Investigation on the Structure of Water/AOT/IPM/Alcohols Reverse Micelles by Conductivity, Dynamic Light Scattering, and Small Angle X-ray Scattering

We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon i...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 116; no. 12; pp. 3723 - 3734
Main Authors Zhang, Xiaoguang, Chen, Yingjun, Liu, Jiexiang, Zhao, Chuanzhuang, Zhang, Haijiao
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 29.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W p) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d H) obtained from DLS increases markedly with the increase in water content (W 0); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R g) increases with increasing W 0, and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W 0 ranges correspond to three different stages in the conductivity–W 0 curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems.
AbstractList We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (Wₚ) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (dH) obtained from DLS increases markedly with the increase in water content (W₀); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (Rg) increases with increasing W₀, and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W₀ ranges correspond to three different stages in the conductivity–W₀ curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems.
We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W p) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d H) obtained from DLS increases markedly with the increase in water content (W 0); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R g) increases with increasing W 0, and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W 0 ranges correspond to three different stages in the conductivity–W 0 curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems.
We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W sub(p)) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d sub(H)) obtained from DLS increases markedly with the increase in water content (W sub(0)); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R sub(g)) increases with increasing W sub(0), and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W sub(0) ranges correspond to three different stages in the conductivity-W sub(0) curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems.
We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W(p)) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d(H)) obtained from DLS increases markedly with the increase in water content (W(0)); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R(g)) increases with increasing W(0), and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W(0) ranges correspond to three different stages in the conductivity-W(0) curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems.We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W(p)) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d(H)) obtained from DLS increases markedly with the increase in water content (W(0)); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R(g)) increases with increasing W(0), and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W(0) ranges correspond to three different stages in the conductivity-W(0) curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems.
Author Zhang, Haijiao
Zhao, Chuanzhuang
Zhang, Xiaoguang
Chen, Yingjun
Liu, Jiexiang
AuthorAffiliation Nankai University
Hebei University of Technology
AuthorAffiliation_xml – name: Hebei University of Technology
– name: Nankai University
Author_xml – sequence: 1
  givenname: Xiaoguang
  surname: Zhang
  fullname: Zhang, Xiaoguang
  email: xgzhang@nankai.edu.cn, jxliu@hebut.edu.cn
– sequence: 2
  givenname: Yingjun
  surname: Chen
  fullname: Chen, Yingjun
– sequence: 3
  givenname: Jiexiang
  surname: Liu
  fullname: Liu, Jiexiang
  email: xgzhang@nankai.edu.cn, jxliu@hebut.edu.cn
– sequence: 4
  givenname: Chuanzhuang
  surname: Zhao
  fullname: Zhao, Chuanzhuang
– sequence: 5
  givenname: Haijiao
  surname: Zhang
  fullname: Zhang, Haijiao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22380931$$D View this record in MEDLINE/PubMed
BookMark eNqF0t2KEzEUAOAgK-6PXvgCkhtRYcfJSSaZzmWpf4UuK3ZF74Y0k2lTZpJukinMg_i-Zm1XRBaFhOTiOyfknHOOTqyzGqHnQN4CoZBvdxRIRah_hM6AU5KlXZ4c7wKIOEXnIWwJoZxOxBN0SimbkIrBGfoxt3sdolnLaJzFacWNxsvoBxUHr7Fr8TcZtc-n1zf5_PNVPu2U27gu4C96r33Q-Moo3XU64NWIZ842KdDsTRwv8bvRyt4ovDDrTcRLJWNKZOz6Ekvb4GUvuw5P7brT-Hvm5fiHeIoet7IL-tnxvEBfP7y_mX3KFtcf57PpIpNFIWIGIFjJVxVp2kYyoQklvAXOWoBGcFoUJfCyJQ1dlVqUrJDASlVyBbpSoig5u0CvDnl33t0OqQ51b8Ldd6TVbgh1JVhRMTJhSb7-p6SEEE6A8v9TSA9zoGIiEn1xpMOq102986aXfqzv-5NAfgDKuxC8bmtl4q9WRS9NVwOp7yag_j0BKeLNXxH3SR-yLw9WqlBv3eBtKvYD7icdnLrf
CitedBy_id crossref_primary_10_1016_j_jcis_2013_08_034
crossref_primary_10_1021_la304951f
crossref_primary_10_1021_acs_langmuir_6b00643
crossref_primary_10_1039_C9NJ02268F
crossref_primary_10_1039_D1NJ02951G
crossref_primary_10_1039_C8NJ05118F
crossref_primary_10_1016_j_colsurfa_2016_05_024
crossref_primary_10_1021_la404584q
crossref_primary_10_1002_ange_201206197
crossref_primary_10_1016_j_colsurfa_2014_03_010
crossref_primary_10_1039_C8SM02217H
crossref_primary_10_1016_j_jct_2013_12_026
crossref_primary_10_1002_slct_201601986
crossref_primary_10_1002_jsde_12381
crossref_primary_10_1016_j_colsurfa_2013_05_009
crossref_primary_10_1016_j_jcis_2013_04_008
crossref_primary_10_1016_j_bpc_2024_107269
crossref_primary_10_1016_j_molliq_2018_04_090
crossref_primary_10_1016_j_molliq_2020_112762
crossref_primary_10_1016_j_colsurfa_2016_05_078
crossref_primary_10_1016_j_colsurfa_2014_07_022
crossref_primary_10_1016_j_colsurfa_2014_05_077
crossref_primary_10_1002_anie_201206197
crossref_primary_10_3390_polym13091378
crossref_primary_10_1016_j_jcis_2014_05_042
crossref_primary_10_1021_la5025923
crossref_primary_10_1021_acs_jpcb_1c08602
crossref_primary_10_1016_j_molliq_2017_08_074
crossref_primary_10_3103_S1541308X21040026
crossref_primary_10_1021_acs_joc_0c01740
crossref_primary_10_1016_j_jct_2013_04_005
crossref_primary_10_1039_D0OB02371J
crossref_primary_10_1021_acs_jpcb_7b11395
crossref_primary_10_1007_s00396_014_3470_y
crossref_primary_10_1016_j_fluid_2013_10_046
crossref_primary_10_1021_acs_langmuir_0c02855
crossref_primary_10_1002_slct_201903904
crossref_primary_10_1002_slct_201601449
crossref_primary_10_1128_AEM_00463_13
crossref_primary_10_1039_c3ta13018e
crossref_primary_10_1016_j_colsurfa_2013_04_049
crossref_primary_10_1002_cphc_201701264
crossref_primary_10_1002_slct_201701192
crossref_primary_10_1016_j_colsurfa_2021_127827
crossref_primary_10_1016_j_colsurfa_2013_03_001
crossref_primary_10_1021_je400597f
crossref_primary_10_1016_j_colsurfa_2015_01_018
crossref_primary_10_1016_j_jcis_2013_10_058
crossref_primary_10_1021_acs_langmuir_1c02235
Cites_doi 10.1006/jcis.1996.0512
10.1016/0166-6622(90)80271-5
10.1016/S0927-7757(97)00239-2
10.1021/la970297n
10.1021/la951051q
10.1021/la00078a036
10.1016/j.colsurfa.2010.02.026
10.1016/j.fuel.2008.01.027
10.1016/j.colsurfa.2009.06.039
10.1021/jp000336v
10.1021/la904231t
10.1016/j.jcis.2005.02.088
10.1021/j100140a044
10.1021/la971248d
10.1016/j.molliq.2006.09.003
10.1016/S0006-3495(98)77850-6
10.1021/la00038a023
10.1016/j.colsurfa.2004.12.037
10.1021/j100319a039
10.1016/j.jcis.2008.02.016
10.1021/jp991899d
10.1080/01932690802537323
10.1021/la00025a020
10.1021/j100274a005
10.1039/f19878302347
10.1021/la960687u
10.1016/j.ijpharm.2006.07.035
10.1016/S0001-8686(99)00018-4
10.1021/la011504t
10.1021/jp203014j
10.1021/jp109202f
10.1016/j.jcis.2005.06.088
10.1103/PhysRevE.76.041505
10.1006/jcis.2001.7613
10.1016/S0927-7757(98)00485-3
10.1006/jcis.1996.4554
10.1021/j100017a056
10.1021/jp970108+
10.1016/S0021-9797(02)00102-9
10.1016/j.colsurfa.2004.10.003
10.1021/jp0105084
10.1039/FT9938903277
10.1021/la991028v
10.1006/jcis.1995.1053
10.1007/s11743-010-1186-7
10.1016/j.jcis.2005.04.098
10.1016/j.jcis.2005.07.072
10.1021/jp053425m
10.1016/j.jcis.2009.03.085
10.1016/0021-9797(87)90360-2
10.1021/jp020510a
10.1016/j.jcis.2009.06.048
10.1021/j100176a090
10.1016/S0927-7757(02)00168-1
10.1021/jp990360c
10.1021/j100338a004
10.1016/j.jcis.2009.04.091
10.1016/S0927-7757(98)00196-4
10.1021/jp026702n
10.1080/01932699908943805
10.1039/b917197e
10.1021/j100376a024
10.1021/la0116241
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
7X8
DOI 10.1021/jp210902r
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 3734
ExternalDocumentID 22380931
10_1021_jp210902r
d091110943
Genre Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
7X8
ID FETCH-LOGICAL-a446t-116375b90dfda36e0205f153f11d652447157f0d2b7e6734a137c75c1e9c64753
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri Jul 11 06:39:54 EDT 2025
Fri Jul 11 06:19:29 EDT 2025
Thu Jul 10 18:22:27 EDT 2025
Mon Jul 21 05:33:40 EDT 2025
Tue Jul 01 00:21:39 EDT 2025
Thu Apr 24 22:50:55 EDT 2025
Thu Aug 27 13:42:20 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a446t-116375b90dfda36e0205f153f11d652447157f0d2b7e6734a137c75c1e9c64753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22380931
PQID 1753512686
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_963493083
proquest_miscellaneous_2000501253
proquest_miscellaneous_1753512686
pubmed_primary_22380931
crossref_citationtrail_10_1021_jp210902r
crossref_primary_10_1021_jp210902r
acs_journals_10_1021_jp210902r
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-29
PublicationDateYYYYMMDD 2012-03-29
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Maitra A. N. (ref18/cit18) 1990; 94
Ray S. (ref26/cit26) 1993; 89
Lang J. (ref46/cit46) 1991; 95
Liu D. J. (ref30/cit30) 1999; 20
Glatter O. (ref44/cit44) 1991
Tomšič M. (ref13/cit13) 2006; 327
Mendonça C. R. B. (ref20/cit20) 2009; 337
Moulik S. P. (ref42/cit42) 2000; 16
Garti N. (ref48/cit48) 1995; 169
Müller M. (ref15/cit15) 2009; 335
Liu D. J. (ref5/cit5) 1998; 139
Evans D. F. (ref59/cit59) 1986; 90
Vasquez V. R. (ref10/cit10) 2011; 115
Hirai M. (ref63/cit63) 1998; 74
Shrestha L. K. (ref22/cit22) 2010; 26
Nazzario L. M. M. (ref28/cit28) 1996; 12
Lin T. L. (ref58/cit58) 1997; 105
Li X. C. (ref52/cit52) 2010; 360
Liu D. J. (ref65/cit65) 1998; 135
Blochowicz T. (ref23/cit23) 2007; 76
Hou M. J. (ref45/cit45) 1987; 3
Silber J. J. (ref55/cit55) 1999; 82
Hirai M. (ref61/cit61) 1995; 99
von Corswant C. (ref31/cit31) 1998; 14
Suarez M. J. (ref51/cit51) 1993; 97
Zielińska K. (ref37/cit37) 2008; 321
Correa N. M. (ref2/cit2) 2005; 109
Li Q. (ref6/cit6) 2001; 239
Lissi E. A. (ref56/cit56) 1992; 8
Fanun M. (ref3/cit3) 2007; 135
Ezrahi S. (ref49/cit49) 2005; 291
Hait S. K. (ref43/cit43) 2002; 18
Paul B. K. (ref35/cit35) 2006; 295
Zhou G. W. (ref1/cit1) 2002; 18
Wang F. (ref41/cit41) 2008; 87
Kataoka H. (ref54/cit54) 2003; 107
Aveyard R. (ref60/cit60) 1987; 83
Leung R. (ref50/cit50) 1987; 120
Mitra R. K. (ref34/cit34) 2005; 252
Yaghmur A. (ref47/cit47) 2002; 209
Abuin E. (ref4/cit4) 2003; 258
