“In the Beginning”: Initiation of Minus Strand DNA Synthesis in Retroviruses and LTR-Containing Retrotransposons
Sequestering a host-coded tRNA for initiation of minus (−) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, “self-priming” from a hydrolysis product of the viral genome has been observed for the L...
Saved in:
Published in | Biochemistry (Easton) Vol. 42; no. 49; pp. 14349 - 14355 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.12.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sequestering a host-coded tRNA for initiation of minus (−) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, “self-priming” from a hydrolysis product of the viral genome has been observed for the LTR retrotransposon Tf1 and most likely exists for related elements. Furthermore, in contrast to retroviruses, where DNA synthesis is initiated from the 3‘-terminus of the cognate tRNA primer, examples are available where nucleotides of the tRNA anticodon domain are complementary to the viral primer binding site (PBS), necessitating internal cleavage of the primer to provide the appropriate 3‘-OH for DNA synthesis. Thus, although the ensuing steps of reverse transcription are common to these elements, several variations in which the replication primer is used have been exploited. In addition, the PBS of the viral RNA genome can vary in size from an 11 nt sequence, through a bipartite cis-acting element, to 18 contiguous nucleotides complementary to the 3‘-end of the replication primer. These diverse tRNA−viral RNA interactions, and their consequences for initiation of (−) strand DNA synthesis, are the subject of this review. |
---|---|
AbstractList | Sequestering a host-coded tRNA for initiation of minus (−) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, “self-priming” from a hydrolysis product of the viral genome has been observed for the LTR retrotransposon Tf1 and most likely exists for related elements. Furthermore, in contrast to retroviruses, where DNA synthesis is initiated from the 3‘-terminus of the cognate tRNA primer, examples are available where nucleotides of the tRNA anticodon domain are complementary to the viral primer binding site (PBS), necessitating internal cleavage of the primer to provide the appropriate 3‘-OH for DNA synthesis. Thus, although the ensuing steps of reverse transcription are common to these elements, several variations in which the replication primer is used have been exploited. In addition, the PBS of the viral RNA genome can vary in size from an 11 nt sequence, through a bipartite cis-acting element, to 18 contiguous nucleotides complementary to the 3‘-end of the replication primer. These diverse tRNA−viral RNA interactions, and their consequences for initiation of (−) strand DNA synthesis, are the subject of this review. Sequestering a host-coded tRNA for initiation of minus (-) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, "self-priming" from a hydrolysis product of the viral genome has been observed for the LTR retrotransposon Tf1 and most likely exists for related elements. Furthermore, in contrast to retroviruses, where DNA synthesis is initiated from the 3'-terminus of the cognate tRNA primer, examples are available where nucleotides of the tRNA anticodon domain are complementary to the viral primer binding site (PBS), necessitating internal cleavage of the primer to provide the appropriate 3'-OH for DNA synthesis. Thus, although the ensuing steps of reverse transcription are common to these elements, several variations in which the replication primer is used have been exploited. In addition, the PBS of the viral RNA genome can vary in size from an 11 nt sequence, through a bipartite cis-acting element, to 18 contiguous nucleotides complementary to the 3'-end of the replication primer. These diverse tRNA-viral RNA interactions, and their consequences for initiation of (-) strand DNA synthesis, are the subject of this review.Sequestering a host-coded tRNA for initiation of minus (-) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, "self-priming" from a hydrolysis product of the viral genome has been observed for the LTR retrotransposon Tf1 and most likely exists for related elements. Furthermore, in contrast to retroviruses, where DNA synthesis is initiated from the 3'-terminus of the cognate tRNA primer, examples are available where nucleotides of the tRNA anticodon domain are complementary to the viral primer binding site (PBS), necessitating internal cleavage of the primer to provide the appropriate 3'-OH for DNA synthesis. Thus, although the ensuing steps of reverse transcription are common to these elements, several variations in which the replication primer is used have been exploited. In addition, the PBS of the viral RNA genome can vary in size from an 11 nt sequence, through a bipartite cis-acting element, to 18 contiguous nucleotides complementary to the 3'-end of the replication primer. These diverse tRNA-viral RNA interactions, and their consequences for initiation of (-) strand DNA synthesis, are the subject of this review. Sequestering a host-coded tRNA for initiation of minus (-) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and long terminal repeat (LTR) retrotransposons. However, "self-priming" from a hydrolysis product of the viral genome has been observed for the LTR retrotransposon Tf1 and most likely exists for related elements. Furthermore, in contrast to retroviruses, where DNA synthesis is initiated from the 3'-terminus of the cognate tRNA primer, examples are available where nucleotides of the tRNA anticodon domain are complementary to the viral primer binding site (PBS), necessitating internal cleavage of the primer to provide the appropriate 3'-OH for DNA synthesis. Thus, although the ensuing steps of reverse transcription are common to these elements, several variations in which the replication primer is used have been exploited. In addition, the PBS of the viral RNA genome can vary in size from an 11 nt sequence, through a bipartite cis-acting element, to 18 contiguous nucleotides complementary to the 3'-end of the replication primer. These diverse tRNA-viral RNA interactions, and their consequences for initiation of (-) strand DNA synthesis, are the subject of this review. |
Author | Le Grice, Stuart F. J |
Author_xml | – sequence: 1 givenname: Stuart F. J surname: Le Grice fullname: Le Grice, Stuart F. J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14661945$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U9uEzEYBXALFdG0sOACyBuQWAy1xx47w66EEiLCHzVBLC2P4ykuiZ368xS6y5Y7wOVyEhymFAlVYmVZ_r23eD5Aez54i9BDSp5RUtKjxhFGSkIv7qABrUpS8Lqu9tCAECKKshZkHx0AnOcrJ5LfQ_uUC0FrXg3Q1-3mx8Tj9NniF_bMee_82Xbz8_l28x1PvEtOJxc8Di1-63wHeJai9gv88t0xnl35HAMH2Hl8alMMly52YAHvxHR-WoyCT9rtKvv3XRbWAYKH--huq5dgH1yfh-jjq5P56HUxfT-ejI6nheZcpEJL0hjDRLkgQyM1XdSkbRnTw7KiDdeN4aJsOG2F4NpKVrZtRa1stBTMsCGj7BA96XvXMVx0FpJaOTB2udTehg6UpHxYV7X4L6Qy70g4y_DRNeyalV2odXQrHa_Un00zeNoDEwNAtO1fQtTuv9TNf2V79I81Lv2ePG_llrcmij7hINlvN9U6flFCMlmp-YeZGr-ZjhmtqfqU_ePeawPqPHTR57lv6f0FsKa0_w |
CitedBy_id | crossref_primary_10_1371_journal_pone_0053401 crossref_primary_10_3390_ijms18040714 crossref_primary_10_1074_jbc_M408294200 crossref_primary_10_1111_j_1742_4658_2012_08570_x crossref_primary_10_1111_j_1742_4658_2011_08406_x crossref_primary_10_1128_microbiolspec_MDNA3_0057_2014 crossref_primary_10_1038_sj_hdy_6800903 crossref_primary_10_1111_j_1742_4658_2008_06673_x crossref_primary_10_3390_v12080792 crossref_primary_10_1007_s00122_010_1398_2 crossref_primary_10_1155_2012_530754 crossref_primary_10_1093_nar_gks983 crossref_primary_10_1038_srep17680 crossref_primary_10_1093_nar_gkq786 crossref_primary_10_1007_s11262_010_0566_4 crossref_primary_10_3390_ijms242216418 crossref_primary_10_1016_j_virusres_2012_06_006 crossref_primary_10_1128_JVI_01370_08 crossref_primary_10_1128_JVI_00704_14 crossref_primary_10_1002_bies_201000137 crossref_primary_10_1007_s00439_011_1002_0 crossref_primary_10_1186_s13100_016_0073_9 crossref_primary_10_1038_nsmb_1937 crossref_primary_10_1016_j_bbagrm_2018_01_015 crossref_primary_10_3390_ijms232213890 crossref_primary_10_1007_s13258_014_0250_5 crossref_primary_10_1074_jbc_M404473200 crossref_primary_10_1186_s13100_018_0144_1 crossref_primary_10_1016_j_abb_2016_03_005 crossref_primary_10_1186_1743_422X_4_5 crossref_primary_10_3390_v9030044 crossref_primary_10_1016_j_virol_2007_04_002 crossref_primary_10_1016_j_cell_2017_06_013 crossref_primary_10_1074_jbc_REV118_002957 crossref_primary_10_1016_j_tcb_2018_05_006 crossref_primary_10_1038_s41586_023_06327_7 crossref_primary_10_2217_17584310_3_1_39 crossref_primary_10_1128_microbiolspec_MDNA3_0053_2014 crossref_primary_10_1007_s00438_017_1308_2 crossref_primary_10_1007_s00018_010_0346_2 crossref_primary_10_3389_fgene_2014_00142 crossref_primary_10_1007_s00018_011_0671_0 crossref_primary_10_1128_JVI_00009_12 |
Cites_doi | 10.1128/MCB.15.1.217 10.1126/science.274.5288.765 |
ContentType | Journal Article |
Copyright | Copyright © 2003 American Chemical Society |
Copyright_xml | – notice: Copyright © 2003 American Chemical Society |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7U9 H94 7X8 |
DOI | 10.1021/bi030201q |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 14355 |
ExternalDocumentID | 14661945 10_1021_bi030201q ark_67375_TPS_GKLG3191_W b944366691 |
Genre | Journal Article Review |
GroupedDBID | - .K2 02 08R 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS ADKFC AEESW AENEX AETEA AFEFF AFFDN AFFNX AFMIJ AIDAL AJYGW ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GJ GNL IH9 IHE JG JG~ K2 K78 KM L7B LG6 MVM NHB OHT P2P ROL TN5 UI2 UNC UQL VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 6TJ ABJNI ABQRX ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK XOL XSW ZCA ~02 ~KM AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION CGR CUY CVF ECM EIF NPM VXZ 7TM 7U9 H94 7X8 |
ID | FETCH-LOGICAL-a446t-a70bcc362d08c7a1d90ff33a8251b4abc462b41f664ae732ff51e7ba763c38313 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Fri Jul 11 05:13:01 EDT 2025 Fri Jul 11 17:01:25 EDT 2025 Wed Feb 19 01:52:33 EST 2025 Thu Apr 24 23:05:32 EDT 2025 Tue Jul 01 01:55:33 EDT 2025 Wed Oct 30 09:41:11 EDT 2024 Thu Aug 27 13:42:39 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a446t-a70bcc362d08c7a1d90ff33a8251b4abc462b41f664ae732ff51e7ba763c38313 |
Notes | ark:/67375/TPS-GKLG3191-W istex:3FF258FD04FE8AC21660C3729770EE59574A3F93 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 |
PMID | 14661945 |
PQID | 17960043 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_71489596 proquest_miscellaneous_17960043 pubmed_primary_14661945 crossref_primary_10_1021_bi030201q crossref_citationtrail_10_1021_bi030201q istex_primary_ark_67375_TPS_GKLG3191_W acs_journals_10_1021_bi030201q |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-12-16 |
PublicationDateYYYYMMDD | 2003-12-16 |
PublicationDate_xml | – month: 12 year: 2003 text: 2003-12-16 day: 16 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2003 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kikuchi Y. (bi030201qb00020/bi030201qb00020_1) 1990 Carpousis A. J. (bi030201qb00055/bi030201qb00055_1) 1980 Mak J. (bi030201qb00061/bi030201qb00061_1) 2065; 68 Beerens N. (bi030201qb00046/bi030201qb00046_1) 2002 Friant S. (bi030201qb00029/bi030201qb00029_1) 1997 Lin J. H. (bi030201qb00027/bi030201qb00027_1) 1998 Cobrinik D. (bi030201qb00048/bi030201qb00048_1) 1991 Arts E. J. (bi030201qb00038/bi030201qb00038_1) 1996 Miller J. T. (bi030201qb00034/bi030201qb00034_1) 1997 Lener D. (bi030201qb00016/bi030201qb00016_1) 2003 Kikuchi Y. (bi030201qb00021/bi030201qb00021_1) 1992 Beerens N. (bi030201qb00047/bi030201qb00047_1) 2002 Cobrinik D. (bi030201qb00008/bi030201qb00008_1) 1988 Sawyer R. C. (bi030201qb00060/bi030201qb00060_1) 1979 Coffin J. M. (bi030201qb00001/bi030201qb00001_1) 1997 Kikuchi Y. (bi030201qb00005/bi030201qb00005_1) 1986 Gabus C. (bi030201qb00007/bi030201qb00007_1) 1998 bi030201qb00019/bi030201qb00019_1 Freund F. (bi030201qb00050/bi030201qb00050_1) 2001 Kikuchi Y. (bi030201qb00022/bi030201qb00022_1) 1995 Morris S. (bi030201qb00033/bi030201qb00033_1) 1999 Friant S. (bi030201qb00030/bi030201qb00030_1) 1998 Zhang Z. (bi030201qb00043/bi030201qb00043_1) 1998 Wakefield J. K. (bi030201qb00039/bi030201qb00039_1) 1995 Beerens N. (bi030201qb00064/bi030201qb00064_1) 2001 Butler M. (bi030201qb00018/bi030201qb00018_1) 2001 Tintut Y. (bi030201qb00056/bi030201qb00056_1) 1995 Kvaratskhelia M. (bi030201qb00015/bi030201qb00015_1) 2002 Leis J. (bi030201qb00011/bi030201qb00011_1) 1993 Aiyar A. (bi030201qb00031/bi030201qb00031_1) 1992 Friant S. (bi030201qb00006/bi030201qb00006_1) 1996 Isel C. (bi030201qb00037/bi030201qb00037_1) 1999 Lin J.-W. (bi030201qb00017/bi030201qb00017_1) 1997 Lanchy J. M. (bi030201qb00052/bi030201qb00052_1) 1996 Ke N. (bi030201qb00004/bi030201qb00004_1) 1999 Levin H. L. (bi030201qb00013/bi030201qb00013_1) 1996 Isel C. (bi030201qb00051/bi030201qb00051_1) 1996 Lindauer A. (bi030201qb00023/bi030201qb00023_1) 1993 Kang S. M. (bi030201qb00042/bi030201qb00042_1) 1996 Lanchy J. M. (bi030201qb00053/bi030201qb00053_1) 1998 Jacobo-Molina A. (bi030201qb00058/bi030201qb00058_1) 1993 Isel C. (bi030201qb00036/bi030201qb00036_1) 1998 Hostomsky Z. (bi030201qb00014/bi030201qb00014_1) 1994 Wakefield J. K. (bi030201qb00040/bi030201qb00040_1) 1996 Rothnie H. M. (bi030201qb00024/bi030201qb00024_1) 1991 Kohlstaedt L. A. (bi030201qb00057/bi030201qb00057_1) 1992 Cristofari G. (bi030201qb00026/bi030201qb00026_1) 2002 bi030201qb00028/bi030201qb00028_1 Levin H. L. (bi030201qb00003/bi030201qb00003_1) 1995 Aiyar A. (bi030201qb00032/bi030201qb00032_1) 1994 Isel C. (bi030201qb00035/bi030201qb00035_1) 1995 Voytas D. F. (bi030201qb00025/bi030201qb00025_1) 1993 Lin J. H. (bi030201qb00012/bi030201qb00012_1) 1997 Yu Q. (bi030201qb00044/bi030201qb00044_1) 2000 Levin J. G. (bi030201qb00059/bi030201qb00059_1) 1979 Miller J. T. (bi030201qb00010/bi030201qb00010_1) 2001 Isel C. (bi030201qb00009/bi030201qb00009_1) 1993 Wakefield J. K. (bi030201qb00041/bi030201qb00041_1) 1996 Gralla J. D. (bi030201qb00054/bi030201qb00054_1) 1980 Abbreviations LTR (bi030201qn00001/bi030201qn00001_1) Cen S. (bi030201qb00062/bi030201qb00062_1) 2001 Yu Q. (bi030201qb00045/bi030201qb00045_1) 2001 Cen S. (bi030201qb00063/bi030201qb00063_1) 2002 Taylor J. M. (bi030201qb00002/bi030201qb00002_1) 1975 Iwatani Y. (bi030201qb00049/bi030201qb00049_1) 2003 |
References_xml | – volume-title: J. Biol. Chem. 278, 26526−26532 year: 2003 ident: bi030201qb00016/bi030201qb00016_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 87, 8105−8109 year: 1990 ident: bi030201qb00020/bi030201qb00020_1 – volume-title: J. Virol. 62, 3622−3630 year: 1988 ident: bi030201qb00008/bi030201qb00008_1 – volume-title: J. Virol. 16, 553−558 year: 1975 ident: bi030201qb00002/bi030201qb00002_1 – volume-title: Nucleic Acids Res. 26, 1198−1204 year: 1998 ident: bi030201qb00036/bi030201qb00036_1 – volume-title: J. Biol. Chem. 267, 11972−11976 year: 1992 ident: bi030201qb00021/bi030201qb00021_1 – volume-title: FEBS Lett. 319, 261−266 year: 1993 ident: bi030201qb00023/bi030201qb00023_1 – volume-title: Mol. Cell. Biol. 15, 3310−3317 year: 1995 ident: bi030201qb00003/bi030201qb00003_1 – volume-title: Virol. 68 year: 1994 ident: bi030201qb00014/bi030201qb00014_1 – volume-title: J. Virol. 65, 3864−3872 year: 1991 ident: bi030201qb00048/bi030201qb00048_1 – volume-title: J. Biol. Chem. 268, 25269−25272 year: 1993 ident: bi030201qb00009/bi030201qb00009_1 – volume-title: J. Virol. 68, 611−618 year: 1994 ident: bi030201qb00032/bi030201qb00032_1 – volume-title: Mol. Cell. Biol. 16, 5645−5654 year: 1996 ident: bi030201qb00013/bi030201qb00013_1 – volume-title: Nature 323, 824−826 year: 1986 ident: bi030201qb00005/bi030201qb00005_1 – volume-title: Genes Dev. 11, 270−285 year: 1997 ident: bi030201qb00012/bi030201qb00012_1 – volume-title: RNA 3, 952−953 year: 1997 ident: bi030201qb00017/bi030201qb00017_1 – volume-title: Biochemistry 19, 3245−3253 year: 1980 ident: bi030201qb00055/bi030201qb00055_1 – volume-title: Retroviruses year: 1997 ident: bi030201qb00001/bi030201qb00001_1 – volume-title: J. Virol. 75, 4902−4906 year: 2001 ident: bi030201qb00045/bi030201qb00045_1 – ident: bi030201qb00028/bi030201qb00028_1 doi: 10.1128/MCB.15.1.217 – volume-title: Nucleic Acids Res. 24, 441−449 year: 1996 ident: bi030201qb00006/bi030201qb00006_1 – volume-title: J. Biol. Chem. 270, 24392−24398 year: 1995 ident: bi030201qb00056/bi030201qb00056_1 – volume-title: Virology 220, 290−298 year: 1996 ident: bi030201qb00041/bi030201qb00041_1 – volume: 68 start-page: 2072 year: 2065 ident: bi030201qb00061/bi030201qb00061_1 publication-title: Virol. – volume-title: Nucleic Acids Res. 19, 279−286 year: 1991 ident: bi030201qb00024/bi030201qb00024_1 – volume-title: J. Biol. Chem. 278, 14185−14195 year: 2003 ident: bi030201qb00049/bi030201qb00049_1 – volume-title: J. Biol. Chem. 276, 27721−27730 year: 2001 ident: bi030201qb00010/bi030201qb00010_1 – volume-title: Yeast 13, 639−645 year: 1997 ident: bi030201qb00029/bi030201qb00029_1 – volume-title: J. Biol. Chem. 271, 9054−9061 year: 1996 ident: bi030201qb00038/bi030201qb00038_1 – volume-title: EMBO J. 17, 4873−4880 year: 1998 ident: bi030201qb00007/bi030201qb00007_1 – volume-title: Mol. Cell. Biol. 18, 6859−6869 year: 1998 ident: bi030201qb00027/bi030201qb00027_1 – ident: bi030201qb00019/bi030201qb00019_1 doi: 10.1126/science.274.5288.765 – volume-title: Mol. Cell. Biol. 18, 799−806 year: 1998 ident: bi030201qb00030/bi030201qb00030_1 – volume-title: J. Virol. 29, 328−335 year: 1979 ident: bi030201qb00059/bi030201qb00059_1 – volume-title: J. Mol. Evol. 52, 260−274 year: 2001 ident: bi030201qb00018/bi030201qb00018_1 – volume-title: EMBO J. 21, 4368−4379 year: 2002 ident: bi030201qb00026/bi030201qb00026_1 – volume-title: EMBO J. 15, 7178−7187 year: 1996 ident: bi030201qb00052/bi030201qb00052_1 – volume-title: Biochemistry 19, 5864−5869 year: 1980 ident: bi030201qb00054/bi030201qb00054_1 – volume-title: J. Virol. 76, 2329−2339 year: 2002 ident: bi030201qb00047/bi030201qb00047_1 – volume-title: Virology 222, 401−414 year: 1996 ident: bi030201qb00042/bi030201qb00042_1 – volume-title: J. Virol. 69, 6021−6029 year: 1995 ident: bi030201qb00039/bi030201qb00039_1 – volume-title: in Reverse Transcriptase year: 1993 ident: bi030201qb00011/bi030201qb00011_1 – volume-title: J. Virol. 70, 966−975 year: 1996 ident: bi030201qb00040/bi030201qb00040_1 – volume-title: J. Biol. Chem. 277, 16689−16696 year: 2002 ident: bi030201qb00015/bi030201qb00015_1 – volume-title: J. Biol. Chem. 273, 24425−24432 year: 1998 ident: bi030201qb00053/bi030201qb00053_1 – volume-title: Trends Genet. 9, 421−427 year: 1993 ident: bi030201qb00025/bi030201qb00025_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 89, 9652−9656 year: 1992 ident: bi030201qb00057/bi030201qb00057_1 – volume-title: RNA 5, 929−938 year: 1999 ident: bi030201qb00004/bi030201qb00004_1 – volume-title: J. Virol. 29, 863−871 year: 1979 ident: bi030201qb00060/bi030201qb00060_1 – volume-title: Nucleic Acids Res. 29, 2757−2765 year: 2001 ident: bi030201qb00050/bi030201qb00050_1 – volume-title: J. Virol. 75, 5043−5048 year: 2001 ident: bi030201qb00062/bi030201qb00062_1 – volume-title: J. Biol. Chem. 276, 31247−31256 year: 2001 ident: bi030201qb00064/bi030201qb00064_1 – volume-title: long terminal repeat ident: bi030201qn00001/bi030201qn00001_1 – volume-title: EMBO J. 15, 917−924 year: 1996 ident: bi030201qb00051/bi030201qb00051_1 – volume-title: J. Virol. 76, 13111−13115 year: 2002 ident: bi030201qb00063/bi030201qb00063_1 – volume-title: Nucleic Acids Res. 28, 4783−4789 year: 2000 ident: bi030201qb00044/bi030201qb00044_1 – volume-title: J. Virol. 73, 6307−6318 year: 1999 ident: bi030201qb00033/bi030201qb00033_1 – volume-title: EMBO J. 18, 1038−1048 year: 1999 ident: bi030201qb00037/bi030201qb00037_1 – volume-title: J. Virol. 71, 7648−7656 year: 1997 ident: bi030201qb00034/bi030201qb00034_1 – volume-title: Mol. Biol. Rep. 22, 171−175 year: 1995 ident: bi030201qb00022/bi030201qb00022_1 – volume-title: RNA 8, 357−369 year: 2002 ident: bi030201qb00046/bi030201qb00046_1 – volume-title: J. Mol. Biol. 247, 236−250 year: 1995 ident: bi030201qb00035/bi030201qb00035_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 90, 6320−6324 year: 1993 ident: bi030201qb00058/bi030201qb00058_1 – volume-title: AIDS Res. Hum. Retroviruses 14, 979−988 year: 1998 ident: bi030201qb00043/bi030201qb00043_1 – volume-title: J. Virol. 66, 2464−2472 year: 1992 ident: bi030201qb00031/bi030201qb00031_1 |
SSID | ssj0004074 |
Score | 1.9790412 |
SecondaryResourceType | review_article |
Snippet | Sequestering a host-coded tRNA for initiation of minus (−) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and... Sequestering a host-coded tRNA for initiation of minus (-) strand DNA synthesis is central to the reverse transcription cycle of a number of retroviruses and... |
SourceID | proquest pubmed crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14349 |
SubjectTerms | Animals DNA, Fungal - biosynthesis DNA, Fungal - chemistry DNA, Single-Stranded - biosynthesis DNA, Single-Stranded - chemistry DNA, Viral - biosynthesis DNA, Viral - chemistry Models, Chemical Retroelements - genetics Retroviridae - genetics Retroviridae - physiology Retrovirus Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - physiology Terminal Repeat Sequences - genetics Transcription Initiation Site Virus Replication - genetics |
Title | “In the Beginning”: Initiation of Minus Strand DNA Synthesis in Retroviruses and LTR-Containing Retrotransposons |
URI | http://dx.doi.org/10.1021/bi030201q https://api.istex.fr/ark:/67375/TPS-GKLG3191-W/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/14661945 https://www.proquest.com/docview/17960043 https://www.proquest.com/docview/71489596 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9gAXWloeW0qxAFVcUuLEiRtuy5Y-oK1Qdyt6i2zHllYFL2wSQTntlf8Af25_CeM8tiC6cM5Ycjxjzzfj8TcAz9CJiTA03FOGCo9xRb0kEspDaOtncSR3lHYJ_eOT-OCMvTmPzhfg6Zwb_IC-kEO0Q3RTn2_AUhDj5nX4p9e_evzoN1TLGBoHiMdb-qDfhzrXo_I_XM-SW8Wv83Fl5V_2lmG3faVTl5VcbJeF3Fbf_iZt_NfUV-B2gy9JtzaIO7Cg7SqsdS3G1h8vyRapKj6rVPoq3Oy13d7W4Mt08uPQEoSD5JXr1eDSJdPJz5fTyXdy6AqMKg2SkSHHQ1vmxLHa2ozsnnRJ_9LisHyYk6Elp7pwSYpxmeucOImjwannKLDqThT196JmVEeon9-Fs73Xg96B1zRl8ARGjoUnuC-VQreX-TuKC5olvjFhKNwTWMmEVCwOJKMmjpnQPAyMiajmUuA5pjAapuE9WLQjqx8AMVEkEaBwlemQBUwliTQslOhXGcsQyHRgE7WWNpsqT6v78oCms2XtwPNWoalqKM1dZ40P14k-mYl-qnk8rhPaqqxiJiHGF67wjUfp4F0_3X97tI8nFk3fd-BxazYp6sndsQirRyXOkaMJ-iycL8ExAE2iJO7A_drerubDYpdTitb_998P4VZdUxh4NN6AxWJc6keIjQq5We2NX8VfCYs |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagPZQLj5ZHeLQWQhWXLetd77rLLQTahCYRalLR28r22lLU1oF4IyinXPkP8OfySxh7NwmgVnDe8cqPseeb8fgbhF6AEeNxrFkgNeEBZZIEWcJlANA2LNJE7EvlAvq9fto-oe9Pk9OaJse9hYFOWPiT9Zf4K3YB8kqMQB3BWn2-idYBhEROm5utweoNZFgzLoOHHAEsX7AI_d7UWSBp_7BA624yv14PL72ZObhT1SvyHfTZJWd701LsyW9_cTf-3wjuots12sTNSj3uoRvKbKKtpgFP--IS72Kf_-kD65too7Wo_baFvsxnPzoGAzjEb1zlBhc8mc9-vp7PvuOOSzfy64nHGvdGZmqx47g1BX7bb-LBpYFmdmTxyOBjVbqQxWRqlcVOojs8DhwhVlWXovpeVvzqAPztfXRy8G7Yagd1iYaAgx9ZBpyFQkowgkW4LxknRRZqHcfcPYgVlAtJ00hQotOUcsXiSOuEKCY4nGoSfGMSP0BrZmzUI4R1kgiAK0wWKqYRlVkmNI0FWFlKC4A1DbQNs5rXW8zm_vY8IvlyWhvo5WJdc1kTnLs6G-dXiT5fin6qWD2uEtr1yrGU4JMzlwbHknz4YZAfHnUP4fwi-ccG2lloTw7r5G5cuFHjKfSRgSaGNL5egoE7miVZ2kAPK7Vb9YemLsKUPP7XuHfQRnvY6-bdTv_oCbpVZRtGAUmforVyMlXPADWVYttvl1_I4hHs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Pb9MwFLdgk4ALfzY2OmCzEJq4ZMSJEy_cSke3sq5Mayd2i2zHlqpt7qgTjXHqle8AX66fhOck7QBtgnOeo2f72e-vfw-h16DEeBhq5klNuEeZJF4ScemBaetncSS2pXIB_YNevHdMP55EJ7Wj6N7CABMW_mTLJL471ReZrhEGyFsxBJEEjfXlLlp06Ton0c1W__odpF-jLoOXHIBpPkMS-n2o00LS_qGFFt2Cfr3dxCxVTfsR-jRnsqwwOd0qcrElv_2F3_j_s3iMHtZWJ25WYvIE3VFmCS03DXjc51d4E5d1oGWAfQndb816wC2jy-nkR8dgMBLxe9fBwQVRppOf76aT77jjyo7KfcUjjQ-GprDYYd2aDO_0mrh_ZWCYHVo8NPhI5S50MS6ssthRdAdHngPGqvpTVN_zCmcdHAD7FB23Pwxae17dqsHj4E_mHme-kBKUYeZvS8ZJlvhahyF3D2MF5ULSOBCU6DimXLEw0DoiigkOt5sEH5mEK2jBjIx6hrCOIgFmC5OZCmlAZZIITUMB2pbSDMybBlqHlU3ro2bTMosekHS-rA30Zra3qayBzl2_jbObSF_NSS8qdI-biDZLAZlT8PGpK4djUTo47Ke7-91duMdI-rmBNmYSlMI-ucwLN2pUAI8MpNGn4e0UDNzSJEriBlqtRO-aHxq7SFO09q95b6B7hzvttNvp7T9HD6qiw8Aj8Qu0kI8L9RKMp1yslyfmF5q3FG8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%22In+the+Beginning%22%3A+Initiation+of+Minus+Strand+DNA+Synthesis+in+Retroviruses+and+LTR-Containing+Retrotransposons&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Le+Grice%2C+SFJ&rft.date=2003-12-16&rft.issn=0006-2960&rft.volume=42&rft.issue=49&rft.spage=14349&rft.epage=14355&rft_id=info:doi/10.1021%2Fbi030201q&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |