The inhibitory receptor LAG3 affects NK cell IFN-γ production through glycolysis and the PSAT1/STAT1/IFNG pathway

We demonstrate that lymphocyte activation gene 3 (LAG3) expression is upregulated on natural killer (NK) cells during HIV infection. LAG3 inhibits glycolysis in NK cells and also upregulates PSAT1 expression to suppress activation of the STAT1/IFNG pathway, thus restricting interferon-gamma producti...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 16; no. 6; p. e0023025
Main Authors Ge, Hongchi, Guo, Nan, Liu, Yufei, Lang, Bin, Yin, Xiaowan, Yu, Xiaowen, Zhang, Zining, Fu, Yajing, Ding, Haibo, Hu, Qinghai, Han, Xiaoxu, Geng, Wenqing, Shang, Hong, Jiang, Yongjun
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 11.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate that lymphocyte activation gene 3 (LAG3) expression is upregulated on natural killer (NK) cells during HIV infection. LAG3 inhibits glycolysis in NK cells and also upregulates PSAT1 expression to suppress activation of the STAT1/IFNG pathway, thus restricting interferon-gamma production by NK cells. These results provide new clues to study the effects of LAG3 on the metabolism and functional exhaustion of NK cells and offer a potential target for the treatment of HIV.
AbstractList Natural killer (NK) cells are integral to the innate immune system and crucial for antiviral defense. NK cell activation and functional state are suppressed by inhibitory receptors. Lymphocyte activation gene 3 (LAG3) is an important inhibitory receptor, but the associated signaling pathways that regulate lymphocyte function remain to be elucidated. In addition, the effect of LAG3 on NK cell function during HIV infection and its specific mechanisms are unclear. In this study, we observed that LAG3 expression by NK cells is elevated in HIV-infected individuals and inversely correlated with CD4/CD8 ratio and CD4+ T cell count. LAG3+ NK cells produce lower levels of interferon-gamma (IFN-γ), but LAG3-Fc protein significantly enhances NK cell function. The activation of LAG3 significantly inhibits IFN-γ production and Ki67 expression by NK cells. Our transcriptome sequencing and in vitro data show for the first time that LAG3 not only regulates the transcription of MYC and several glycolysis-related enzyme genes via the PI3K/AKT/mTOR signaling pathway to inhibit glycolysis in NK cells but also suppresses the STAT1/IFNG pathway by upregulating PSAT1 expression, thus limiting IFN-γ production by NK cells via these two different pathways. Overall, these results provide new insights and identify potential targets for immunotherapy of HIV infection.Natural killer (NK) cells are integral to the innate immune system and crucial for antiviral defense. NK cell activation and functional state are suppressed by inhibitory receptors. Lymphocyte activation gene 3 (LAG3) is an important inhibitory receptor, but the associated signaling pathways that regulate lymphocyte function remain to be elucidated. In addition, the effect of LAG3 on NK cell function during HIV infection and its specific mechanisms are unclear. In this study, we observed that LAG3 expression by NK cells is elevated in HIV-infected individuals and inversely correlated with CD4/CD8 ratio and CD4+ T cell count. LAG3+ NK cells produce lower levels of interferon-gamma (IFN-γ), but LAG3-Fc protein significantly enhances NK cell function. The activation of LAG3 significantly inhibits IFN-γ production and Ki67 expression by NK cells. Our transcriptome sequencing and in vitro data show for the first time that LAG3 not only regulates the transcription of MYC and several glycolysis-related enzyme genes via the PI3K/AKT/mTOR signaling pathway to inhibit glycolysis in NK cells but also suppresses the STAT1/IFNG pathway by upregulating PSAT1 expression, thus limiting IFN-γ production by NK cells via these two different pathways. Overall, these results provide new insights and identify potential targets for immunotherapy of HIV infection.We demonstrate that lymphocyte activation gene 3 (LAG3) expression is upregulated on natural killer (NK) cells during HIV infection. LAG3 inhibits glycolysis in NK cells and also upregulates PSAT1 expression to suppress activation of the STAT1/IFNG pathway, thus restricting interferon-gamma production by NK cells. These results provide new clues to study the effects of LAG3 on the metabolism and functional exhaustion of NK cells and offer a potential target for the treatment of HIV.IMPORTANCEWe demonstrate that lymphocyte activation gene 3 (LAG3) expression is upregulated on natural killer (NK) cells during HIV infection. LAG3 inhibits glycolysis in NK cells and also upregulates PSAT1 expression to suppress activation of the STAT1/IFNG pathway, thus restricting interferon-gamma production by NK cells. These results provide new clues to study the effects of LAG3 on the metabolism and functional exhaustion of NK cells and offer a potential target for the treatment of HIV.
We demonstrate that lymphocyte activation gene 3 (LAG3) expression is upregulated on natural killer (NK) cells during HIV infection. LAG3 inhibits glycolysis in NK cells and also upregulates PSAT1 expression to suppress activation of the STAT1/IFNG pathway, thus restricting interferon-gamma production by NK cells. These results provide new clues to study the effects of LAG3 on the metabolism and functional exhaustion of NK cells and offer a potential target for the treatment of HIV.
ABSTRACT Natural killer (NK) cells are integral to the innate immune system and crucial for antiviral defense. NK cell activation and functional state are suppressed by inhibitory receptors. Lymphocyte activation gene 3 (LAG3) is an important inhibitory receptor, but the associated signaling pathways that regulate lymphocyte function remain to be elucidated. In addition, the effect of LAG3 on NK cell function during HIV infection and its specific mechanisms are unclear. In this study, we observed that LAG3 expression by NK cells is elevated in HIV-infected individuals and inversely correlated with CD4/CD8 ratio and CD4+ T cell count. LAG3+ NK cells produce lower levels of interferon-gamma (IFN-γ), but LAG3-Fc protein significantly enhances NK cell function. The activation of LAG3 significantly inhibits IFN-γ production and Ki67 expression by NK cells. Our transcriptome sequencing and in vitro data show for the first time that LAG3 not only regulates the transcription of MYC and several glycolysis-related enzyme genes via the PI3K/AKT/mTOR signaling pathway to inhibit glycolysis in NK cells but also suppresses the STAT1/IFNG pathway by upregulating PSAT1 expression, thus limiting IFN-γ production by NK cells via these two different pathways. Overall, these results provide new insights and identify potential targets for immunotherapy of HIV infection.IMPORTANCEWe demonstrate that lymphocyte activation gene 3 (LAG3) expression is upregulated on natural killer (NK) cells during HIV infection. LAG3 inhibits glycolysis in NK cells and also upregulates PSAT1 expression to suppress activation of the STAT1/IFNG pathway, thus restricting interferon-gamma production by NK cells. These results provide new clues to study the effects of LAG3 on the metabolism and functional exhaustion of NK cells and offer a potential target for the treatment of HIV.
Natural killer (NK) cells are integral to the innate immune system and crucial for antiviral defense. NK cell activation and functional state are suppressed by inhibitory receptors. Lymphocyte activation gene 3 (LAG3) is an important inhibitory receptor, but the associated signaling pathways that regulate lymphocyte function remain to be elucidated. In addition, the effect of LAG3 on NK cell function during HIV infection and its specific mechanisms are unclear. In this study, we observed that LAG3 expression by NK cells is elevated in HIV-infected individuals and inversely correlated with CD4/CD8 ratio and CD4 + T cell count. LAG3+ NK cells produce lower levels of interferon-gamma (IFN-γ), but LAG3-Fc protein significantly enhances NK cell function. The activation of LAG3 significantly inhibits IFN-γ production and Ki67 expression by NK cells. Our transcriptome sequencing and in vitro data show for the first time that LAG3 not only regulates the transcription of MYC and several glycolysis-related enzyme genes via the PI3K/AKT/mTOR signaling pathway to inhibit glycolysis in NK cells but also suppresses the STAT1/IFNG pathway by upregulating PSAT1 expression, thus limiting IFN-γ production by NK cells via these two different pathways. Overall, these results provide new insights and identify potential targets for immunotherapy of HIV infection.
Natural killer (NK) cells are integral to the innate immune system and crucial for antiviral defense. NK cell activation and functional state are suppressed by inhibitory receptors. Lymphocyte activation gene 3 (LAG3) is an important inhibitory receptor, but the associated signaling pathways that regulate lymphocyte function remain to be elucidated. In addition, the effect of LAG3 on NK cell function during HIV infection and its specific mechanisms are unclear. In this study, we observed that LAG3 expression by NK cells is elevated in HIV-infected individuals and inversely correlated with CD4/CD8 ratio and CD4+ T cell count. LAG3+ NK cells produce lower levels of interferon-gamma (IFN-γ), but LAG3-Fc protein significantly enhances NK cell function. The activation of LAG3 significantly inhibits IFN-γ production and Ki67 expression by NK cells. Our transcriptome sequencing and in vitro data show for the first time that LAG3 not only regulates the transcription of MYC and several glycolysis-related enzyme genes via the PI3K/AKT/mTOR signaling pathway to inhibit glycolysis in NK cells but also suppresses the STAT1/IFNG pathway by upregulating PSAT1 expression, thus limiting IFN-γ production by NK cells via these two different pathways. Overall, these results provide new insights and identify potential targets for immunotherapy of HIV infection.IMPORTANCEWe demonstrate that lymphocyte activation gene 3 (LAG3) expression is upregulated on natural killer (NK) cells during HIV infection. LAG3 inhibits glycolysis in NK cells and also upregulates PSAT1 expression to suppress activation of the STAT1/IFNG pathway, thus restricting interferon-gamma production by NK cells. These results provide new clues to study the effects of LAG3 on the metabolism and functional exhaustion of NK cells and offer a potential target for the treatment of HIV.
Natural killer (NK) cells are integral to the innate immune system and crucial for antiviral defense. NK cell activation and functional state are suppressed by inhibitory receptors. Lymphocyte activation gene 3 (LAG3) is an important inhibitory receptor, but the associated signaling pathways that regulate lymphocyte function remain to be elucidated. In addition, the effect of LAG3 on NK cell function during HIV infection and its specific mechanisms are unclear. In this study, we observed that LAG3 expression by NK cells is elevated in HIV-infected individuals and inversely correlated with CD4/CD8 ratio and CD4 T cell count. LAG3+ NK cells produce lower levels of interferon-gamma (IFN-γ), but LAG3-Fc protein significantly enhances NK cell function. The activation of LAG3 significantly inhibits IFN-γ production and Ki67 expression by NK cells. Our transcriptome sequencing and data show for the first time that LAG3 not only regulates the transcription of MYC and several glycolysis-related enzyme genes via the PI3K/AKT/mTOR signaling pathway to inhibit glycolysis in NK cells but also suppresses the STAT1/IFNG pathway by upregulating PSAT1 expression, thus limiting IFN-γ production by NK cells via these two different pathways. Overall, these results provide new insights and identify potential targets for immunotherapy of HIV infection. We demonstrate that lymphocyte activation gene 3 (LAG3) expression is upregulated on natural killer (NK) cells during HIV infection. LAG3 inhibits glycolysis in NK cells and also upregulates PSAT1 expression to suppress activation of the STAT1/IFNG pathway, thus restricting interferon-gamma production by NK cells. These results provide new clues to study the effects of LAG3 on the metabolism and functional exhaustion of NK cells and offer a potential target for the treatment of HIV.
Author Yu, Xiaowen
Zhang, Zining
Geng, Wenqing
Ge, Hongchi
Lang, Bin
Han, Xiaoxu
Liu, Yufei
Yin, Xiaowan
Hu, Qinghai
Jiang, Yongjun
Guo, Nan
Ding, Haibo
Fu, Yajing
Shang, Hong
Author_xml – sequence: 1
  givenname: Hongchi
  orcidid: 0009-0005-4306-6071
  surname: Ge
  fullname: Ge, Hongchi
– sequence: 2
  givenname: Nan
  orcidid: 0009-0005-0242-8769
  surname: Guo
  fullname: Guo, Nan
– sequence: 3
  givenname: Yufei
  orcidid: 0009-0007-7759-2875
  surname: Liu
  fullname: Liu, Yufei
– sequence: 4
  givenname: Bin
  surname: Lang
  fullname: Lang, Bin
– sequence: 5
  givenname: Xiaowan
  surname: Yin
  fullname: Yin, Xiaowan
– sequence: 6
  givenname: Xiaowen
  surname: Yu
  fullname: Yu, Xiaowen
– sequence: 7
  givenname: Zining
  surname: Zhang
  fullname: Zhang, Zining
– sequence: 8
  givenname: Yajing
  surname: Fu
  fullname: Fu, Yajing
– sequence: 9
  givenname: Haibo
  surname: Ding
  fullname: Ding, Haibo
– sequence: 10
  givenname: Qinghai
  surname: Hu
  fullname: Hu, Qinghai
– sequence: 11
  givenname: Xiaoxu
  surname: Han
  fullname: Han, Xiaoxu
– sequence: 12
  givenname: Wenqing
  surname: Geng
  fullname: Geng, Wenqing
– sequence: 13
  givenname: Hong
  orcidid: 0000-0001-5333-8943
  surname: Shang
  fullname: Shang, Hong
– sequence: 14
  givenname: Yongjun
  orcidid: 0000-0002-8606-3971
  surname: Jiang
  fullname: Jiang, Yongjun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40298450$$D View this record in MEDLINE/PubMed
BookMark eNptkU1v1DAQhi1URMvSI1fkI0JK6898nNCqosuKVUHqcrYcZ7LxKomDnYDyu_o_-pvwdkvVSvgwHs28fjya9y066V0PCL2n5IJSll92pXUXhDBOEiZfoTNGJUkySenJs_wUnYewJ_FwTnNO3qBTQViRC0nOkN82gG3f2NKOzs_Yg4EhZnizXHGs6xrMGPDNN2ygbfH6-ia5v8ODd9VkRut6PDbeTbsG79rZuHYONmDdV7EM-Mftcksvb7eHGB-u8KDH5o-e36HXtW4DnD_eC_Tz-sv26muy-b5aXy03iRYiGxNKBBWCFpnMaWmyQmqmSV4VZap5LgrCGaUEqKiIMCBLJuqccDBZSoysZFXzBVofuZXTezV422k_K6eteig4v1Paj9a0oJhgKcjKiKwmgtfxh6xOOcl5BpCXAiLr85E1TGUHlYF-9Lp9AX3Z6W2jdu63otEGztI8Ej4-Erz7NUEYVWfDYam6BzcFxWmRplSK6NICfTpKdeiY2rvJ93FPihJ1MF0dTFcPpismo_jD88meRvpncRQkR4HxLgQP9ZPk_8C_nri21w
Cites_doi 10.1172/JCI16603
10.1002/1521-4141(2001010)31:10<2885::AID-IMMU2885>3.0.CO;2-2
10.1371/journal.ppat.1007429
10.1101/405134
10.1172/JCI125916
10.1016/s1074-7613(03)00264-4
10.3389/conf.fimmu.2015.05.00164
10.1126/science.272.5260.405
10.1182/blood.V97.10.3146
10.1126/scisignal.2001617
10.1038/ng1097
10.1038/s41388-020-1160-4
10.1016/j.coi.2012.04.011
10.1002/eji.200425797
10.1097/ACI.0000000000000011
10.1158/2159-8290.CD-18-0367
10.4049/jimmunol.1402176
10.4049/jimmunol.1100714
10.1101/2020.01.31.928200
10.1136/jitc-2020-001014
10.4049/jimmunol.1501783
10.1016/j.celrep.2019.03.004
10.1016/j.coi.2017.11.003
10.1080/2162402X.2016.1186314
10.1158/0008-5472.CAN-11-1620
10.3389/fonc.2018.00160
10.1084/jem.171.5.1393
10.4049/jimmunol.169.10.5392
10.1172/jci.insight.95128
10.1016/j.immuni.2007.03.017
10.3389/fimmu.2020.00167
10.3389/fimmu.2019.00835
10.1038/ni1138
10.1016/j.smim.2019.101305
10.3389/fimmu.2018.02341
10.1016/j.cell.2017.07.029
10.1186/s12967-023-04667-6
10.1186/s13075-017-1309-x
10.3389/fimmu.2017.00330
10.4049/jimmunol.1401558
10.1038/nrm2882
10.1002/jcp.28215
10.1038/s41392-020-0147-5
ContentType Journal Article
Copyright Copyright © 2025 Ge et al.
Copyright © 2025 Ge et al. 2025 Ge et al.
Copyright_xml – notice: Copyright © 2025 Ge et al.
– notice: Copyright © 2025 Ge et al. 2025 Ge et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mbio.00230-25
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Dandekar, Satya
Editor_xml – sequence: 1
  givenname: Satya
  surname: Dandekar
  fullname: Dandekar, Satya
ExternalDocumentID oai_doaj_org_article_2426e5dc47f043f6a37f630837ee8b4e
PMC12153268
mbio00230-25
40298450
10_1128_mbio_00230_25
Genre Journal Article
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
M48
ID FETCH-LOGICAL-a447t-104144197581bc795a2a08d9b6a3849032110e14d04ce5b24f803ec760c5d5df3
IEDL.DBID M48
ISSN 2150-7511
IngestDate Wed Aug 27 01:20:45 EDT 2025
Thu Aug 21 18:24:34 EDT 2025
Wed Jul 02 04:44:41 EDT 2025
Thu Jun 12 01:38:34 EDT 2025
Sat Jun 14 01:31:04 EDT 2025
Thu Jul 03 08:35:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords IFN-γ
LAG3
HIV
STAT1
NK
glycolysis
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a447t-104144197581bc795a2a08d9b6a3849032110e14d04ce5b24f803ec760c5d5df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
Hongchi Ge, Nan Guo, Yufei Liu, and Bin Lang contributed equally to this article. The author order was determined by drawing straws.
ORCID 0009-0005-0242-8769
0009-0007-7759-2875
0009-0005-4306-6071
0000-0001-5333-8943
0000-0002-8606-3971
OpenAccessLink https://doaj.org/article/2426e5dc47f043f6a37f630837ee8b4e
PMID 40298450
PQID 3196615400
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_2426e5dc47f043f6a37f630837ee8b4e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12153268
proquest_miscellaneous_3196615400
asm2_journals_10_1128_mbio_00230_25
pubmed_primary_40298450
crossref_primary_10_1128_mbio_00230_25
PublicationCentury 2000
PublicationDate 2025-06-11
PublicationDateYYYYMMDD 2025-06-11
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2025
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
Monica VG (e_1_3_4_34_2) 2010; 344
e_1_3_4_11_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
Dupuis, S, Jouanguy, E, Al-Hajjar, S, Fieschi, C, Al-Mohsen, IZ, Al-Jumaah, S, Yang, K, Chapgier, A, Eidenschenk, C, Eid, P, Ghonaium, AA, Tufenkeji, H, Frayha, H, Al-Gazlan, S, Al-Rayes, H, Schreiber, RD, Gresser, I, Casanova, J-L (B41) 2003; 33
Tian, X, Zhang, A, Qiu, C, Wang, W, Yang, Y, Qiu, C, Liu, A, Zhu, L, Yuan, S, Hu, H, Wang, W, Wei, Q, Zhang, X, Xu, J (B8) 2015; 194
Putz, EM, Majoros, A, Gotthardt, D, Prchal-Murphy, M, Zebedin-Brandl, EM, Fux, DA, Schlattl, A, Schreiber, RD, Carotta, S, Müller, M, Gerner, C, Decker, T, Sexl, V (B39) 2016; 5
Miyazaki, T, Dierich, A, Benoist, C, Mathis, D (B16) 1996; 272
Monica, VG, Charles, GD (B33) 2010; 344
Natalia, T, Juan, H, Julie, L, Jennifer, J, Joshua, K, Maria, R, Keith, F (B20) 2015; 6
Ruffo, E, Wu, RC, Bruno, TC, Workman, CJ, Vignali, DAA (B6) 2019; 42
Narayanan, S, Ahl, PJ, Au, VB, Kaliaperumal, N, Connolly, JE (B18) 2020
Patsoukis, N, Weaver, JD, Strauss, L, Herbel, C, Seth, P, Boussiotis, VA (B25) 2017; 8
Mocikat, R, Braumüller, H, Gumy, A, Egeter, O, Ziegler, H, Reusch, U, Bubeck, A, Louis, J, Mailhammer, R, Riethmüller, G, Koszinowski, U, Röcken, M (B3) 2003; 19
Donnelly, RP, Loftus, RM, Keating, SE, Liou, KT, Biron, CA, Gardiner, CM, Finlay, DK (B26) 2014; 193
Lesinski, GB, Anghelina, M, Zimmerer, J, Bakalakos, T, Badgwell, B, Parihar, R, Hu, Y, Becknell, B, Abood, G, Chaudhury, AR, Magro, C, Durbin, J, Carson, WE (B37) 2003; 112
Keating, SE, Zaiatz-Bittencourt, V, Loftus, RM, Keane, C, Brennan, K, Finlay, DK, Gardiner, CM (B22) 2016; 196
Iouzalen, N, Andreae, S, Hannier, S, Triebel, F (B34) 2001; 31
Bettini, M, Szymczak-Workman, AL, Forbes, K, Castellaw, AH, Selby, M, Pan, X, Drake, CG, Korman, AJ, Vignali, DAA (B12) 2011; 187
Mah, AY, Rashidi, A, Keppel, MP, Saucier, N, Moore, EK, Alinger, JB, Tripathy, SK, Agarwal, SK, Jeng, EK, Wong, HC, Miller, JS, Fehniger, TA, Mace, EM, French, AR, Cooper, MA (B23) 2017; 2
Triebel, F, Jitsukawa, S, Baixeras, E, Roman-Roman, S, Genevee, C, Viegas-Pequignot, E, Hercend, T (B5) 1990; 171
Merino, A, Zhang, B, Dougherty, P, Luo, X, Wang, J, Blazar, BR, Miller, JS, Cichocki, F (B17) 2019; 129
Lu, L, Ikizawa, K, Hu, D, Werneck, MBF, Wucherpfennig, KW, Cantor, H (B1) 2007; 26
Kulkarni, S, Sitaru, C, Jakus, Z, Anderson, KE, Damoulakis, G, Davidson, K, Hirose, M, Juss, J, Oxley, D, Chessa, TAM, Ramadani, F, Guillou, H, Segonds-Pichon, A, Fritsch, A, Jarvis, GE, Okkenhaug, K, Ludwig, R, Zillikens, D, Mocsai, A, Vanhaesebroeck, B, Stephens, LR, Hawkins, PT (B30) 2011; 4
Robbins, SH, Tessmer, MS, Van Kaer, L, Brossay, L (B38) 2005; 35
Cooper, MA, Fehniger, TA, Turner, SC, Chen, KS, Ghaheri, BA, Ghayur, T, Carson, WE, Caligiuri, MA (B21) 2001; 97
Previte, DM, Martins, CP, O’Connor, EC, Marre, ML, Coudriet, GM, Beck, NW, Menk, AV, Wright, RH, Tse, HM, Delgoffe, GM, Piganelli, JD (B27) 2019; 27
Vanhaesebroeck, B, Guillermet-Guibert, J, Graupera, M, Bilanges, B (B31) 2010; 11
Martín-Fontecha, A, Thomsen, LL, Brett, S, Gerard, C, Lipp, M, Lanzavecchia, A, Sallusto, F (B2) 2004; 5
Lavon, I, Heli, C, Brill, L, Charbit, H, Vaknin-Dembinsky, A (B13) 2019; 10
Wei, SC, Duffy, CR, Allison, JP (B9) 2018; 8
Boudreau, JE, Hsu, KC (B4) 2018; 50
Wang, H, Cui, L, Li, D, Fan, M, Liu, Z, Liu, C, Pan, S, Zhang, L, Zhang, H, Zhao, Y (B36) 2020; 5
Graydon, CG, Balasko, AL, Fowke, KR (B7) 2019; 15
B19
Jouanguy, E, Gineau, L, Cottineau, J, Béziat, V, Vivier, E, Casanova, J-L (B40) 2013; 13
Chan, Y-C, Chang, Y-C, Chuang, H-H, Yang, Y-C, Lin, Y-F, Huang, M-S, Hsiao, M, Yang, C-J, Hua, K-T (B15) 2020; 39
Boisson-Dupuis, S, Kong, X-F, Okada, S, Cypowyj, S, Puel, A, Abel, L, Casanova, J-L (B42) 2012; 24
Fruman, DA, Chiu, H, Hopkins, BD, Bagrodia, S, Cantley, LC, Abraham, RT (B28) 2017; 170
Maruhashi, T, Sugiura, D, Okazaki, I-M, Okazaki, T (B35) 2020; 8
Workman, CJ, Dugger, KJ, Vignali, DAA (B32) 2002; 169
Koundouros, N, Poulogiannis, G (B24) 2018; 8
Wang, D, Zhou, W, Chen, J, Wei, W (B29) 2019; 234
Nakachi, S, Sumitomo, S, Tsuchida, Y, Tsuchiya, H, Kono, M, Kato, R, Sakurai, K, Hanata, N, Nagafuchi, Y, Tateishi, S, Kanda, H, Okamura, T, Yamamoto, K, Fujio, K (B14) 2017; 19
Lang, B, Wang, M, Zhang, Z, Fu, Y, Han, X, Hu, Q, Ding, H, Shang, H, Jiang, Y (B44) 2023; 21
Khan, M, Arooj, S, Wang, H (B10) 2020; 11
Woo, S-R, Turnis, ME, Goldberg, MV, Bankoti, J, Selby, M, Nirschl, CJ, Bettini, ML, Gravano, DM, Vogel, P, Liu, CL, Tangsombatvisit, S, Grosso, JF, Netto, G, Smeltzer, MP, Chaux, A, Utz, PJ, Workman, CJ, Pardoll, DM, Korman, AJ, Drake, CG, Vignali, DAA (B11) 2012; 72
Yin, X, Liu, T, Wang, Z, Ma, M, Lei, J, Zhang, Z, Fu, S, Fu, Y, Hu, Q, Ding, H, Han, X, Xu, J, Shang, H, Jiang, Y (B43) 2018; 9
References_xml – ident: e_1_3_4_38_2
  doi: 10.1172/JCI16603
– ident: e_1_3_4_35_2
  doi: 10.1002/1521-4141(2001010)31:10<2885::AID-IMMU2885>3.0.CO;2-2
– ident: e_1_3_4_8_2
  doi: 10.1371/journal.ppat.1007429
– ident: e_1_3_4_20_2
  doi: 10.1101/405134
– ident: e_1_3_4_18_2
  doi: 10.1172/JCI125916
– ident: e_1_3_4_4_2
  doi: 10.1016/s1074-7613(03)00264-4
– ident: e_1_3_4_21_2
  doi: 10.3389/conf.fimmu.2015.05.00164
– ident: e_1_3_4_17_2
  doi: 10.1126/science.272.5260.405
– ident: e_1_3_4_22_2
  doi: 10.1182/blood.V97.10.3146
– ident: e_1_3_4_31_2
  doi: 10.1126/scisignal.2001617
– ident: e_1_3_4_42_2
  doi: 10.1038/ng1097
– ident: e_1_3_4_16_2
  doi: 10.1038/s41388-020-1160-4
– ident: e_1_3_4_43_2
  doi: 10.1016/j.coi.2012.04.011
– ident: e_1_3_4_39_2
  doi: 10.1002/eji.200425797
– ident: e_1_3_4_41_2
  doi: 10.1097/ACI.0000000000000011
– ident: e_1_3_4_10_2
  doi: 10.1158/2159-8290.CD-18-0367
– ident: e_1_3_4_9_2
  doi: 10.4049/jimmunol.1402176
– ident: e_1_3_4_13_2
  doi: 10.4049/jimmunol.1100714
– ident: e_1_3_4_19_2
  doi: 10.1101/2020.01.31.928200
– ident: e_1_3_4_36_2
  doi: 10.1136/jitc-2020-001014
– ident: e_1_3_4_23_2
  doi: 10.4049/jimmunol.1501783
– ident: e_1_3_4_28_2
  doi: 10.1016/j.celrep.2019.03.004
– ident: e_1_3_4_5_2
  doi: 10.1016/j.coi.2017.11.003
– ident: e_1_3_4_40_2
  doi: 10.1080/2162402X.2016.1186314
– ident: e_1_3_4_12_2
  doi: 10.1158/0008-5472.CAN-11-1620
– ident: e_1_3_4_25_2
  doi: 10.3389/fonc.2018.00160
– ident: e_1_3_4_6_2
  doi: 10.1084/jem.171.5.1393
– ident: e_1_3_4_33_2
  doi: 10.4049/jimmunol.169.10.5392
– ident: e_1_3_4_24_2
  doi: 10.1172/jci.insight.95128
– ident: e_1_3_4_2_2
  doi: 10.1016/j.immuni.2007.03.017
– ident: e_1_3_4_11_2
  doi: 10.3389/fimmu.2020.00167
– ident: e_1_3_4_14_2
  doi: 10.3389/fimmu.2019.00835
– ident: e_1_3_4_3_2
  doi: 10.1038/ni1138
– ident: e_1_3_4_7_2
  doi: 10.1016/j.smim.2019.101305
– ident: e_1_3_4_44_2
  doi: 10.3389/fimmu.2018.02341
– ident: e_1_3_4_29_2
  doi: 10.1016/j.cell.2017.07.029
– ident: e_1_3_4_45_2
  doi: 10.1186/s12967-023-04667-6
– ident: e_1_3_4_15_2
  doi: 10.1186/s13075-017-1309-x
– ident: e_1_3_4_26_2
  doi: 10.3389/fimmu.2017.00330
– ident: e_1_3_4_27_2
  doi: 10.4049/jimmunol.1401558
– volume: 344
  year: 2010
  ident: e_1_3_4_34_2
  article-title: LAG-3 in cancer immunotherapy
  publication-title: Curr Top Microbiol Immunol
– ident: e_1_3_4_32_2
  doi: 10.1038/nrm2882
– ident: e_1_3_4_30_2
  doi: 10.1002/jcp.28215
– ident: e_1_3_4_37_2
  doi: 10.1038/s41392-020-0147-5
– volume: 129
  start-page: 3770
  year: 2019
  end-page: 3785
  ident: B17
  article-title: Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming
  publication-title: J Clin Invest
  doi: 10.1172/JCI125916
– volume: 8
  year: 2018
  ident: B24
  article-title: Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer
  publication-title: Front Oncol
  doi: 10.3389/fonc.2018.00160
– volume: 9
  year: 2018
  ident: B43
  article-title: Expression of the inhibitory receptor TIGIT is up-regulated specifically on NK cells with CD226 activating receptor from HIV-infected individuals
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02341
– volume: 39
  start-page: 2509
  year: 2020
  end-page: 2522
  ident: B15
  article-title: Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by suppressing the IRF1-IFNγ axis
  publication-title: Oncogene
  doi: 10.1038/s41388-020-1160-4
– volume: 8
  year: 2020
  ident: B35
  article-title: LAG-3: from molecular functions to clinical applications
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2020-001014
– ident: B19
  article-title: Jin J , Ahn Y-O , Kim TM , Keam B , Kim D-W , Heo DS . n.d. The CD56bright CD62L+ NKG2A+ immature cell subset is dominantly expanded in human cytokine-induced memory-like NK cells . Immunology . doi: 10.1101/405134
– volume: 170
  start-page: 605
  year: 2017
  end-page: 635
  ident: B28
  article-title: The PI3K pathway in human disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.029
– volume: 6
  year: 2015
  ident: B20
  article-title: Low expression of activation and inhibitory molecules on NK cells and CD4+ T-cells is associated with viral control
  publication-title: Front Immunol
  doi: 10.3389/conf.fimmu.2015.05.00164
– volume: 171
  start-page: 1393
  year: 1990
  end-page: 1405
  ident: B5
  article-title: LAG-3, a novel lymphocyte activation gene closely related to CD4
  publication-title: J Exp Med
  doi: 10.1084/jem.171.5.1393
– volume: 33
  start-page: 388
  year: 2003
  end-page: 391
  ident: B41
  article-title: Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency
  publication-title: Nat Genet
  doi: 10.1038/ng1097
– volume: 344
  year: 2010
  ident: B33
  article-title: LAG-3 in cancer immunotherapy
  publication-title: Curr Top Microbiol Immunol
– volume: 72
  start-page: 917
  year: 2012
  end-page: 927
  ident: B11
  article-title: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-1620
– volume: 5
  start-page: 1260
  year: 2004
  end-page: 1265
  ident: B2
  article-title: Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming
  publication-title: Nat Immunol
  doi: 10.1038/ni1138
– volume: 4
  year: 2011
  ident: B30
  article-title: PI3Kβ plays a critical role in neutrophil activation by immune complexes
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2001617
– volume: 187
  start-page: 3493
  year: 2011
  end-page: 3498
  ident: B12
  article-title: Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1100714
– volume: 11
  start-page: 329
  year: 2010
  end-page: 341
  ident: B31
  article-title: The emerging mechanisms of isoform-specific PI3K signalling
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2882
– volume: 26
  start-page: 593
  year: 2007
  end-page: 604
  ident: B1
  article-title: Regulation of activated CD4+ T cells by NK cells via the Qa-1-NKG2A inhibitory pathway
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.03.017
– volume: 27
  start-page: 129
  year: 2019
  end-page: 141
  ident: B27
  article-title: Lymphocyte activation gene-3 maintains mitochondrial and metabolic quiescence innaive CD4+ T cells
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.03.004
– volume: 194
  start-page: 3873
  year: 2015
  end-page: 3882
  ident: B8
  article-title: The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1402176
– volume: 15
  year: 2019
  ident: B7
  article-title: Roles, function and relevance of LAG3 in HIV infection
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007429
– volume: 8
  start-page: 1069
  year: 2018
  end-page: 1086
  ident: B9
  article-title: Fundamental mechanisms of immune checkpoint blockade therapy
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-18-0367
– volume: 19
  year: 2017
  ident: B14
  article-title: Interleukin-10-producing LAG3+ regulatory T cells are associated with disease activity and abatacept treatment in rheumatoid arthritis
  publication-title: Arthritis Res Ther
  doi: 10.1186/s13075-017-1309-x
– volume: 193
  start-page: 4477
  year: 2014
  end-page: 4484
  ident: B26
  article-title: mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1401558
– volume: 112
  start-page: 170
  year: 2003
  end-page: 180
  ident: B37
  article-title: The antitumor effects of IFN-alpha are abrogated in a STAT1-deficient mouse
  publication-title: J Clin Invest
  doi: 10.1172/JCI16603
– volume: 13
  start-page: 589
  year: 2013
  end-page: 595
  ident: B40
  article-title: Inborn errors of the development of human natural killer cells
  publication-title: Curr Opin Allergy Clin Immunol
  doi: 10.1097/ACI.0000000000000011
– volume: 234
  start-page: 14460
  year: 2019
  end-page: 14472
  ident: B29
  article-title: Upstream regulators of phosphoinositide 3-kinase and their role in diseases
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.28215
– volume: 11
  year: 2020
  ident: B10
  article-title: NK cell-based immune checkpoint inhibition
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.00167
– volume: 272
  start-page: 405
  year: 1996
  end-page: 408
  ident: B16
  article-title: Independent modes of natural killing distinguished in mice lacking Lag3
  publication-title: Science
  doi: 10.1126/science.272.5260.405
– volume: 19
  start-page: 561
  year: 2003
  end-page: 569
  ident: B3
  article-title: Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses
  publication-title: Immunity
  doi: 10.1016/s1074-7613(03)00264-4
– volume: 97
  start-page: 3146
  year: 2001
  end-page: 3151
  ident: B21
  article-title: Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset
  publication-title: Blood
  doi: 10.1182/blood.V97.10.3146
– volume: 24
  start-page: 364
  year: 2012
  end-page: 378
  ident: B42
  article-title: Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2012.04.011
– volume: 21
  year: 2023
  ident: B44
  article-title: Inhibitory receptor CD47 binding to plasma TSP1 suppresses NK-cell IFN-γ production via activating the JAK/STAT3 pathway during HIV infection
  publication-title: J Transl Med
  doi: 10.1186/s12967-023-04667-6
– volume: 5
  year: 2016
  ident: B39
  article-title: Novel non-canonical role of STAT1 in natural killer cell cytotoxicity
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2016.1186314
– year: 2020
  ident: B18
  publication-title: LAG3 is a central regulator of NK cell cytokine production ;Cold Spring Harbor Laboratory
– volume: 196
  start-page: 2552
  year: 2016
  end-page: 2560
  ident: B22
  article-title: Metabolic reprogramming supports IFN-γ production by CD56bright NK cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1501783
– volume: 2
  year: 2017
  ident: B23
  article-title: Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.95128
– volume: 10
  year: 2019
  ident: B13
  article-title: Blood levels of co-inhibitory-receptors: a biomarker of disease prognosis in multiple sclerosis
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.00835
– volume: 8
  year: 2017
  ident: B25
  article-title: Immunometabolic regulations mediated by coinhibitory receptors and their impact on T cell immune responses
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.00330
– volume: 169
  start-page: 5392
  year: 2002
  end-page: 5395
  ident: B32
  article-title: Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.10.5392
– volume: 31
  start-page: 2885
  year: 2001
  end-page: 2891
  ident: B34
  article-title: LAP, a lymphocyte activation gene-3 (LAG-3)-associated protein that binds to a repeated EP motif in the intracellular region of LAG-3, may participate in the down-regulation of the CD3/TCR activation pathway
  publication-title: Eur J Immunol
  doi: 10.1002/1521-4141(2001010)31:10<2885::AID-IMMU2885>3.0.CO;2-2
– volume: 50
  start-page: 102
  year: 2018
  end-page: 111
  ident: B4
  article-title: Natural killer cell education in human health and disease
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2017.11.003
– volume: 42
  start-page: 101305
  year: 2019
  ident: B6
  article-title: Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor
  publication-title: Semin Immunol
  doi: 10.1016/j.smim.2019.101305
– volume: 5
  year: 2020
  ident: B36
  article-title: Overexpression of PSAT1 regulated by G9A sustains cell proliferation in colorectal cancer
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-020-0147-5
– volume: 35
  start-page: 757
  year: 2005
  end-page: 765
  ident: B38
  article-title: Direct effects of T‐bet and MHC class I expression, but not STAT1, on peripheral NK cell maturation
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200425797
SSID ssj0000331830
Score 2.416301
Snippet We demonstrate that lymphocyte activation gene 3 (LAG3) expression is upregulated on natural killer (NK) cells during HIV infection. LAG3 inhibits glycolysis...
Natural killer (NK) cells are integral to the innate immune system and crucial for antiviral defense. NK cell activation and functional state are suppressed by...
ABSTRACT Natural killer (NK) cells are integral to the innate immune system and crucial for antiviral defense. NK cell activation and functional state are...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0023025
SubjectTerms Antigens, CD - genetics
Antigens, CD - immunology
Antigens, CD - metabolism
Female
Glycolysis
HIV
HIV Infections - immunology
Humans
IFN-γ
Immunology
Interferon-gamma - metabolism
Killer Cells, Natural - immunology
Killer Cells, Natural - metabolism
LAG3
Lymphocyte Activation Gene 3 Protein
Male
Research Article
Signal Transduction
STAT1
STAT1 Transcription Factor - genetics
STAT1 Transcription Factor - metabolism
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwELXKVki8IO4sNxmBeEvrOHbsPAbEtlBYkLor9c2ykwmNRLOr7lZov4v_4JuYyWXFViDxEkVxnMuc8fhMLmcYe61MEBCDiFRWYIKSgYlCpnEBhS5CVaYB6G_kz9P0eK4-numzPSaHf2F6C64O_OqifZG_HdnSHl6EenHQsuZI6htsX8tMiRHbz_P5l5PtkxWRkJ-KQVDzej-MvXhsuTMPtXL9f-OY1z-V_GPumdxht3vSyPMO5btsD5p77GZXRnJzn10i1rxuzutQ0ytzjkEMlrjGP-VHCffdFxt8esLpKT3_MJlGv37yZSf1irDwvlYP__Z9g25BEiXcNyVuBv71NJ_Fh6czWmLHI04VjH_4zQM2n7yfvTuO-loKkVfKrDHaKkqdMkwP4lCYTHvphS2zkPrEqkwklAhCrEqhCtBBqsqKBAqTikKXuqySh2zULBp4zLiKQ1CQIk80QpWxxe7BFGA9Tv0F-GTMXpGB3QCla_MMaR3B4FoYnNRj9mawv1t2whr_2vEtobPdifSw2w3oHa4fXo6IBuiyUKYSKqnwpkyVJkgvDYDFqx2zlwO2DscPmds3sLhaOQpByOowlI3Zow7r7akU6dMrjS12xwt2rmW3panPW41uEu1AZmyf_JcxnrJbkuoKU02k-BkbrS-v4DmSnXV40Xv3bzO8-o8
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBYjMNjLWHdN2w2Njb15kS3Jkh_TsbS7hUFT6JuQ5OPVsDqhSRn5Xfsf-009x3ZKMjb2shdjdMHinKNzseXvY-y1MkFACiJRRcQCpQCThELjBaKOoSrzAPQ38pdpfnKmPp7r8y2qLzoT1sEDd4IbUQgBXUZlKqFklXtpqlxi4mAAbFBA3hdj3lYx1fpgSbYqNqCamR1dhnr-ts24E6LFHvjlZbYTi1rI_j_lmb8fl9yKP5MH7H6fOPJxt-A9dgeah-xuRyW5fsSuUN-8bi7qUNNnc46ODBZ4xz-PjyX33akNPv3E6U09_zCZJr9-8kUH94qq4T1fD__2fY2mQTAl3DclNgP_ejqepaPTGV1x4jEnFuMffv2YnU3ez96dJD2fQuKVMiv0uIrKpwJLhDREU2ifeWHLIqBQrSqEpGIQUlUKFUGHTFVWSIgmF1GXuqzkEzZo5g08Y1ylAWWfY65ohCpTi9ODiWA9hv8IXg7ZKxKw6zfE0rW1RmYdqcG1anCZHrI3G_m7RQeu8beBR6Sd20GEid02oKW43lLcvyxlyF5udOtwD5G4fQPz66UjN4SZHbqzIXva6fr2UYow6pXGHrtjBTtr2e1p6osWp5uAOzA7tvv_Y_UH7F5G1MNEm5QessHq6hqeYz60Ci9a078BlTIGmg
  priority: 102
  providerName: Directory of Open Access Journals
Title The inhibitory receptor LAG3 affects NK cell IFN-γ production through glycolysis and the PSAT1/STAT1/IFNG pathway
URI https://www.ncbi.nlm.nih.gov/pubmed/40298450
https://journals.asm.org/doi/10.1128/mbio.00230-25
https://www.proquest.com/docview/3196615400
https://pubmed.ncbi.nlm.nih.gov/PMC12153268
https://doaj.org/article/2426e5dc47f043f6a37f630837ee8b4e
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdgExIviP8rsMoIxFu2_LFj5wGhgGgHYwVprdQ3y3YuW6UtLW0n6Ofie_CZdpekg05D4sWKHDuJfefz7xz7d4y9FsqFEEEYiMyjg5KBClwmMQEvvSuL1AGdRj4apAcj8Xksx38ohdoOXNzo2lE8qdH8bO_n99U7HPBvmwMwev_cTaZ7NZgOYnmbbeOkpGiMHrVIvzbKCSkvrbjgHBcGCnHGmnHz-hPQONvFebwxUdV8_jeB0Ot7Kf-anHr32b0WVfK8UYMH7BZUD9mdJs7k6hGbozLwSXU6cRP6p87RysEMr_iXvJ9w22zp4INDTsv4_FNvEPz-xWcNFyzKjbfBfPjJ2Qr1hjhMuK0KzAb-7TgfRvvHQ0qxYp9TiOMfdvWYjXofhx8OgjbYQmCFUEs0x4J8qwz9h8h5lUkb21AXmUttokUWJuQpQiSKUHiQLhalDhPwKg29LGRRJk_YVjWtYIdxETknIEUgqUJRRBqrO-VBW8QGHmzSYa-og81a2KZ2RGJtSAymFoOJZYe9Wfe_mTXMG_8q-J6kc1WICLPrjOn8xLTjzxASAVl4ocpQJCU2SpVpgvhTAWj82g57uZatwQFG3W0rmF4sDNkohH1o6zrsaSPrq1cJIrAXEu_oDS3Y-JbNO9XktCbxJlYPhM762f828zm7G1PsYYqbFL1gW8v5BewiIFq6LtvO89HXw269oIBpfxx1a_W_BPzoCXg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGJgQviOsoVyMQb9mcxI6dx4DoOtoVpLXS3iw7OWFBW1qtnVB_F_-D38Q5SVrRCSRerMix5cTn-Pg7vnyHsXdSewEhiECmOTooKejApwoTyFXuyyLxQLeRT8bJYCo_n6mzHZas78J8p7i8F4sDt7hs9vFpYNNCdBeP0Bxe-mp20CDnIFK32B7tG6Jm72XZ9Mtws7oiYtJVsSbVvFkP7S82EG3NRQ1l_99w5s3jkn_MP_377F4HHHnWSvoB24H6IbvdhpJcPWJXKG9e1eeVr2jbnKMhgzk-8VF2FHPXntrg4yGnlXp-3B8Hv37yeUv3iqLhXbwe_u1ihapBNCXc1QVmA_96mk3Cw9MJpVjxiFMU4x9u9ZhN-58mHwdBF08hcFLqJVpcSe5Tii5C6HOdKhc5YYrUJy42MhUxOYMQykLIHJSPZGlEDLlORK4KVZTxE7Zbz2p4yrgMvZeQIFbUQhahwepe52AcTv85uLjH3lIH225ALGzja0TGkhhsIwYbqR57v-5_O2_JNf5V8ANJZ1OIOLGbDFQR2w0xS2ADVJFLXQoZl_hTukxihJgawODX9tibtWwtjiHqblfD7HphyQwhskNz1mP7raw3TUniqJcK35gtLdj6lu03dXXe8HQTcQeiY_PsvzrjNbszmJyM7Oh4PHzO7kYUZ5hiJIUv2O7y6hpeIvhZ-ledpv8G9nz-8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwELVKKxAviDtbbkYg3tI6iR0nj-GybdmyVOqu1DfLdiY0UptddbdC-138B9_ETC4rtgKJlyhK4lzmjMdn4uQMY--kdgJCEIHMPCYoGejAZQoX4JV3ZZE4oL-Rv46Tw6n8cqbOtljS_wvTWXCxZxeXzUQ-9ex5UXb1CNP9S1fN9hrmHETqFtuhiSr07508n34brd-uiJh8VfSimjfbYfzF80cbY1Ej2f83nnnzc8k_xp_hfXavI448b5F-wLagfshut6UkV4_YFeLNq_q8chVNm3MMZDDHNX6cH8Tctl9t8PGI05t6fjQcB79-8nkr94rQ8K5eD_9-sULXIJkSbusCNwM_Oc0n4f7phJbY8IBTFeMfdvWYTYefJx8Pg66eQmCl1EuMuJLSpwxThNB5nSkbWZEWmUtsnMpMxJQMQigLIT0oF8kyFTF4nQivClWU8RO2Xc9qeMa4DJ2TkCBX1EIWYYrNnfaQWhz-Pdh4wN6SgU0Pp2lyjSg1BINpYDCRGrD3vf3NvBXX-NeBHwid9UGkid1sQA8xXRczRDZAFV7qUsi4xIfSZRIjxdQAKd7tgL3psTXYh8jctobZ9cJQGEJmh-FswJ62WK8vJUmjXirck254wca9bO6pq_NGp5uEO5Adp7v_ZYzX7M7Jp6E5PhqPnrO7EZUZphJJ4Qu2vby6hpfIfZbuVefovwHbjf6O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+inhibitory+receptor+LAG3+affects+NK+cell+IFN-%CE%B3+production+through+glycolysis+and+the+PSAT1%2FSTAT1%2FIFNG+pathway&rft.jtitle=mBio&rft.au=Ge%2C+Hongchi&rft.au=Guo%2C+Nan&rft.au=Liu%2C+Yufei&rft.au=Lang%2C+Bin&rft.date=2025-06-11&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=16&rft.issue=6&rft_id=info:doi/10.1128%2Fmbio.00230-25&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mbio_00230_25
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon