Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface

Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 9; no. 1; pp. 71 - 81
Main Authors Hou, Youmin, Yu, Miao, Chen, Xuemei, Wang, Zuankai, Yao, Shuhuai
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement.
AbstractList Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement.
Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement. Keywords: filmwise condensation; dropwise condensation; nanostructure; heterogeneous wettability; heat transfer enhancement
Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement.Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement.
Author Yao, Shuhuai
Hou, Youmin
Yu, Miao
Chen, Xuemei
Wang, Zuankai
AuthorAffiliation Department of Mechanical and Biomedical Engineering
The Hong Kong University of Science and Technology
City University of Hong Kong
Department of Mechanical and Aerospace Engineering
Bioengineering Graduate Program
AuthorAffiliation_xml – name: Department of Mechanical and Biomedical Engineering
– name: The Hong Kong University of Science and Technology
– name: Department of Mechanical and Aerospace Engineering
– name: Bioengineering Graduate Program
– name: City University of Hong Kong
Author_xml – sequence: 1
  givenname: Youmin
  surname: Hou
  fullname: Hou, Youmin
– sequence: 2
  givenname: Miao
  surname: Yu
  fullname: Yu, Miao
– sequence: 3
  givenname: Xuemei
  surname: Chen
  fullname: Chen, Xuemei
– sequence: 4
  givenname: Zuankai
  surname: Wang
  fullname: Wang, Zuankai
  email: meshyao@ust.hk, zuanwang@cityu.edu.hk
– sequence: 5
  givenname: Shuhuai
  surname: Yao
  fullname: Yao, Shuhuai
  email: meshyao@ust.hk, zuanwang@cityu.edu.hk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25482594$$D View this record in MEDLINE/PubMed
BookMark eNqN0VtLwzAUB_AgE3fRB7-A9EXQh7okza2POp0TFMEL-FbS7hQy2nQmKeK3t25zDzJQCCSB3wkn_zNEPdtYQOiY4AuCKRlbyzGXROR7aEDSRMRYibfe9sxJHw29X-AOKSkOUJ9ypihP2QDNnqBonQMboqmp6g_jIdJ2Hl27Zrm6TBo7B-t1MI2NuqWjK4BQQfRgagimiJ5bV-oCDtF-qSsPR5t9hF6nNy-TWXz_eHs3ubyPNWMyxDQROS4lYAyizJXmkHZt0ZJJkDJPCOYMEqwoBpaUHAuh6JxRpWjBgJUqTUbobP3u0jXvLfiQ1cYXUFXaQtP6jEhBcfc1hf-mImWpSGnyH8opI0JK1dGTDW3zGubZ0plau8_sJ9MOnK9B4RrvHZRbQnD2Pa9sO6_Ojn_ZwoRV1sFpU-2sOF1X6MJni6Z1tkt7h_sC5oCf-w
CitedBy_id crossref_primary_10_1038_s41524_024_01223_8
crossref_primary_10_1021_acsami_6b05324
crossref_primary_10_1016_j_cej_2020_125139
crossref_primary_10_1021_acsami_3c03275
crossref_primary_10_1021_acsnano_6b03859
crossref_primary_10_1016_j_nanoen_2017_01_018
crossref_primary_10_1016_j_nanoen_2022_106932
crossref_primary_10_1021_acsnano_7b04481
crossref_primary_10_1002_smll_201903849
crossref_primary_10_1016_j_chemphys_2018_08_014
crossref_primary_10_1016_j_cclet_2024_110395
crossref_primary_10_1002_ange_201500137
crossref_primary_10_1080_2374068X_2022_2036478
crossref_primary_10_1016_j_snb_2017_11_109
crossref_primary_10_1021_acs_chemmater_7b02880
crossref_primary_10_1073_pnas_2001802117
crossref_primary_10_1021_acsami_5b11586
crossref_primary_10_1021_acs_langmuir_9b01385
crossref_primary_10_1021_acsnano_4c15277
crossref_primary_10_1039_C6NJ03566C
crossref_primary_10_1016_j_colsurfa_2023_132310
crossref_primary_10_1093_nsr_nwy098
crossref_primary_10_1016_j_xcrp_2022_100823
crossref_primary_10_1021_acsnano_4c17690
crossref_primary_10_1007_s00339_022_05778_5
crossref_primary_10_1080_01457632_2020_1807101
crossref_primary_10_1002_admi_202102547
crossref_primary_10_1088_1361_665X_aa9e5f
crossref_primary_10_1016_j_solmat_2022_111962
crossref_primary_10_1021_acsomega_0c01995
crossref_primary_10_1039_D1ME00019E
crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_035
crossref_primary_10_1038_srep23760
crossref_primary_10_1016_j_applthermaleng_2019_04_052
crossref_primary_10_1016_j_cej_2023_143981
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123222
crossref_primary_10_1039_C7TA05087A
crossref_primary_10_1016_j_ijft_2024_100782
crossref_primary_10_1016_j_jcis_2023_06_142
crossref_primary_10_1021_acssuschemeng_8b03247
crossref_primary_10_1002_smsc_202000059
crossref_primary_10_1016_j_nexres_2024_100053
crossref_primary_10_1021_acsami_7b09681
crossref_primary_10_1063_5_0215005
crossref_primary_10_1002_cnma_201600207
crossref_primary_10_1002_adma_201806501
crossref_primary_10_1002_adma_202211596
crossref_primary_10_3390_mi14010050
crossref_primary_10_1021_acs_langmuir_0c00950
crossref_primary_10_1002_adma_201907999
crossref_primary_10_1021_acs_langmuir_2c03070
crossref_primary_10_1007_s42235_021_0040_0
crossref_primary_10_1038_srep19131
crossref_primary_10_1039_D4CS01073F
crossref_primary_10_1002_dro2_105
crossref_primary_10_1063_5_0159588
crossref_primary_10_1021_acsami_4c10213
crossref_primary_10_1021_acsami_4c08254
crossref_primary_10_1039_C8NR07941B
crossref_primary_10_2139_ssrn_3956661
crossref_primary_10_1016_j_apsusc_2023_156418
crossref_primary_10_1021_acsnano_9b06501
crossref_primary_10_2139_ssrn_4145334
crossref_primary_10_1063_5_0181485
crossref_primary_10_1021_acsbiomaterials_9b00821
crossref_primary_10_1039_D0NA00477D
crossref_primary_10_1016_j_applthermaleng_2021_117104
crossref_primary_10_1016_j_applthermaleng_2022_119527
crossref_primary_10_1002_ceat_201700160
crossref_primary_10_1016_j_applthermaleng_2022_118430
crossref_primary_10_1039_C6RA09699A
crossref_primary_10_1039_D2MH00361A
crossref_primary_10_7498_aps_70_20201714
crossref_primary_10_1002_adfm_201704423
crossref_primary_10_3389_fmech_2019_00038
crossref_primary_10_1016_j_colsurfa_2023_131664
crossref_primary_10_1021_acs_langmuir_0c00416
crossref_primary_10_1021_acsami_2c06803
crossref_primary_10_1021_acsanm_0c03032
crossref_primary_10_1021_acsnano_7b06114
crossref_primary_10_1103_PhysRevFluids_1_064102
crossref_primary_10_1038_srep39932
crossref_primary_10_1021_acsami_4c10153
crossref_primary_10_1021_acsami_0c22055
crossref_primary_10_1021_acsnano_1c11388
crossref_primary_10_1021_acssensors_1c01187
crossref_primary_10_1063_1_5082727
crossref_primary_10_1021_acsnano_5b04151
crossref_primary_10_1021_acs_est_1c00257
crossref_primary_10_1063_5_0033572
crossref_primary_10_1002_admi_201600362
crossref_primary_10_1021_acs_langmuir_2c00949
crossref_primary_10_1016_j_cej_2023_141761
crossref_primary_10_1063_1_5016492
crossref_primary_10_1177_16878132221137237
crossref_primary_10_1080_15567265_2021_1903631
crossref_primary_10_1038_s41598_023_45294_x
crossref_primary_10_1039_D2NA00669C
crossref_primary_10_34133_2022_9789657
crossref_primary_10_1021_acsami_6b16248
crossref_primary_10_1021_acs_langmuir_6b01488
crossref_primary_10_1021_acs_langmuir_3c02224
crossref_primary_10_1002_admi_201900864
crossref_primary_10_1039_C8TA12372A
crossref_primary_10_1021_acsami_9b11415
crossref_primary_10_1063_5_0077386
crossref_primary_10_1007_s10971_022_05771_7
crossref_primary_10_1039_C8NR05772A
crossref_primary_10_1016_j_porgcoat_2022_106869
crossref_primary_10_1021_acsami_7b14960
crossref_primary_10_1016_j_csite_2021_101319
crossref_primary_10_1021_acsnano_9b03275
crossref_primary_10_1016_j_proeng_2015_08_1105
crossref_primary_10_1021_acsmaterialslett_1c00365
crossref_primary_10_1080_08927022_2021_2025235
crossref_primary_10_1021_acsami_3c03436
crossref_primary_10_1002_admi_202000475
crossref_primary_10_1002_admi_202001442
crossref_primary_10_1002_admi_202101603
crossref_primary_10_1016_j_apsusc_2022_154805
crossref_primary_10_1063_5_0149152
crossref_primary_10_3390_pr11071865
crossref_primary_10_1002_admi_202001317
crossref_primary_10_1021_acsami_0c05224
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122758
crossref_primary_10_1021_acs_jpcc_1c07428
crossref_primary_10_1002_admi_202000482
crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_040
crossref_primary_10_1002_advs_202104454
crossref_primary_10_1021_acs_langmuir_0c02758
crossref_primary_10_1002_adma_202414389
crossref_primary_10_1021_acsami_8b19868
crossref_primary_10_1002_dro2_31
crossref_primary_10_1016_j_ijthermalsci_2022_107978
crossref_primary_10_1142_S1793292021500867
crossref_primary_10_1021_acs_langmuir_0c00693
crossref_primary_10_1021_acs_langmuir_7b00156
crossref_primary_10_1016_j_applthermaleng_2017_12_105
crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_039
crossref_primary_10_1002_admi_202001205
crossref_primary_10_1016_j_surfin_2024_105034
crossref_primary_10_1126_sciadv_aaq0919
crossref_primary_10_1063_1_5090182
crossref_primary_10_1021_acsnano_3c07385
crossref_primary_10_1016_j_applthermaleng_2021_117444
crossref_primary_10_3390_fluids9100223
crossref_primary_10_1002_dro2_23
crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_013
crossref_primary_10_1002_dro2_22
crossref_primary_10_1002_dro2_21
crossref_primary_10_1021_acsami_2c20938
crossref_primary_10_1016_j_compfluid_2021_104844
crossref_primary_10_1038_srep35940
crossref_primary_10_1002_adfm_202308265
crossref_primary_10_1039_D3NR01679J
crossref_primary_10_1021_acsami_7b16379
crossref_primary_10_1016_j_molliq_2022_119947
crossref_primary_10_1103_PhysRevLett_120_075902
crossref_primary_10_1021_acsami_4c12220
crossref_primary_10_1016_j_applthermaleng_2023_120494
crossref_primary_10_1002_admi_201902201
crossref_primary_10_1039_C8TA08956F
crossref_primary_10_1016_j_cej_2023_142002
crossref_primary_10_1016_j_cej_2020_126515
crossref_primary_10_1021_acsnano_0c02558
crossref_primary_10_1002_adma_201703002
crossref_primary_10_1021_acs_langmuir_3c02802
crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_021
crossref_primary_10_2139_ssrn_4060733
crossref_primary_10_1002_cnma_202200327
crossref_primary_10_1002_admi_202200160
crossref_primary_10_1016_j_euromechflu_2023_10_007
crossref_primary_10_1007_s42242_021_00133_8
crossref_primary_10_1088_0960_1317_26_11_115009
crossref_primary_10_1016_j_ijheatfluidflow_2018_09_015
crossref_primary_10_1115_1_4044508
crossref_primary_10_1016_j_nocx_2022_100143
crossref_primary_10_1016_j_isci_2022_105819
crossref_primary_10_1021_acsami_4c17859
crossref_primary_10_1115_1_4040143
crossref_primary_10_1039_C9RA09329J
crossref_primary_10_1002_adfm_202008614
crossref_primary_10_1016_j_apsusc_2022_152708
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123929
crossref_primary_10_1002_admi_202200573
crossref_primary_10_1016_j_cej_2018_03_045
crossref_primary_10_1016_j_icheatmasstransfer_2023_107114
crossref_primary_10_1021_acsami_1c02121
crossref_primary_10_1115_1_4053454
crossref_primary_10_1021_acs_langmuir_0c01468
crossref_primary_10_1021_acs_langmuir_9b01065
crossref_primary_10_1038_s41467_024_47507_x
crossref_primary_10_1016_j_icheatmasstransfer_2024_107519
crossref_primary_10_1016_j_tsf_2021_138597
crossref_primary_10_1039_C8RA00414E
crossref_primary_10_1021_acsnano_6b05666
crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_037
crossref_primary_10_1016_j_mtnano_2019_100034
crossref_primary_10_1021_acs_iecr_2c00717
crossref_primary_10_1021_acs_langmuir_7b01159
crossref_primary_10_2109_jcersj2_20080
crossref_primary_10_1021_acs_jpcc_8b02642
crossref_primary_10_1039_C5TA04802H
crossref_primary_10_1021_acsami_9b08885
crossref_primary_10_1016_j_ijheatmasstransfer_2015_08_106
crossref_primary_10_1016_j_cej_2021_132029
crossref_primary_10_1038_srep23687
crossref_primary_10_1016_j_surfcoat_2025_131973
crossref_primary_10_1039_D4TA02890B
crossref_primary_10_1021_acs_langmuir_2c01796
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_110
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120198
crossref_primary_10_1002_admi_202100815
crossref_primary_10_1680_jsuin_16_00004
crossref_primary_10_1021_acs_langmuir_7b02146
crossref_primary_10_1002_adma_202203242
crossref_primary_10_1002_adfm_201800634
crossref_primary_10_1063_1_5027673
crossref_primary_10_1016_j_cis_2022_102684
crossref_primary_10_1021_acs_langmuir_1c01559
crossref_primary_10_3390_app11041553
crossref_primary_10_1038_s41598_018_34407_6
crossref_primary_10_1039_C6TA06446A
crossref_primary_10_1016_j_xcrp_2022_100849
crossref_primary_10_1021_acsami_6b00852
crossref_primary_10_1002_smll_202301561
crossref_primary_10_1021_acsami_7b01812
crossref_primary_10_1021_acs_langmuir_9b03339
crossref_primary_10_1002_advs_202301421
crossref_primary_10_1016_j_applthermaleng_2022_118928
crossref_primary_10_1016_j_jcis_2022_01_024
crossref_primary_10_1016_j_joule_2022_11_010
crossref_primary_10_1115_1_4046209
crossref_primary_10_1115_1_4043175
crossref_primary_10_1016_j_cej_2020_126901
crossref_primary_10_1021_acs_langmuir_7b01991
crossref_primary_10_1021_acs_langmuir_2c00373
crossref_primary_10_1021_acs_langmuir_7b01625
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_023
crossref_primary_10_1063_1_4980091
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121664
crossref_primary_10_1080_15567265_2016_1253630
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118627
crossref_primary_10_1007_s11433_019_9643_0
crossref_primary_10_1007_s00604_019_3805_y
crossref_primary_10_1063_1_5053703
crossref_primary_10_1016_j_joule_2019_03_004
crossref_primary_10_1002_adfm_201801114
crossref_primary_10_1021_acsnano_6b05595
crossref_primary_10_1002_anie_201600224
crossref_primary_10_1002_gch2_201900094
crossref_primary_10_1016_j_enbuild_2022_112036
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121898
crossref_primary_10_1021_acs_jpclett_7b02939
crossref_primary_10_1021_acsami_9b17943
crossref_primary_10_1007_s42235_018_0036_6
crossref_primary_10_1021_acs_langmuir_3c03042
crossref_primary_10_1021_acs_langmuir_2c00023
crossref_primary_10_1016_j_applthermaleng_2020_115382
crossref_primary_10_1016_j_colsurfa_2022_129574
crossref_primary_10_1021_acsnano_5b05607
crossref_primary_10_1016_j_nantod_2025_102661
crossref_primary_10_1063_1_5005837
crossref_primary_10_1126_sciadv_aax0763
crossref_primary_10_1126_sciadv_abc1693
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_124
crossref_primary_10_1016_j_applthermaleng_2020_115386
crossref_primary_10_1038_srep42752
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_122
crossref_primary_10_1007_s10973_019_08318_1
crossref_primary_10_1016_j_cej_2021_130119
crossref_primary_10_1007_s41664_023_00252_4
crossref_primary_10_1021_acsami_5b03264
crossref_primary_10_1038_s41467_022_32873_1
crossref_primary_10_1021_acsami_1c10096
crossref_primary_10_1021_acsami_5b05564
crossref_primary_10_1021_acs_langmuir_0c03544
crossref_primary_10_1039_D0CS01033B
crossref_primary_10_1039_D3NR03829G
crossref_primary_10_1039_C6RA28665H
crossref_primary_10_1021_acsomega_7b00225
crossref_primary_10_1002_advs_202101794
crossref_primary_10_1016_j_matt_2023_04_008
crossref_primary_10_1002_adfm_201707000
crossref_primary_10_1063_5_0064974
crossref_primary_10_1021_acs_langmuir_2c01264
crossref_primary_10_1016_j_joule_2018_08_014
crossref_primary_10_1016_j_cis_2021_102503
crossref_primary_10_1021_acsami_3c14418
crossref_primary_10_1021_acs_langmuir_8b03418
crossref_primary_10_1002_adma_202002710
crossref_primary_10_1039_C8TA08267G
crossref_primary_10_1103_PhysRevResearch_4_043110
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123097
crossref_primary_10_1002_admi_201800202
crossref_primary_10_1016_j_cej_2020_125609
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124280
crossref_primary_10_1039_C8RA08190E
crossref_primary_10_1021_acs_langmuir_0c03125
crossref_primary_10_1063_5_0130043
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_008
crossref_primary_10_1016_j_isci_2021_102531
crossref_primary_10_1016_j_molliq_2021_116869
crossref_primary_10_1016_j_compscitech_2021_108954
crossref_primary_10_1039_C8RA02655F
crossref_primary_10_1002_smll_202307726
crossref_primary_10_1021_acs_langmuir_1c01844
crossref_primary_10_1021_acsnano_2c02669
crossref_primary_10_1002_admi_202301048
crossref_primary_10_1016_j_watres_2021_117135
crossref_primary_10_1016_j_compositesa_2024_108241
crossref_primary_10_1021_acsnano_8b08753
crossref_primary_10_1063_5_0197049
crossref_primary_10_1002_admi_201600801
crossref_primary_10_1680_jsuin_17_00063
crossref_primary_10_1016_S1672_6529_16_60309_8
crossref_primary_10_1007_s42114_022_00603_2
crossref_primary_10_1021_acs_langmuir_8b02428
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121526
crossref_primary_10_1016_j_tsep_2025_103319
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_108
crossref_primary_10_1016_j_xcrp_2021_100387
crossref_primary_10_1021_acs_langmuir_4c03891
crossref_primary_10_1039_C6CC02822E
crossref_primary_10_1021_acs_langmuir_5b03778
crossref_primary_10_1039_C9TA01906E
crossref_primary_10_1002_advs_202201174
crossref_primary_10_1016_j_matlet_2017_11_055
crossref_primary_10_1016_j_applthermaleng_2019_113878
crossref_primary_10_1038_natrevmats_2016_92
crossref_primary_10_1021_acs_langmuir_3c00947
crossref_primary_10_1021_acs_langmuir_8b01450
crossref_primary_10_1021_acs_langmuir_6b01903
crossref_primary_10_1002_adfm_202211113
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_153
crossref_primary_10_1002_admi_201700684
crossref_primary_10_1063_1_5034235
crossref_primary_10_1021_acsami_2c20874
crossref_primary_10_1021_acsami_5b09719
crossref_primary_10_1021_acsnano_8b06677
crossref_primary_10_1088_1674_1056_25_6_066401
crossref_primary_10_1016_j_surfcoat_2019_01_041
crossref_primary_10_1016_j_surfin_2023_103247
crossref_primary_10_2139_ssrn_4107467
crossref_primary_10_1016_j_mne_2024_100255
crossref_primary_10_1039_C6RA02170K
crossref_primary_10_1021_la504638y
crossref_primary_10_1021_acsami_4c08784
crossref_primary_10_1038_s41467_021_23174_0
crossref_primary_10_1039_D0TA10123K
crossref_primary_10_1039_C8RA04003F
crossref_primary_10_1039_C7TA04392A
crossref_primary_10_1021_acsnano_4c17716
crossref_primary_10_1038_nature15738
crossref_primary_10_1002_admi_201500202
crossref_primary_10_1155_2022_8020914
crossref_primary_10_3390_app11115193
crossref_primary_10_1063_1_4998443
crossref_primary_10_1016_j_ijthermalsci_2018_04_011
crossref_primary_10_1021_acsami_0c04922
crossref_primary_10_1021_acsami_1c01400
crossref_primary_10_1021_acs_langmuir_1c03267
crossref_primary_10_1021_acs_nanolett_6b01169
crossref_primary_10_1021_acs_langmuir_9b02623
crossref_primary_10_1016_j_cej_2021_132902
crossref_primary_10_1016_j_icheatmasstransfer_2020_105063
crossref_primary_10_1063_5_0006117
crossref_primary_10_1002_anie_201500137
crossref_primary_10_1080_00986445_2021_1958322
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124872
crossref_primary_10_1016_j_cej_2023_141605
crossref_primary_10_1002_smll_201602992
crossref_primary_10_1021_acsnano_8b05163
crossref_primary_10_1016_j_vacuum_2022_111267
crossref_primary_10_1021_acs_langmuir_0c02062
crossref_primary_10_1007_s11630_022_1519_7
crossref_primary_10_1002_adfm_202306756
crossref_primary_10_1073_pnas_2209662119
crossref_primary_10_1002_gch2_201700019
crossref_primary_10_1039_D2SM01271E
crossref_primary_10_1021_acsami_0c12329
crossref_primary_10_1021_acs_langmuir_0c03263
crossref_primary_10_1002_smll_201503060
crossref_primary_10_1021_acs_langmuir_4c02247
crossref_primary_10_1021_acsnano_7b07699
crossref_primary_10_3390_mi12060656
crossref_primary_10_1002_smll_201600687
crossref_primary_10_1016_j_applthermaleng_2020_115778
crossref_primary_10_1002_admi_202100196
crossref_primary_10_1002_admi_202101164
crossref_primary_10_1021_acsnano_7b06371
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121710
crossref_primary_10_1063_1_5139417
crossref_primary_10_1021_acs_langmuir_8b02611
crossref_primary_10_1021_acsnano_6b07471
crossref_primary_10_3390_mi10090587
crossref_primary_10_1016_j_mtphys_2021_100407
crossref_primary_10_1063_1_5053697
crossref_primary_10_1002_adma_202209134
crossref_primary_10_1002_adsu_202400664
crossref_primary_10_1021_acsami_5b03016
crossref_primary_10_1021_acs_langmuir_1c03076
crossref_primary_10_1039_C6SM00494F
crossref_primary_10_1021_acs_nanolett_1c01584
crossref_primary_10_1063_1_4927055
crossref_primary_10_1002_admi_202100284
crossref_primary_10_1002_ange_201600224
crossref_primary_10_1021_acs_langmuir_0c03094
crossref_primary_10_2139_ssrn_3385121
crossref_primary_10_1016_j_corsci_2024_112339
crossref_primary_10_1016_j_ijthermalsci_2024_109610
crossref_primary_10_1039_C7TA04073C
crossref_primary_10_1016_j_cej_2025_159917
crossref_primary_10_1016_j_jmapro_2020_12_043
crossref_primary_10_1021_acsami_2c08266
crossref_primary_10_1021_acsami_0c12504
crossref_primary_10_1111_jfpe_14609
crossref_primary_10_1016_j_applthermaleng_2018_04_020
crossref_primary_10_1021_acsami_5b06759
crossref_primary_10_1016_j_ijheatmasstransfer_2016_11_016
crossref_primary_10_1021_acsami_8b09067
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_015
crossref_primary_10_1137_23M1559336
crossref_primary_10_1016_j_cej_2023_146384
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123269
crossref_primary_10_1016_j_rineng_2022_100349
crossref_primary_10_1021_acs_jpcc_8b04257
crossref_primary_10_1016_j_cej_2017_08_081
crossref_primary_10_1080_15567265_2016_1256007
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119676
crossref_primary_10_1021_acs_langmuir_0c00915
crossref_primary_10_1021_acs_langmuir_2c03029
crossref_primary_10_1016_j_isci_2024_111039
crossref_primary_10_1021_acsnano_4c17632
crossref_primary_10_1002_adma_201908008
crossref_primary_10_1016_j_enbuild_2020_110315
crossref_primary_10_1002_sstr_202000028
crossref_primary_10_1039_C6TA08231A
crossref_primary_10_1021_acsami_3c17293
crossref_primary_10_1021_acsami_2c00401
crossref_primary_10_1021_acsami_5b02376
crossref_primary_10_1016_j_apenergy_2018_03_178
crossref_primary_10_1038_srep40300
crossref_primary_10_1016_j_cej_2022_139656
crossref_primary_10_1016_j_joule_2017_11_010
crossref_primary_10_1021_acs_langmuir_5b01762
crossref_primary_10_1002_smll_202304037
crossref_primary_10_1016_j_joule_2019_08_005
Cites_doi 10.1063/1.3553782
10.1016/j.apsusc.2013.10.188
10.1126/science.291.5504.633
10.1098/rspa.1991.0002
10.1038/ncomms1630
10.1039/c2sm25502b
10.1515/zpch-1926-11927
10.1146/annurev.matsci.38.060407.132434
10.1021/la304389s
10.1021/la9047424
10.1038/nmat3545
10.1039/c1sm06219k
10.1073/pnas.1210770110
10.1021/la300609f
10.1243/09576500260049034
10.1115/1.4003742
10.1021/nn300183d
10.1063/1.3560443
10.1021/la301618h
10.1002/anie.201007262
10.1016/0029-5493(95)01125-0
10.1016/0017-9310(73)90062-8
10.1063/1.3200951
10.1016/j.nucengdes.2008.02.016
10.1021/la801092y
10.1063/1.3666818
10.1021/nn304250e
10.1021/la101845t
10.1063/1.3460275
10.1021/nl060644q
10.1016/j.ijheatmasstransfer.2013.01.077
10.1002/adma.201303065
10.1557/mrs.2013.103
10.1021/la104600x
10.1016/S0029-5493(98)00164-2
10.1038/nphys2980
10.1021/nn205052a
10.1126/science.1148326
10.1021/la3013987
10.1038/srep02515
10.1016/0021-9797(77)90052-2
10.1016/S0029-5493(97)00184-2
10.1021/la0634802
10.1021/la302599n
10.1038/35102108
10.1103/PhysRevLett.103.184501
10.1063/1.4756800
10.1016/j.ijheatmasstransfer.2014.09.080
10.1021/la049329e
10.1021/nl4037092
10.1038/ncomms3517
10.1021/la304264g
10.1016/j.desal.2007.01.067
10.1038/nmat2994
10.1038/nmat3228
10.1002/adfm.201300418
10.1038/nmat924
10.1039/B811945G
10.1006/jcis.2001.8156
10.1016/0017-9310(69)90174-4
10.1021/la501063j
10.1038/srep01988
10.1140/epje/i2007-10235-y
10.1016/j.crhy.2006.10.020
10.1021/nn404707j
10.1002/adma.201204660
10.1063/1.4886798
10.1039/b923967g
10.1021/nl303835d
10.1002/adfm.201101302
10.1080/15567265.2013.862889
10.1021/jz500798m
10.1017/S0022112099005844
10.1088/0957-4484/22/29/292001
10.1115/1.4024597
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
F1W
H95
L.G
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn505716b
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 81
ExternalDocumentID 25482594
10_1021_nn505716b
a333653195
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
F1W
H95
L.G
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a447t-236b0f7e00e6fb8a5e90052f47e77b31054e30820e43f506682d42882c4e4f893
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 23:40:15 EDT 2025
Fri Jul 11 09:35:09 EDT 2025
Fri Jul 11 02:44:04 EDT 2025
Thu Apr 03 07:00:34 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Tue Jul 01 01:33:46 EDT 2025
Thu Aug 27 13:42:49 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords nanostructure
heterogeneous wettability
dropwise condensation
filmwise condensation
heat transfer enhancement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a447t-236b0f7e00e6fb8a5e90052f47e77b31054e30820e43f506682d42882c4e4f893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25482594
PQID 1652416778
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1762059480
proquest_miscellaneous_1694969230
proquest_miscellaneous_1652416778
pubmed_primary_25482594
crossref_primary_10_1021_nn505716b
crossref_citationtrail_10_1021_nn505716b
acs_journals_10_1021_nn505716b
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-27
PublicationDateYYYYMMDD 2015-01-27
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Castillo J. E. (ref66/cit66) 2015; 80
Varanasi K. K. (ref38/cit38) 2009; 95
Chandra S. (ref71/cit71) 1991; 432
Boreyko J. B. (ref1/cit1) 2013; 61
Miljkovic N. (ref59/cit59) 2013; 135
Rykaczewski K. (ref7/cit7) 2011; 7
Kim S. (ref16/cit16) 2011; 133
Humplik T. (ref5/cit5) 2011; 22
Mayama H. (ref64/cit64) 2011; 27
Miljkovic N. (ref73/cit73) 2013; 4
Ölçeroğlu E. (ref67/cit67) 2014; 30
Patankar N. A. (ref43/cit43) 2004; 20
Herranz L. E. (ref69/cit69) 1998; 183
Wang J. (ref42/cit42) 2008; 24
Maitra T. (ref77/cit77) 2013; 14
Torresin D. (ref27/cit27) 2012; 29
Lafuma A. (ref45/cit45) 2003; 2
Rose J. (ref18/cit18) 2002; 216
Dehbi A. (ref3/cit3) 1997; 177
Cheng J. T. (ref26/cit26) 2012; 101
Volmer M. (ref55/cit55) 1926; 119
Bormashenko E. (ref41/cit41) 2007; 23
Ganguli A. (ref70/cit70) 2008; 238
Paxson A. T. (ref22/cit22) 2014; 26
Chen X. (ref30/cit30) 2013; 3
Daniel S. (ref9/cit9) 2001; 291
Zhang T. (ref35/cit35) 2011; 50
Patankar N. A. (ref44/cit44) 2010; 26
Lo C. W. (ref29/cit29) 2013; 24
Kashchiev D. (ref36/cit36) 2000
Moulinet S. (ref40/cit40) 2007; 24
Liu Y. (ref10/cit10) 2014; 10
Quéré D. (ref58/cit58) 2008; 38
Parker A. R. (ref53/cit53) 2001; 414
Oliver J. (ref56/cit56) 1977; 59
Enright R. (ref62/cit62) 2014; 18
Miljkovic N. (ref23/cit23) 2012; 13
Rafiee J. (ref24/cit24) 2012; 11
Kim H.-Y. (ref19/cit19) 2002; 247
Dorrer C. (ref48/cit48) 2009; 5
Bocquet L. (ref21/cit21) 2011; 10
Yao C.-W. (ref52/cit52) 2014; 290
Peterson P. (ref68/cit68) 1996; 162
Wisdom K. M. (ref14/cit14) 2013; 110
Neelesh A. P. (ref49/cit49) 2010; 6
Lee A. (ref8/cit8) 2012; 28
Jung S. (ref76/cit76) 2012; 3
Mikic B. (ref15/cit15) 1969; 12
Liu T. (ref32/cit32) 2010; 26
Tian J. (ref20/cit20) 2014; 5
Graham C. (ref50/cit50) 1973; 16
Boreyko J. B. (ref60/cit60) 2011; 99
Rykaczewski K. (ref65/cit65) 2012; 6
Khawaji A. D. (ref4/cit4) 2008; 221
Xiao R. (ref31/cit31) 2013; 3
Feng J. (ref13/cit13) 2012; 28
Rykaczewski K. (ref47/cit47) 2012; 29
Zhai L. (ref57/cit57) 2006; 6
Boreyko J. B. (ref11/cit11) 2009; 103
Azimi G. (ref33/cit33) 2013; 12
Miljkovic N. (ref39/cit39) 2012; 6
Rykaczewski K. (ref78/cit78) 2011; 98
Miljkovic N. (ref74/cit74) 2013; 7
Rykaczewski K. (ref51/cit51) 2012; 28
Mishchenko L. (ref54/cit54) 2013; 23
Carey V. P. (ref37/cit37) 2007
Dimitrakopoulos P. (ref17/cit17) 1999; 395
Enright R. (ref46/cit46) 2012; 28
Wang F.-C. (ref72/cit72) 2011; 98
Dietz C. (ref2/cit2) 2010; 97
Beysens D. (ref6/cit6) 2006; 7
Rykaczewski K. (ref12/cit12) 2012; 8
He M. (ref28/cit28) 2013; 25
Miljkovic N. (ref61/cit61) 2013; 38
Tuteja A. (ref63/cit63) 2007; 318
Chen X. M. (ref34/cit34) 2011; 21
Anderson D. M. (ref25/cit25) 2012; 6
Miljkovic N. (ref75/cit75) 2014; 105
References_xml – volume: 98
  start-page: 053112
  year: 2011
  ident: ref72/cit72
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3553782
– volume: 290
  start-page: 59
  year: 2014
  ident: ref52/cit52
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.10.188
– volume: 291
  start-page: 633
  year: 2001
  ident: ref9/cit9
  publication-title: Science
  doi: 10.1126/science.291.5504.633
– volume: 432
  start-page: 13
  year: 1991
  ident: ref71/cit71
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1991.0002
– volume: 3
  start-page: 615
  year: 2012
  ident: ref76/cit76
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1630
– volume: 8
  start-page: 8786
  year: 2012
  ident: ref12/cit12
  publication-title: Soft Matter
  doi: 10.1039/c2sm25502b
– volume: 119
  start-page: 277
  year: 1926
  ident: ref55/cit55
  publication-title: Z. Phys. Chem. (Leipzig)
  doi: 10.1515/zpch-1926-11927
– volume: 38
  start-page: 71
  year: 2008
  ident: ref58/cit58
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.38.060407.132434
– volume: 29
  start-page: 840
  year: 2012
  ident: ref27/cit27
  publication-title: Langmuir
  doi: 10.1021/la304389s
– volume: 26
  start-page: 8941
  year: 2010
  ident: ref44/cit44
  publication-title: Langmuir
  doi: 10.1021/la9047424
– volume: 12
  start-page: 315
  year: 2013
  ident: ref33/cit33
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3545
– volume: 7
  start-page: 8749
  year: 2011
  ident: ref7/cit7
  publication-title: Soft Matter
  doi: 10.1039/c1sm06219k
– volume: 110
  start-page: 7992
  year: 2013
  ident: ref14/cit14
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1210770110
– volume: 28
  start-page: 6067
  year: 2012
  ident: ref13/cit13
  publication-title: Langmuir
  doi: 10.1021/la300609f
– volume: 216
  start-page: 115
  year: 2002
  ident: ref18/cit18
  publication-title: Proc. Inst. Mech. Eng., Part A
  doi: 10.1243/09576500260049034
– volume: 133
  start-page: 081502
  year: 2011
  ident: ref16/cit16
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4003742
– volume: 6
  start-page: 3262
  year: 2012
  ident: ref25/cit25
  publication-title: ACS Nano
  doi: 10.1021/nn300183d
– volume-title: Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
  year: 2007
  ident: ref37/cit37
– volume: 98
  start-page: 093106
  year: 2011
  ident: ref78/cit78
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3560443
– volume: 28
  start-page: 7720
  year: 2012
  ident: ref51/cit51
  publication-title: Langmuir
  doi: 10.1021/la301618h
– volume: 50
  start-page: 5311
  year: 2011
  ident: ref35/cit35
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201007262
– volume: 162
  start-page: 301
  year: 1996
  ident: ref68/cit68
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(95)01125-0
– volume: 16
  start-page: 337
  year: 1973
  ident: ref50/cit50
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(73)90062-8
– volume: 95
  start-page: 094101
  year: 2009
  ident: ref38/cit38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3200951
– volume: 238
  start-page: 2328
  year: 2008
  ident: ref70/cit70
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2008.02.016
– volume: 24
  start-page: 10174
  year: 2008
  ident: ref42/cit42
  publication-title: Langmuir
  doi: 10.1021/la801092y
– volume: 99
  start-page: 234105
  year: 2011
  ident: ref60/cit60
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3666818
– volume: 6
  start-page: 9326
  year: 2012
  ident: ref65/cit65
  publication-title: ACS Nano
  doi: 10.1021/nn304250e
– volume: 26
  start-page: 14835
  year: 2010
  ident: ref32/cit32
  publication-title: Langmuir
  doi: 10.1021/la101845t
– volume: 97
  start-page: 033104
  year: 2010
  ident: ref2/cit2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3460275
– volume: 6
  start-page: 1213
  year: 2006
  ident: ref57/cit57
  publication-title: Nano Lett.
  doi: 10.1021/nl060644q
– volume: 61
  start-page: 409
  year: 2013
  ident: ref1/cit1
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.01.077
– volume-title: Nucleation: Basic Theory with Applications
  year: 2000
  ident: ref36/cit36
– volume: 26
  start-page: 418
  year: 2014
  ident: ref22/cit22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303065
– volume: 38
  start-page: 397
  year: 2013
  ident: ref61/cit61
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2013.103
– volume: 27
  start-page: 3550
  year: 2011
  ident: ref64/cit64
  publication-title: Langmuir
  doi: 10.1021/la104600x
– volume: 183
  start-page: 133
  year: 1998
  ident: ref69/cit69
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(98)00164-2
– volume: 10
  start-page: 515
  year: 2014
  ident: ref10/cit10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2980
– volume: 6
  start-page: 1776
  year: 2012
  ident: ref39/cit39
  publication-title: ACS Nano
  doi: 10.1021/nn205052a
– volume: 318
  start-page: 1618
  year: 2007
  ident: ref63/cit63
  publication-title: Science
  doi: 10.1126/science.1148326
– volume: 28
  start-page: 10183
  year: 2012
  ident: ref8/cit8
  publication-title: Langmuir
  doi: 10.1021/la3013987
– volume: 3
  start-page: 2515
  year: 2013
  ident: ref30/cit30
  publication-title: Sci. Rep.
  doi: 10.1038/srep02515
– volume: 59
  start-page: 568
  year: 1977
  ident: ref56/cit56
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(77)90052-2
– volume: 177
  start-page: 41
  year: 1997
  ident: ref3/cit3
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(97)00184-2
– volume: 23
  start-page: 4378
  year: 2007
  ident: ref41/cit41
  publication-title: Langmuir
  doi: 10.1021/la0634802
– volume: 28
  start-page: 14424
  year: 2012
  ident: ref46/cit46
  publication-title: Langmuir
  doi: 10.1021/la302599n
– volume: 414
  start-page: 33
  year: 2001
  ident: ref53/cit53
  publication-title: Nature
  doi: 10.1038/35102108
– volume: 103
  start-page: 184501
  year: 2009
  ident: ref11/cit11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.184501
– volume: 101
  start-page: 131909
  year: 2012
  ident: ref26/cit26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4756800
– volume: 80
  start-page: 759
  year: 2015
  ident: ref66/cit66
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2014.09.080
– volume: 20
  start-page: 7097
  year: 2004
  ident: ref43/cit43
  publication-title: Langmuir
  doi: 10.1021/la049329e
– volume: 14
  start-page: 172
  year: 2013
  ident: ref77/cit77
  publication-title: Nano Lett.
  doi: 10.1021/nl4037092
– volume: 4
  start-page: 2517
  year: 2013
  ident: ref73/cit73
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3517
– volume: 29
  start-page: 881
  year: 2012
  ident: ref47/cit47
  publication-title: Langmuir
  doi: 10.1021/la304264g
– volume: 221
  start-page: 47
  year: 2008
  ident: ref4/cit4
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.01.067
– volume: 10
  start-page: 334
  year: 2011
  ident: ref21/cit21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2994
– volume: 11
  start-page: 217
  year: 2012
  ident: ref24/cit24
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3228
– volume: 23
  start-page: 4577
  year: 2013
  ident: ref54/cit54
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300418
– volume: 2
  start-page: 457
  year: 2003
  ident: ref45/cit45
  publication-title: Nat. Mater.
  doi: 10.1038/nmat924
– volume: 5
  start-page: 51
  year: 2009
  ident: ref48/cit48
  publication-title: Soft Matter
  doi: 10.1039/B811945G
– volume: 247
  start-page: 372
  year: 2002
  ident: ref19/cit19
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2001.8156
– volume: 12
  start-page: 1311
  year: 1969
  ident: ref15/cit15
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(69)90174-4
– volume: 30
  start-page: 7556
  year: 2014
  ident: ref67/cit67
  publication-title: Langmuir
  doi: 10.1021/la501063j
– volume: 3
  start-page: 1988
  year: 2013
  ident: ref31/cit31
  publication-title: Sci. Rep.
  doi: 10.1038/srep01988
– volume: 24
  start-page: 251
  year: 2007
  ident: ref40/cit40
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2007-10235-y
– volume: 24
  start-page: 1211
  year: 2013
  ident: ref29/cit29
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1082
  year: 2006
  ident: ref6/cit6
  publication-title: C. R. Phys.
  doi: 10.1016/j.crhy.2006.10.020
– volume: 7
  start-page: 11043
  year: 2013
  ident: ref74/cit74
  publication-title: ACS Nano
  doi: 10.1021/nn404707j
– volume: 25
  start-page: 2291
  year: 2013
  ident: ref28/cit28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204660
– volume: 105
  start-page: 013111
  year: 2014
  ident: ref75/cit75
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4886798
– volume: 6
  start-page: 1613
  year: 2010
  ident: ref49/cit49
  publication-title: Soft Matter
  doi: 10.1039/b923967g
– volume: 13
  start-page: 179
  year: 2012
  ident: ref23/cit23
  publication-title: Nano Lett.
  doi: 10.1021/nl303835d
– volume: 21
  start-page: 4617
  year: 2011
  ident: ref34/cit34
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101302
– volume: 18
  start-page: 223
  year: 2014
  ident: ref62/cit62
  publication-title: Nanoscale Microscale Thermophys. Eng.
  doi: 10.1080/15567265.2013.862889
– volume: 5
  start-page: 2084
  year: 2014
  ident: ref20/cit20
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500798m
– volume: 395
  start-page: 181
  year: 1999
  ident: ref17/cit17
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099005844
– volume: 22
  start-page: 292001
  year: 2011
  ident: ref5/cit5
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/29/292001
– volume: 135
  start-page: 111004
  year: 2013
  ident: ref59/cit59
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4024597
SSID ssj0057876
Score 2.6253028
Snippet Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 71
SubjectTerms Animals
Biomimetics - methods
Coleoptera
Condensing
Density
Droplets
Heat transfer
Hot Temperature
Nanostructure
Nanotechnology - methods
Nucleation
Roughness
Volatilization
Wettability
Title Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface
URI http://dx.doi.org/10.1021/nn505716b
https://www.ncbi.nlm.nih.gov/pubmed/25482594
https://www.proquest.com/docview/1652416778
https://www.proquest.com/docview/1694969230
https://www.proquest.com/docview/1762059480
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELVKucCBfYfKLAcuKa7jOMkRWqoKCQ4sErfIdsZSRZuiLkLi6xknTQWCFimXRBPFy0zmjcd-Q8iFn0qtlWQeV0J4wgffi0CnXsyVChomSrl1SwP3D7LzIu5eg9cKOZ-TweeNqyxzGLoh9RJZ5hKN1-Gf5lP5u3UaJ4vUMYbGiB9K-qDvrzrXY0Y_Xc8cPJn7lfY6aZWnc4rtJG_1yVjXzedvssZFTd4ga1NcSa8LRdgkFci2yOo3tsFt0nl0a-uOjYm2u73-R3cEVGUpbQ0H7_lNc-DK4Rbbeyheit4AoC7R-27fnXWkT5OhVQZ2yEv79rnZ8aaFFDycgHDscV9qZkNgDKTVkQogdsvBVoQQhhoBXiDA0dYwEL4NEIREPMWwJOJGgLCIaHZJNRtksE9oLFOmjU25QKTFrYkNPvDDyEimmNTygNRwpJOpIYySPMfNG8lsSA7IZTkJiZnSkLtqGL2_RM9mou8F98ZfQqflTCZoGS7doTIYTPDTMkB44gjyFsnEIpYIctkCGfQXOasNyuwVqjJrDobXGGLH4vC_bh-RFYRabp-kx8NjUh0PJ3CCcGasa7k6fwGG7-wJ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELf4eBh7YDBgwEbnTTzwEnAdx04eu0LVAe3DAIm3yHbOUgWkqGk1aX895yQtDJUPKS-JLsnFPud-57N_R8h-mEljtGQB10IEIoQwiMFkQcK1jpo2zrjzUwO9vuxeidPr6LqmyfF7YVCJAp9UlEn8R3aB5lGeeyjdlGaRLCMI4d6aW-2L6V_XG56sMsgYISOMmLIIPb3VeyBb_O-BXoCVpXvpfKrqFJWKlatKbg4nY3No_z3jbHyf5mtktUaZtFWZxTpZgPwz-fiEe3CDdP_4mXbPzUQ7g9u7v4MCqM4zejwa3pcn7aEvjlst9qF4aPoLAC2L9gZ3fucjvZiMnLawSa46J5ftblCXVQiwO9Q44KE0zClgDKQzsY4g8ZPDTihQyiDciwR4EhsGInQRQpKYZxikxNwKEA7xzRZZyoc5bBOayIwZ6zIuEHdxZxOLF0IVW8k0k0bukAa2SFoPiyItM968mc6aZIccTPsitTUpua-NcTtP9OdM9L5i4pgn9GPaoSmOE5_80DkMJ_hqtBkEn0rFr8kkIpEIedkrMug9So4blPlSWcxMHQy2MeBOxO5bn_2dfOhe9s7T89_9s69kBUGYX0EZcPWNLI1HE9hDoDM2jdLCHwCQV_Rq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELf4kCZ4gH2w0cGYN-2BlxTXcZzkEQpV9wFDMCTeIts5SxU0rZpWSPz1u0vSik0MJuUl0SW52Ofc7-7snxn7EubaWqNFII1SgQohDBKweZBKY6KOS3LpKTVweqb7V-rbdXTdBIq0FgaVKPFJZVXEp1E9zn3DMNA5KAqC0x1tl9kqlevIog-7l_M_LxmfrqvIGCUjlJgzCT28lbyQK__0Qv-AlpWL6W2ynwvlqpklN-3Z1Lbd_V-8jf-v_Uu20aBNflibxyu2BMVrtv6Ag_AN619Qxp04mnhvcDu8G5TATZHz48loXJ10R7RJbj3ph-Nh-BEAWhg_HQxpBSS_nE28cbDFrnonv7r9oNleIcBuiaeBDLUVPgYhQHubmAhSShJ7FUMcW4R9kQIisxGgQh8hNElkjsFKIp0C5RHnvGUrxaiAbcZTnQvrfC4V4i_pXerwQhgnTgsjtNUttoetkjXDo8yqyrfsZIsmabH9eX9kriEnpz0ybh8T_bwQHdeMHI8JfZp3aobjhYogpoDRDF-tIwQtRJv3lEyqUo3QVzwhg16k4rpBmXe11SzUwaAbA-9UvX_usz-yF-fHvezH17PvO2wNsRhNpAxkvMtWppMZfEC8M7V7lZH_Bqh09u0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recurrent+Filmwise+and+Dropwise+Condensation+on+a+Beetle+Mimetic+Surface&rft.jtitle=ACS+nano&rft.au=Hou%2C+Youmin&rft.au=Yu%2C+Miao&rft.au=Chen%2C+Xuemei&rft.au=Wang%2C+Zuankai&rft.date=2015-01-27&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=9&rft.issue=1&rft.spage=71&rft.epage=81&rft_id=info:doi/10.1021%2Fnn505716b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon