Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth

Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction...

Full description

Saved in:
Bibliographic Details
Published inJACS Au Vol. 4; no. 10; pp. 3921 - 3930
Main Authors Qian, Yuqin, Huang-Fu, Zhi-Chao, Li, Hao, Zhang, Tong, Li, Xia, Schmidt, Sydney, Fisher, Haley, Brown, Jesse B., Harutyunyan, Avetik, Chen, Hanning, Chen, Gugang, Rao, Yi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.10.2024
Subjects
Online AccessGet full text
ISSN2691-3704
2691-3704
DOI10.1021/jacsau.4c00621

Cover

Loading…
Abstract Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency.
AbstractList Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency.
Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 10 2 A/W, and a specific detectivity of 4.18 × 10 10 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n -type and extrinsic p -type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency.
Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 10 A/W, and a specific detectivity of 4.18 × 10 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic -type and extrinsic -type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency.
Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency.Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency.
Author Rao, Yi
Huang-Fu, Zhi-Chao
Qian, Yuqin
Fisher, Haley
Li, Hao
Schmidt, Sydney
Harutyunyan, Avetik
Chen, Hanning
Zhang, Tong
Brown, Jesse B.
Li, Xia
Chen, Gugang
AuthorAffiliation Department of Chemistry and Biochemistry
the University of Texas at Austin
Honda Research Institute, USA, Inc
Texas Advanced Computing Center
AuthorAffiliation_xml – name: the University of Texas at Austin
– name: Honda Research Institute, USA, Inc
– name: Department of Chemistry and Biochemistry
– name: Texas Advanced Computing Center
Author_xml – sequence: 1
  givenname: Yuqin
  surname: Qian
  fullname: Qian, Yuqin
  organization: Department of Chemistry and Biochemistry
– sequence: 2
  givenname: Zhi-Chao
  surname: Huang-Fu
  fullname: Huang-Fu, Zhi-Chao
  organization: Department of Chemistry and Biochemistry
– sequence: 3
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: Department of Chemistry and Biochemistry
– sequence: 4
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  organization: Department of Chemistry and Biochemistry
– sequence: 5
  givenname: Xia
  surname: Li
  fullname: Li, Xia
  organization: Department of Chemistry and Biochemistry
– sequence: 6
  givenname: Sydney
  surname: Schmidt
  fullname: Schmidt, Sydney
  organization: Department of Chemistry and Biochemistry
– sequence: 7
  givenname: Haley
  surname: Fisher
  fullname: Fisher, Haley
  organization: Department of Chemistry and Biochemistry
– sequence: 8
  givenname: Jesse B.
  surname: Brown
  fullname: Brown, Jesse B.
  organization: Department of Chemistry and Biochemistry
– sequence: 9
  givenname: Avetik
  surname: Harutyunyan
  fullname: Harutyunyan, Avetik
  organization: Honda Research Institute, USA, Inc
– sequence: 10
  givenname: Hanning
  orcidid: 0000-0003-3568-8039
  surname: Chen
  fullname: Chen, Hanning
  email: hchen@tacc.utexas.edu
  organization: the University of Texas at Austin
– sequence: 11
  givenname: Gugang
  orcidid: 0000-0003-3798-320X
  surname: Chen
  fullname: Chen, Gugang
  email: gchen@honda-ri.com
  organization: Honda Research Institute, USA, Inc
– sequence: 12
  givenname: Yi
  orcidid: 0000-0001-9882-1314
  surname: Rao
  fullname: Rao, Yi
  email: yi.rao@usu.edu
  organization: Department of Chemistry and Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39483221$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vEzEQhleoiJbSK0fkI0La4M_94ILa8pFIlUAlFUdrsp7NOmzsYHtT9W_wi1nYULUHTmPNvO8z0vh9nh057zDLXjI6Y5SztxtoIgwz2VBacPYkO-FFzXJRUnn04H2cncW4oZRyxQQt6LPsWNSyEpyzk-zXjesRYmfdmqQOyVef0CUL_Tsyt-uOXGPceRft3qY7Aolce78lS9zuMEAaAhLfkjn01oxWDH4ff9iE-QVENORb50PKv8MeycK1AcLY-4AJm-RDJLc2deSmTwFWwYMhF-DMrTWpe5E9baGPeHaop9ny08fl5Ty_-vJ5cXl-lYOUZcqFRCpbxWRFS9rwupWqhqI2UEkhpFDAjZRYSEOVaqDlTOAKaqZoW_DaoDjNFhPWeNjoXbBbCHfag9V_Gz6sNYRkmx41qwpeKF6tCrWSgHys2DQcTdGKkrdqZL2fWLthtUXTjCcM0D-CPp442-m132vGFOc1LUfC6wMh-J8DxqS3NjbY9-DQD1ELxgUtJafVKH31cNn9ln-fOgpmk6AJPsaA7b2EUf0nOHoKjj4EZzS8mQxjW2_8ENx49_-JfwNLd8as
Cites_doi 10.1002/adfm.201701053
10.1002/adma.202206884
10.1038/s41377-019-0218-y
10.1002/adma.201405217
10.1038/s41566-017-0012-4
10.1038/s41528-020-0069-x
10.1364/OPTICA.4.000185
10.1002/adma.201603573
10.1088/1361-6528/ab9869
10.1117/12.2305040
10.1038/natrevmats.2016.100
10.1038/s41586-023-06207-0
10.1038/nnano.2014.31
10.1002/adma.201601196
10.1126/sciadv.adk8199
10.1117/1.JRS.8.084998
10.1126/science.1156965
10.1038/nnano.2014.149
10.1002/adma.201602639
10.1038/lsa.2017.23
10.1002/adma.201603826
10.1038/s41566-023-01345-3
10.1002/adma.201405116
10.1063/1.4801957
10.1063/1.3270105
10.1002/adom.201500127
10.1016/j.jallcom.2016.09.076
10.1021/acs.jpclett.6b02800
10.1021/acs.chemmater.9b00966
10.1021/acsnano.7b00805
10.1038/ncomms3199
10.1039/C5NR05604G
10.34133/adi.0031
10.1002/adom.202001708
10.1063/1.5088578
10.1038/ncomms9238
10.1038/nnano.2014.181
10.1126/science.aam7744
10.1021/acs.jpclett.5b00723
10.1016/j.rse.2005.07.008
10.1038/nphoton.2015.213
10.1038/nmat4014
10.1002/adma.201405044
10.1021/acsenergylett.9b02720
10.1038/s41377-021-00500-1
10.1038/nature12340
10.1039/D1SE00160D
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society.
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society.
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/jacsau.4c00621
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2691-3704
EndPage 3930
ExternalDocumentID oai_doaj_org_article_18626528b65b4ae2b65ecc2ed6f372f5
PMC11522907
39483221
10_1021_jacsau_4c00621
f53075577
Genre Journal Article
GroupedDBID AAFWJ
ACS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N~.
OK1
PGMZT
RPM
VF5
AAYXX
ABBLG
ADUCK
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a447t-34e04f5148070c29f459a69da8433435a2d44e64d055caf213eba9150f629de3
IEDL.DBID N~.
ISSN 2691-3704
IngestDate Wed Aug 27 01:30:01 EDT 2025
Thu Aug 21 18:43:57 EDT 2025
Fri Jul 11 02:28:36 EDT 2025
Tue Jun 10 08:59:00 EDT 2025
Sun Jul 06 05:07:49 EDT 2025
Tue Oct 29 03:12:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords short-wave IR materials
short-wave IR detectors
heterojunctions
photoconductive detectors
halide perovskite
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2024 The Authors. Published by American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a447t-34e04f5148070c29f459a69da8433435a2d44e64d055caf213eba9150f629de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3568-8039
0000-0003-3798-320X
0000-0001-9882-1314
OpenAccessLink https://doaj.org/article/18626528b65b4ae2b65ecc2ed6f372f5
PMID 39483221
PQID 3123074208
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_18626528b65b4ae2b65ecc2ed6f372f5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11522907
proquest_miscellaneous_3123074208
pubmed_primary_39483221
crossref_primary_10_1021_jacsau_4c00621
acs_journals_10_1021_jacsau_4c00621
PublicationCentury 2000
PublicationDate 2024-10-28
PublicationDateYYYYMMDD 2024-10-28
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JACS Au
PublicationTitleAlternate JACS Au
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
Krapels K. (ref3/cit3) 2008; 6941
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1002/adfm.201701053
– ident: ref41/cit41
  doi: 10.1002/adma.202206884
– ident: ref10/cit10
  doi: 10.1038/s41377-019-0218-y
– ident: ref24/cit24
  doi: 10.1002/adma.201405217
– ident: ref30/cit30
  doi: 10.1038/s41566-017-0012-4
– volume: 6941
  start-page: 47
  volume-title: Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIX
  year: 2008
  ident: ref3/cit3
– ident: ref8/cit8
  doi: 10.1038/s41528-020-0069-x
– ident: ref4/cit4
  doi: 10.1364/OPTICA.4.000185
– ident: ref26/cit26
  doi: 10.1002/adma.201603573
– ident: ref11/cit11
  doi: 10.1088/1361-6528/ab9869
– ident: ref12/cit12
  doi: 10.1117/12.2305040
– ident: ref29/cit29
  doi: 10.1038/natrevmats.2016.100
– ident: ref35/cit35
  doi: 10.1038/s41586-023-06207-0
– ident: ref42/cit42
  doi: 10.1038/nnano.2014.31
– ident: ref31/cit31
  doi: 10.1002/adma.201601196
– ident: ref40/cit40
  doi: 10.1126/sciadv.adk8199
– ident: ref6/cit6
  doi: 10.1117/1.JRS.8.084998
– ident: ref7/cit7
  doi: 10.1126/science.1156965
– ident: ref19/cit19
  doi: 10.1038/nnano.2014.149
– ident: ref28/cit28
  doi: 10.1002/adma.201602639
– ident: ref18/cit18
  doi: 10.1038/lsa.2017.23
– ident: ref23/cit23
  doi: 10.1002/adma.201603826
– ident: ref49/cit49
  doi: 10.1038/s41566-023-01345-3
– ident: ref43/cit43
  doi: 10.1002/adma.201405116
– ident: ref5/cit5
  doi: 10.1063/1.4801957
– ident: ref45/cit45
  doi: 10.1063/1.3270105
– ident: ref38/cit38
  doi: 10.1002/adom.201500127
– ident: ref21/cit21
  doi: 10.1016/j.jallcom.2016.09.076
– ident: ref20/cit20
  doi: 10.1021/acs.jpclett.6b02800
– ident: ref9/cit9
  doi: 10.1021/acs.chemmater.9b00966
– ident: ref27/cit27
  doi: 10.1021/acsnano.7b00805
– ident: ref1/cit1
  doi: 10.1038/ncomms3199
– ident: ref22/cit22
  doi: 10.1039/C5NR05604G
– ident: ref39/cit39
  doi: 10.34133/adi.0031
– ident: ref37/cit37
  doi: 10.1002/adom.202001708
– ident: ref44/cit44
  doi: 10.1063/1.5088578
– ident: ref17/cit17
  doi: 10.1038/ncomms9238
– ident: ref15/cit15
  doi: 10.1038/nnano.2014.181
– ident: ref46/cit46
  doi: 10.1126/science.aam7744
– ident: ref16/cit16
  doi: 10.1021/acs.jpclett.5b00723
– ident: ref2/cit2
  doi: 10.1016/j.rse.2005.07.008
– ident: ref33/cit33
  doi: 10.1063/1.5088578
– ident: ref47/cit47
  doi: 10.1038/nphoton.2015.213
– ident: ref14/cit14
  doi: 10.1038/nmat4014
– ident: ref25/cit25
  doi: 10.1002/adma.201405044
– ident: ref36/cit36
  doi: 10.1021/acsenergylett.9b02720
– ident: ref48/cit48
  doi: 10.1038/s41377-021-00500-1
– ident: ref13/cit13
  doi: 10.1038/nature12340
– ident: ref34/cit34
  doi: 10.1039/D1SE00160D
SSID ssj0002513060
Score 2.2793968
Snippet Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts....
Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3921
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELamvWwvCMavDjZ5AomnQGM7rr23dTB1SCA0WrG3yI7P6qQqQU06_g_-Yu6SdGoRaC97SaTEiU-5s-87-_IdY29tGrUempBYg-GqUkEnJvoskQ6du7Pkomgd8stXPZmpz9fZ9UapL8oJ6-iBuw_3ISXInQnjdeaVA4Fn7FVA0FGORGzZS_GFG8EUzcHotRELD9csjYJohorard6rgv4aTMkXFfWWL2op-_-FM_9Ol9zwPxeP2aMeOPKzTuAnbAfKA7Z3vq7X9pT9npUL6EojcUR1_FvVUCaQW5xySubgV302LBWL4K7hVwiZ-RQQNne0yryKfIKoPOCjsKxua1rXTcbo5QL_PkeUnvxwt8Avy7ikpHX-EZp2xb_mtJbLZwuU2i8rF_jYleHXTWjmz9j04tP0fJL0FRcSp9SoSaSCoYqIoQzOBIWwUWXWaRucUVIisHIiKAVahWGWFS6KVIJ3FjFl1MIGkM_ZblmV8JJxVFsAqzA6BUlbhV5EM_KQBYEHr9MBe4MKyPsBU-ftXrjAWKRVU96racDerRWU_-zYN_7bckz6u2tFrNntBbSlvLel_D5bGrCTtfZzVB5tnbgSqlWdy5QS5ikVYcBedNZw15W0iqZFFMFs2cmWLNt3ypt5y-SNcJz49keHDyH9K7YvEHGRYxXmNdttlis4QsTU-ON2cPwBhJ0Vsg
  priority: 102
  providerName: Directory of Open Access Journals
Title Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth
URI http://dx.doi.org/10.1021/jacsau.4c00621
https://www.ncbi.nlm.nih.gov/pubmed/39483221
https://www.proquest.com/docview/3123074208
https://pubmed.ncbi.nlm.nih.gov/PMC11522907
https://doaj.org/article/18626528b65b4ae2b65ecc2ed6f372f5
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQeIAXxPhZNiojkHjK1NiOY--NFqaCxIS2VuwtsmNbnVQlU5Nub_wR_MW7c9JCB0i8JFLiJFbuLvfd58sdIe90GqQcKZdoBeGqEE4mKtgs4Qacu9HoopCH_Hoqp3Px5SK7-MV33F3BZ1gfqGzM-kiU-LsfxDn3mVQ56u_pj6MtmwJeGrAvEipM6hSsZiQ2FRr_uAX6obLZ8UOxXP_fMObdVMnffM_JY_KoB430QyflfXLPV0_Ig8mmV9tT8nNeLX3XFokCoqPf6hazgMzymGIiBz3rM2GxUQQ1LT0DuExnHiBzV1KZ1oFOAZE7uNSv6usGOd1kDB7O0fMFIPTku7n29HMVVpiwTj_6NrL9DUUel86XMGu7qo2jY1O5m0vXLp6R2cmn2WSa9N0WEiNE3iZc-JEIgJ8UfAVKpoPItJHaGSU4B1BlmBPCS-FGWVaawFLurdGAJ4Nk2nn-nOxVdeVfEpoq6bwWEJl6jsuElgWVW585Bhsr0wF5CwIoemNpirgOziAOiWIqejENyPuNgIqrrvLGP0eOUX7bUVgxOx4ANSp6AyxSDN0ypqzMrDCewR60l3knA89ZyAbkzUb6BQgPl01M5et1U_AUk-UxDWFAXnTasH0U1wI_iTAFtaMnO3PZPVNdLmIVb4DiWGs_f_Vfb-OAPGQAp9BrMnVI9trV2r8GONTaIYQDk_NhJBOG0SqGkbO6BUtaCgQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcigXxJttCxiBxCllYztemxtbqLbQrlDZFb1ZdmxrK60StMmWGz-CX8xMHgvLQ-KSSImTjDJjzzfj8WdCXug0SjlUPtEKwlUhvExUdFnCLTh3q9FFYR7yfConc_H-MrvcIa_6tTAgRAVvqppJ_J_sAkgTlFd2fSRyXPUH4c4NQCICzXj67WiTVAFnDRAY8ypM6hQ6z1D0RI1_vALdUV5tuaOGtf9vUPP3islfXNDJbXKrw470TavsO2QnFHfJ3nG_Zds98n1eLEO7OxIFYEc_ljUWA9nla4r1HPSiK4jF_SKorekFoGY6C4CcW2ZlWkY6AWDu4dGwKq8rTO0mY3B0nn5aAFBPPtvrQE-LuMK6dfo21E3Sv6KYzqXzJUjtVqX1dGwL__XK14v7ZHbybnY8SbpNFxIrxKhOuAhDEQFGKRgMcqajyLSV2lslOAdsZZkXIkjhh1mW28hSHpzVACujZNoH_oDsFmURHhGaKumDFhCgBo6zhY5FNXIh8wwOTqYD8hwUYLo-U5lmOpxBONKoyXRqGpCXvYLMl5aA458tx6i_TSskzm4ugCmZrh-aFCO4jCknMydsYHAGI2bBy8hHLGYD8qzXvgHl4eyJLUK5rgxPsWYeqxEG5GFrDZtPcS1wZAQR1JadbMmyfae4WjRk3oDIkXJ_tP9ff-Mp2ZvMzs_M2en0wwG5yQBhoSNl6pDs1qt1eAwIqXZPml7xA4dQDKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQJgEvbNxGYYARSDylamzHtfe2dlQdl2naWrG3yI5tdaJKpiYdEj-DX7xzkrSiAyR4aaQ2SZ3jc3K-c_FnQt7pOEjZUy7SCsJVIZyMVLBJxA04d6PRRWEe8suJHE_Fx4vkol3HjWthYBAl3Kmsi_ho1VcutAwDSBWUlWbZFRmu_IOQZxtrdtjHdzg8XydWwGEDDMbcCpM6BgPqiRVZ42-3QJeUlRsuqWbu_xPcvN01-YsbGu2QyfoB6u6Tb91lZbvZj1vcjv_5hLvkQQtL6WGjRw_JHZ8_IveGq93gHpOf03zum42XKGBGelpU2Gdk5gcUW0XoWdtri1tRUFPRMwDkdOIBlDekzbQIdAyY38GlflFcl5g1jgbgQx09n0EMEH01154e52GBLfH0yFd1PaGkmCmm0zkIwy4K4-jA5O77patmT8hk9GEyHEftfg6REaJfRVz4ngiA0BS8ZzKmg0i0kdoZJTgH2GaYE8JL4XpJkpnAYu6t0YBYg2Taef6UbOVF7p8RGivpvBYQ-3qOhUjLgupbnzgGH1bGHfIWBJm25limdaWdQaRTizdtxdsh71fznl413B5_PXOAarE-Czm56y9gDtPWxNMYg8OEKSsTK4xncAT7YN7JwPssJB3yZqVUKUweFmZM7otlmfIY2_Gx0aFD9holW_8V1wJfujAEtaF-G2PZ_CW_nNU84QD2kc2___yfpPGa3D09GqWfj08-vSD3GWA3dNFM7ZOtarH0LwF7VfZVbWs3_NAqNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unleashing+the+Potential%3A+High+Responsivity+at+Room+Temperature+of+Halide+Perovskite-Based+Short-Wave+Infrared+Detectors+with+Ultrabroad+Bandwidth&rft.jtitle=JACS+Au&rft.au=Qian%2C+Yuqin&rft.au=Huang-Fu%2C+Zhi-Chao&rft.au=Li%2C+Hao&rft.au=Zhang%2C+Tong&rft.date=2024-10-28&rft.issn=2691-3704&rft.eissn=2691-3704&rft.volume=4&rft.issue=10&rft.spage=3921&rft_id=info:doi/10.1021%2Fjacsau.4c00621&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3704&client=summon