Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface
Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine...
Saved in:
Published in | ACS nano Vol. 9; no. 1; pp. 71 - 81 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement. |
---|---|
AbstractList | Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement. Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement. Keywords: filmwise condensation; dropwise condensation; nanostructure; heterogeneous wettability; heat transfer enhancement Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement.Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement. |
Author | Yao, Shuhuai Hou, Youmin Yu, Miao Chen, Xuemei Wang, Zuankai |
AuthorAffiliation | Department of Mechanical and Biomedical Engineering The Hong Kong University of Science and Technology City University of Hong Kong Department of Mechanical and Aerospace Engineering Bioengineering Graduate Program |
AuthorAffiliation_xml | – name: Department of Mechanical and Biomedical Engineering – name: The Hong Kong University of Science and Technology – name: Department of Mechanical and Aerospace Engineering – name: Bioengineering Graduate Program – name: City University of Hong Kong |
Author_xml | – sequence: 1 givenname: Youmin surname: Hou fullname: Hou, Youmin – sequence: 2 givenname: Miao surname: Yu fullname: Yu, Miao – sequence: 3 givenname: Xuemei surname: Chen fullname: Chen, Xuemei – sequence: 4 givenname: Zuankai surname: Wang fullname: Wang, Zuankai email: meshyao@ust.hk, zuanwang@cityu.edu.hk – sequence: 5 givenname: Shuhuai surname: Yao fullname: Yao, Shuhuai email: meshyao@ust.hk, zuanwang@cityu.edu.hk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25482594$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0VtLwzAUB_AgE3fRB7-A9EXQh7okza2POp0TFMEL-FbS7hQy2nQmKeK3t25zDzJQCCSB3wkn_zNEPdtYQOiY4AuCKRlbyzGXROR7aEDSRMRYibfe9sxJHw29X-AOKSkOUJ9ypihP2QDNnqBonQMboqmp6g_jIdJ2Hl27Zrm6TBo7B-t1MI2NuqWjK4BQQfRgagimiJ5bV-oCDtF-qSsPR5t9hF6nNy-TWXz_eHs3ubyPNWMyxDQROS4lYAyizJXmkHZt0ZJJkDJPCOYMEqwoBpaUHAuh6JxRpWjBgJUqTUbobP3u0jXvLfiQ1cYXUFXaQtP6jEhBcfc1hf-mImWpSGnyH8opI0JK1dGTDW3zGubZ0plau8_sJ9MOnK9B4RrvHZRbQnD2Pa9sO6_Ojn_ZwoRV1sFpU-2sOF1X6MJni6Z1tkt7h_sC5oCf-w |
CitedBy_id | crossref_primary_10_1038_s41524_024_01223_8 crossref_primary_10_1021_acsami_6b05324 crossref_primary_10_1016_j_cej_2020_125139 crossref_primary_10_1021_acsami_3c03275 crossref_primary_10_1021_acsnano_6b03859 crossref_primary_10_1016_j_nanoen_2017_01_018 crossref_primary_10_1016_j_nanoen_2022_106932 crossref_primary_10_1021_acsnano_7b04481 crossref_primary_10_1002_smll_201903849 crossref_primary_10_1016_j_chemphys_2018_08_014 crossref_primary_10_1016_j_cclet_2024_110395 crossref_primary_10_1002_ange_201500137 crossref_primary_10_1080_2374068X_2022_2036478 crossref_primary_10_1016_j_snb_2017_11_109 crossref_primary_10_1021_acs_chemmater_7b02880 crossref_primary_10_1073_pnas_2001802117 crossref_primary_10_1021_acsami_5b11586 crossref_primary_10_1021_acs_langmuir_9b01385 crossref_primary_10_1021_acsnano_4c15277 crossref_primary_10_1039_C6NJ03566C crossref_primary_10_1016_j_colsurfa_2023_132310 crossref_primary_10_1093_nsr_nwy098 crossref_primary_10_1016_j_xcrp_2022_100823 crossref_primary_10_1021_acsnano_4c17690 crossref_primary_10_1007_s00339_022_05778_5 crossref_primary_10_1080_01457632_2020_1807101 crossref_primary_10_1002_admi_202102547 crossref_primary_10_1088_1361_665X_aa9e5f crossref_primary_10_1016_j_solmat_2022_111962 crossref_primary_10_1021_acsomega_0c01995 crossref_primary_10_1039_D1ME00019E crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_035 crossref_primary_10_1038_srep23760 crossref_primary_10_1016_j_applthermaleng_2019_04_052 crossref_primary_10_1016_j_cej_2023_143981 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123222 crossref_primary_10_1039_C7TA05087A crossref_primary_10_1016_j_ijft_2024_100782 crossref_primary_10_1016_j_jcis_2023_06_142 crossref_primary_10_1021_acssuschemeng_8b03247 crossref_primary_10_1002_smsc_202000059 crossref_primary_10_1016_j_nexres_2024_100053 crossref_primary_10_1021_acsami_7b09681 crossref_primary_10_1063_5_0215005 crossref_primary_10_1002_cnma_201600207 crossref_primary_10_1002_adma_201806501 crossref_primary_10_1002_adma_202211596 crossref_primary_10_3390_mi14010050 crossref_primary_10_1021_acs_langmuir_0c00950 crossref_primary_10_1002_adma_201907999 crossref_primary_10_1021_acs_langmuir_2c03070 crossref_primary_10_1007_s42235_021_0040_0 crossref_primary_10_1038_srep19131 crossref_primary_10_1039_D4CS01073F crossref_primary_10_1002_dro2_105 crossref_primary_10_1063_5_0159588 crossref_primary_10_1021_acsami_4c10213 crossref_primary_10_1021_acsami_4c08254 crossref_primary_10_1039_C8NR07941B crossref_primary_10_2139_ssrn_3956661 crossref_primary_10_1016_j_apsusc_2023_156418 crossref_primary_10_1021_acsnano_9b06501 crossref_primary_10_2139_ssrn_4145334 crossref_primary_10_1063_5_0181485 crossref_primary_10_1021_acsbiomaterials_9b00821 crossref_primary_10_1039_D0NA00477D crossref_primary_10_1016_j_applthermaleng_2021_117104 crossref_primary_10_1016_j_applthermaleng_2022_119527 crossref_primary_10_1002_ceat_201700160 crossref_primary_10_1016_j_applthermaleng_2022_118430 crossref_primary_10_1039_C6RA09699A crossref_primary_10_1039_D2MH00361A crossref_primary_10_7498_aps_70_20201714 crossref_primary_10_1002_adfm_201704423 crossref_primary_10_3389_fmech_2019_00038 crossref_primary_10_1016_j_colsurfa_2023_131664 crossref_primary_10_1021_acs_langmuir_0c00416 crossref_primary_10_1021_acsami_2c06803 crossref_primary_10_1021_acsanm_0c03032 crossref_primary_10_1021_acsnano_7b06114 crossref_primary_10_1103_PhysRevFluids_1_064102 crossref_primary_10_1038_srep39932 crossref_primary_10_1021_acsami_4c10153 crossref_primary_10_1021_acsami_0c22055 crossref_primary_10_1021_acsnano_1c11388 crossref_primary_10_1021_acssensors_1c01187 crossref_primary_10_1063_1_5082727 crossref_primary_10_1021_acsnano_5b04151 crossref_primary_10_1021_acs_est_1c00257 crossref_primary_10_1063_5_0033572 crossref_primary_10_1002_admi_201600362 crossref_primary_10_1021_acs_langmuir_2c00949 crossref_primary_10_1016_j_cej_2023_141761 crossref_primary_10_1063_1_5016492 crossref_primary_10_1177_16878132221137237 crossref_primary_10_1080_15567265_2021_1903631 crossref_primary_10_1038_s41598_023_45294_x crossref_primary_10_1039_D2NA00669C crossref_primary_10_34133_2022_9789657 crossref_primary_10_1021_acsami_6b16248 crossref_primary_10_1021_acs_langmuir_6b01488 crossref_primary_10_1021_acs_langmuir_3c02224 crossref_primary_10_1002_admi_201900864 crossref_primary_10_1039_C8TA12372A crossref_primary_10_1021_acsami_9b11415 crossref_primary_10_1063_5_0077386 crossref_primary_10_1007_s10971_022_05771_7 crossref_primary_10_1039_C8NR05772A crossref_primary_10_1016_j_porgcoat_2022_106869 crossref_primary_10_1021_acsami_7b14960 crossref_primary_10_1016_j_csite_2021_101319 crossref_primary_10_1021_acsnano_9b03275 crossref_primary_10_1016_j_proeng_2015_08_1105 crossref_primary_10_1021_acsmaterialslett_1c00365 crossref_primary_10_1080_08927022_2021_2025235 crossref_primary_10_1021_acsami_3c03436 crossref_primary_10_1002_admi_202000475 crossref_primary_10_1002_admi_202001442 crossref_primary_10_1002_admi_202101603 crossref_primary_10_1016_j_apsusc_2022_154805 crossref_primary_10_1063_5_0149152 crossref_primary_10_3390_pr11071865 crossref_primary_10_1002_admi_202001317 crossref_primary_10_1021_acsami_0c05224 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122758 crossref_primary_10_1021_acs_jpcc_1c07428 crossref_primary_10_1002_admi_202000482 crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_040 crossref_primary_10_1002_advs_202104454 crossref_primary_10_1021_acs_langmuir_0c02758 crossref_primary_10_1002_adma_202414389 crossref_primary_10_1021_acsami_8b19868 crossref_primary_10_1002_dro2_31 crossref_primary_10_1016_j_ijthermalsci_2022_107978 crossref_primary_10_1142_S1793292021500867 crossref_primary_10_1021_acs_langmuir_0c00693 crossref_primary_10_1021_acs_langmuir_7b00156 crossref_primary_10_1016_j_applthermaleng_2017_12_105 crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_039 crossref_primary_10_1002_admi_202001205 crossref_primary_10_1016_j_surfin_2024_105034 crossref_primary_10_1126_sciadv_aaq0919 crossref_primary_10_1063_1_5090182 crossref_primary_10_1021_acsnano_3c07385 crossref_primary_10_1016_j_applthermaleng_2021_117444 crossref_primary_10_3390_fluids9100223 crossref_primary_10_1002_dro2_23 crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_013 crossref_primary_10_1002_dro2_22 crossref_primary_10_1002_dro2_21 crossref_primary_10_1021_acsami_2c20938 crossref_primary_10_1016_j_compfluid_2021_104844 crossref_primary_10_1038_srep35940 crossref_primary_10_1002_adfm_202308265 crossref_primary_10_1039_D3NR01679J crossref_primary_10_1021_acsami_7b16379 crossref_primary_10_1016_j_molliq_2022_119947 crossref_primary_10_1103_PhysRevLett_120_075902 crossref_primary_10_1021_acsami_4c12220 crossref_primary_10_1016_j_applthermaleng_2023_120494 crossref_primary_10_1002_admi_201902201 crossref_primary_10_1039_C8TA08956F crossref_primary_10_1016_j_cej_2023_142002 crossref_primary_10_1016_j_cej_2020_126515 crossref_primary_10_1021_acsnano_0c02558 crossref_primary_10_1002_adma_201703002 crossref_primary_10_1021_acs_langmuir_3c02802 crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_021 crossref_primary_10_2139_ssrn_4060733 crossref_primary_10_1002_cnma_202200327 crossref_primary_10_1002_admi_202200160 crossref_primary_10_1016_j_euromechflu_2023_10_007 crossref_primary_10_1007_s42242_021_00133_8 crossref_primary_10_1088_0960_1317_26_11_115009 crossref_primary_10_1016_j_ijheatfluidflow_2018_09_015 crossref_primary_10_1115_1_4044508 crossref_primary_10_1016_j_nocx_2022_100143 crossref_primary_10_1016_j_isci_2022_105819 crossref_primary_10_1021_acsami_4c17859 crossref_primary_10_1115_1_4040143 crossref_primary_10_1039_C9RA09329J crossref_primary_10_1002_adfm_202008614 crossref_primary_10_1016_j_apsusc_2022_152708 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123929 crossref_primary_10_1002_admi_202200573 crossref_primary_10_1016_j_cej_2018_03_045 crossref_primary_10_1016_j_icheatmasstransfer_2023_107114 crossref_primary_10_1021_acsami_1c02121 crossref_primary_10_1115_1_4053454 crossref_primary_10_1021_acs_langmuir_0c01468 crossref_primary_10_1021_acs_langmuir_9b01065 crossref_primary_10_1038_s41467_024_47507_x crossref_primary_10_1016_j_icheatmasstransfer_2024_107519 crossref_primary_10_1016_j_tsf_2021_138597 crossref_primary_10_1039_C8RA00414E crossref_primary_10_1021_acsnano_6b05666 crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_037 crossref_primary_10_1016_j_mtnano_2019_100034 crossref_primary_10_1021_acs_iecr_2c00717 crossref_primary_10_1021_acs_langmuir_7b01159 crossref_primary_10_2109_jcersj2_20080 crossref_primary_10_1021_acs_jpcc_8b02642 crossref_primary_10_1039_C5TA04802H crossref_primary_10_1021_acsami_9b08885 crossref_primary_10_1016_j_ijheatmasstransfer_2015_08_106 crossref_primary_10_1016_j_cej_2021_132029 crossref_primary_10_1038_srep23687 crossref_primary_10_1016_j_surfcoat_2025_131973 crossref_primary_10_1039_D4TA02890B crossref_primary_10_1021_acs_langmuir_2c01796 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_110 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120198 crossref_primary_10_1002_admi_202100815 crossref_primary_10_1680_jsuin_16_00004 crossref_primary_10_1021_acs_langmuir_7b02146 crossref_primary_10_1002_adma_202203242 crossref_primary_10_1002_adfm_201800634 crossref_primary_10_1063_1_5027673 crossref_primary_10_1016_j_cis_2022_102684 crossref_primary_10_1021_acs_langmuir_1c01559 crossref_primary_10_3390_app11041553 crossref_primary_10_1038_s41598_018_34407_6 crossref_primary_10_1039_C6TA06446A crossref_primary_10_1016_j_xcrp_2022_100849 crossref_primary_10_1021_acsami_6b00852 crossref_primary_10_1002_smll_202301561 crossref_primary_10_1021_acsami_7b01812 crossref_primary_10_1021_acs_langmuir_9b03339 crossref_primary_10_1002_advs_202301421 crossref_primary_10_1016_j_applthermaleng_2022_118928 crossref_primary_10_1016_j_jcis_2022_01_024 crossref_primary_10_1016_j_joule_2022_11_010 crossref_primary_10_1115_1_4046209 crossref_primary_10_1115_1_4043175 crossref_primary_10_1016_j_cej_2020_126901 crossref_primary_10_1021_acs_langmuir_7b01991 crossref_primary_10_1021_acs_langmuir_2c00373 crossref_primary_10_1021_acs_langmuir_7b01625 crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_023 crossref_primary_10_1063_1_4980091 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121664 crossref_primary_10_1080_15567265_2016_1253630 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118627 crossref_primary_10_1007_s11433_019_9643_0 crossref_primary_10_1007_s00604_019_3805_y crossref_primary_10_1063_1_5053703 crossref_primary_10_1016_j_joule_2019_03_004 crossref_primary_10_1002_adfm_201801114 crossref_primary_10_1021_acsnano_6b05595 crossref_primary_10_1002_anie_201600224 crossref_primary_10_1002_gch2_201900094 crossref_primary_10_1016_j_enbuild_2022_112036 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121898 crossref_primary_10_1021_acs_jpclett_7b02939 crossref_primary_10_1021_acsami_9b17943 crossref_primary_10_1007_s42235_018_0036_6 crossref_primary_10_1021_acs_langmuir_3c03042 crossref_primary_10_1021_acs_langmuir_2c00023 crossref_primary_10_1016_j_applthermaleng_2020_115382 crossref_primary_10_1016_j_colsurfa_2022_129574 crossref_primary_10_1021_acsnano_5b05607 crossref_primary_10_1016_j_nantod_2025_102661 crossref_primary_10_1063_1_5005837 crossref_primary_10_1126_sciadv_aax0763 crossref_primary_10_1126_sciadv_abc1693 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_124 crossref_primary_10_1016_j_applthermaleng_2020_115386 crossref_primary_10_1038_srep42752 crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_122 crossref_primary_10_1007_s10973_019_08318_1 crossref_primary_10_1016_j_cej_2021_130119 crossref_primary_10_1007_s41664_023_00252_4 crossref_primary_10_1021_acsami_5b03264 crossref_primary_10_1038_s41467_022_32873_1 crossref_primary_10_1021_acsami_1c10096 crossref_primary_10_1021_acsami_5b05564 crossref_primary_10_1021_acs_langmuir_0c03544 crossref_primary_10_1039_D0CS01033B crossref_primary_10_1039_D3NR03829G crossref_primary_10_1039_C6RA28665H crossref_primary_10_1021_acsomega_7b00225 crossref_primary_10_1002_advs_202101794 crossref_primary_10_1016_j_matt_2023_04_008 crossref_primary_10_1002_adfm_201707000 crossref_primary_10_1063_5_0064974 crossref_primary_10_1021_acs_langmuir_2c01264 crossref_primary_10_1016_j_joule_2018_08_014 crossref_primary_10_1016_j_cis_2021_102503 crossref_primary_10_1021_acsami_3c14418 crossref_primary_10_1021_acs_langmuir_8b03418 crossref_primary_10_1002_adma_202002710 crossref_primary_10_1039_C8TA08267G crossref_primary_10_1103_PhysRevResearch_4_043110 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123097 crossref_primary_10_1002_admi_201800202 crossref_primary_10_1016_j_cej_2020_125609 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124280 crossref_primary_10_1039_C8RA08190E crossref_primary_10_1021_acs_langmuir_0c03125 crossref_primary_10_1063_5_0130043 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_008 crossref_primary_10_1016_j_isci_2021_102531 crossref_primary_10_1016_j_molliq_2021_116869 crossref_primary_10_1016_j_compscitech_2021_108954 crossref_primary_10_1039_C8RA02655F crossref_primary_10_1002_smll_202307726 crossref_primary_10_1021_acs_langmuir_1c01844 crossref_primary_10_1021_acsnano_2c02669 crossref_primary_10_1002_admi_202301048 crossref_primary_10_1016_j_watres_2021_117135 crossref_primary_10_1016_j_compositesa_2024_108241 crossref_primary_10_1021_acsnano_8b08753 crossref_primary_10_1063_5_0197049 crossref_primary_10_1002_admi_201600801 crossref_primary_10_1680_jsuin_17_00063 crossref_primary_10_1016_S1672_6529_16_60309_8 crossref_primary_10_1007_s42114_022_00603_2 crossref_primary_10_1021_acs_langmuir_8b02428 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121526 crossref_primary_10_1016_j_tsep_2025_103319 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_108 crossref_primary_10_1016_j_xcrp_2021_100387 crossref_primary_10_1021_acs_langmuir_4c03891 crossref_primary_10_1039_C6CC02822E crossref_primary_10_1021_acs_langmuir_5b03778 crossref_primary_10_1039_C9TA01906E crossref_primary_10_1002_advs_202201174 crossref_primary_10_1016_j_matlet_2017_11_055 crossref_primary_10_1016_j_applthermaleng_2019_113878 crossref_primary_10_1038_natrevmats_2016_92 crossref_primary_10_1021_acs_langmuir_3c00947 crossref_primary_10_1021_acs_langmuir_8b01450 crossref_primary_10_1021_acs_langmuir_6b01903 crossref_primary_10_1002_adfm_202211113 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_153 crossref_primary_10_1002_admi_201700684 crossref_primary_10_1063_1_5034235 crossref_primary_10_1021_acsami_2c20874 crossref_primary_10_1021_acsami_5b09719 crossref_primary_10_1021_acsnano_8b06677 crossref_primary_10_1088_1674_1056_25_6_066401 crossref_primary_10_1016_j_surfcoat_2019_01_041 crossref_primary_10_1016_j_surfin_2023_103247 crossref_primary_10_2139_ssrn_4107467 crossref_primary_10_1016_j_mne_2024_100255 crossref_primary_10_1039_C6RA02170K crossref_primary_10_1021_la504638y crossref_primary_10_1021_acsami_4c08784 crossref_primary_10_1038_s41467_021_23174_0 crossref_primary_10_1039_D0TA10123K crossref_primary_10_1039_C8RA04003F crossref_primary_10_1039_C7TA04392A crossref_primary_10_1021_acsnano_4c17716 crossref_primary_10_1038_nature15738 crossref_primary_10_1002_admi_201500202 crossref_primary_10_1155_2022_8020914 crossref_primary_10_3390_app11115193 crossref_primary_10_1063_1_4998443 crossref_primary_10_1016_j_ijthermalsci_2018_04_011 crossref_primary_10_1021_acsami_0c04922 crossref_primary_10_1021_acsami_1c01400 crossref_primary_10_1021_acs_langmuir_1c03267 crossref_primary_10_1021_acs_nanolett_6b01169 crossref_primary_10_1021_acs_langmuir_9b02623 crossref_primary_10_1016_j_cej_2021_132902 crossref_primary_10_1016_j_icheatmasstransfer_2020_105063 crossref_primary_10_1063_5_0006117 crossref_primary_10_1002_anie_201500137 crossref_primary_10_1080_00986445_2021_1958322 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124872 crossref_primary_10_1016_j_cej_2023_141605 crossref_primary_10_1002_smll_201602992 crossref_primary_10_1021_acsnano_8b05163 crossref_primary_10_1016_j_vacuum_2022_111267 crossref_primary_10_1021_acs_langmuir_0c02062 crossref_primary_10_1007_s11630_022_1519_7 crossref_primary_10_1002_adfm_202306756 crossref_primary_10_1073_pnas_2209662119 crossref_primary_10_1002_gch2_201700019 crossref_primary_10_1039_D2SM01271E crossref_primary_10_1021_acsami_0c12329 crossref_primary_10_1021_acs_langmuir_0c03263 crossref_primary_10_1002_smll_201503060 crossref_primary_10_1021_acs_langmuir_4c02247 crossref_primary_10_1021_acsnano_7b07699 crossref_primary_10_3390_mi12060656 crossref_primary_10_1002_smll_201600687 crossref_primary_10_1016_j_applthermaleng_2020_115778 crossref_primary_10_1002_admi_202100196 crossref_primary_10_1002_admi_202101164 crossref_primary_10_1021_acsnano_7b06371 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121710 crossref_primary_10_1063_1_5139417 crossref_primary_10_1021_acs_langmuir_8b02611 crossref_primary_10_1021_acsnano_6b07471 crossref_primary_10_3390_mi10090587 crossref_primary_10_1016_j_mtphys_2021_100407 crossref_primary_10_1063_1_5053697 crossref_primary_10_1002_adma_202209134 crossref_primary_10_1002_adsu_202400664 crossref_primary_10_1021_acsami_5b03016 crossref_primary_10_1021_acs_langmuir_1c03076 crossref_primary_10_1039_C6SM00494F crossref_primary_10_1021_acs_nanolett_1c01584 crossref_primary_10_1063_1_4927055 crossref_primary_10_1002_admi_202100284 crossref_primary_10_1002_ange_201600224 crossref_primary_10_1021_acs_langmuir_0c03094 crossref_primary_10_2139_ssrn_3385121 crossref_primary_10_1016_j_corsci_2024_112339 crossref_primary_10_1016_j_ijthermalsci_2024_109610 crossref_primary_10_1039_C7TA04073C crossref_primary_10_1016_j_cej_2025_159917 crossref_primary_10_1016_j_jmapro_2020_12_043 crossref_primary_10_1021_acsami_2c08266 crossref_primary_10_1021_acsami_0c12504 crossref_primary_10_1111_jfpe_14609 crossref_primary_10_1016_j_applthermaleng_2018_04_020 crossref_primary_10_1021_acsami_5b06759 crossref_primary_10_1016_j_ijheatmasstransfer_2016_11_016 crossref_primary_10_1021_acsami_8b09067 crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_015 crossref_primary_10_1137_23M1559336 crossref_primary_10_1016_j_cej_2023_146384 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123269 crossref_primary_10_1016_j_rineng_2022_100349 crossref_primary_10_1021_acs_jpcc_8b04257 crossref_primary_10_1016_j_cej_2017_08_081 crossref_primary_10_1080_15567265_2016_1256007 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119676 crossref_primary_10_1021_acs_langmuir_0c00915 crossref_primary_10_1021_acs_langmuir_2c03029 crossref_primary_10_1016_j_isci_2024_111039 crossref_primary_10_1021_acsnano_4c17632 crossref_primary_10_1002_adma_201908008 crossref_primary_10_1016_j_enbuild_2020_110315 crossref_primary_10_1002_sstr_202000028 crossref_primary_10_1039_C6TA08231A crossref_primary_10_1021_acsami_3c17293 crossref_primary_10_1021_acsami_2c00401 crossref_primary_10_1021_acsami_5b02376 crossref_primary_10_1016_j_apenergy_2018_03_178 crossref_primary_10_1038_srep40300 crossref_primary_10_1016_j_cej_2022_139656 crossref_primary_10_1016_j_joule_2017_11_010 crossref_primary_10_1021_acs_langmuir_5b01762 crossref_primary_10_1002_smll_202304037 crossref_primary_10_1016_j_joule_2019_08_005 |
Cites_doi | 10.1063/1.3553782 10.1016/j.apsusc.2013.10.188 10.1126/science.291.5504.633 10.1098/rspa.1991.0002 10.1038/ncomms1630 10.1039/c2sm25502b 10.1515/zpch-1926-11927 10.1146/annurev.matsci.38.060407.132434 10.1021/la304389s 10.1021/la9047424 10.1038/nmat3545 10.1039/c1sm06219k 10.1073/pnas.1210770110 10.1021/la300609f 10.1243/09576500260049034 10.1115/1.4003742 10.1021/nn300183d 10.1063/1.3560443 10.1021/la301618h 10.1002/anie.201007262 10.1016/0029-5493(95)01125-0 10.1016/0017-9310(73)90062-8 10.1063/1.3200951 10.1016/j.nucengdes.2008.02.016 10.1021/la801092y 10.1063/1.3666818 10.1021/nn304250e 10.1021/la101845t 10.1063/1.3460275 10.1021/nl060644q 10.1016/j.ijheatmasstransfer.2013.01.077 10.1002/adma.201303065 10.1557/mrs.2013.103 10.1021/la104600x 10.1016/S0029-5493(98)00164-2 10.1038/nphys2980 10.1021/nn205052a 10.1126/science.1148326 10.1021/la3013987 10.1038/srep02515 10.1016/0021-9797(77)90052-2 10.1016/S0029-5493(97)00184-2 10.1021/la0634802 10.1021/la302599n 10.1038/35102108 10.1103/PhysRevLett.103.184501 10.1063/1.4756800 10.1016/j.ijheatmasstransfer.2014.09.080 10.1021/la049329e 10.1021/nl4037092 10.1038/ncomms3517 10.1021/la304264g 10.1016/j.desal.2007.01.067 10.1038/nmat2994 10.1038/nmat3228 10.1002/adfm.201300418 10.1038/nmat924 10.1039/B811945G 10.1006/jcis.2001.8156 10.1016/0017-9310(69)90174-4 10.1021/la501063j 10.1038/srep01988 10.1140/epje/i2007-10235-y 10.1016/j.crhy.2006.10.020 10.1021/nn404707j 10.1002/adma.201204660 10.1063/1.4886798 10.1039/b923967g 10.1021/nl303835d 10.1002/adfm.201101302 10.1080/15567265.2013.862889 10.1021/jz500798m 10.1017/S0022112099005844 10.1088/0957-4484/22/29/292001 10.1115/1.4024597 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 F1W H95 L.G 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn505716b |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 81 |
ExternalDocumentID | 25482594 10_1021_nn505716b a333653195 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 F1W H95 L.G 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a447t-236b0f7e00e6fb8a5e90052f47e77b31054e30820e43f506682d42882c4e4f893 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 23:40:15 EDT 2025 Fri Jul 11 09:35:09 EDT 2025 Fri Jul 11 02:44:04 EDT 2025 Thu Apr 03 07:00:34 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Tue Jul 01 01:33:46 EDT 2025 Thu Aug 27 13:42:49 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | nanostructure heterogeneous wettability dropwise condensation filmwise condensation heat transfer enhancement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a447t-236b0f7e00e6fb8a5e90052f47e77b31054e30820e43f506682d42882c4e4f893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25482594 |
PQID | 1652416778 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1762059480 proquest_miscellaneous_1694969230 proquest_miscellaneous_1652416778 pubmed_primary_25482594 crossref_primary_10_1021_nn505716b crossref_citationtrail_10_1021_nn505716b acs_journals_10_1021_nn505716b |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-27 |
PublicationDateYYYYMMDD | 2015-01-27 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Castillo J. E. (ref66/cit66) 2015; 80 Varanasi K. K. (ref38/cit38) 2009; 95 Chandra S. (ref71/cit71) 1991; 432 Boreyko J. B. (ref1/cit1) 2013; 61 Miljkovic N. (ref59/cit59) 2013; 135 Rykaczewski K. (ref7/cit7) 2011; 7 Kim S. (ref16/cit16) 2011; 133 Humplik T. (ref5/cit5) 2011; 22 Mayama H. (ref64/cit64) 2011; 27 Miljkovic N. (ref73/cit73) 2013; 4 Ölçeroğlu E. (ref67/cit67) 2014; 30 Patankar N. A. (ref43/cit43) 2004; 20 Herranz L. E. (ref69/cit69) 1998; 183 Wang J. (ref42/cit42) 2008; 24 Maitra T. (ref77/cit77) 2013; 14 Torresin D. (ref27/cit27) 2012; 29 Lafuma A. (ref45/cit45) 2003; 2 Rose J. (ref18/cit18) 2002; 216 Dehbi A. (ref3/cit3) 1997; 177 Cheng J. T. (ref26/cit26) 2012; 101 Volmer M. (ref55/cit55) 1926; 119 Bormashenko E. (ref41/cit41) 2007; 23 Ganguli A. (ref70/cit70) 2008; 238 Paxson A. T. (ref22/cit22) 2014; 26 Chen X. (ref30/cit30) 2013; 3 Daniel S. (ref9/cit9) 2001; 291 Zhang T. (ref35/cit35) 2011; 50 Patankar N. A. (ref44/cit44) 2010; 26 Lo C. W. (ref29/cit29) 2013; 24 Kashchiev D. (ref36/cit36) 2000 Moulinet S. (ref40/cit40) 2007; 24 Liu Y. (ref10/cit10) 2014; 10 Quéré D. (ref58/cit58) 2008; 38 Parker A. R. (ref53/cit53) 2001; 414 Oliver J. (ref56/cit56) 1977; 59 Enright R. (ref62/cit62) 2014; 18 Miljkovic N. (ref23/cit23) 2012; 13 Rafiee J. (ref24/cit24) 2012; 11 Kim H.-Y. (ref19/cit19) 2002; 247 Dorrer C. (ref48/cit48) 2009; 5 Bocquet L. (ref21/cit21) 2011; 10 Yao C.-W. (ref52/cit52) 2014; 290 Peterson P. (ref68/cit68) 1996; 162 Wisdom K. M. (ref14/cit14) 2013; 110 Neelesh A. P. (ref49/cit49) 2010; 6 Lee A. (ref8/cit8) 2012; 28 Jung S. (ref76/cit76) 2012; 3 Mikic B. (ref15/cit15) 1969; 12 Liu T. (ref32/cit32) 2010; 26 Tian J. (ref20/cit20) 2014; 5 Graham C. (ref50/cit50) 1973; 16 Boreyko J. B. (ref60/cit60) 2011; 99 Rykaczewski K. (ref65/cit65) 2012; 6 Khawaji A. D. (ref4/cit4) 2008; 221 Xiao R. (ref31/cit31) 2013; 3 Feng J. (ref13/cit13) 2012; 28 Rykaczewski K. (ref47/cit47) 2012; 29 Zhai L. (ref57/cit57) 2006; 6 Boreyko J. B. (ref11/cit11) 2009; 103 Azimi G. (ref33/cit33) 2013; 12 Miljkovic N. (ref39/cit39) 2012; 6 Rykaczewski K. (ref78/cit78) 2011; 98 Miljkovic N. (ref74/cit74) 2013; 7 Rykaczewski K. (ref51/cit51) 2012; 28 Mishchenko L. (ref54/cit54) 2013; 23 Carey V. P. (ref37/cit37) 2007 Dimitrakopoulos P. (ref17/cit17) 1999; 395 Enright R. (ref46/cit46) 2012; 28 Wang F.-C. (ref72/cit72) 2011; 98 Dietz C. (ref2/cit2) 2010; 97 Beysens D. (ref6/cit6) 2006; 7 Rykaczewski K. (ref12/cit12) 2012; 8 He M. (ref28/cit28) 2013; 25 Miljkovic N. (ref61/cit61) 2013; 38 Tuteja A. (ref63/cit63) 2007; 318 Chen X. M. (ref34/cit34) 2011; 21 Anderson D. M. (ref25/cit25) 2012; 6 Miljkovic N. (ref75/cit75) 2014; 105 |
References_xml | – volume: 98 start-page: 053112 year: 2011 ident: ref72/cit72 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3553782 – volume: 290 start-page: 59 year: 2014 ident: ref52/cit52 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.10.188 – volume: 291 start-page: 633 year: 2001 ident: ref9/cit9 publication-title: Science doi: 10.1126/science.291.5504.633 – volume: 432 start-page: 13 year: 1991 ident: ref71/cit71 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1991.0002 – volume: 3 start-page: 615 year: 2012 ident: ref76/cit76 publication-title: Nat. Commun. doi: 10.1038/ncomms1630 – volume: 8 start-page: 8786 year: 2012 ident: ref12/cit12 publication-title: Soft Matter doi: 10.1039/c2sm25502b – volume: 119 start-page: 277 year: 1926 ident: ref55/cit55 publication-title: Z. Phys. Chem. (Leipzig) doi: 10.1515/zpch-1926-11927 – volume: 38 start-page: 71 year: 2008 ident: ref58/cit58 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.38.060407.132434 – volume: 29 start-page: 840 year: 2012 ident: ref27/cit27 publication-title: Langmuir doi: 10.1021/la304389s – volume: 26 start-page: 8941 year: 2010 ident: ref44/cit44 publication-title: Langmuir doi: 10.1021/la9047424 – volume: 12 start-page: 315 year: 2013 ident: ref33/cit33 publication-title: Nat. Mater. doi: 10.1038/nmat3545 – volume: 7 start-page: 8749 year: 2011 ident: ref7/cit7 publication-title: Soft Matter doi: 10.1039/c1sm06219k – volume: 110 start-page: 7992 year: 2013 ident: ref14/cit14 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1210770110 – volume: 28 start-page: 6067 year: 2012 ident: ref13/cit13 publication-title: Langmuir doi: 10.1021/la300609f – volume: 216 start-page: 115 year: 2002 ident: ref18/cit18 publication-title: Proc. Inst. Mech. Eng., Part A doi: 10.1243/09576500260049034 – volume: 133 start-page: 081502 year: 2011 ident: ref16/cit16 publication-title: J. Heat Transfer doi: 10.1115/1.4003742 – volume: 6 start-page: 3262 year: 2012 ident: ref25/cit25 publication-title: ACS Nano doi: 10.1021/nn300183d – volume-title: Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment year: 2007 ident: ref37/cit37 – volume: 98 start-page: 093106 year: 2011 ident: ref78/cit78 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3560443 – volume: 28 start-page: 7720 year: 2012 ident: ref51/cit51 publication-title: Langmuir doi: 10.1021/la301618h – volume: 50 start-page: 5311 year: 2011 ident: ref35/cit35 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201007262 – volume: 162 start-page: 301 year: 1996 ident: ref68/cit68 publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(95)01125-0 – volume: 16 start-page: 337 year: 1973 ident: ref50/cit50 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(73)90062-8 – volume: 95 start-page: 094101 year: 2009 ident: ref38/cit38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3200951 – volume: 238 start-page: 2328 year: 2008 ident: ref70/cit70 publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2008.02.016 – volume: 24 start-page: 10174 year: 2008 ident: ref42/cit42 publication-title: Langmuir doi: 10.1021/la801092y – volume: 99 start-page: 234105 year: 2011 ident: ref60/cit60 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3666818 – volume: 6 start-page: 9326 year: 2012 ident: ref65/cit65 publication-title: ACS Nano doi: 10.1021/nn304250e – volume: 26 start-page: 14835 year: 2010 ident: ref32/cit32 publication-title: Langmuir doi: 10.1021/la101845t – volume: 97 start-page: 033104 year: 2010 ident: ref2/cit2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3460275 – volume: 6 start-page: 1213 year: 2006 ident: ref57/cit57 publication-title: Nano Lett. doi: 10.1021/nl060644q – volume: 61 start-page: 409 year: 2013 ident: ref1/cit1 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.01.077 – volume-title: Nucleation: Basic Theory with Applications year: 2000 ident: ref36/cit36 – volume: 26 start-page: 418 year: 2014 ident: ref22/cit22 publication-title: Adv. Mater. doi: 10.1002/adma.201303065 – volume: 38 start-page: 397 year: 2013 ident: ref61/cit61 publication-title: MRS Bull. doi: 10.1557/mrs.2013.103 – volume: 27 start-page: 3550 year: 2011 ident: ref64/cit64 publication-title: Langmuir doi: 10.1021/la104600x – volume: 183 start-page: 133 year: 1998 ident: ref69/cit69 publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(98)00164-2 – volume: 10 start-page: 515 year: 2014 ident: ref10/cit10 publication-title: Nat. Phys. doi: 10.1038/nphys2980 – volume: 6 start-page: 1776 year: 2012 ident: ref39/cit39 publication-title: ACS Nano doi: 10.1021/nn205052a – volume: 318 start-page: 1618 year: 2007 ident: ref63/cit63 publication-title: Science doi: 10.1126/science.1148326 – volume: 28 start-page: 10183 year: 2012 ident: ref8/cit8 publication-title: Langmuir doi: 10.1021/la3013987 – volume: 3 start-page: 2515 year: 2013 ident: ref30/cit30 publication-title: Sci. Rep. doi: 10.1038/srep02515 – volume: 59 start-page: 568 year: 1977 ident: ref56/cit56 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(77)90052-2 – volume: 177 start-page: 41 year: 1997 ident: ref3/cit3 publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(97)00184-2 – volume: 23 start-page: 4378 year: 2007 ident: ref41/cit41 publication-title: Langmuir doi: 10.1021/la0634802 – volume: 28 start-page: 14424 year: 2012 ident: ref46/cit46 publication-title: Langmuir doi: 10.1021/la302599n – volume: 414 start-page: 33 year: 2001 ident: ref53/cit53 publication-title: Nature doi: 10.1038/35102108 – volume: 103 start-page: 184501 year: 2009 ident: ref11/cit11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.184501 – volume: 101 start-page: 131909 year: 2012 ident: ref26/cit26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4756800 – volume: 80 start-page: 759 year: 2015 ident: ref66/cit66 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.09.080 – volume: 20 start-page: 7097 year: 2004 ident: ref43/cit43 publication-title: Langmuir doi: 10.1021/la049329e – volume: 14 start-page: 172 year: 2013 ident: ref77/cit77 publication-title: Nano Lett. doi: 10.1021/nl4037092 – volume: 4 start-page: 2517 year: 2013 ident: ref73/cit73 publication-title: Nat. Commun. doi: 10.1038/ncomms3517 – volume: 29 start-page: 881 year: 2012 ident: ref47/cit47 publication-title: Langmuir doi: 10.1021/la304264g – volume: 221 start-page: 47 year: 2008 ident: ref4/cit4 publication-title: Desalination doi: 10.1016/j.desal.2007.01.067 – volume: 10 start-page: 334 year: 2011 ident: ref21/cit21 publication-title: Nat. Mater. doi: 10.1038/nmat2994 – volume: 11 start-page: 217 year: 2012 ident: ref24/cit24 publication-title: Nat. Mater. doi: 10.1038/nmat3228 – volume: 23 start-page: 4577 year: 2013 ident: ref54/cit54 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300418 – volume: 2 start-page: 457 year: 2003 ident: ref45/cit45 publication-title: Nat. Mater. doi: 10.1038/nmat924 – volume: 5 start-page: 51 year: 2009 ident: ref48/cit48 publication-title: Soft Matter doi: 10.1039/B811945G – volume: 247 start-page: 372 year: 2002 ident: ref19/cit19 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2001.8156 – volume: 12 start-page: 1311 year: 1969 ident: ref15/cit15 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(69)90174-4 – volume: 30 start-page: 7556 year: 2014 ident: ref67/cit67 publication-title: Langmuir doi: 10.1021/la501063j – volume: 3 start-page: 1988 year: 2013 ident: ref31/cit31 publication-title: Sci. Rep. doi: 10.1038/srep01988 – volume: 24 start-page: 251 year: 2007 ident: ref40/cit40 publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2007-10235-y – volume: 24 start-page: 1211 year: 2013 ident: ref29/cit29 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1082 year: 2006 ident: ref6/cit6 publication-title: C. R. Phys. doi: 10.1016/j.crhy.2006.10.020 – volume: 7 start-page: 11043 year: 2013 ident: ref74/cit74 publication-title: ACS Nano doi: 10.1021/nn404707j – volume: 25 start-page: 2291 year: 2013 ident: ref28/cit28 publication-title: Adv. Mater. doi: 10.1002/adma.201204660 – volume: 105 start-page: 013111 year: 2014 ident: ref75/cit75 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4886798 – volume: 6 start-page: 1613 year: 2010 ident: ref49/cit49 publication-title: Soft Matter doi: 10.1039/b923967g – volume: 13 start-page: 179 year: 2012 ident: ref23/cit23 publication-title: Nano Lett. doi: 10.1021/nl303835d – volume: 21 start-page: 4617 year: 2011 ident: ref34/cit34 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101302 – volume: 18 start-page: 223 year: 2014 ident: ref62/cit62 publication-title: Nanoscale Microscale Thermophys. Eng. doi: 10.1080/15567265.2013.862889 – volume: 5 start-page: 2084 year: 2014 ident: ref20/cit20 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500798m – volume: 395 start-page: 181 year: 1999 ident: ref17/cit17 publication-title: J. Fluid Mech. doi: 10.1017/S0022112099005844 – volume: 22 start-page: 292001 year: 2011 ident: ref5/cit5 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/29/292001 – volume: 135 start-page: 111004 year: 2013 ident: ref59/cit59 publication-title: J. Heat Transfer doi: 10.1115/1.4024597 |
SSID | ssj0057876 |
Score | 2.6253028 |
Snippet | Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 71 |
SubjectTerms | Animals Biomimetics - methods Coleoptera Condensing Density Droplets Heat transfer Hot Temperature Nanostructure Nanotechnology - methods Nucleation Roughness Volatilization Wettability |
Title | Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface |
URI | http://dx.doi.org/10.1021/nn505716b https://www.ncbi.nlm.nih.gov/pubmed/25482594 https://www.proquest.com/docview/1652416778 https://www.proquest.com/docview/1694969230 https://www.proquest.com/docview/1762059480 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELVKucCBfYfKLAcuKa7jOMkRWqoKCQ4sErfIdsZSRZuiLkLi6xknTQWCFimXRBPFy0zmjcd-Q8iFn0qtlWQeV0J4wgffi0CnXsyVChomSrl1SwP3D7LzIu5eg9cKOZ-TweeNqyxzGLoh9RJZ5hKN1-Gf5lP5u3UaJ4vUMYbGiB9K-qDvrzrXY0Y_Xc8cPJn7lfY6aZWnc4rtJG_1yVjXzedvssZFTd4ga1NcSa8LRdgkFci2yOo3tsFt0nl0a-uOjYm2u73-R3cEVGUpbQ0H7_lNc-DK4Rbbeyheit4AoC7R-27fnXWkT5OhVQZ2yEv79rnZ8aaFFDycgHDscV9qZkNgDKTVkQogdsvBVoQQhhoBXiDA0dYwEL4NEIREPMWwJOJGgLCIaHZJNRtksE9oLFOmjU25QKTFrYkNPvDDyEimmNTygNRwpJOpIYySPMfNG8lsSA7IZTkJiZnSkLtqGL2_RM9mou8F98ZfQqflTCZoGS7doTIYTPDTMkB44gjyFsnEIpYIctkCGfQXOasNyuwVqjJrDobXGGLH4vC_bh-RFYRabp-kx8NjUh0PJ3CCcGasa7k6fwGG7-wJ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELf4eBh7YDBgwEbnTTzwEnAdx04eu0LVAe3DAIm3yHbOUgWkqGk1aX895yQtDJUPKS-JLsnFPud-57N_R8h-mEljtGQB10IEIoQwiMFkQcK1jpo2zrjzUwO9vuxeidPr6LqmyfF7YVCJAp9UlEn8R3aB5lGeeyjdlGaRLCMI4d6aW-2L6V_XG56sMsgYISOMmLIIPb3VeyBb_O-BXoCVpXvpfKrqFJWKlatKbg4nY3No_z3jbHyf5mtktUaZtFWZxTpZgPwz-fiEe3CDdP_4mXbPzUQ7g9u7v4MCqM4zejwa3pcn7aEvjlst9qF4aPoLAC2L9gZ3fucjvZiMnLawSa46J5ftblCXVQiwO9Q44KE0zClgDKQzsY4g8ZPDTihQyiDciwR4EhsGInQRQpKYZxikxNwKEA7xzRZZyoc5bBOayIwZ6zIuEHdxZxOLF0IVW8k0k0bukAa2SFoPiyItM968mc6aZIccTPsitTUpua-NcTtP9OdM9L5i4pgn9GPaoSmOE5_80DkMJ_hqtBkEn0rFr8kkIpEIedkrMug9So4blPlSWcxMHQy2MeBOxO5bn_2dfOhe9s7T89_9s69kBUGYX0EZcPWNLI1HE9hDoDM2jdLCHwCQV_Rq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELf4kCZ4gH2w0cGYN-2BlxTXcZzkEQpV9wFDMCTeIts5SxU0rZpWSPz1u0vSik0MJuUl0SW52Ofc7-7snxn7EubaWqNFII1SgQohDBKweZBKY6KOS3LpKTVweqb7V-rbdXTdBIq0FgaVKPFJZVXEp1E9zn3DMNA5KAqC0x1tl9kqlevIog-7l_M_LxmfrqvIGCUjlJgzCT28lbyQK__0Qv-AlpWL6W2ynwvlqpklN-3Z1Lbd_V-8jf-v_Uu20aBNflibxyu2BMVrtv6Ag_AN619Qxp04mnhvcDu8G5TATZHz48loXJ10R7RJbj3ph-Nh-BEAWhg_HQxpBSS_nE28cbDFrnonv7r9oNleIcBuiaeBDLUVPgYhQHubmAhSShJ7FUMcW4R9kQIisxGgQh8hNElkjsFKIp0C5RHnvGUrxaiAbcZTnQvrfC4V4i_pXerwQhgnTgsjtNUttoetkjXDo8yqyrfsZIsmabH9eX9kriEnpz0ybh8T_bwQHdeMHI8JfZp3aobjhYogpoDRDF-tIwQtRJv3lEyqUo3QVzwhg16k4rpBmXe11SzUwaAbA-9UvX_usz-yF-fHvezH17PvO2wNsRhNpAxkvMtWppMZfEC8M7V7lZH_Bqh09u0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recurrent+Filmwise+and+Dropwise+Condensation+on+a+Beetle+Mimetic+Surface&rft.jtitle=ACS+nano&rft.au=Hou%2C+Youmin&rft.au=Yu%2C+Miao&rft.au=Chen%2C+Xuemei&rft.au=Wang%2C+Zuankai&rft.date=2015-01-27&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=9&rft.issue=1&rft.spage=71&rft.epage=81&rft_id=info:doi/10.1021%2Fnn505716b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |