Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen

Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb p...

Full description

Saved in:
Bibliographic Details
Published inACS infectious diseases Vol. 2; no. 3; pp. 231 - 239
Main Authors Dutta, Noton K, He, Rongjun, Pinn, Michael L, He, Yantao, Burrows, Francis, Zhang, Zhong-Yin, Karakousis, Petros C
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard anti-tubercular regimen of isoniazid–rifampicin–pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50 mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12–24 h. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment.
AbstractList Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC for 12-24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment.
Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC 50 for 12–24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment.
Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard anti-tubercular regimen of isoniazid–rifampicin–pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50 mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12–24 h. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment.
Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12-24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment.
Author He, Rongjun
Zhang, Zhong-Yin
He, Yantao
Dutta, Noton K
Karakousis, Petros C
Pinn, Michael L
Burrows, Francis
AuthorAffiliation Department of Biochemistry and Molecular Biology
Indiana University School of Medicine
Center for Tuberculosis Research, Department of Medicine
Johns Hopkins Bloomberg School of Public Health
Department of International Health
Johns Hopkins University School of Medicine
Aarden Pharmaceuticals, Inc
AuthorAffiliation_xml – name: Indiana University School of Medicine
– name: Department of International Health
– name: Johns Hopkins University School of Medicine
– name: Center for Tuberculosis Research, Department of Medicine
– name: Aarden Pharmaceuticals, Inc
– name: Department of Biochemistry and Molecular Biology
– name: Johns Hopkins Bloomberg School of Public Health
– name: 1 Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
– name: 2 Department of Biochemistry and Molecular Biology Indiana University School of Medicine, Indianapolis, IN, USA
– name: 4 Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
– name: 3 Aarden Pharmaceuticals, Inc. Indianapolis, IN, USA
Author_xml – sequence: 1
  givenname: Noton K
  surname: Dutta
  fullname: Dutta, Noton K
– sequence: 2
  givenname: Rongjun
  surname: He
  fullname: He, Rongjun
– sequence: 3
  givenname: Michael L
  surname: Pinn
  fullname: Pinn, Michael L
– sequence: 4
  givenname: Yantao
  surname: He
  fullname: He, Yantao
– sequence: 5
  givenname: Francis
  surname: Burrows
  fullname: Burrows, Francis
– sequence: 6
  givenname: Zhong-Yin
  surname: Zhang
  fullname: Zhang, Zhong-Yin
– sequence: 7
  givenname: Petros C
  surname: Karakousis
  fullname: Karakousis, Petros C
  email: petros@jhmi.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27478867$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAUhVGVqknTPEGlimU3TowxP95UmkRNGylVo2T2CMP1mMgDU8CR5hX61CGdaTTddAXinvPdI857dOSDB4Q-kvqc1A250CY5P4CxLp2zvq4JpW_QSUMFrWTTiKOD-zE6S-mxftFI1rbsHTpuRCuk5OIE_f6xNaHXJkN0esJ3MWRwHi-3MZQFgO_GkDajzjpBwgusvcWX-MaPrnc5xPI0r9bgM84j4MsdxjhbSAuT3ZPLWxyGP8OHXLw6Wrzw2VV57iGaeSpLEr6HlSuQD-jtoKcEZ_vzFC2vvy6vvle3P7_dXC1uK13C58p02vCuI6Qhg6YGDGW2tQ0XZmBW9JJxKwZhidS97pnkrLVWM0sHyYCSmp6iLzvsZu7XYE1JH_WkNtGtddyqoJ36d-LdqFbhSbUd51yIAvi8B8Twa4aU1dolA9OkPYQ5KSJLmLbmXVOkdCc15TtThOF1DanVS4_qoEe177G4Ph0mfPX8ba0ILnaC4laPYY6-_Nd_kc9iKbKG
CitedBy_id crossref_primary_10_1016_j_biochi_2023_04_014
crossref_primary_10_1155_2022_5099312
crossref_primary_10_1039_D3OB01457F
crossref_primary_10_1016_j_bmcl_2020_127350
crossref_primary_10_1021_acs_jmedchem_8b00832
crossref_primary_10_1021_acs_accounts_6b00537
crossref_primary_10_1016_j_bmc_2018_10_030
crossref_primary_10_3389_fchem_2018_00519
crossref_primary_10_1002_ddr_22063
crossref_primary_10_1152_ajpcell_00246_2022
crossref_primary_10_1016_j_bioorg_2020_104495
crossref_primary_10_1016_j_heliyon_2023_e14513
crossref_primary_10_1021_acs_biochem_8b00639
crossref_primary_10_1099_mic_0_001041
crossref_primary_10_2174_1874467211666181025141114
crossref_primary_10_1016_j_bmcl_2018_12_009
crossref_primary_10_3390_microorganisms9010014
crossref_primary_10_1016_j_jinorgbio_2021_111356
crossref_primary_10_3390_biotech12030059
crossref_primary_10_1016_j_biopha_2021_111756
crossref_primary_10_1021_acs_jmedchem_0c00302
crossref_primary_10_1016_j_bbapap_2022_140782
crossref_primary_10_1002_ardp_202200459
crossref_primary_10_1111_febs_16369
crossref_primary_10_1021_acsinfecdis_3c00446
crossref_primary_10_3389_fcimb_2021_613149
crossref_primary_10_1016_j_ejmech_2017_11_087
crossref_primary_10_1038_s41598_021_87117_x
crossref_primary_10_18596_jotcsa_896489
crossref_primary_10_1016_j_bioorg_2021_105156
crossref_primary_10_1016_j_tips_2017_03_004
crossref_primary_10_1016_j_jbc_2022_102089
crossref_primary_10_1016_j_biochi_2023_04_007
crossref_primary_10_1021_acscentsci_7b00486
Cites_doi 10.1086/589515
10.1128/AAC.01933-12
10.1128/AAC.00595-10
10.1016/S0923-2508(02)01309-8
10.1096/fj.02-1212rev
10.1038/nrmicro2797
10.1093/jac/dkq277
10.1007/s00018-005-5205-1
10.1038/nm.3937
10.1038/aps.2014.80
10.1016/j.bmc.2011.11.004
10.1111/j.1462-5822.2005.00612.x
10.1016/j.chom.2008.03.008
10.1093/jac/dkr188
10.1021/jm2012062
10.1056/NEJMoa1407426
10.1093/jac/dkq007
10.1111/j.1742-4658.2012.08718.x
10.1371/journal.pone.0077930
10.1016/j.tube.2005.08.015
10.1038/ncb1104-1026
10.1021/acsmedchemlett.5b00118
10.1016/j.bmc.2010.09.052
10.1128/AAC.00500-12
10.1073/pnas.1109201108
10.1073/pnas.0909133107
10.1016/j.resmic.2005.05.013
10.1073/pnas.94.25.13420
10.4155/fmc.10.241
10.1016/j.bmcl.2009.10.090
10.1046/j.1365-2958.2003.03712.x
10.1086/605605
10.1093/jac/dkt037
10.1021/id500028m
10.1038/31159
10.1128/AAC.00761-13
10.1021/jm301781p
10.1098/rstb.1998.0228
10.1038/nchembio.2007.24
10.1002/cbic.200500171
10.4155/fmc.10.214
10.1128/AAC.00276-07
10.1146/annurev.pharmtox.45.120403.100120
10.1128/mBio.00253-15
10.1016/S0140-6736(14)60422-0
10.1128/AAC.01524-10
10.1093/infdis/jis461
10.3201/eid2106.141873
10.1128/MMBR.00010-14
10.1038/nrmicro840
10.1074/jbc.M114.582502
10.1128/JCM.36.2.362-366.1998
10.1093/jac/dkp031
10.1111/j.1574-6968.2008.01309.x
10.1038/nrd2871
10.1002/cmdc.201300115
10.1164/rccm.200905-0708ED
10.1002/path.2055
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsinfecdis.5b00133
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2373-8227
EndPage 239
ExternalDocumentID 10_1021_acsinfecdis_5b00133
27478867
c597758481
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA069202
– fundername: NIAID NIH HHS
  grantid: UH2 AI122309
GroupedDBID ABMVS
ABUCX
ACGFS
ACS
AEESW
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
EJD
UI2
VF5
VG9
W1F
53G
ABQRX
ADHLV
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
5PM
LG6
ID FETCH-LOGICAL-a445t-c9ac6991121fa3cec35d4d267cf5d7b856d7f7d18abab58654dda5d3f85e3103
IEDL.DBID ACS
ISSN 2373-8227
IngestDate Tue Sep 17 21:23:37 EDT 2024
Fri Aug 16 05:59:15 EDT 2024
Fri Aug 23 01:47:54 EDT 2024
Sat Sep 28 07:59:03 EDT 2024
Thu Aug 27 13:42:28 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords inhibitors
guinea pig
isoniazid
sterilizing
activity
pyrazinamide
chemotherapy
protein tyrosine phosphatases
virulence factors
Mycobacterium tuberculosis
rifampin
pharmacokinetics
bactericidal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a445t-c9ac6991121fa3cec35d4d267cf5d7b856d7f7d18abab58654dda5d3f85e3103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc4966677?pdf=render
PMID 27478867
PQID 1826740692
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4966677
proquest_miscellaneous_1826740692
crossref_primary_10_1021_acsinfecdis_5b00133
pubmed_primary_27478867
acs_journals_10_1021_acsinfecdis_5b00133
ProviderPackageCode ACS
AEESW
AFEFF
VF5
VG9
ABMVS
ABUCX
AQSVZ
W1F
UI2
PublicationCentury 2000
PublicationDate 2016-03-11
PublicationDateYYYYMMDD 2016-03-11
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS infectious diseases
PublicationTitleAlternate ACS Infect. Dis
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References 22087003 - Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19371-6
14617138 - Mol Microbiol. 2003 Nov;50(3):751-62
23733473 - Antimicrob Agents Chemother. 2013 Aug;57(8):3910-6
17001607 - J Pathol. 2006 Nov;210(3):298-305
26086040 - ACS Infect Dis. 2015 May 8;1(5):203-214
15083155 - Nat Rev Microbiol. 2004 Mar;2(3):189-202
22547623 - Antimicrob Agents Chemother. 2012 Jul;56(7):3726-31
22850121 - J Infect Dis. 2012 Oct 1;206(7):1030-40
25993036 - Emerg Infect Dis. 2015 Jun;21(6):992-1001
25184558 - Microbiol Mol Biol Rev. 2014 Sep;78(3):343-71
19889539 - Bioorg Med Chem Lett. 2009 Dec 15;19(24):6851-4
16256440 - Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):325-35
16132230 - Cell Mol Life Sci. 2005 Sep;62(18):2092-9
21426021 - Future Med Chem. 2010 Aug;2(8):1325-37
23568546 - ChemMedChem. 2013 Jun;8(6):904-8
15516995 - Nat Cell Biol. 2004 Nov;6(11):1026-33
21050767 - Bioorg Med Chem. 2010 Dec 1;18(23):8365-73
17517834 - Antimicrob Agents Chemother. 2007 Sep;51(9):3338-45
21282447 - Antimicrob Agents Chemother. 2011 Apr;55(4):1527-32
9602534 - Philos Trans R Soc Lond B Biol Sci. 1998 Apr 29;353(1368):583-605
19633156 - Am J Respir Crit Care Med. 2009 Aug 1;180(3):201-2
19686043 - J Infect Dis. 2009 Oct 1;200(7):1136-43
25220640 - Acta Pharmacol Sin. 2014 Oct;35(10):1227-46
17710100 - Nat Chem Biol. 2007 Sep;3(9):541-8
20693172 - J Antimicrob Chemother. 2010 Oct;65(10):2172-5
19240079 - J Antimicrob Chemother. 2009 May;63(5):928-36
25187516 - J Biol Chem. 2014 Oct 17;289(42):29376-85
21135176 - Antimicrob Agents Chemother. 2011 Mar;55(3):1237-47
22136336 - J Med Chem. 2012 Jan 12;55(1):390-402
18474358 - Cell Host Microbe. 2008 May 15;3(5):316-22
26343800 - Nat Med. 2015 Oct;21(10):1223-7
21602551 - J Antimicrob Chemother. 2011 Jul;66(7):1560-6
16441433 - Cell Microbiol. 2006 Feb;8(2):218-32
20123722 - J Antimicrob Chemother. 2010 Apr;65(4):729-34
25944857 - MBio. 2015 May 05;6(3):e00253-15
16196020 - Chembiochem. 2005 Oct;6(10):1749-53
20167798 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4573-8
22816879 - FEBS J. 2013 Jan;280(2):731-50
18491971 - J Infect Dis. 2008 Jul 15;198(2):275-83
22133902 - Bioorg Med Chem. 2012 Mar 15;20(6):1940-6
23463208 - J Antimicrob Chemother. 2013 Jun;68(6):1327-30
19629074 - Nat Rev Drug Discov. 2009 Sep;8(9):709-23
21426149 - Future Med Chem. 2010 Oct;2(10):1563-76
16085396 - Res Microbiol. 2005 Dec;156(10):1005-13
22580364 - Nat Rev Microbiol. 2012 May 14;10(6):407-16
24656187 - Lancet. 2014 Mar 22;383(9922):1016-8
23305444 - J Med Chem. 2013 Feb 14;56(3):832-42
25196020 - N Engl J Med. 2014 Oct 23;371(17):1577-87
9634230 - Nature. 1998 Jun 11;393(6685):537-44
23295923 - Antimicrob Agents Chemother. 2013 Mar;57(3):1535-7
14718383 - FASEB J. 2004 Jan;18(1):8-30
18752626 - FEMS Microbiol Lett. 2008 Oct;287(2):181-4
12066895 - Res Microbiol. 2002 May;153(4):233-41
24205032 - PLoS One. 2013 Oct 18;8(10 ):e77930
15822188 - Annu Rev Pharmacol Toxicol. 2005;45:529-64
9391040 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13420-5
26191366 - ACS Med Chem Lett. 2015 Jun 08;6(7):782-6
9466742 - J Clin Microbiol. 1998 Feb;36(2):362-6
ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Flynn J. (ref49/cit49) 2004
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
Franzblau S. G. (ref58/cit58) 1998; 36
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref57/cit57
  doi: 10.1086/589515
– ident: ref59/cit59
  doi: 10.1128/AAC.01933-12
– ident: ref38/cit38
  doi: 10.1128/AAC.00595-10
– ident: ref18/cit18
  doi: 10.1016/S0923-2508(02)01309-8
– ident: ref32/cit32
  doi: 10.1096/fj.02-1212rev
– ident: ref2/cit2
  doi: 10.1038/nrmicro2797
– ident: ref45/cit45
  doi: 10.1093/jac/dkq277
– ident: ref33/cit33
  doi: 10.1007/s00018-005-5205-1
– ident: ref55/cit55
  doi: 10.1038/nm.3937
– ident: ref9/cit9
  doi: 10.1038/aps.2014.80
– ident: ref28/cit28
  doi: 10.1016/j.bmc.2011.11.004
– ident: ref51/cit51
  doi: 10.1111/j.1462-5822.2005.00612.x
– ident: ref16/cit16
  doi: 10.1016/j.chom.2008.03.008
– ident: ref42/cit42
  doi: 10.1093/jac/dkr188
– ident: ref27/cit27
  doi: 10.1021/jm2012062
– ident: ref39/cit39
  doi: 10.1056/NEJMoa1407426
– ident: ref44/cit44
  doi: 10.1093/jac/dkq007
– ident: ref21/cit21
  doi: 10.1111/j.1742-4658.2012.08718.x
– ident: ref15/cit15
  doi: 10.1371/journal.pone.0077930
– ident: ref11/cit11
  doi: 10.1016/j.tube.2005.08.015
– ident: ref36/cit36
  doi: 10.1038/ncb1104-1026
– ident: ref23/cit23
  doi: 10.1021/acsmedchemlett.5b00118
– ident: ref26/cit26
  doi: 10.1016/j.bmc.2010.09.052
– ident: ref47/cit47
  doi: 10.1128/AAC.00500-12
– ident: ref17/cit17
  doi: 10.1073/pnas.1109201108
– ident: ref13/cit13
  doi: 10.1073/pnas.0909133107
– ident: ref14/cit14
  doi: 10.1016/j.resmic.2005.05.013
– ident: ref22/cit22
  doi: 10.1073/pnas.94.25.13420
– ident: ref34/cit34
  doi: 10.4155/fmc.10.241
– ident: ref25/cit25
  doi: 10.1016/j.bmcl.2009.10.090
– ident: ref10/cit10
  doi: 10.1046/j.1365-2958.2003.03712.x
– ident: ref43/cit43
  doi: 10.1086/605605
– ident: ref48/cit48
  doi: 10.1093/jac/dkt037
– ident: ref56/cit56
  doi: 10.1021/id500028m
– ident: ref30/cit30
  doi: 10.1038/31159
– ident: ref46/cit46
  doi: 10.1128/AAC.00761-13
– ident: ref20/cit20
  doi: 10.1021/jm301781p
– ident: ref7/cit7
  doi: 10.1098/rstb.1998.0228
– ident: ref5/cit5
  doi: 10.1038/nchembio.2007.24
– ident: ref24/cit24
  doi: 10.1002/cbic.200500171
– ident: ref6/cit6
  doi: 10.4155/fmc.10.214
– ident: ref50/cit50
  doi: 10.1128/AAC.00276-07
– ident: ref4/cit4
  doi: 10.1146/annurev.pharmtox.45.120403.100120
– ident: ref29/cit29
  doi: 10.1128/mBio.00253-15
– ident: ref1/cit1
  doi: 10.1016/S0140-6736(14)60422-0
– ident: ref41/cit41
  doi: 10.1128/AAC.01524-10
– ident: ref54/cit54
  doi: 10.1093/infdis/jis461
– ident: ref3/cit3
  doi: 10.3201/eid2106.141873
– ident: ref53/cit53
  doi: 10.1128/MMBR.00010-14
– ident: ref12/cit12
  doi: 10.1038/nrmicro840
– ident: ref35/cit35
  doi: 10.1074/jbc.M114.582502
– volume: 36
  start-page: 362
  year: 1998
  ident: ref58/cit58
  publication-title: Journal of clinical microbiology
  doi: 10.1128/JCM.36.2.362-366.1998
  contributor:
    fullname: Franzblau S. G.
– ident: ref8/cit8
  doi: 10.1093/jac/dkp031
– ident: ref37/cit37
  doi: 10.1111/j.1574-6968.2008.01309.x
– ident: ref31/cit31
  doi: 10.1038/nrd2871
– start-page: 237
  volume-title: Tuberculosis
  year: 2004
  ident: ref49/cit49
  contributor:
    fullname: Flynn J.
– ident: ref19/cit19
  doi: 10.1002/cmdc.201300115
– ident: ref40/cit40
  doi: 10.1164/rccm.200905-0708ED
– ident: ref52/cit52
  doi: 10.1002/path.2055
SSID ssj0001385445
Score 2.22179
Snippet Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 231
Title Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen
URI http://dx.doi.org/10.1021/acsinfecdis.5b00133
https://www.ncbi.nlm.nih.gov/pubmed/27478867
https://search.proquest.com/docview/1826740692
https://pubmed.ncbi.nlm.nih.gov/PMC4966677
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAX3tAFiozEgQNZNnZsJ8dt1aogbVXRReot8ivdiMpbNcmh_AR-NWMnW3ZbhHrJxSNbnsxoPnvG8wF8pILKwlmeZJzhRymaFFVqEprxShVG5ZNI2jc7Eoc_sm-n_HTtsfqNDD5NvyjTxLokWzdjHmI8Y_fhAZXoHgEJ7Z38vVJheWgtE-nkJEsw9MlVn6F_zxMikmk2I9ItmHmzWnIt_Bw8gaPVI56-6uTnuGv12Py63dPxbjt7Co8HIEqmveU8g3vOP4eHsyHV_gJ-z64M-nrs5Yxyx6GfQ-3J_Ao3gQLkeLFsLhaqxSjYkClR3pJd8tUval0HAh8y7c7CxSNBgEl2-2lMbcOKpiesIMsqDp4Mlxlk6ts6aTvtLk13jos05Ls7C-QDL2F-sD_fO0wG4oZEof7bxBTKCASeKU0rxYwzjNvMUiFNxa3UORdWVtKmudJK81zwzFrFLaty7gLv2SvY8kvvtoHkGk_oxcQWhmUoVCkhJhohjubGUaqyEXxCLZaD3zVlTKnTtFxTbTmodgSfV7-5vOg7efxf_MPKFEr0uJBGUd4tO1wDT2QyPBimI3jdm8b1hDTSEQg5ArlhNNcCoZv35oivF7Grd4YHTyHlm7vv6C08QvgmQkVcmr6DrfayczsIkVr9PjrGH5v2EVg
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkYALb-jyNBIHDmS7sWM7OW4rqi10q4pupd4iv9KNqLJVkxzKT-BXM3ay225BCC45xKPxa0Yz9oy_AfhABZWZszxKOMOPUjTKithENOGFyoxKR6Fo3_RATI6TLyf8pH8U5t_C4CBq5FSHIP4VukC8hf9CepIt6yH3pp6x23CHSzSZ3iHaObq6WWGpR5gJVeUki9ACyiXc0J_5eMNk6nXD9Ju3eTNp8poV2n0Ix6vxh-ST78O20UPz4wa04_9O8BE86N1SMu7k6DHcctUTuDvtA-9P4ef00qDmB2RnpDv06A5lRWaXOBckIIfzRX0-Vw3axJqMiaos2SZ71bzUpS_nQ8btqb-GJOhuku2OjSmt79F05SvIogiNR_3VBhlXTRk1rXYXpj3DTmryzZ36UgTPYLb7ebYzifoyDpHCbWgikykj0A2NaVwoZpxh3CaWCmkKbqVOubCykDZOlVaap4In1ipuWZFy56ugPYeNalG5TSCpxvN6NrKZYQkSFUqIkUaHR3PjKFXJAD7iKua9FtZ5CLDTOL-2tHm_tAP4tNzt_LzD9fg7-fulROSofz6ooiq3aLEPPJ9J_3yYDuBFJyErhjQUJxByAHJNdlYEHtt7vaUq5wHjO8FjqJDy5b_P6B3cm8ym-_n-3sHXV3AfHTvhc-Xi-DVsNBete4POU6PfBl35BSg-Gb0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD-2vIzEgQPZbpzYTo5pYdUCW63oIpVT5Fe6EVV21SSH8hP41Yyd7NItCCEuOcSjccYeZ8ae8TcArymnIrWGBTGL8CElDdIi1AGNWSFTLZORL9o3OeaHX-IPp-x0C5LVXRj8iBo51T6I71b10hQ9wkC4h-99ipIp6yFz5j6KbsBNJkIfoM0OTn6drkSJQ5nxleVEFKAVFCvIoT_zccZJ15vG6TeP83ri5BVLNL4DX9cy-ASUb8O2UUP9_Rq84_8IeRdu9-4pyTp9ugdbtroPO5M-AP8AfkwuNf4BPMIz0k0dykNZkdklyoMEZDpf1Mu5bNA21iQjsjJknxxV81KVrqwPydozdxxJ0O0k-x0bXRrXo-7KWJBF4RtP-iMOklVNGTStshe6PcdOavLZnrmSBA9hNn4_OzgM-nIOgcSpaAKdSs3RHQ1pWMhIWx0xExvKhS6YESph3IhCmDCRSiqWcBYbI5mJioRZVw3tEWxXi8o-AZIo3LenI5PqKEaiQnI-Uuj4KKYtpTIewBscxbxfjXXuA-00zK8Mbd4P7QDermY8X3b4Hn8nf7XSihzXoQuuyMouWuwD92nCXSOmA3jcacmaIfVFCrgYgNjQnzWBw_jebKnKucf6jnE7yoXY_XeJXsLO9N04_3R0_PEp3EL_jruUuTB8BtvNRWufow_VqBd-ufwE6OgcNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mycobacterial+Protein+Tyrosine+Phosphatases+A+and+B+Inhibitors+Augment+the+Bactericidal+Activity+of+the+Standard+Anti-tuberculosis+Regimen&rft.jtitle=ACS+infectious+diseases&rft.au=Dutta%2C+Noton+K.&rft.au=He%2C+Rongjun&rft.au=Pinn%2C+Michael+L.&rft.au=He%2C+Yantao&rft.date=2016-03-11&rft.issn=2373-8227&rft.eissn=2373-8227&rft.volume=2&rft.issue=3&rft.spage=231&rft.epage=239&rft_id=info:doi/10.1021%2Facsinfecdis.5b00133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsinfecdis_5b00133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-8227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-8227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-8227&client=summon