Li Q. (ref17/cit17) 2000; 104
García-Río L. (ref53/cit53) 1997; 13
Tomšič M. (ref21/cit21) 2006; 294
ref32/cit32
De M. (ref38/cit38) 2009; 30
Jada A. (ref19/cit19) 1989; 93
Mukhopadhyay L. (ref29/cit29) 1990; 50
Hirai M. (ref62/cit62) 1999; 103
Feitosa E. (ref14/cit14) 2009; 348
Ray S. (ref27/cit27) 1996; 183
Amaral C. L. C. (ref64/cit64) 1996; 12
Hait S. K. (ref16/cit16) 2001; 105
Mitra R. K. (ref36/cit36) 2005; 252
Mukhopadhyay L. (ref8/cit8) 1997; 186
Perez-Casas S. (ref57/cit57) 1997; 101
Liu D. J. (ref24/cit24) 1998; 143
Paul B. K. (ref33/cit33) 2005; 288
Moulik S. P. (ref25/cit25) 1999; 103
Goto A. (ref9/cit9) 1993; 9
Jahn W. (ref66/cit66) 1988; 92
Agazzi F. M. (ref12/cit12) 2011; 115
De M. (ref39/cit39) 2010; 13
Falcone R. D. (ref11/cit11) 2009; 11
Mehta S. K. (ref40/cit40) 2009; 338
Hait S. K. (ref7/cit7) 2002; 106
References_xml – volume: 183
  start-page: 6
  year: 1996
  ident: ref27/cit27
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0512
– volume: 50
  start-page: 295
  year: 1990
  ident: ref29/cit29
  publication-title: Colloids Surf.
  doi: 10.1016/0166-6622(90)80271-5
– volume: 135
  start-page: 157
  year: 1998
  ident: ref65/cit65
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(97)00239-2
– volume: 13
  start-page: 6083
  year: 1997
  ident: ref53/cit53
  publication-title: Langmuir
  doi: 10.1021/la970297n
– volume: 12
  start-page: 4638
  year: 1996
  ident: ref64/cit64
  publication-title: Langmuir
  doi: 10.1021/la951051q
– volume: 3
  start-page: 1086
  year: 1987
  ident: ref45/cit45
  publication-title: Langmuir
  doi: 10.1021/la00078a036
– volume: 360
  start-page: 150
  year: 2010
  ident: ref52/cit52
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2010.02.026
– volume: 87
  start-page: 2517
  year: 2008
  ident: ref41/cit41
  publication-title: Fuel
  doi: 10.1016/j.fuel.2008.01.027
– volume: 348
  start-page: 82
  year: 2009
  ident: ref14/cit14
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2009.06.039
– volume: 104
  start-page: 9011
  year: 2000
  ident: ref17/cit17
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp000336v
– volume: 26
  start-page: 7015
  year: 2010
  ident: ref22/cit22
  publication-title: Langmuir
  doi: 10.1021/la904231t
– volume: 288
  start-page: 261
  year: 2005
  ident: ref33/cit33
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.02.088
– volume: 97
  start-page: 9808
  year: 1993
  ident: ref51/cit51
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100140a044
– volume: 14
  start-page: 3506
  year: 1998
  ident: ref31/cit31
  publication-title: Langmuir
  doi: 10.1021/la971248d
– volume: 135
  start-page: 5
  year: 2007
  ident: ref3/cit3
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2006.09.003
– volume: 74
  start-page: 1380
  year: 1998
  ident: ref63/cit63
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77850-6
– volume: 8
  start-page: 452
  year: 1992
  ident: ref56/cit56
  publication-title: Langmuir
  doi: 10.1021/la00038a023
– volume: 252
  start-page: 165
  year: 2005
  ident: ref34/cit34
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2004.12.037
– volume: 92
  start-page: 2294
  year: 1988
  ident: ref66/cit66
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100319a039
– volume: 321
  start-page: 408
  year: 2008
  ident: ref37/cit37
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2008.02.016
– volume: 103
  start-page: 9658
  year: 1999
  ident: ref62/cit62
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp991899d
– volume: 30
  start-page: 277
  year: 2009
  ident: ref38/cit38
  publication-title: J. Dispersion Sci. Technol.
  doi: 10.1080/01932690802537323
– volume: 9
  start-page: 86
  year: 1993
  ident: ref9/cit9
  publication-title: Langmuir
  doi: 10.1021/la00025a020
– volume: 90
  start-page: 226
  year: 1986
  ident: ref59/cit59
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100274a005
– volume: 83
  start-page: 2347
  year: 1987
  ident: ref60/cit60
  publication-title: J. Chem. Soc., Faraday Trans. 1
  doi: 10.1039/f19878302347
– volume: 12
  start-page: 6326
  year: 1996
  ident: ref28/cit28
  publication-title: Langmuir
  doi: 10.1021/la960687u
– volume: 327
  start-page: 170
  year: 2006
  ident: ref13/cit13
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2006.07.035
– volume: 82
  start-page: 189
  year: 1999
  ident: ref55/cit55
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(99)00018-4
– volume: 18
  start-page: 6736
  year: 2002
  ident: ref43/cit43
  publication-title: Langmuir
  doi: 10.1021/la011504t
– volume: 115
  start-page: 12076
  year: 2011
  ident: ref12/cit12
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp203014j
– volume: 115
  start-page: 2979
  year: 2011
  ident: ref10/cit10
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp109202f
– volume: 294
  start-page: 194
  year: 2006
  ident: ref21/cit21
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.06.088
– volume: 76
  start-page: 041505
  year: 2007
  ident: ref23/cit23
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.76.041505
– volume: 105
  start-page: p268
  year: 1997
  ident: ref58/cit58
  publication-title: Prog. Colloid Polym. Sci.
– volume: 239
  start-page: 522
  year: 2001
  ident: ref6/cit6
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2001.7613
– volume: 143
  start-page: 59
  year: 1998
  ident: ref24/cit24
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(98)00485-3
– volume: 186
  start-page: 1
  year: 1997
  ident: ref8/cit8
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.4554
– volume: 99
  start-page: 6652
  year: 1995
  ident: ref61/cit61
  publication-title: J. Phys. Chem. B
  doi: 10.1021/j100017a056
– volume: 101
  start-page: 7043
  year: 1997
  ident: ref57/cit57
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970108+
– volume: 258
  start-page: 363
  year: 2003
  ident: ref4/cit4
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(02)00102-9
– volume: 252
  start-page: 243
  year: 2005
  ident: ref36/cit36
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2004.10.003
– start-page: 33
  volume-title: Neutron, X-ray and light scattering
  year: 1991
  ident: ref44/cit44
– volume: 105
  start-page: 7145
  year: 2001
  ident: ref16/cit16
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0105084
– ident: ref32/cit32
– volume: 89
  start-page: 3277
  year: 1993
  ident: ref26/cit26
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/FT9938903277
– volume: 16
  start-page: 3101
  year: 2000
  ident: ref42/cit42
  publication-title: Langmuir
  doi: 10.1021/la991028v
– volume: 169
  start-page: 428
  year: 1995
  ident: ref48/cit48
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1995.1053
– volume: 13
  start-page: 475
  year: 2010
  ident: ref39/cit39
  publication-title: J. Surfactants Deterg.
  doi: 10.1007/s11743-010-1186-7
– volume: 291
  start-page: 273
  year: 2005
  ident: ref49/cit49
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.04.098
– volume: 295
  start-page: 230
  year: 2006
  ident: ref35/cit35
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.07.072
– volume: 109
  start-page: 21209
  year: 2005
  ident: ref2/cit2
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp053425m
– volume: 335
  start-page: 228
  year: 2009
  ident: ref15/cit15
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.03.085
– volume: 120
  start-page: 320
  year: 1987
  ident: ref50/cit50
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(87)90360-2
– volume: 107
  start-page: 12542
  year: 2003
  ident: ref54/cit54
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp020510a
– volume: 338
  start-page: 542
  year: 2009
  ident: ref40/cit40
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.06.048
– volume: 95
  start-page: 9533
  year: 1991
  ident: ref46/cit46
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100176a090
– volume: 209
  start-page: 71
  year: 2002
  ident: ref47/cit47
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(02)00168-1
– volume: 103
  start-page: 7122
  year: 1999
  ident: ref25/cit25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp990360c
– volume: 93
  start-page: 10
  year: 1989
  ident: ref19/cit19
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100338a004
– volume: 337
  start-page: 579
  year: 2009
  ident: ref20/cit20
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.04.091
– volume: 139
  start-page: 21
  year: 1998
  ident: ref5/cit5
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(98)00196-4
– volume: 106
  start-page: 12642
  year: 2002
  ident: ref7/cit7
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp026702n
– volume: 20
  start-page: 513
  year: 1999
  ident: ref30/cit30
  publication-title: J. Dispersion Sci. Technol.
  doi: 10.1080/01932699908943805
– volume: 11
  start-page: 11096
  year: 2009
  ident: ref11/cit11
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b917197e
– volume: 94
  start-page: 5290
  year: 1990
  ident: ref18/cit18
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100376a024
– volume: 18
  start-page: 4566
  year: 2002
  ident: ref1/cit1
  publication-title: Langmuir
  doi: 10.1021/la0116241
SSID ssj0025286
Score 2.2748365
Snippet We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3723
SubjectTerms 1-propanol
Alcohols
butanol
Droplets
Dynamical systems
Dynamics
ethanol
Ethyl alcohol
hydrodynamics
Light scattering
micelles
pentanols
Percolation
physical chemistry
physical properties
SAXS
water content
X-radiation
Title Investigation on the Structure of Water/AOT/IPM/Alcohols Reverse Micelles by Conductivity, Dynamic Light Scattering, and Small Angle X-ray Scattering
URI http://dx.doi.org/10.1021/jp210902r
https://www.ncbi.nlm.nih.gov/pubmed/22380931
https://www.proquest.com/docview/1753512686
https://www.proquest.com/docview/2000501253
https://www.proquest.com/docview/963493083
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcoBLy7tboDKPA4emGzuxnRxXW6qCWEBsK_a28hO1LEm1j0P5H_xfxs5mtYguSDlOkoln7PnGnnwD8LpQ3movdZI5apPc5irRpUlxxitmJBfKx82cwUdxep6_H_HRFrzacILPaPfyisXiwektuM1EIUOG1esPV1kVZ7GdI8ahkAeloqUPWr81hB4z-zP0bMCTMa6c7MJx-3dOU07y_Wgx10fm599kjf9S-R7sLHEl6TWOcB-2XPUA7vTbdm4P4dcao0ZdEbwQ-pFhpI9dTB2pPfmKuHPa7X066777POj2mua5M_LFhdINRwYXcZd_RvQ16ddVIIqNnScOyXHT1p58CJk-GZrI2Ykx8ZCoypLhDzVBzapvE0dGyVRdr0k8gvOTt2f902TZkyFRmDjOE4r4TXJdptZblQmHaJN7XDU9pVZwxAqSculTy7R0Qma5oplEmxvqSiNyzI0ew3ZVV24PSMFTjzlskZkiy0uti1Rzza3QofQUn9aBAzTaeDmnZuN4XM4wXWlHtwNvWnuOzZLRPDTWmNwk-nIletXQeNwk9KJ1ijEaJ4ypqly9wFej4oiMRCE2y7DIpYN4MesA2SCDq11eZoh6O_CkcbqVNgjTirTM6P7_vvop3EXQxkIdHCufwTb6iXuOwGiuD-LE-A2cJQZ0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V5VAuvB_hURYEEoe6sdfetX3oIUqpEpoURFKRm9ldr1Ehtas4EUr_Ry_9K_w5Zjd2CKgRp0pIPo7W453ZnW92x98AvI5ElsoslI6vvdQJ0kA4MlYurnhBVci4yOxhTv-Id46D9yM22oDL-l8YVKLEkUp7if-bXcBrfjujtoZwUhVQHur5D0zPyr3uPtryDaUH74btjlN1EHAEpjlTx0O0ETIZu2mWCp9rxEYswzWeeV7KGUa20GNh5qZUhpqHfiA8P0QNladjxYPQdITA7f0Ggh5qErtWe7BM5hi1XSQx_Jn0y-U1a9GqqibiqfLPiLcGxtpwdnAbfi4nwlaxfN-dTeWuOv-LI_L_nKk7cKtC0aS1cPu7sKHze7DVrpvX3YeLFf6QIif4INAlA0uWO5toUmTkM6LsSbP1Ydjsfuw3W4tWwSX5pE2hiib9E3unURI5J-0iN7S4ts_GDtmf5-L0RJGeOdcgA2UZShEB7BCRp2RwKsaoWf51rMnImYj5isQDOL6WWXkIm3mR68dAIuZmmLFHvor8IJYyciWTLOXSFNriaA3YRmMm1Q5SJrY4gGJyVluzAW9rN0pUxd9u2oiMrxJ9tRQ9W5CWXCX0svbFBI1j5lTkupjhq1FxxIE84utlqGUOQnTsN4CskcG9PYh9xPgNeLTw9aU2CEojN_a9J__66hew1Rn2e0mve3T4FG4iXKWmApDGz2ATfUY_R0g4ldt2bRL4ct0u_gsxq2VB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF5VrQRcKP-khbIgkDjUjb32ru0DhyghamhTKtKK3Mz-okJqR3EiFN6DK6_CqzG7saOAGnGqhOTjaD3emd35Znf8DUIvE26UMLHwQh0oL1IR90QqfVjxnMiYMm7cYU7_hB2eR--GdLiBftb_woASJYxUukt8u6rHylQMA0Hzy5i4OsJJVUR5pOffIEUr3_Q6YM9XhHTfnrUPvaqLgMch1Zl6ASCOmIrUV0bxkGnAR9TAOjdBoBiF6BYHNDa-IiLWLA4jHoQxaCkDnUoWxbYrBGzxW_Z60CZ3rfZgmdBR4jpJQgi0KZjPauaiVVVt1JPln1FvDZR1Ia27jX4tJ8NVsnw9mE3Fgfz-F0_k_ztbd9DtCk3j1sL976INnd9DN9t1E7v76McKj0iRY3gA8OKBI82dTTQuDP4IaHvSbL0_a_ZO-83WomVwiT9oW7Cicf_C3W2UWMxxu8gtPa7rt7GPO_OcX15IfGzPN_BAOqZSQAL7mOcKDy75CDTLP480HnoTPl-ReIDOr2VWHqLNvMj1Y4QT6hvI3JNQJmGUCpH4ggqqmLAFtzBaA-2BQbNqJykzVyRAIEmrrdlAr2tXymTF427biYyuEn2xFB0vyEuuEnpe-2MGxrFzynNdzODVoDjgQZaw9TLEMQgBSg4bCK-RgT0-SkPA-g30aOHvS20AnCZ-GgY7__rqZ-jGaaebHfdOjnbRLUCtxBYCkvQJ2gSX0U8BGU7FnlueGH26bg__DSJIZ8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+the+structure+of+water%2FAOT%2FIPM%2Falcohols+reverse+micelles+by+conductivity%2C+dynamic+light+scattering%2C+and+small+angle+X-ray+scattering&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Zhang%2C+Xiaoguang&rft.au=Chen%2C+Yingjun&rft.au=Liu%2C+Jiexiang&rft.au=Zhao%2C+Chuanzhuang&rft.date=2012-03-29&rft.issn=1520-5207&rft.eissn=1520-5207&rft.volume=116&rft.issue=12&rft.spage=3723&rft_id=info:doi/10.1021%2Fjp210902r&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon