“In the Beginning”:  Initiation of Minus Strand DNA Synthesis in Retroviruses and LTR-Containing Retrotransposons

Sequestering a host-coded tRNA for initiation of minus (−) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, “self-priming” from a hydrolysis product of the viral genome has been observed for the L...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 42; no. 49; pp. 14349 - 14355
Main Author Le Grice, Stuart F. J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.12.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sequestering a host-coded tRNA for initiation of minus (−) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, “self-priming” from a hydrolysis product of the viral genome has been observed for the LTR retrotransposon Tf1 and most likely exists for related elements. Furthermore, in contrast to retroviruses, where DNA synthesis is initiated from the 3‘-terminus of the cognate tRNA primer, examples are available where nucleotides of the tRNA anticodon domain are complementary to the viral primer binding site (PBS), necessitating internal cleavage of the primer to provide the appropriate 3‘-OH for DNA synthesis. Thus, although the ensuing steps of reverse transcription are common to these elements, several variations in which the replication primer is used have been exploited. In addition, the PBS of the viral RNA genome can vary in size from an 11 nt sequence, through a bipartite cis-acting element, to 18 contiguous nucleotides complementary to the 3‘-end of the replication primer. These diverse tRNA−viral RNA interactions, and their consequences for initiation of (−) strand DNA synthesis, are the subject of this review.
AbstractList Sequestering a host-coded tRNA for initiation of minus (−) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, “self-priming” from a hydrolysis product of the viral genome has been observed for the LTR retrotransposon Tf1 and most likely exists for related elements. Furthermore, in contrast to retroviruses, where DNA synthesis is initiated from the 3‘-terminus of the cognate tRNA primer, examples are available where nucleotides of the tRNA anticodon domain are complementary to the viral primer binding site (PBS), necessitating internal cleavage of the primer to provide the appropriate 3‘-OH for DNA synthesis. Thus, although the ensuing steps of reverse transcription are common to these elements, several variations in which the replication primer is used have been exploited. In addition, the PBS of the viral RNA genome can vary in size from an 11 nt sequence, through a bipartite cis-acting element, to 18 contiguous nucleotides complementary to the 3‘-end of the replication primer. These diverse tRNA−viral RNA interactions, and their consequences for initiation of (−) strand DNA synthesis, are the subject of this review.
Sequestering a host-coded tRNA for initiation of minus (-) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, "self-priming" from a hydrolysis product of the viral genome has been observed for the LTR retrotransposon Tf1 and most likely exists for related elements. Furthermore, in contrast to retroviruses, where DNA synthesis is initiated from the 3'-terminus of the cognate tRNA primer, examples are available where nucleotides of the tRNA anticodon domain are complementary to the viral primer binding site (PBS), necessitating internal cleavage of the primer to provide the appropriate 3'-OH for DNA synthesis. Thus, although the ensuing steps of reverse transcription are common to these elements, several variations in which the replication primer is used have been exploited. In addition, the PBS of the viral RNA genome can vary in size from an 11 nt sequence, through a bipartite cis-acting element, to 18 contiguous nucleotides complementary to the 3'-end of the replication primer. These diverse tRNA-viral RNA interactions, and their consequences for initiation of (-) strand DNA synthesis, are the subject of this review.Sequestering a host-coded tRNA for initiation of minus (-) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, "self-priming" from a hydrolysis product of the viral genome has been observed for the LTR retrotransposon Tf1 and most likely exists for related elements. Furthermore, in contrast to retroviruses, where DNA synthesis is initiated from the 3'-terminus of the cognate tRNA primer, examples are available where nucleotides of the tRNA anticodon domain are complementary to the viral primer binding site (PBS), necessitating internal cleavage of the primer to provide the appropriate 3'-OH for DNA synthesis. Thus, although the ensuing steps of reverse transcription are common to these elements, several variations in which the replication primer is used have been exploited. In addition, the PBS of the viral RNA genome can vary in size from an 11 nt sequence, through a bipartite cis-acting element, to 18 contiguous nucleotides complementary to the 3'-end of the replication primer. These diverse tRNA-viral RNA interactions, and their consequences for initiation of (-) strand DNA synthesis, are the subject of this review.
Sequestering a host-coded tRNA for initiation of minus (-) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, "self-priming" from a hydrolysis product of the viral genome has been observed for the LTR retrotransposon Tf1 and most likely exists for related elements. Furthermore, in contrast to retroviruses, where DNA synthesis is initiated from the 3'-terminus of the cognate tRNA primer, examples are available where nucleotides of the tRNA anticodon domain are complementary to the viral primer binding site (PBS), necessitating internal cleavage of the primer to provide the appropriate 3'-OH for DNA synthesis. Thus, although the ensuing steps of reverse transcription are common to these elements, several variations in which the replication primer is used have been exploited. In addition, the PBS of the viral RNA genome can vary in size from an 11 nt sequence, through a bipartite cis-acting element, to 18 contiguous nucleotides complementary to the 3'-end of the replication primer. These diverse tRNA-viral RNA interactions, and their consequences for initiation of (-) strand DNA synthesis, are the subject of this review.
Author Le Grice, Stuart F. J
Author_xml – sequence: 1
  givenname: Stuart F. J
  surname: Le Grice
  fullname: Le Grice, Stuart F. J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14661945$$D View this record in MEDLINE/PubMed
BookMark eNqF0U9uEzEYBXALFdG0sOACyBuQWAy1xx47w66EEiLCHzVBLC2P4ykuiZ368xS6y5Y7wOVyEhymFAlVYmVZ_r23eD5Aez54i9BDSp5RUtKjxhFGSkIv7qABrUpS8Lqu9tCAECKKshZkHx0AnOcrJ5LfQ_uUC0FrXg3Q1-3mx8Tj9NniF_bMee_82Xbz8_l28x1PvEtOJxc8Di1-63wHeJai9gv88t0xnl35HAMH2Hl8alMMly52YAHvxHR-WoyCT9rtKvv3XRbWAYKH--huq5dgH1yfh-jjq5P56HUxfT-ejI6nheZcpEJL0hjDRLkgQyM1XdSkbRnTw7KiDdeN4aJsOG2F4NpKVrZtRa1stBTMsCGj7BA96XvXMVx0FpJaOTB2udTehg6UpHxYV7X4L6Qy70g4y_DRNeyalV2odXQrHa_Un00zeNoDEwNAtO1fQtTuv9TNf2V79I81Lv2ePG_llrcmij7hINlvN9U6flFCMlmp-YeZGr-ZjhmtqfqU_ePeawPqPHTR57lv6f0FsKa0_w
CitedBy_id crossref_primary_10_1371_journal_pone_0053401
crossref_primary_10_3390_ijms18040714
crossref_primary_10_1074_jbc_M408294200
crossref_primary_10_1111_j_1742_4658_2012_08570_x
crossref_primary_10_1111_j_1742_4658_2011_08406_x
crossref_primary_10_1128_microbiolspec_MDNA3_0057_2014
crossref_primary_10_1038_sj_hdy_6800903
crossref_primary_10_1111_j_1742_4658_2008_06673_x
crossref_primary_10_3390_v12080792
crossref_primary_10_1007_s00122_010_1398_2
crossref_primary_10_1155_2012_530754
crossref_primary_10_1093_nar_gks983
crossref_primary_10_1038_srep17680
crossref_primary_10_1093_nar_gkq786
crossref_primary_10_1007_s11262_010_0566_4
crossref_primary_10_3390_ijms242216418
crossref_primary_10_1016_j_virusres_2012_06_006
crossref_primary_10_1128_JVI_01370_08
crossref_primary_10_1128_JVI_00704_14
crossref_primary_10_1002_bies_201000137
crossref_primary_10_1007_s00439_011_1002_0
crossref_primary_10_1186_s13100_016_0073_9
crossref_primary_10_1038_nsmb_1937
crossref_primary_10_1016_j_bbagrm_2018_01_015
crossref_primary_10_3390_ijms232213890
crossref_primary_10_1007_s13258_014_0250_5
crossref_primary_10_1074_jbc_M404473200
crossref_primary_10_1186_s13100_018_0144_1
crossref_primary_10_1016_j_abb_2016_03_005
crossref_primary_10_1186_1743_422X_4_5
crossref_primary_10_3390_v9030044
crossref_primary_10_1016_j_virol_2007_04_002
crossref_primary_10_1016_j_cell_2017_06_013
crossref_primary_10_1074_jbc_REV118_002957
crossref_primary_10_1016_j_tcb_2018_05_006
crossref_primary_10_1038_s41586_023_06327_7
crossref_primary_10_2217_17584310_3_1_39
crossref_primary_10_1128_microbiolspec_MDNA3_0053_2014
crossref_primary_10_1007_s00438_017_1308_2
crossref_primary_10_1007_s00018_010_0346_2
crossref_primary_10_3389_fgene_2014_00142
crossref_primary_10_1007_s00018_011_0671_0
crossref_primary_10_1128_JVI_00009_12
Cites_doi 10.1128/MCB.15.1.217
10.1126/science.274.5288.765
ContentType Journal Article
Copyright Copyright © 2003 American Chemical Society
Copyright_xml – notice: Copyright © 2003 American Chemical Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7U9
H94
7X8
DOI 10.1021/bi030201q
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 14355
ExternalDocumentID 14661945
10_1021_bi030201q
ark_67375_TPS_GKLG3191_W
b944366691
Genre Journal Article
Review
GroupedDBID -
.K2
02
08R
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
ADKFC
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
KM
L7B
LG6
MVM
NHB
OHT
P2P
ROL
TN5
UI2
UNC
UQL
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
6TJ
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
XOL
XSW
ZCA
~02
~KM
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7TM
7U9
H94
7X8
ID FETCH-LOGICAL-a446t-a70bcc362d08c7a1d90ff33a8251b4abc462b41f664ae732ff51e7ba763c38313
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Fri Jul 11 05:13:01 EDT 2025
Fri Jul 11 17:01:25 EDT 2025
Wed Feb 19 01:52:33 EST 2025
Thu Apr 24 23:05:32 EDT 2025
Tue Jul 01 01:55:33 EDT 2025
Wed Oct 30 09:41:11 EDT 2024
Thu Aug 27 13:42:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a446t-a70bcc362d08c7a1d90ff33a8251b4abc462b41f664ae732ff51e7ba763c38313
Notes ark:/67375/TPS-GKLG3191-W
istex:3FF258FD04FE8AC21660C3729770EE59574A3F93
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
PMID 14661945
PQID 17960043
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_71489596
proquest_miscellaneous_17960043
pubmed_primary_14661945
crossref_primary_10_1021_bi030201q
crossref_citationtrail_10_1021_bi030201q
istex_primary_ark_67375_TPS_GKLG3191_W
acs_journals_10_1021_bi030201q
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-12-16
PublicationDateYYYYMMDD 2003-12-16
PublicationDate_xml – month: 12
  year: 2003
  text: 2003-12-16
  day: 16
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2003
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kikuchi Y. (bi030201qb00020/bi030201qb00020_1) 1990
Carpousis A. J. (bi030201qb00055/bi030201qb00055_1) 1980
Mak J. (bi030201qb00061/bi030201qb00061_1) 2065; 68
Beerens N. (bi030201qb00046/bi030201qb00046_1) 2002
Friant S. (bi030201qb00029/bi030201qb00029_1) 1997
Lin J. H. (bi030201qb00027/bi030201qb00027_1) 1998
Cobrinik D. (bi030201qb00048/bi030201qb00048_1) 1991
Arts E. J. (bi030201qb00038/bi030201qb00038_1) 1996
Miller J. T. (bi030201qb00034/bi030201qb00034_1) 1997
Lener D. (bi030201qb00016/bi030201qb00016_1) 2003
Kikuchi Y. (bi030201qb00021/bi030201qb00021_1) 1992
Beerens N. (bi030201qb00047/bi030201qb00047_1) 2002
Cobrinik D. (bi030201qb00008/bi030201qb00008_1) 1988
Sawyer R. C. (bi030201qb00060/bi030201qb00060_1) 1979
Coffin J. M. (bi030201qb00001/bi030201qb00001_1) 1997
Kikuchi Y. (bi030201qb00005/bi030201qb00005_1) 1986
Gabus C. (bi030201qb00007/bi030201qb00007_1) 1998
bi030201qb00019/bi030201qb00019_1
Freund F. (bi030201qb00050/bi030201qb00050_1) 2001
Kikuchi Y. (bi030201qb00022/bi030201qb00022_1) 1995
Morris S. (bi030201qb00033/bi030201qb00033_1) 1999
Friant S. (bi030201qb00030/bi030201qb00030_1) 1998
Zhang Z. (bi030201qb00043/bi030201qb00043_1) 1998
Wakefield J. K. (bi030201qb00039/bi030201qb00039_1) 1995
Beerens N. (bi030201qb00064/bi030201qb00064_1) 2001
Butler M. (bi030201qb00018/bi030201qb00018_1) 2001
Tintut Y. (bi030201qb00056/bi030201qb00056_1) 1995
Kvaratskhelia M. (bi030201qb00015/bi030201qb00015_1) 2002
Leis J. (bi030201qb00011/bi030201qb00011_1) 1993
Aiyar A. (bi030201qb00031/bi030201qb00031_1) 1992
Friant S. (bi030201qb00006/bi030201qb00006_1) 1996
Isel C. (bi030201qb00037/bi030201qb00037_1) 1999
Lin J.-W. (bi030201qb00017/bi030201qb00017_1) 1997
Lanchy J. M. (bi030201qb00052/bi030201qb00052_1) 1996
Ke N. (bi030201qb00004/bi030201qb00004_1) 1999
Levin H. L. (bi030201qb00013/bi030201qb00013_1) 1996
Isel C. (bi030201qb00051/bi030201qb00051_1) 1996
Lindauer A. (bi030201qb00023/bi030201qb00023_1) 1993
Kang S. M. (bi030201qb00042/bi030201qb00042_1) 1996
Lanchy J. M. (bi030201qb00053/bi030201qb00053_1) 1998
Jacobo-Molina A. (bi030201qb00058/bi030201qb00058_1) 1993
Isel C. (bi030201qb00036/bi030201qb00036_1) 1998
Hostomsky Z. (bi030201qb00014/bi030201qb00014_1) 1994
Wakefield J. K. (bi030201qb00040/bi030201qb00040_1) 1996
Rothnie H. M. (bi030201qb00024/bi030201qb00024_1) 1991
Kohlstaedt L. A. (bi030201qb00057/bi030201qb00057_1) 1992
Cristofari G. (bi030201qb00026/bi030201qb00026_1) 2002
bi030201qb00028/bi030201qb00028_1
Levin H. L. (bi030201qb00003/bi030201qb00003_1) 1995
Aiyar A. (bi030201qb00032/bi030201qb00032_1) 1994
Isel C. (bi030201qb00035/bi030201qb00035_1) 1995
Voytas D. F. (bi030201qb00025/bi030201qb00025_1) 1993
Lin J. H. (bi030201qb00012/bi030201qb00012_1) 1997
Yu Q. (bi030201qb00044/bi030201qb00044_1) 2000
Levin J. G. (bi030201qb00059/bi030201qb00059_1) 1979
Miller J. T. (bi030201qb00010/bi030201qb00010_1) 2001
Isel C. (bi030201qb00009/bi030201qb00009_1) 1993
Wakefield J. K. (bi030201qb00041/bi030201qb00041_1) 1996
Gralla J. D. (bi030201qb00054/bi030201qb00054_1) 1980
Abbreviations LTR (bi030201qn00001/bi030201qn00001_1)
Cen S. (bi030201qb00062/bi030201qb00062_1) 2001
Yu Q. (bi030201qb00045/bi030201qb00045_1) 2001
Cen S. (bi030201qb00063/bi030201qb00063_1) 2002
Taylor J. M. (bi030201qb00002/bi030201qb00002_1) 1975
Iwatani Y. (bi030201qb00049/bi030201qb00049_1) 2003
References_xml – volume-title: J. Biol. Chem. 278, 26526−26532
  year: 2003
  ident: bi030201qb00016/bi030201qb00016_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 87, 8105−8109
  year: 1990
  ident: bi030201qb00020/bi030201qb00020_1
– volume-title: J. Virol. 62, 3622−3630
  year: 1988
  ident: bi030201qb00008/bi030201qb00008_1
– volume-title: J. Virol. 16, 553−558
  year: 1975
  ident: bi030201qb00002/bi030201qb00002_1
– volume-title: Nucleic Acids Res. 26, 1198−1204
  year: 1998
  ident: bi030201qb00036/bi030201qb00036_1
– volume-title: J. Biol. Chem. 267, 11972−11976
  year: 1992
  ident: bi030201qb00021/bi030201qb00021_1
– volume-title: FEBS Lett. 319, 261−266
  year: 1993
  ident: bi030201qb00023/bi030201qb00023_1
– volume-title: Mol. Cell. Biol. 15, 3310−3317
  year: 1995
  ident: bi030201qb00003/bi030201qb00003_1
– volume-title: Virol. 68
  year: 1994
  ident: bi030201qb00014/bi030201qb00014_1
– volume-title: J. Virol. 65, 3864−3872
  year: 1991
  ident: bi030201qb00048/bi030201qb00048_1
– volume-title: J. Biol. Chem. 268, 25269−25272
  year: 1993
  ident: bi030201qb00009/bi030201qb00009_1
– volume-title: J. Virol. 68, 611−618
  year: 1994
  ident: bi030201qb00032/bi030201qb00032_1
– volume-title: Mol. Cell. Biol. 16, 5645−5654
  year: 1996
  ident: bi030201qb00013/bi030201qb00013_1
– volume-title: Nature 323, 824−826
  year: 1986
  ident: bi030201qb00005/bi030201qb00005_1
– volume-title: Genes Dev. 11, 270−285
  year: 1997
  ident: bi030201qb00012/bi030201qb00012_1
– volume-title: RNA 3, 952−953
  year: 1997
  ident: bi030201qb00017/bi030201qb00017_1
– volume-title: Biochemistry 19, 3245−3253
  year: 1980
  ident: bi030201qb00055/bi030201qb00055_1
– volume-title: Retroviruses
  year: 1997
  ident: bi030201qb00001/bi030201qb00001_1
– volume-title: J. Virol. 75, 4902−4906
  year: 2001
  ident: bi030201qb00045/bi030201qb00045_1
– ident: bi030201qb00028/bi030201qb00028_1
  doi: 10.1128/MCB.15.1.217
– volume-title: Nucleic Acids Res. 24, 441−449
  year: 1996
  ident: bi030201qb00006/bi030201qb00006_1
– volume-title: J. Biol. Chem. 270, 24392−24398
  year: 1995
  ident: bi030201qb00056/bi030201qb00056_1
– volume-title: Virology 220, 290−298
  year: 1996
  ident: bi030201qb00041/bi030201qb00041_1
– volume: 68
  start-page: 2072
  year: 2065
  ident: bi030201qb00061/bi030201qb00061_1
  publication-title: Virol.
– volume-title: Nucleic Acids Res. 19, 279−286
  year: 1991
  ident: bi030201qb00024/bi030201qb00024_1
– volume-title: J. Biol. Chem. 278, 14185−14195
  year: 2003
  ident: bi030201qb00049/bi030201qb00049_1
– volume-title: J. Biol. Chem. 276, 27721−27730
  year: 2001
  ident: bi030201qb00010/bi030201qb00010_1
– volume-title: Yeast 13, 639−645
  year: 1997
  ident: bi030201qb00029/bi030201qb00029_1
– volume-title: J. Biol. Chem. 271, 9054−9061
  year: 1996
  ident: bi030201qb00038/bi030201qb00038_1
– volume-title: EMBO J. 17, 4873−4880
  year: 1998
  ident: bi030201qb00007/bi030201qb00007_1
– volume-title: Mol. Cell. Biol. 18, 6859−6869
  year: 1998
  ident: bi030201qb00027/bi030201qb00027_1
– ident: bi030201qb00019/bi030201qb00019_1
  doi: 10.1126/science.274.5288.765
– volume-title: Mol. Cell. Biol. 18, 799−806
  year: 1998
  ident: bi030201qb00030/bi030201qb00030_1
– volume-title: J. Virol. 29, 328−335
  year: 1979
  ident: bi030201qb00059/bi030201qb00059_1
– volume-title: J. Mol. Evol. 52, 260−274
  year: 2001
  ident: bi030201qb00018/bi030201qb00018_1
– volume-title: EMBO J. 21, 4368−4379
  year: 2002
  ident: bi030201qb00026/bi030201qb00026_1
– volume-title: EMBO J. 15, 7178−7187
  year: 1996
  ident: bi030201qb00052/bi030201qb00052_1
– volume-title: Biochemistry 19, 5864−5869
  year: 1980
  ident: bi030201qb00054/bi030201qb00054_1
– volume-title: J. Virol. 76, 2329−2339
  year: 2002
  ident: bi030201qb00047/bi030201qb00047_1
– volume-title: Virology 222, 401−414
  year: 1996
  ident: bi030201qb00042/bi030201qb00042_1
– volume-title: J. Virol. 69, 6021−6029
  year: 1995
  ident: bi030201qb00039/bi030201qb00039_1
– volume-title: in Reverse Transcriptase
  year: 1993
  ident: bi030201qb00011/bi030201qb00011_1
– volume-title: J. Virol. 70, 966−975
  year: 1996
  ident: bi030201qb00040/bi030201qb00040_1
– volume-title: J. Biol. Chem. 277, 16689−16696
  year: 2002
  ident: bi030201qb00015/bi030201qb00015_1
– volume-title: J. Biol. Chem. 273, 24425−24432
  year: 1998
  ident: bi030201qb00053/bi030201qb00053_1
– volume-title: Trends Genet. 9, 421−427
  year: 1993
  ident: bi030201qb00025/bi030201qb00025_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 89, 9652−9656
  year: 1992
  ident: bi030201qb00057/bi030201qb00057_1
– volume-title: RNA 5, 929−938
  year: 1999
  ident: bi030201qb00004/bi030201qb00004_1
– volume-title: J. Virol. 29, 863−871
  year: 1979
  ident: bi030201qb00060/bi030201qb00060_1
– volume-title: Nucleic Acids Res. 29, 2757−2765
  year: 2001
  ident: bi030201qb00050/bi030201qb00050_1
– volume-title: J. Virol. 75, 5043−5048
  year: 2001
  ident: bi030201qb00062/bi030201qb00062_1
– volume-title: J. Biol. Chem. 276, 31247−31256
  year: 2001
  ident: bi030201qb00064/bi030201qb00064_1
– volume-title: long terminal repeat
  ident: bi030201qn00001/bi030201qn00001_1
– volume-title: EMBO J. 15, 917−924
  year: 1996
  ident: bi030201qb00051/bi030201qb00051_1
– volume-title: J. Virol. 76, 13111−13115
  year: 2002
  ident: bi030201qb00063/bi030201qb00063_1
– volume-title: Nucleic Acids Res. 28, 4783−4789
  year: 2000
  ident: bi030201qb00044/bi030201qb00044_1
– volume-title: J. Virol. 73, 6307−6318
  year: 1999
  ident: bi030201qb00033/bi030201qb00033_1
– volume-title: EMBO J. 18, 1038−1048
  year: 1999
  ident: bi030201qb00037/bi030201qb00037_1
– volume-title: J. Virol. 71, 7648−7656
  year: 1997
  ident: bi030201qb00034/bi030201qb00034_1
– volume-title: Mol. Biol. Rep. 22, 171−175
  year: 1995
  ident: bi030201qb00022/bi030201qb00022_1
– volume-title: RNA 8, 357−369
  year: 2002
  ident: bi030201qb00046/bi030201qb00046_1
– volume-title: J. Mol. Biol. 247, 236−250
  year: 1995
  ident: bi030201qb00035/bi030201qb00035_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 90, 6320−6324
  year: 1993
  ident: bi030201qb00058/bi030201qb00058_1
– volume-title: AIDS Res. Hum. Retroviruses 14, 979−988
  year: 1998
  ident: bi030201qb00043/bi030201qb00043_1
– volume-title: J. Virol. 66, 2464−2472
  year: 1992
  ident: bi030201qb00031/bi030201qb00031_1
SSID ssj0004074
Score 1.9790412
SecondaryResourceType review_article
Snippet Sequestering a host-coded tRNA for initiation of minus (−) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and...
Sequestering a host-coded tRNA for initiation of minus (-) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14349
SubjectTerms Animals
DNA, Fungal - biosynthesis
DNA, Fungal - chemistry
DNA, Single-Stranded - biosynthesis
DNA, Single-Stranded - chemistry
DNA, Viral - biosynthesis
DNA, Viral - chemistry
Models, Chemical
Retroelements - genetics
Retroviridae - genetics
Retroviridae - physiology
Retrovirus
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - physiology
Terminal Repeat Sequences - genetics
Transcription Initiation Site
Virus Replication - genetics
Title “In the Beginning”:  Initiation of Minus Strand DNA Synthesis in Retroviruses and LTR-Containing Retrotransposons
URI http://dx.doi.org/10.1021/bi030201q
https://api.istex.fr/ark:/67375/TPS-GKLG3191-W/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/14661945
https://www.proquest.com/docview/17960043
https://www.proquest.com/docview/71489596
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9gAXWloeW0qxAFVcUuLEiRtuy5Y-oK1Qdyt6i2zHllYFL2wSQTntlf8Af25_CeM8tiC6cM5Ycjxjzzfj8TcAz9CJiTA03FOGCo9xRb0kEspDaOtncSR3lHYJ_eOT-OCMvTmPzhfg6Zwb_IC-kEO0Q3RTn2_AUhDj5nX4p9e_evzoN1TLGBoHiMdb-qDfhzrXo_I_XM-SW8Wv83Fl5V_2lmG3faVTl5VcbJeF3Fbf_iZt_NfUV-B2gy9JtzaIO7Cg7SqsdS3G1h8vyRapKj6rVPoq3Oy13d7W4Mt08uPQEoSD5JXr1eDSJdPJz5fTyXdy6AqMKg2SkSHHQ1vmxLHa2ozsnnRJ_9LisHyYk6Elp7pwSYpxmeucOImjwannKLDqThT196JmVEeon9-Fs73Xg96B1zRl8ARGjoUnuC-VQreX-TuKC5olvjFhKNwTWMmEVCwOJKMmjpnQPAyMiajmUuA5pjAapuE9WLQjqx8AMVEkEaBwlemQBUwliTQslOhXGcsQyHRgE7WWNpsqT6v78oCms2XtwPNWoalqKM1dZ40P14k-mYl-qnk8rhPaqqxiJiHGF67wjUfp4F0_3X97tI8nFk3fd-BxazYp6sndsQirRyXOkaMJ-iycL8ExAE2iJO7A_drerubDYpdTitb_998P4VZdUxh4NN6AxWJc6keIjQq5We2NX8VfCYs
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagPZQLj5ZHeLQWQhWXLetd77rLLQTahCYRalLR28r22lLU1oF4IyinXPkP8OfySxh7NwmgVnDe8cqPseeb8fgbhF6AEeNxrFkgNeEBZZIEWcJlANA2LNJE7EvlAvq9fto-oe9Pk9OaJse9hYFOWPiT9Zf4K3YB8kqMQB3BWn2-idYBhEROm5utweoNZFgzLoOHHAEsX7AI_d7UWSBp_7BA624yv14PL72ZObhT1SvyHfTZJWd701LsyW9_cTf-3wjuots12sTNSj3uoRvKbKKtpgFP--IS72Kf_-kD65too7Wo_baFvsxnPzoGAzjEb1zlBhc8mc9-vp7PvuOOSzfy64nHGvdGZmqx47g1BX7bb-LBpYFmdmTxyOBjVbqQxWRqlcVOojs8DhwhVlWXovpeVvzqAPztfXRy8G7Yagd1iYaAgx9ZBpyFQkowgkW4LxknRRZqHcfcPYgVlAtJ00hQotOUcsXiSOuEKCY4nGoSfGMSP0BrZmzUI4R1kgiAK0wWKqYRlVkmNI0FWFlKC4A1DbQNs5rXW8zm_vY8IvlyWhvo5WJdc1kTnLs6G-dXiT5fin6qWD2uEtr1yrGU4JMzlwbHknz4YZAfHnUP4fwi-ccG2lloTw7r5G5cuFHjKfSRgSaGNL5egoE7miVZ2kAPK7Vb9YemLsKUPP7XuHfQRnvY6-bdTv_oCbpVZRtGAUmforVyMlXPADWVYttvl1_I4hHs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Pb9MwFLdgk4ALfzY2OmCzEJq4ZMSJEy_cSke3sq5Mayd2i2zHlqpt7qgTjXHqle8AX66fhOck7QBtgnOeo2f72e-vfw-h16DEeBhq5klNuEeZJF4ScemBaetncSS2pXIB_YNevHdMP55EJ7Wj6N7CABMW_mTLJL471ReZrhEGyFsxBJEEjfXlLlp06Ton0c1W__odpF-jLoOXHIBpPkMS-n2o00LS_qGFFt2Cfr3dxCxVTfsR-jRnsqwwOd0qcrElv_2F3_j_s3iMHtZWJ25WYvIE3VFmCS03DXjc51d4E5d1oGWAfQndb816wC2jy-nkR8dgMBLxe9fBwQVRppOf76aT77jjyo7KfcUjjQ-GprDYYd2aDO_0mrh_ZWCYHVo8NPhI5S50MS6ssthRdAdHngPGqvpTVN_zCmcdHAD7FB23Pwxae17dqsHj4E_mHme-kBKUYeZvS8ZJlvhahyF3D2MF5ULSOBCU6DimXLEw0DoiigkOt5sEH5mEK2jBjIx6hrCOIgFmC5OZCmlAZZIITUMB2pbSDMybBlqHlU3ro2bTMosekHS-rA30Zra3qayBzl2_jbObSF_NSS8qdI-biDZLAZlT8PGpK4djUTo47Ke7-91duMdI-rmBNmYSlMI-ucwLN2pUAI8MpNGn4e0UDNzSJEriBlqtRO-aHxq7SFO09q95b6B7hzvttNvp7T9HD6qiw8Aj8Qu0kI8L9RKMp1yslyfmF5q3FG8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%22In+the+Beginning%22%3A+Initiation+of+Minus+Strand+DNA+Synthesis+in+Retroviruses+and+LTR-Containing+Retrotransposons&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Le+Grice%2C+SFJ&rft.date=2003-12-16&rft.issn=0006-2960&rft.volume=42&rft.issue=49&rft.spage=14349&rft.epage=14355&rft_id=info:doi/10.1021%2Fbi030201q&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon