher, Haley Li, Hao Schmidt, Sydney Harutyunyan, Avetik Chen, Hanning Zhang, Tong Brown, Jesse B. Li, Xia Chen, Gugang |
AuthorAffiliation | Department of Chemistry and Biochemistry the University of Texas at Austin Honda Research Institute, USA, Inc Texas Advanced Computing Center |
AuthorAffiliation_xml | – name: the University of Texas at Austin – name: Honda Research Institute, USA, Inc – name: Department of Chemistry and Biochemistry – name: Texas Advanced Computing Center |
Author_xml | – sequence: 1 givenname: Yuqin surname: Qian fullname: Qian, Yuqin organization: Department of Chemistry and Biochemistry – sequence: 2 givenname: Zhi-Chao surname: Huang-Fu fullname: Huang-Fu, Zhi-Chao organization: Department of Chemistry and Biochemistry – sequence: 3 givenname: Hao surname: Li fullname: Li, Hao organization: Department of Chemistry and Biochemistry – sequence: 4 givenname: Tong surname: Zhang fullname: Zhang, Tong organization: Department of Chemistry and Biochemistry – sequence: 5 givenname: Xia surname: Li fullname: Li, Xia organization: Department of Chemistry and Biochemistry – sequence: 6 givenname: Sydney surname: Schmidt fullname: Schmidt, Sydney organization: Department of Chemistry and Biochemistry – sequence: 7 givenname: Haley surname: Fisher fullname: Fisher, Haley organization: Department of Chemistry and Biochemistry – sequence: 8 givenname: Jesse B. surname: Brown fullname: Brown, Jesse B. organization: Department of Chemistry and Biochemistry – sequence: 9 givenname: Avetik surname: Harutyunyan fullname: Harutyunyan, Avetik organization: Honda Research Institute, USA, Inc – sequence: 10 givenname: Hanning orcidid: 0000-0003-3568-8039 surname: Chen fullname: Chen, Hanning email: hchen@tacc.utexas.edu organization: the University of Texas at Austin – sequence: 11 givenname: Gugang orcidid: 0000-0003-3798-320X surname: Chen fullname: Chen, Gugang email: gchen@honda-ri.com organization: Honda Research Institute, USA, Inc – sequence: 12 givenname: Yi orcidid: 0000-0001-9882-1314 surname: Rao fullname: Rao, Yi email: yi.rao@usu.edu organization: Department of Chemistry and Biochemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39483221$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1vEzEQhleoiJbSK0fkI0La4M_94ILa8pFIlUAlFUdrsp7NOmzsYHtT9W_wi1nYULUHTmPNvO8z0vh9nh057zDLXjI6Y5SztxtoIgwz2VBacPYkO-FFzXJRUnn04H2cncW4oZRyxQQt6LPsWNSyEpyzk-zXjesRYmfdmqQOyVef0CUL_Tsyt-uOXGPceRft3qY7Aolce78lS9zuMEAaAhLfkjn01oxWDH4ff9iE-QVENORb50PKv8MeycK1AcLY-4AJm-RDJLc2deSmTwFWwYMhF-DMrTWpe5E9baGPeHaop9ny08fl5Ty_-vJ5cXl-lYOUZcqFRCpbxWRFS9rwupWqhqI2UEkhpFDAjZRYSEOVaqDlTOAKaqZoW_DaoDjNFhPWeNjoXbBbCHfag9V_Gz6sNYRkmx41qwpeKF6tCrWSgHys2DQcTdGKkrdqZL2fWLthtUXTjCcM0D-CPp442-m132vGFOc1LUfC6wMh-J8DxqS3NjbY9-DQD1ELxgUtJafVKH31cNn9ln-fOgpmk6AJPsaA7b2EUf0nOHoKjj4EZzS8mQxjW2_8ENx49_-JfwNLd8as |
Cites_doi | 10.1002/adfm.201701053 10.1002/adma.202206884 10.1038/s41377-019-0218-y 10.1002/adma.201405217 10.1038/s41566-017-0012-4 10.1038/s41528-020-0069-x 10.1364/OPTICA.4.000185 10.1002/adma.201603573 10.1088/1361-6528/ab9869 10.1117/12.2305040 10.1038/natrevmats.2016.100 10.1038/s41586-023-06207-0 10.1038/nnano.2014.31 10.1002/adma.201601196 10.1126/sciadv.adk8199 10.1117/1.JRS.8.084998 10.1126/science.1156965 10.1038/nnano.2014.149 10.1002/adma.201602639 10.1038/lsa.2017.23 10.1002/adma.201603826 10.1038/s41566-023-01345-3 10.1002/adma.201405116 10.1063/1.4801957 10.1063/1.3270105 10.1002/adom.201500127 10.1016/j.jallcom.2016.09.076 10.1021/acs.jpclett.6b02800 10.1021/acs.chemmater.9b00966 10.1021/acsnano.7b00805 10.1038/ncomms3199 10.1039/C5NR05604G 10.34133/adi.0031 10.1002/adom.202001708 10.1063/1.5088578 10.1038/ncomms9238 10.1038/nnano.2014.181 10.1126/science.aam7744 10.1021/acs.jpclett.5b00723 10.1016/j.rse.2005.07.008 10.1038/nphoton.2015.213 10.1038/nmat4014 10.1002/adma.201405044 10.1021/acsenergylett.9b02720 10.1038/s41377-021-00500-1 10.1038/nature12340 10.1039/D1SE00160D |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society. 2024 The Authors. Published by American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society. – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1021/jacsau.4c00621 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2691-3704 |
EndPage | 3930 |
ExternalDocumentID | oai_doaj_org_article_18626528b65b4ae2b65ecc2ed6f372f5 PMC11522907 39483221 10_1021_jacsau_4c00621 f53075577 |
Genre | Journal Article |
GroupedDBID | AAFWJ ACS AFPKN ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N~. OK1 PGMZT RPM VF5 AAYXX ABBLG ADUCK CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a447t-34e04f5148070c29f459a69da8433435a2d44e64d055caf213eba9150f629de3 |
IEDL.DBID | N~. |
ISSN | 2691-3704 |
IngestDate | Wed Aug 27 01:30:01 EDT 2025 Thu Aug 21 18:43:57 EDT 2025 Fri Jul 11 02:28:36 EDT 2025 Tue Jun 10 08:59:00 EDT 2025 Sun Jul 06 05:07:49 EDT 2025 Tue Oct 29 03:12:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | short-wave IR materials short-wave IR detectors heterojunctions photoconductive detectors halide perovskite |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 2024 The Authors. Published by American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a447t-34e04f5148070c29f459a69da8433435a2d44e64d055caf213eba9150f629de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3568-8039 0000-0003-3798-320X 0000-0001-9882-1314 |
OpenAccessLink | https://doaj.org/article/18626528b65b4ae2b65ecc2ed6f372f5 |
PMID | 39483221 |
PQID | 3123074208 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_18626528b65b4ae2b65ecc2ed6f372f5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11522907 proquest_miscellaneous_3123074208 pubmed_primary_39483221 crossref_primary_10_1021_jacsau_4c00621 acs_journals_10_1021_jacsau_4c00621 |
PublicationCentury | 2000 |
PublicationDate | 2024-10-28 |
PublicationDateYYYYMMDD | 2024-10-28 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | JACS Au |
PublicationTitleAlternate | JACS Au |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 Krapels K. (ref3/cit3) 2008; 6941 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1002/adfm.201701053 – ident: ref41/cit41 doi: 10.1002/adma.202206884 – ident: ref10/cit10 doi: 10.1038/s41377-019-0218-y – ident: ref24/cit24 doi: 10.1002/adma.201405217 – ident: ref30/cit30 doi: 10.1038/s41566-017-0012-4 – volume: 6941 start-page: 47 volume-title: Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIX year: 2008 ident: ref3/cit3 – ident: ref8/cit8 doi: 10.1038/s41528-020-0069-x – ident: ref4/cit4 doi: 10.1364/OPTICA.4.000185 – ident: ref26/cit26 doi: 10.1002/adma.201603573 – ident: ref11/cit11 doi: 10.1088/1361-6528/ab9869 – ident: ref12/cit12 doi: 10.1117/12.2305040 – ident: ref29/cit29 doi: 10.1038/natrevmats.2016.100 – ident: ref35/cit35 doi: 10.1038/s41586-023-06207-0 – ident: ref42/cit42 doi: 10.1038/nnano.2014.31 – ident: ref31/cit31 doi: 10.1002/adma.201601196 – ident: ref40/cit40 doi: 10.1126/sciadv.adk8199 – ident: ref6/cit6 doi: 10.1117/1.JRS.8.084998 – ident: ref7/cit7 doi: 10.1126/science.1156965 – ident: ref19/cit19 doi: 10.1038/nnano.2014.149 – ident: ref28/cit28 doi: 10.1002/adma.201602639 – ident: ref18/cit18 doi: 10.1038/lsa.2017.23 – ident: ref23/cit23 doi: 10.1002/adma.201603826 – ident: ref49/cit49 doi: 10.1038/s41566-023-01345-3 – ident: ref43/cit43 doi: 10.1002/adma.201405116 – ident: ref5/cit5 doi: 10.1063/1.4801957 – ident: ref45/cit45 doi: 10.1063/1.3270105 – ident: ref38/cit38 doi: 10.1002/adom.201500127 – ident: ref21/cit21 doi: 10.1016/j.jallcom.2016.09.076 – ident: ref20/cit20 doi: 10.1021/acs.jpclett.6b02800 – ident: ref9/cit9 doi: 10.1021/acs.chemmater.9b00966 – ident: ref27/cit27 doi: 10.1021/acsnano.7b00805 – ident: ref1/cit1 doi: 10.1038/ncomms3199 – ident: ref22/cit22 doi: 10.1039/C5NR05604G – ident: ref39/cit39 doi: 10.34133/adi.0031 – ident: ref37/cit37 doi: 10.1002/adom.202001708 – ident: ref44/cit44 doi: 10.1063/1.5088578 – ident: ref17/cit17 doi: 10.1038/ncomms9238 – ident: ref15/cit15 doi: 10.1038/nnano.2014.181 – ident: ref46/cit46 doi: 10.1126/science.aam7744 – ident: ref16/cit16 doi: 10.1021/acs.jpclett.5b00723 – ident: ref2/cit2 doi: 10.1016/j.rse.2005.07.008 – ident: ref33/cit33 doi: 10.1063/1.5088578 – ident: ref47/cit47 doi: 10.1038/nphoton.2015.213 – ident: ref14/cit14 doi: 10.1038/nmat4014 – ident: ref25/cit25 doi: 10.1002/adma.201405044 – ident: ref36/cit36 doi: 10.1021/acsenergylett.9b02720 – ident: ref48/cit48 doi: 10.1038/s41377-021-00500-1 – ident: ref13/cit13 doi: 10.1038/nature12340 – ident: ref34/cit34 doi: 10.1039/D1SE00160D |
SSID | ssj0002513060 |
Score | 2.2793968 |
Snippet | Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts.... Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts.... |
SourceID | doaj pubmedcentral proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3921 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELamvWwvCMavDjZ5AomnQGM7rr23dTB1SCA0WrG3yI7P6qQqQU06_g_-Yu6SdGoRaC97SaTEiU-5s-87-_IdY29tGrUempBYg-GqUkEnJvoskQ6du7Pkomgd8stXPZmpz9fZ9UapL8oJ6-iBuw_3ISXInQnjdeaVA4Fn7FVA0FGORGzZS_GFG8EUzcHotRELD9csjYJohorard6rgv4aTMkXFfWWL2op-_-FM_9Ol9zwPxeP2aMeOPKzTuAnbAfKA7Z3vq7X9pT9npUL6EojcUR1_FvVUCaQW5xySubgV302LBWL4K7hVwiZ-RQQNne0yryKfIKoPOCjsKxua1rXTcbo5QL_PkeUnvxwt8Avy7ikpHX-EZp2xb_mtJbLZwuU2i8rF_jYleHXTWjmz9j04tP0fJL0FRcSp9SoSaSCoYqIoQzOBIWwUWXWaRucUVIisHIiKAVahWGWFS6KVIJ3FjFl1MIGkM_ZblmV8JJxVFsAqzA6BUlbhV5EM_KQBYEHr9MBe4MKyPsBU-ftXrjAWKRVU96racDerRWU_-zYN_7bckz6u2tFrNntBbSlvLel_D5bGrCTtfZzVB5tnbgSqlWdy5QS5ikVYcBedNZw15W0iqZFFMFs2cmWLNt3ypt5y-SNcJz49keHDyH9K7YvEHGRYxXmNdttlis4QsTU-ON2cPwBhJ0Vsg priority: 102 providerName: Directory of Open Access Journals |
Title | Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth |
URI | http://dx.doi.org/10.1021/jacsau.4c00621 https://www.ncbi.nlm.nih.gov/pubmed/39483221 https://www.proquest.com/docview/3123074208 https://pubmed.ncbi.nlm.nih.gov/PMC11522907 https://doaj.org/article/18626528b65b4ae2b65ecc2ed6f372f5 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQeIAXxPhZNiojkHjK1NiOY--NFqaCxIS2VuwtsmNbnVQlU5Nub_wR_MW7c9JCB0i8JFLiJFbuLvfd58sdIe90GqQcKZdoBeGqEE4mKtgs4Qacu9HoopCH_Hoqp3Px5SK7-MV33F3BZ1gfqGzM-kiU-LsfxDn3mVQ56u_pj6MtmwJeGrAvEipM6hSsZiQ2FRr_uAX6obLZ8UOxXP_fMObdVMnffM_JY_KoB430QyflfXLPV0_Ig8mmV9tT8nNeLX3XFokCoqPf6hazgMzymGIiBz3rM2GxUQQ1LT0DuExnHiBzV1KZ1oFOAZE7uNSv6usGOd1kDB7O0fMFIPTku7n29HMVVpiwTj_6NrL9DUUel86XMGu7qo2jY1O5m0vXLp6R2cmn2WSa9N0WEiNE3iZc-JEIgJ8UfAVKpoPItJHaGSU4B1BlmBPCS-FGWVaawFLurdGAJ4Nk2nn-nOxVdeVfEpoq6bwWEJl6jsuElgWVW585Bhsr0wF5CwIoemNpirgOziAOiWIqejENyPuNgIqrrvLGP0eOUX7bUVgxOx4ANSp6AyxSDN0ypqzMrDCewR60l3knA89ZyAbkzUb6BQgPl01M5et1U_AUk-UxDWFAXnTasH0U1wI_iTAFtaMnO3PZPVNdLmIVb4DiWGs_f_Vfb-OAPGQAp9BrMnVI9trV2r8GONTaIYQDk_NhJBOG0SqGkbO6BUtaCgQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcigXxJttCxiBxCllYztemxtbqLbQrlDZFb1ZdmxrK60StMmWGz-CX8xMHgvLQ-KSSImTjDJjzzfj8WdCXug0SjlUPtEKwlUhvExUdFnCLTh3q9FFYR7yfConc_H-MrvcIa_6tTAgRAVvqppJ_J_sAkgTlFd2fSRyXPUH4c4NQCICzXj67WiTVAFnDRAY8ypM6hQ6z1D0RI1_vALdUV5tuaOGtf9vUPP3islfXNDJbXKrw470TavsO2QnFHfJ3nG_Zds98n1eLEO7OxIFYEc_ljUWA9nla4r1HPSiK4jF_SKorekFoGY6C4CcW2ZlWkY6AWDu4dGwKq8rTO0mY3B0nn5aAFBPPtvrQE-LuMK6dfo21E3Sv6KYzqXzJUjtVqX1dGwL__XK14v7ZHbybnY8SbpNFxIrxKhOuAhDEQFGKRgMcqajyLSV2lslOAdsZZkXIkjhh1mW28hSHpzVACujZNoH_oDsFmURHhGaKumDFhCgBo6zhY5FNXIh8wwOTqYD8hwUYLo-U5lmOpxBONKoyXRqGpCXvYLMl5aA458tx6i_TSskzm4ugCmZrh-aFCO4jCknMydsYHAGI2bBy8hHLGYD8qzXvgHl4eyJLUK5rgxPsWYeqxEG5GFrDZtPcS1wZAQR1JadbMmyfae4WjRk3oDIkXJ_tP9ff-Mp2ZvMzs_M2en0wwG5yQBhoSNl6pDs1qt1eAwIqXZPml7xA4dQDKw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQJgEvbNxGYYARSDylamzHtfe2dlQdl2naWrG3yI5tdaJKpiYdEj-DX7xzkrSiAyR4aaQ2SZ3jc3K-c_FnQt7pOEjZUy7SCsJVIZyMVLBJxA04d6PRRWEe8suJHE_Fx4vkol3HjWthYBAl3Kmsi_ho1VcutAwDSBWUlWbZFRmu_IOQZxtrdtjHdzg8XydWwGEDDMbcCpM6BgPqiRVZ42-3QJeUlRsuqWbu_xPcvN01-YsbGu2QyfoB6u6Tb91lZbvZj1vcjv_5hLvkQQtL6WGjRw_JHZ8_IveGq93gHpOf03zum42XKGBGelpU2Gdk5gcUW0XoWdtri1tRUFPRMwDkdOIBlDekzbQIdAyY38GlflFcl5g1jgbgQx09n0EMEH01154e52GBLfH0yFd1PaGkmCmm0zkIwy4K4-jA5O77patmT8hk9GEyHEftfg6REaJfRVz4ngiA0BS8ZzKmg0i0kdoZJTgH2GaYE8JL4XpJkpnAYu6t0YBYg2Taef6UbOVF7p8RGivpvBYQ-3qOhUjLgupbnzgGH1bGHfIWBJm25limdaWdQaRTizdtxdsh71fznl413B5_PXOAarE-Czm56y9gDtPWxNMYg8OEKSsTK4xncAT7YN7JwPssJB3yZqVUKUweFmZM7otlmfIY2_Gx0aFD9holW_8V1wJfujAEtaF-G2PZ_CW_nNU84QD2kc2___yfpPGa3D09GqWfj08-vSD3GWA3dNFM7ZOtarH0LwF7VfZVbWs3_NAqNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unleashing+the+Potential%3A+High+Responsivity+at+Room+Temperature+of+Halide+Perovskite-Based+Short-Wave+Infrared+Detectors+with+Ultrabroad+Bandwidth&rft.jtitle=JACS+Au&rft.au=Qian%2C+Yuqin&rft.au=Huang-Fu%2C+Zhi-Chao&rft.au=Li%2C+Hao&rft.au=Zhang%2C+Tong&rft.date=2024-10-28&rft.issn=2691-3704&rft.eissn=2691-3704&rft.volume=4&rft.issue=10&rft.spage=3921&rft_id=info:doi/10.1021%2Fjacsau.4c00621&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3704&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3704&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3704&client=summon |