Investigation on the Structure of Water/AOT/IPM/Alcohols Reverse Micelles by Conductivity, Dynamic Light Scattering, and Small Angle X-ray Scattering
We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon i...
Saved in:
Published in | The journal of physical chemistry. B Vol. 116; no. 12; pp. 3723 - 3734 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
29.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W p) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d H) obtained from DLS increases markedly with the increase in water content (W 0); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R g) increases with increasing W 0, and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W 0 ranges correspond to three different stages in the conductivity–W 0 curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems. |
---|---|
AbstractList | We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (Wₚ) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (dH) obtained from DLS increases markedly with the increase in water content (W₀); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (Rg) increases with increasing W₀, and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W₀ ranges correspond to three different stages in the conductivity–W₀ curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems. We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W p) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d H) obtained from DLS increases markedly with the increase in water content (W 0); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R g) increases with increasing W 0, and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W 0 ranges correspond to three different stages in the conductivity–W 0 curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems. We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W sub(p)) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d sub(H)) obtained from DLS increases markedly with the increase in water content (W sub(0)); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R sub(g)) increases with increasing W sub(0), and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W sub(0) ranges correspond to three different stages in the conductivity-W sub(0) curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems. We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W(p)) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d(H)) obtained from DLS increases markedly with the increase in water content (W(0)); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R(g)) increases with increasing W(0), and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W(0) ranges correspond to three different stages in the conductivity-W(0) curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems.We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W(p)) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d(H)) obtained from DLS increases markedly with the increase in water content (W(0)); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R(g)) increases with increasing W(0), and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W(0) ranges correspond to three different stages in the conductivity-W(0) curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems. |
Author | Zhang, Haijiao Zhao, Chuanzhuang Zhang, Xiaoguang Chen, Yingjun Liu, Jiexiang |
AuthorAffiliation | Nankai University Hebei University of Technology |
AuthorAffiliation_xml | – name: Hebei University of Technology – name: Nankai University |
Author_xml | – sequence: 1 givenname: Xiaoguang surname: Zhang fullname: Zhang, Xiaoguang email: xgzhang@nankai.edu.cn, jxliu@hebut.edu.cn – sequence: 2 givenname: Yingjun surname: Chen fullname: Chen, Yingjun – sequence: 3 givenname: Jiexiang surname: Liu fullname: Liu, Jiexiang email: xgzhang@nankai.edu.cn, jxliu@hebut.edu.cn – sequence: 4 givenname: Chuanzhuang surname: Zhao fullname: Zhao, Chuanzhuang – sequence: 5 givenname: Haijiao surname: Zhang fullname: Zhang, Haijiao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22380931$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0t2KEzEUAOAgK-6PXvgCkhtRYcfJSSaZzmWpf4UuK3ZF74Y0k2lTZpJukinMg_i-Zm1XRBaFhOTiOyfknHOOTqyzGqHnQN4CoZBvdxRIRah_hM6AU5KlXZ4c7wKIOEXnIWwJoZxOxBN0SimbkIrBGfoxt3sdolnLaJzFacWNxsvoBxUHr7Fr8TcZtc-n1zf5_PNVPu2U27gu4C96r33Q-Moo3XU64NWIZ842KdDsTRwv8bvRyt4ovDDrTcRLJWNKZOz6Ekvb4GUvuw5P7brT-Hvm5fiHeIoet7IL-tnxvEBfP7y_mX3KFtcf57PpIpNFIWIGIFjJVxVp2kYyoQklvAXOWoBGcFoUJfCyJQ1dlVqUrJDASlVyBbpSoig5u0CvDnl33t0OqQ51b8Ldd6TVbgh1JVhRMTJhSb7-p6SEEE6A8v9TSA9zoGIiEn1xpMOq102986aXfqzv-5NAfgDKuxC8bmtl4q9WRS9NVwOp7yag_j0BKeLNXxH3SR-yLw9WqlBv3eBtKvYD7icdnLrf |
CitedBy_id | crossref_primary_10_1016_j_jcis_2013_08_034 crossref_primary_10_1021_la304951f crossref_primary_10_1021_acs_langmuir_6b00643 crossref_primary_10_1039_C9NJ02268F crossref_primary_10_1039_D1NJ02951G crossref_primary_10_1039_C8NJ05118F crossref_primary_10_1016_j_colsurfa_2016_05_024 crossref_primary_10_1021_la404584q crossref_primary_10_1002_ange_201206197 crossref_primary_10_1016_j_colsurfa_2014_03_010 crossref_primary_10_1039_C8SM02217H crossref_primary_10_1016_j_jct_2013_12_026 crossref_primary_10_1002_slct_201601986 crossref_primary_10_1002_jsde_12381 crossref_primary_10_1016_j_colsurfa_2013_05_009 crossref_primary_10_1016_j_jcis_2013_04_008 crossref_primary_10_1016_j_bpc_2024_107269 crossref_primary_10_1016_j_molliq_2018_04_090 crossref_primary_10_1016_j_molliq_2020_112762 crossref_primary_10_1016_j_colsurfa_2016_05_078 crossref_primary_10_1016_j_colsurfa_2014_07_022 crossref_primary_10_1016_j_colsurfa_2014_05_077 crossref_primary_10_1002_anie_201206197 crossref_primary_10_3390_polym13091378 crossref_primary_10_1016_j_jcis_2014_05_042 crossref_primary_10_1021_la5025923 crossref_primary_10_1021_acs_jpcb_1c08602 crossref_primary_10_1016_j_molliq_2017_08_074 crossref_primary_10_3103_S1541308X21040026 crossref_primary_10_1021_acs_joc_0c01740 crossref_primary_10_1016_j_jct_2013_04_005 crossref_primary_10_1039_D0OB02371J crossref_primary_10_1021_acs_jpcb_7b11395 crossref_primary_10_1007_s00396_014_3470_y crossref_primary_10_1016_j_fluid_2013_10_046 crossref_primary_10_1021_acs_langmuir_0c02855 crossref_primary_10_1002_slct_201903904 crossref_primary_10_1002_slct_201601449 crossref_primary_10_1128_AEM_00463_13 crossref_primary_10_1039_c3ta13018e crossref_primary_10_1016_j_colsurfa_2013_04_049 crossref_primary_10_1002_cphc_201701264 crossref_primary_10_1002_slct_201701192 crossref_primary_10_1016_j_colsurfa_2021_127827 crossref_primary_10_1016_j_colsurfa_2013_03_001 crossref_primary_10_1021_je400597f crossref_primary_10_1016_j_colsurfa_2015_01_018 crossref_primary_10_1016_j_jcis_2013_10_058 crossref_primary_10_1021_acs_langmuir_1c02235 |
Cites_doi | 10.1006/jcis.1996.0512 10.1016/0166-6622(90)80271-5 10.1016/S0927-7757(97)00239-2 10.1021/la970297n 10.1021/la951051q 10.1021/la00078a036 10.1016/j.colsurfa.2010.02.026 10.1016/j.fuel.2008.01.027 10.1016/j.colsurfa.2009.06.039 10.1021/jp000336v 10.1021/la904231t 10.1016/j.jcis.2005.02.088 10.1021/j100140a044 10.1021/la971248d 10.1016/j.molliq.2006.09.003 10.1016/S0006-3495(98)77850-6 10.1021/la00038a023 10.1016/j.colsurfa.2004.12.037 10.1021/j100319a039 10.1016/j.jcis.2008.02.016 10.1021/jp991899d 10.1080/01932690802537323 10.1021/la00025a020 10.1021/j100274a005 10.1039/f19878302347 10.1021/la960687u 10.1016/j.ijpharm.2006.07.035 10.1016/S0001-8686(99)00018-4 10.1021/la011504t 10.1021/jp203014j 10.1021/jp109202f 10.1016/j.jcis.2005.06.088 10.1103/PhysRevE.76.041505 10.1006/jcis.2001.7613 10.1016/S0927-7757(98)00485-3 10.1006/jcis.1996.4554 10.1021/j100017a056 10.1021/jp970108+ 10.1016/S0021-9797(02)00102-9 10.1016/j.colsurfa.2004.10.003 10.1021/jp0105084 10.1039/FT9938903277 10.1021/la991028v 10.1006/jcis.1995.1053 10.1007/s11743-010-1186-7 10.1016/j.jcis.2005.04.098 10.1016/j.jcis.2005.07.072 10.1021/jp053425m 10.1016/j.jcis.2009.03.085 10.1016/0021-9797(87)90360-2 10.1021/jp020510a 10.1016/j.jcis.2009.06.048 10.1021/j100176a090 10.1016/S0927-7757(02)00168-1 10.1021/jp990360c 10.1021/j100338a004 10.1016/j.jcis.2009.04.091 10.1016/S0927-7757(98)00196-4 10.1021/jp026702n 10.1080/01932699908943805 10.1039/b917197e 10.1021/j100376a024 10.1021/la0116241 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 7X8 |
DOI | 10.1021/jp210902r |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 3734 |
ExternalDocumentID | 22380931 10_1021_jp210902r d091110943 |
Genre | Journal Article |
GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-a446t-116375b90dfda36e0205f153f11d652447157f0d2b7e6734a137c75c1e9c64753 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Fri Jul 11 06:39:54 EDT 2025 Fri Jul 11 06:19:29 EDT 2025 Thu Jul 10 18:22:27 EDT 2025 Mon Jul 21 05:33:40 EDT 2025 Tue Jul 01 00:21:39 EDT 2025 Thu Apr 24 22:50:55 EDT 2025 Thu Aug 27 13:42:20 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a446t-116375b90dfda36e0205f153f11d652447157f0d2b7e6734a137c75c1e9c64753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22380931 |
PQID | 1753512686 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_963493083 proquest_miscellaneous_2000501253 proquest_miscellaneous_1753512686 pubmed_primary_22380931 crossref_citationtrail_10_1021_jp210902r crossref_primary_10_1021_jp210902r acs_journals_10_1021_jp210902r |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-29 |
PublicationDateYYYYMMDD | 2012-03-29 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Maitra A. N. (ref18/cit18) 1990; 94 Ray S. (ref26/cit26) 1993; 89 Lang J. (ref46/cit46) 1991; 95 Liu D. J. (ref30/cit30) 1999; 20 Glatter O. (ref44/cit44) 1991 Tomšič M. (ref13/cit13) 2006; 327 Mendonça C. R. B. (ref20/cit20) 2009; 337 Moulik S. P. (ref42/cit42) 2000; 16 Garti N. (ref48/cit48) 1995; 169 Müller M. (ref15/cit15) 2009; 335 Liu D. J. (ref5/cit5) 1998; 139 Evans D. F. (ref59/cit59) 1986; 90 Vasquez V. R. (ref10/cit10) 2011; 115 Hirai M. (ref63/cit63) 1998; 74 Shrestha L. K. (ref22/cit22) 2010; 26 Nazzario L. M. M. (ref28/cit28) 1996; 12 Lin T. L. (ref58/cit58) 1997; 105 Li X. C. (ref52/cit52) 2010; 360 Liu D. J. (ref65/cit65) 1998; 135 Blochowicz T. (ref23/cit23) 2007; 76 Hou M. J. (ref45/cit45) 1987; 3 Silber J. J. (ref55/cit55) 1999; 82 Hirai M. (ref61/cit61) 1995; 99 von Corswant C. (ref31/cit31) 1998; 14 Suarez M. J. (ref51/cit51) 1993; 97 Zielińska K. (ref37/cit37) 2008; 321 Correa N. M. (ref2/cit2) 2005; 109 Li Q. (ref6/cit6) 2001; 239 Lissi E. A. (ref56/cit56) 1992; 8 Fanun M. (ref3/cit3) 2007; 135 Ezrahi S. (ref49/cit49) 2005; 291 Hait S. K. (ref43/cit43) 2002; 18 Paul B. K. (ref35/cit35) 2006; 295 Zhou G. W. (ref1/cit1) 2002; 18 Wang F. (ref41/cit41) 2008; 87 Kataoka H. (ref54/cit54) 2003; 107 Aveyard R. (ref60/cit60) 1987; 83 Leung R. (ref50/cit50) 1987; 120 Mitra R. K. (ref34/cit34) 2005; 252 Yaghmur A. (ref47/cit47) 2002; 209 Abuin E. (ref4/cit4) 2003; 258 Li Q. (ref17/cit17) 2000; 104 García-Río L. (ref53/cit53) 1997; 13 Tomšič M. (ref21/cit21) 2006; 294 ref32/cit32 De M. (ref38/cit38) 2009; 30 Jada A. (ref19/cit19) 1989; 93 Mukhopadhyay L. (ref29/cit29) 1990; 50 Hirai M. (ref62/cit62) 1999; 103 Feitosa E. (ref14/cit14) 2009; 348 Ray S. (ref27/cit27) 1996; 183 Amaral C. L. C. (ref64/cit64) 1996; 12 Hait S. K. (ref16/cit16) 2001; 105 Mitra R. K. (ref36/cit36) 2005; 252 Mukhopadhyay L. (ref8/cit8) 1997; 186 Perez-Casas S. (ref57/cit57) 1997; 101 Liu D. J. (ref24/cit24) 1998; 143 Paul B. K. (ref33/cit33) 2005; 288 Moulik S. P. (ref25/cit25) 1999; 103 Goto A. (ref9/cit9) 1993; 9 Jahn W. (ref66/cit66) 1988; 92 Agazzi F. M. (ref12/cit12) 2011; 115 De M. (ref39/cit39) 2010; 13 Falcone R. D. (ref11/cit11) 2009; 11 Mehta S. K. (ref40/cit40) 2009; 338 Hait S. K. (ref7/cit7) 2002; 106 |
References_xml | – volume: 183 start-page: 6 year: 1996 ident: ref27/cit27 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0512 – volume: 50 start-page: 295 year: 1990 ident: ref29/cit29 publication-title: Colloids Surf. doi: 10.1016/0166-6622(90)80271-5 – volume: 135 start-page: 157 year: 1998 ident: ref65/cit65 publication-title: Colloids Surf. A doi: 10.1016/S0927-7757(97)00239-2 – volume: 13 start-page: 6083 year: 1997 ident: ref53/cit53 publication-title: Langmuir doi: 10.1021/la970297n – volume: 12 start-page: 4638 year: 1996 ident: ref64/cit64 publication-title: Langmuir doi: 10.1021/la951051q – volume: 3 start-page: 1086 year: 1987 ident: ref45/cit45 publication-title: Langmuir doi: 10.1021/la00078a036 – volume: 360 start-page: 150 year: 2010 ident: ref52/cit52 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2010.02.026 – volume: 87 start-page: 2517 year: 2008 ident: ref41/cit41 publication-title: Fuel doi: 10.1016/j.fuel.2008.01.027 – volume: 348 start-page: 82 year: 2009 ident: ref14/cit14 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2009.06.039 – volume: 104 start-page: 9011 year: 2000 ident: ref17/cit17 publication-title: J. Phys. Chem. B doi: 10.1021/jp000336v – volume: 26 start-page: 7015 year: 2010 ident: ref22/cit22 publication-title: Langmuir doi: 10.1021/la904231t – volume: 288 start-page: 261 year: 2005 ident: ref33/cit33 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.02.088 – volume: 97 start-page: 9808 year: 1993 ident: ref51/cit51 publication-title: J. Phys. Chem. doi: 10.1021/j100140a044 – volume: 14 start-page: 3506 year: 1998 ident: ref31/cit31 publication-title: Langmuir doi: 10.1021/la971248d – volume: 135 start-page: 5 year: 2007 ident: ref3/cit3 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2006.09.003 – volume: 74 start-page: 1380 year: 1998 ident: ref63/cit63 publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77850-6 – volume: 8 start-page: 452 year: 1992 ident: ref56/cit56 publication-title: Langmuir doi: 10.1021/la00038a023 – volume: 252 start-page: 165 year: 2005 ident: ref34/cit34 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2004.12.037 – volume: 92 start-page: 2294 year: 1988 ident: ref66/cit66 publication-title: J. Phys. Chem. doi: 10.1021/j100319a039 – volume: 321 start-page: 408 year: 2008 ident: ref37/cit37 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2008.02.016 – volume: 103 start-page: 9658 year: 1999 ident: ref62/cit62 publication-title: J. Phys. Chem. B doi: 10.1021/jp991899d – volume: 30 start-page: 277 year: 2009 ident: ref38/cit38 publication-title: J. Dispersion Sci. Technol. doi: 10.1080/01932690802537323 – volume: 9 start-page: 86 year: 1993 ident: ref9/cit9 publication-title: Langmuir doi: 10.1021/la00025a020 – volume: 90 start-page: 226 year: 1986 ident: ref59/cit59 publication-title: J. Phys. Chem. doi: 10.1021/j100274a005 – volume: 83 start-page: 2347 year: 1987 ident: ref60/cit60 publication-title: J. Chem. Soc., Faraday Trans. 1 doi: 10.1039/f19878302347 – volume: 12 start-page: 6326 year: 1996 ident: ref28/cit28 publication-title: Langmuir doi: 10.1021/la960687u – volume: 327 start-page: 170 year: 2006 ident: ref13/cit13 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2006.07.035 – volume: 82 start-page: 189 year: 1999 ident: ref55/cit55 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(99)00018-4 – volume: 18 start-page: 6736 year: 2002 ident: ref43/cit43 publication-title: Langmuir doi: 10.1021/la011504t – volume: 115 start-page: 12076 year: 2011 ident: ref12/cit12 publication-title: J. Phys. Chem. B doi: 10.1021/jp203014j – volume: 115 start-page: 2979 year: 2011 ident: ref10/cit10 publication-title: J. Phys. Chem. B doi: 10.1021/jp109202f – volume: 294 start-page: 194 year: 2006 ident: ref21/cit21 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.06.088 – volume: 76 start-page: 041505 year: 2007 ident: ref23/cit23 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.76.041505 – volume: 105 start-page: p268 year: 1997 ident: ref58/cit58 publication-title: Prog. Colloid Polym. Sci. – volume: 239 start-page: 522 year: 2001 ident: ref6/cit6 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2001.7613 – volume: 143 start-page: 59 year: 1998 ident: ref24/cit24 publication-title: Colloids Surf. A doi: 10.1016/S0927-7757(98)00485-3 – volume: 186 start-page: 1 year: 1997 ident: ref8/cit8 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.4554 – volume: 99 start-page: 6652 year: 1995 ident: ref61/cit61 publication-title: J. Phys. Chem. B doi: 10.1021/j100017a056 – volume: 101 start-page: 7043 year: 1997 ident: ref57/cit57 publication-title: J. Phys. Chem. B doi: 10.1021/jp970108+ – volume: 258 start-page: 363 year: 2003 ident: ref4/cit4 publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(02)00102-9 – volume: 252 start-page: 243 year: 2005 ident: ref36/cit36 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2004.10.003 – start-page: 33 volume-title: Neutron, X-ray and light scattering year: 1991 ident: ref44/cit44 – volume: 105 start-page: 7145 year: 2001 ident: ref16/cit16 publication-title: J. Phys. Chem. B doi: 10.1021/jp0105084 – ident: ref32/cit32 – volume: 89 start-page: 3277 year: 1993 ident: ref26/cit26 publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/FT9938903277 – volume: 16 start-page: 3101 year: 2000 ident: ref42/cit42 publication-title: Langmuir doi: 10.1021/la991028v – volume: 169 start-page: 428 year: 1995 ident: ref48/cit48 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1995.1053 – volume: 13 start-page: 475 year: 2010 ident: ref39/cit39 publication-title: J. Surfactants Deterg. doi: 10.1007/s11743-010-1186-7 – volume: 291 start-page: 273 year: 2005 ident: ref49/cit49 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.04.098 – volume: 295 start-page: 230 year: 2006 ident: ref35/cit35 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.07.072 – volume: 109 start-page: 21209 year: 2005 ident: ref2/cit2 publication-title: J. Phys. Chem. B doi: 10.1021/jp053425m – volume: 335 start-page: 228 year: 2009 ident: ref15/cit15 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.03.085 – volume: 120 start-page: 320 year: 1987 ident: ref50/cit50 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(87)90360-2 – volume: 107 start-page: 12542 year: 2003 ident: ref54/cit54 publication-title: J. Phys. Chem. B doi: 10.1021/jp020510a – volume: 338 start-page: 542 year: 2009 ident: ref40/cit40 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.06.048 – volume: 95 start-page: 9533 year: 1991 ident: ref46/cit46 publication-title: J. Phys. Chem. doi: 10.1021/j100176a090 – volume: 209 start-page: 71 year: 2002 ident: ref47/cit47 publication-title: Colloids Surf. A doi: 10.1016/S0927-7757(02)00168-1 – volume: 103 start-page: 7122 year: 1999 ident: ref25/cit25 publication-title: J. Phys. Chem. B doi: 10.1021/jp990360c – volume: 93 start-page: 10 year: 1989 ident: ref19/cit19 publication-title: J. Phys. Chem. doi: 10.1021/j100338a004 – volume: 337 start-page: 579 year: 2009 ident: ref20/cit20 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.04.091 – volume: 139 start-page: 21 year: 1998 ident: ref5/cit5 publication-title: Colloids Surf. A doi: 10.1016/S0927-7757(98)00196-4 – volume: 106 start-page: 12642 year: 2002 ident: ref7/cit7 publication-title: J. Phys. Chem. B doi: 10.1021/jp026702n – volume: 20 start-page: 513 year: 1999 ident: ref30/cit30 publication-title: J. Dispersion Sci. Technol. doi: 10.1080/01932699908943805 – volume: 11 start-page: 11096 year: 2009 ident: ref11/cit11 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b917197e – volume: 94 start-page: 5290 year: 1990 ident: ref18/cit18 publication-title: J. Phys. Chem. doi: 10.1021/j100376a024 – volume: 18 start-page: 4566 year: 2002 ident: ref1/cit1 publication-title: Langmuir doi: 10.1021/la0116241 |
SSID | ssj0025286 |
Score | 2.2748365 |
Snippet | We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3723 |
SubjectTerms | 1-propanol Alcohols butanol Droplets Dynamical systems Dynamics ethanol Ethyl alcohol hydrodynamics Light scattering micelles pentanols Percolation physical chemistry physical properties SAXS water content X-radiation |
Title | Investigation on the Structure of Water/AOT/IPM/Alcohols Reverse Micelles by Conductivity, Dynamic Light Scattering, and Small Angle X-ray Scattering |
URI | http://dx.doi.org/10.1021/jp210902r https://www.ncbi.nlm.nih.gov/pubmed/22380931 https://www.proquest.com/docview/1753512686 https://www.proquest.com/docview/2000501253 https://www.proquest.com/docview/963493083 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcoBLy7tboDKPA4emGzuxnRxXW6qCWEBsK_a28hO1LEm1j0P5H_xfxs5mtYguSDlOkoln7PnGnnwD8LpQ3movdZI5apPc5irRpUlxxitmJBfKx82cwUdxep6_H_HRFrzacILPaPfyisXiwektuM1EIUOG1esPV1kVZ7GdI8ahkAeloqUPWr81hB4z-zP0bMCTMa6c7MJx-3dOU07y_Wgx10fm599kjf9S-R7sLHEl6TWOcB-2XPUA7vTbdm4P4dcao0ZdEbwQ-pFhpI9dTB2pPfmKuHPa7X066777POj2mua5M_LFhdINRwYXcZd_RvQ16ddVIIqNnScOyXHT1p58CJk-GZrI2Ykx8ZCoypLhDzVBzapvE0dGyVRdr0k8gvOTt2f902TZkyFRmDjOE4r4TXJdptZblQmHaJN7XDU9pVZwxAqSculTy7R0Qma5oplEmxvqSiNyzI0ew3ZVV24PSMFTjzlskZkiy0uti1Rzza3QofQUn9aBAzTaeDmnZuN4XM4wXWlHtwNvWnuOzZLRPDTWmNwk-nIletXQeNwk9KJ1ijEaJ4ypqly9wFej4oiMRCE2y7DIpYN4MesA2SCDq11eZoh6O_CkcbqVNgjTirTM6P7_vvop3EXQxkIdHCufwTb6iXuOwGiuD-LE-A2cJQZ0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V5VAuvB_hURYEEoe6sdfetX3oIUqpEpoURFKRm9ldr1Ehtas4EUr_Ry_9K_w5Zjd2CKgRp0pIPo7W453ZnW92x98AvI5ElsoslI6vvdQJ0kA4MlYurnhBVci4yOxhTv-Id46D9yM22oDL-l8YVKLEkUp7if-bXcBrfjujtoZwUhVQHur5D0zPyr3uPtryDaUH74btjlN1EHAEpjlTx0O0ETIZu2mWCp9rxEYswzWeeV7KGUa20GNh5qZUhpqHfiA8P0QNladjxYPQdITA7f0Ggh5qErtWe7BM5hi1XSQx_Jn0y-U1a9GqqibiqfLPiLcGxtpwdnAbfi4nwlaxfN-dTeWuOv-LI_L_nKk7cKtC0aS1cPu7sKHze7DVrpvX3YeLFf6QIif4INAlA0uWO5toUmTkM6LsSbP1Ydjsfuw3W4tWwSX5pE2hiib9E3unURI5J-0iN7S4ts_GDtmf5-L0RJGeOdcgA2UZShEB7BCRp2RwKsaoWf51rMnImYj5isQDOL6WWXkIm3mR68dAIuZmmLFHvor8IJYyciWTLOXSFNriaA3YRmMm1Q5SJrY4gGJyVluzAW9rN0pUxd9u2oiMrxJ9tRQ9W5CWXCX0svbFBI1j5lTkupjhq1FxxIE84utlqGUOQnTsN4CskcG9PYh9xPgNeLTw9aU2CEojN_a9J__66hew1Rn2e0mve3T4FG4iXKWmApDGz2ATfUY_R0g4ldt2bRL4ct0u_gsxq2VB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF5VrQRcKP-khbIgkDjUjb32ru0DhyghamhTKtKK3Mz-okJqR3EiFN6DK6_CqzG7saOAGnGqhOTjaD3emd35Znf8DUIvE26UMLHwQh0oL1IR90QqfVjxnMiYMm7cYU7_hB2eR--GdLiBftb_woASJYxUukt8u6rHylQMA0Hzy5i4OsJJVUR5pOffIEUr3_Q6YM9XhHTfnrUPvaqLgMch1Zl6ASCOmIrUV0bxkGnAR9TAOjdBoBiF6BYHNDa-IiLWLA4jHoQxaCkDnUoWxbYrBGzxW_Z60CZ3rfZgmdBR4jpJQgi0KZjPauaiVVVt1JPln1FvDZR1Ia27jX4tJ8NVsnw9mE3Fgfz-F0_k_ztbd9DtCk3j1sL976INnd9DN9t1E7v76McKj0iRY3gA8OKBI82dTTQuDP4IaHvSbL0_a_ZO-83WomVwiT9oW7Cicf_C3W2UWMxxu8gtPa7rt7GPO_OcX15IfGzPN_BAOqZSQAL7mOcKDy75CDTLP480HnoTPl-ReIDOr2VWHqLNvMj1Y4QT6hvI3JNQJmGUCpH4ggqqmLAFtzBaA-2BQbNqJykzVyRAIEmrrdlAr2tXymTF427biYyuEn2xFB0vyEuuEnpe-2MGxrFzynNdzODVoDjgQZaw9TLEMQgBSg4bCK-RgT0-SkPA-g30aOHvS20AnCZ-GgY7__rqZ-jGaaebHfdOjnbRLUCtxBYCkvQJ2gSX0U8BGU7FnlueGH26bg__DSJIZ8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+the+structure+of+water%2FAOT%2FIPM%2Falcohols+reverse+micelles+by+conductivity%2C+dynamic+light+scattering%2C+and+small+angle+X-ray+scattering&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Zhang%2C+Xiaoguang&rft.au=Chen%2C+Yingjun&rft.au=Liu%2C+Jiexiang&rft.au=Zhao%2C+Chuanzhuang&rft.date=2012-03-29&rft.issn=1520-5207&rft.eissn=1520-5207&rft.volume=116&rft.issue=12&rft.spage=3723&rft_id=info:doi/10.1021%2Fjp210902r&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |