Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen
Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb p...
Saved in:
Published in | ACS infectious diseases Vol. 2; no. 3; pp. 231 - 239 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard anti-tubercular regimen of isoniazid–rifampicin–pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50 mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12–24 h. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment. |
---|---|
AbstractList | Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target
(Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC
for 12-24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment. Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC 50 for 12–24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment. Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard anti-tubercular regimen of isoniazid–rifampicin–pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50 mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12–24 h. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment. Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12-24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment. |
Author | He, Rongjun Zhang, Zhong-Yin He, Yantao Dutta, Noton K Karakousis, Petros C Pinn, Michael L Burrows, Francis |
AuthorAffiliation | Department of Biochemistry and Molecular Biology Indiana University School of Medicine Center for Tuberculosis Research, Department of Medicine Johns Hopkins Bloomberg School of Public Health Department of International Health Johns Hopkins University School of Medicine Aarden Pharmaceuticals, Inc |
AuthorAffiliation_xml | – name: Indiana University School of Medicine – name: Department of International Health – name: Johns Hopkins University School of Medicine – name: Center for Tuberculosis Research, Department of Medicine – name: Aarden Pharmaceuticals, Inc – name: Department of Biochemistry and Molecular Biology – name: Johns Hopkins Bloomberg School of Public Health – name: 1 Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA – name: 2 Department of Biochemistry and Molecular Biology Indiana University School of Medicine, Indianapolis, IN, USA – name: 4 Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA – name: 3 Aarden Pharmaceuticals, Inc. Indianapolis, IN, USA |
Author_xml | – sequence: 1 givenname: Noton K surname: Dutta fullname: Dutta, Noton K – sequence: 2 givenname: Rongjun surname: He fullname: He, Rongjun – sequence: 3 givenname: Michael L surname: Pinn fullname: Pinn, Michael L – sequence: 4 givenname: Yantao surname: He fullname: He, Yantao – sequence: 5 givenname: Francis surname: Burrows fullname: Burrows, Francis – sequence: 6 givenname: Zhong-Yin surname: Zhang fullname: Zhang, Zhong-Yin – sequence: 7 givenname: Petros C surname: Karakousis fullname: Karakousis, Petros C email: petros@jhmi.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27478867$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u3CAUhVGVqknTPEGlimU3TowxP95UmkRNGylVo2T2CMP1mMgDU8CR5hX61CGdaTTddAXinvPdI857dOSDB4Q-kvqc1A250CY5P4CxLp2zvq4JpW_QSUMFrWTTiKOD-zE6S-mxftFI1rbsHTpuRCuk5OIE_f6xNaHXJkN0esJ3MWRwHi-3MZQFgO_GkDajzjpBwgusvcWX-MaPrnc5xPI0r9bgM84j4MsdxjhbSAuT3ZPLWxyGP8OHXLw6Wrzw2VV57iGaeSpLEr6HlSuQD-jtoKcEZ_vzFC2vvy6vvle3P7_dXC1uK13C58p02vCuI6Qhg6YGDGW2tQ0XZmBW9JJxKwZhidS97pnkrLVWM0sHyYCSmp6iLzvsZu7XYE1JH_WkNtGtddyqoJ36d-LdqFbhSbUd51yIAvi8B8Twa4aU1dolA9OkPYQ5KSJLmLbmXVOkdCc15TtThOF1DanVS4_qoEe177G4Ph0mfPX8ba0ILnaC4laPYY6-_Nd_kc9iKbKG |
CitedBy_id | crossref_primary_10_1016_j_biochi_2023_04_014 crossref_primary_10_1155_2022_5099312 crossref_primary_10_1039_D3OB01457F crossref_primary_10_1016_j_bmcl_2020_127350 crossref_primary_10_1021_acs_jmedchem_8b00832 crossref_primary_10_1021_acs_accounts_6b00537 crossref_primary_10_1016_j_bmc_2018_10_030 crossref_primary_10_3389_fchem_2018_00519 crossref_primary_10_1002_ddr_22063 crossref_primary_10_1152_ajpcell_00246_2022 crossref_primary_10_1016_j_bioorg_2020_104495 crossref_primary_10_1016_j_heliyon_2023_e14513 crossref_primary_10_1021_acs_biochem_8b00639 crossref_primary_10_1099_mic_0_001041 crossref_primary_10_2174_1874467211666181025141114 crossref_primary_10_1016_j_bmcl_2018_12_009 crossref_primary_10_3390_microorganisms9010014 crossref_primary_10_1016_j_jinorgbio_2021_111356 crossref_primary_10_3390_biotech12030059 crossref_primary_10_1016_j_biopha_2021_111756 crossref_primary_10_1021_acs_jmedchem_0c00302 crossref_primary_10_1016_j_bbapap_2022_140782 crossref_primary_10_1002_ardp_202200459 crossref_primary_10_1111_febs_16369 crossref_primary_10_1021_acsinfecdis_3c00446 crossref_primary_10_3389_fcimb_2021_613149 crossref_primary_10_1016_j_ejmech_2017_11_087 crossref_primary_10_1038_s41598_021_87117_x crossref_primary_10_18596_jotcsa_896489 crossref_primary_10_1016_j_bioorg_2021_105156 crossref_primary_10_1016_j_tips_2017_03_004 crossref_primary_10_1016_j_jbc_2022_102089 crossref_primary_10_1016_j_biochi_2023_04_007 crossref_primary_10_1021_acscentsci_7b00486 |
Cites_doi | 10.1086/589515 10.1128/AAC.01933-12 10.1128/AAC.00595-10 10.1016/S0923-2508(02)01309-8 10.1096/fj.02-1212rev 10.1038/nrmicro2797 10.1093/jac/dkq277 10.1007/s00018-005-5205-1 10.1038/nm.3937 10.1038/aps.2014.80 10.1016/j.bmc.2011.11.004 10.1111/j.1462-5822.2005.00612.x 10.1016/j.chom.2008.03.008 10.1093/jac/dkr188 10.1021/jm2012062 10.1056/NEJMoa1407426 10.1093/jac/dkq007 10.1111/j.1742-4658.2012.08718.x 10.1371/journal.pone.0077930 10.1016/j.tube.2005.08.015 10.1038/ncb1104-1026 10.1021/acsmedchemlett.5b00118 10.1016/j.bmc.2010.09.052 10.1128/AAC.00500-12 10.1073/pnas.1109201108 10.1073/pnas.0909133107 10.1016/j.resmic.2005.05.013 10.1073/pnas.94.25.13420 10.4155/fmc.10.241 10.1016/j.bmcl.2009.10.090 10.1046/j.1365-2958.2003.03712.x 10.1086/605605 10.1093/jac/dkt037 10.1021/id500028m 10.1038/31159 10.1128/AAC.00761-13 10.1021/jm301781p 10.1098/rstb.1998.0228 10.1038/nchembio.2007.24 10.1002/cbic.200500171 10.4155/fmc.10.214 10.1128/AAC.00276-07 10.1146/annurev.pharmtox.45.120403.100120 10.1128/mBio.00253-15 10.1016/S0140-6736(14)60422-0 10.1128/AAC.01524-10 10.1093/infdis/jis461 10.3201/eid2106.141873 10.1128/MMBR.00010-14 10.1038/nrmicro840 10.1074/jbc.M114.582502 10.1128/JCM.36.2.362-366.1998 10.1093/jac/dkp031 10.1111/j.1574-6968.2008.01309.x 10.1038/nrd2871 10.1002/cmdc.201300115 10.1164/rccm.200905-0708ED 10.1002/path.2055 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American
Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsinfecdis.5b00133 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2373-8227 |
EndPage | 239 |
ExternalDocumentID | 10_1021_acsinfecdis_5b00133 27478867 c597758481 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA069202 – fundername: NIAID NIH HHS grantid: UH2 AI122309 |
GroupedDBID | ABMVS ABUCX ACGFS ACS AEESW AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS EJD UI2 VF5 VG9 W1F 53G ABQRX ADHLV BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 5PM LG6 |
ID | FETCH-LOGICAL-a445t-c9ac6991121fa3cec35d4d267cf5d7b856d7f7d18abab58654dda5d3f85e3103 |
IEDL.DBID | ACS |
ISSN | 2373-8227 |
IngestDate | Tue Sep 17 21:23:37 EDT 2024 Fri Aug 16 05:59:15 EDT 2024 Fri Aug 23 01:47:54 EDT 2024 Sat Sep 28 07:59:03 EDT 2024 Thu Aug 27 13:42:28 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | inhibitors guinea pig isoniazid sterilizing activity pyrazinamide chemotherapy protein tyrosine phosphatases virulence factors Mycobacterium tuberculosis rifampin pharmacokinetics bactericidal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a445t-c9ac6991121fa3cec35d4d267cf5d7b856d7f7d18abab58654dda5d3f85e3103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc4966677?pdf=render |
PMID | 27478867 |
PQID | 1826740692 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4966677 proquest_miscellaneous_1826740692 crossref_primary_10_1021_acsinfecdis_5b00133 pubmed_primary_27478867 acs_journals_10_1021_acsinfecdis_5b00133 |
ProviderPackageCode | ACS AEESW AFEFF VF5 VG9 ABMVS ABUCX AQSVZ W1F UI2 |
PublicationCentury | 2000 |
PublicationDate | 2016-03-11 |
PublicationDateYYYYMMDD | 2016-03-11 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS infectious diseases |
PublicationTitleAlternate | ACS Infect. Dis |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | 22087003 - Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19371-6 14617138 - Mol Microbiol. 2003 Nov;50(3):751-62 23733473 - Antimicrob Agents Chemother. 2013 Aug;57(8):3910-6 17001607 - J Pathol. 2006 Nov;210(3):298-305 26086040 - ACS Infect Dis. 2015 May 8;1(5):203-214 15083155 - Nat Rev Microbiol. 2004 Mar;2(3):189-202 22547623 - Antimicrob Agents Chemother. 2012 Jul;56(7):3726-31 22850121 - J Infect Dis. 2012 Oct 1;206(7):1030-40 25993036 - Emerg Infect Dis. 2015 Jun;21(6):992-1001 25184558 - Microbiol Mol Biol Rev. 2014 Sep;78(3):343-71 19889539 - Bioorg Med Chem Lett. 2009 Dec 15;19(24):6851-4 16256440 - Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):325-35 16132230 - Cell Mol Life Sci. 2005 Sep;62(18):2092-9 21426021 - Future Med Chem. 2010 Aug;2(8):1325-37 23568546 - ChemMedChem. 2013 Jun;8(6):904-8 15516995 - Nat Cell Biol. 2004 Nov;6(11):1026-33 21050767 - Bioorg Med Chem. 2010 Dec 1;18(23):8365-73 17517834 - Antimicrob Agents Chemother. 2007 Sep;51(9):3338-45 21282447 - Antimicrob Agents Chemother. 2011 Apr;55(4):1527-32 9602534 - Philos Trans R Soc Lond B Biol Sci. 1998 Apr 29;353(1368):583-605 19633156 - Am J Respir Crit Care Med. 2009 Aug 1;180(3):201-2 19686043 - J Infect Dis. 2009 Oct 1;200(7):1136-43 25220640 - Acta Pharmacol Sin. 2014 Oct;35(10):1227-46 17710100 - Nat Chem Biol. 2007 Sep;3(9):541-8 20693172 - J Antimicrob Chemother. 2010 Oct;65(10):2172-5 19240079 - J Antimicrob Chemother. 2009 May;63(5):928-36 25187516 - J Biol Chem. 2014 Oct 17;289(42):29376-85 21135176 - Antimicrob Agents Chemother. 2011 Mar;55(3):1237-47 22136336 - J Med Chem. 2012 Jan 12;55(1):390-402 18474358 - Cell Host Microbe. 2008 May 15;3(5):316-22 26343800 - Nat Med. 2015 Oct;21(10):1223-7 21602551 - J Antimicrob Chemother. 2011 Jul;66(7):1560-6 16441433 - Cell Microbiol. 2006 Feb;8(2):218-32 20123722 - J Antimicrob Chemother. 2010 Apr;65(4):729-34 25944857 - MBio. 2015 May 05;6(3):e00253-15 16196020 - Chembiochem. 2005 Oct;6(10):1749-53 20167798 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4573-8 22816879 - FEBS J. 2013 Jan;280(2):731-50 18491971 - J Infect Dis. 2008 Jul 15;198(2):275-83 22133902 - Bioorg Med Chem. 2012 Mar 15;20(6):1940-6 23463208 - J Antimicrob Chemother. 2013 Jun;68(6):1327-30 19629074 - Nat Rev Drug Discov. 2009 Sep;8(9):709-23 21426149 - Future Med Chem. 2010 Oct;2(10):1563-76 16085396 - Res Microbiol. 2005 Dec;156(10):1005-13 22580364 - Nat Rev Microbiol. 2012 May 14;10(6):407-16 24656187 - Lancet. 2014 Mar 22;383(9922):1016-8 23305444 - J Med Chem. 2013 Feb 14;56(3):832-42 25196020 - N Engl J Med. 2014 Oct 23;371(17):1577-87 9634230 - Nature. 1998 Jun 11;393(6685):537-44 23295923 - Antimicrob Agents Chemother. 2013 Mar;57(3):1535-7 14718383 - FASEB J. 2004 Jan;18(1):8-30 18752626 - FEMS Microbiol Lett. 2008 Oct;287(2):181-4 12066895 - Res Microbiol. 2002 May;153(4):233-41 24205032 - PLoS One. 2013 Oct 18;8(10 ):e77930 15822188 - Annu Rev Pharmacol Toxicol. 2005;45:529-64 9391040 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13420-5 26191366 - ACS Med Chem Lett. 2015 Jun 08;6(7):782-6 9466742 - J Clin Microbiol. 1998 Feb;36(2):362-6 ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 Flynn J. (ref49/cit49) 2004 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 Franzblau S. G. (ref58/cit58) 1998; 36 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref57/cit57 doi: 10.1086/589515 – ident: ref59/cit59 doi: 10.1128/AAC.01933-12 – ident: ref38/cit38 doi: 10.1128/AAC.00595-10 – ident: ref18/cit18 doi: 10.1016/S0923-2508(02)01309-8 – ident: ref32/cit32 doi: 10.1096/fj.02-1212rev – ident: ref2/cit2 doi: 10.1038/nrmicro2797 – ident: ref45/cit45 doi: 10.1093/jac/dkq277 – ident: ref33/cit33 doi: 10.1007/s00018-005-5205-1 – ident: ref55/cit55 doi: 10.1038/nm.3937 – ident: ref9/cit9 doi: 10.1038/aps.2014.80 – ident: ref28/cit28 doi: 10.1016/j.bmc.2011.11.004 – ident: ref51/cit51 doi: 10.1111/j.1462-5822.2005.00612.x – ident: ref16/cit16 doi: 10.1016/j.chom.2008.03.008 – ident: ref42/cit42 doi: 10.1093/jac/dkr188 – ident: ref27/cit27 doi: 10.1021/jm2012062 – ident: ref39/cit39 doi: 10.1056/NEJMoa1407426 – ident: ref44/cit44 doi: 10.1093/jac/dkq007 – ident: ref21/cit21 doi: 10.1111/j.1742-4658.2012.08718.x – ident: ref15/cit15 doi: 10.1371/journal.pone.0077930 – ident: ref11/cit11 doi: 10.1016/j.tube.2005.08.015 – ident: ref36/cit36 doi: 10.1038/ncb1104-1026 – ident: ref23/cit23 doi: 10.1021/acsmedchemlett.5b00118 – ident: ref26/cit26 doi: 10.1016/j.bmc.2010.09.052 – ident: ref47/cit47 doi: 10.1128/AAC.00500-12 – ident: ref17/cit17 doi: 10.1073/pnas.1109201108 – ident: ref13/cit13 doi: 10.1073/pnas.0909133107 – ident: ref14/cit14 doi: 10.1016/j.resmic.2005.05.013 – ident: ref22/cit22 doi: 10.1073/pnas.94.25.13420 – ident: ref34/cit34 doi: 10.4155/fmc.10.241 – ident: ref25/cit25 doi: 10.1016/j.bmcl.2009.10.090 – ident: ref10/cit10 doi: 10.1046/j.1365-2958.2003.03712.x – ident: ref43/cit43 doi: 10.1086/605605 – ident: ref48/cit48 doi: 10.1093/jac/dkt037 – ident: ref56/cit56 doi: 10.1021/id500028m – ident: ref30/cit30 doi: 10.1038/31159 – ident: ref46/cit46 doi: 10.1128/AAC.00761-13 – ident: ref20/cit20 doi: 10.1021/jm301781p – ident: ref7/cit7 doi: 10.1098/rstb.1998.0228 – ident: ref5/cit5 doi: 10.1038/nchembio.2007.24 – ident: ref24/cit24 doi: 10.1002/cbic.200500171 – ident: ref6/cit6 doi: 10.4155/fmc.10.214 – ident: ref50/cit50 doi: 10.1128/AAC.00276-07 – ident: ref4/cit4 doi: 10.1146/annurev.pharmtox.45.120403.100120 – ident: ref29/cit29 doi: 10.1128/mBio.00253-15 – ident: ref1/cit1 doi: 10.1016/S0140-6736(14)60422-0 – ident: ref41/cit41 doi: 10.1128/AAC.01524-10 – ident: ref54/cit54 doi: 10.1093/infdis/jis461 – ident: ref3/cit3 doi: 10.3201/eid2106.141873 – ident: ref53/cit53 doi: 10.1128/MMBR.00010-14 – ident: ref12/cit12 doi: 10.1038/nrmicro840 – ident: ref35/cit35 doi: 10.1074/jbc.M114.582502 – volume: 36 start-page: 362 year: 1998 ident: ref58/cit58 publication-title: Journal of clinical microbiology doi: 10.1128/JCM.36.2.362-366.1998 contributor: fullname: Franzblau S. G. – ident: ref8/cit8 doi: 10.1093/jac/dkp031 – ident: ref37/cit37 doi: 10.1111/j.1574-6968.2008.01309.x – ident: ref31/cit31 doi: 10.1038/nrd2871 – start-page: 237 volume-title: Tuberculosis year: 2004 ident: ref49/cit49 contributor: fullname: Flynn J. – ident: ref19/cit19 doi: 10.1002/cmdc.201300115 – ident: ref40/cit40 doi: 10.1164/rccm.200905-0708ED – ident: ref52/cit52 doi: 10.1002/path.2055 |
SSID | ssj0001385445 |
Score | 2.22179 |
Snippet | Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 231 |
Title | Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen |
URI | http://dx.doi.org/10.1021/acsinfecdis.5b00133 https://www.ncbi.nlm.nih.gov/pubmed/27478867 https://search.proquest.com/docview/1826740692 https://pubmed.ncbi.nlm.nih.gov/PMC4966677 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAX3tAFiozEgQNZNnZsJ8dt1aogbVXRReot8ivdiMpbNcmh_AR-NWMnW3ZbhHrJxSNbnsxoPnvG8wF8pILKwlmeZJzhRymaFFVqEprxShVG5ZNI2jc7Eoc_sm-n_HTtsfqNDD5NvyjTxLokWzdjHmI8Y_fhAZXoHgEJ7Z38vVJheWgtE-nkJEsw9MlVn6F_zxMikmk2I9ItmHmzWnIt_Bw8gaPVI56-6uTnuGv12Py63dPxbjt7Co8HIEqmveU8g3vOP4eHsyHV_gJ-z64M-nrs5Yxyx6GfQ-3J_Ao3gQLkeLFsLhaqxSjYkClR3pJd8tUval0HAh8y7c7CxSNBgEl2-2lMbcOKpiesIMsqDp4Mlxlk6ts6aTvtLk13jos05Ls7C-QDL2F-sD_fO0wG4oZEof7bxBTKCASeKU0rxYwzjNvMUiFNxa3UORdWVtKmudJK81zwzFrFLaty7gLv2SvY8kvvtoHkGk_oxcQWhmUoVCkhJhohjubGUaqyEXxCLZaD3zVlTKnTtFxTbTmodgSfV7-5vOg7efxf_MPKFEr0uJBGUd4tO1wDT2QyPBimI3jdm8b1hDTSEQg5ArlhNNcCoZv35oivF7Grd4YHTyHlm7vv6C08QvgmQkVcmr6DrfayczsIkVr9PjrGH5v2EVg |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkYALb-jyNBIHDmS7sWM7OW4rqi10q4pupd4iv9KNqLJVkxzKT-BXM3ay225BCC45xKPxa0Yz9oy_AfhABZWZszxKOMOPUjTKithENOGFyoxKR6Fo3_RATI6TLyf8pH8U5t_C4CBq5FSHIP4VukC8hf9CepIt6yH3pp6x23CHSzSZ3iHaObq6WWGpR5gJVeUki9ACyiXc0J_5eMNk6nXD9Ju3eTNp8poV2n0Ix6vxh-ST78O20UPz4wa04_9O8BE86N1SMu7k6DHcctUTuDvtA-9P4ef00qDmB2RnpDv06A5lRWaXOBckIIfzRX0-Vw3axJqMiaos2SZ71bzUpS_nQ8btqb-GJOhuku2OjSmt79F05SvIogiNR_3VBhlXTRk1rXYXpj3DTmryzZ36UgTPYLb7ebYzifoyDpHCbWgikykj0A2NaVwoZpxh3CaWCmkKbqVOubCykDZOlVaap4In1ipuWZFy56ugPYeNalG5TSCpxvN6NrKZYQkSFUqIkUaHR3PjKFXJAD7iKua9FtZ5CLDTOL-2tHm_tAP4tNzt_LzD9fg7-fulROSofz6ooiq3aLEPPJ9J_3yYDuBFJyErhjQUJxByAHJNdlYEHtt7vaUq5wHjO8FjqJDy5b_P6B3cm8ym-_n-3sHXV3AfHTvhc-Xi-DVsNBete4POU6PfBl35BSg-Gb0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD-2vIzEgQPZbpzYTo5pYdUCW63oIpVT5Fe6EVV21SSH8hP41Yyd7NItCCEuOcSjccYeZ8ae8TcArymnIrWGBTGL8CElDdIi1AGNWSFTLZORL9o3OeaHX-IPp-x0C5LVXRj8iBo51T6I71b10hQ9wkC4h-99ipIp6yFz5j6KbsBNJkIfoM0OTn6drkSJQ5nxleVEFKAVFCvIoT_zccZJ15vG6TeP83ri5BVLNL4DX9cy-ASUb8O2UUP9_Rq84_8IeRdu9-4pyTp9ugdbtroPO5M-AP8AfkwuNf4BPMIz0k0dykNZkdklyoMEZDpf1Mu5bNA21iQjsjJknxxV81KVrqwPydozdxxJ0O0k-x0bXRrXo-7KWJBF4RtP-iMOklVNGTStshe6PcdOavLZnrmSBA9hNn4_OzgM-nIOgcSpaAKdSs3RHQ1pWMhIWx0xExvKhS6YESph3IhCmDCRSiqWcBYbI5mJioRZVw3tEWxXi8o-AZIo3LenI5PqKEaiQnI-Uuj4KKYtpTIewBscxbxfjXXuA-00zK8Mbd4P7QDermY8X3b4Hn8nf7XSihzXoQuuyMouWuwD92nCXSOmA3jcacmaIfVFCrgYgNjQnzWBw_jebKnKucf6jnE7yoXY_XeJXsLO9N04_3R0_PEp3EL_jruUuTB8BtvNRWufow_VqBd-ufwE6OgcNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mycobacterial+Protein+Tyrosine+Phosphatases+A+and+B+Inhibitors+Augment+the+Bactericidal+Activity+of+the+Standard+Anti-tuberculosis+Regimen&rft.jtitle=ACS+infectious+diseases&rft.au=Dutta%2C+Noton+K.&rft.au=He%2C+Rongjun&rft.au=Pinn%2C+Michael+L.&rft.au=He%2C+Yantao&rft.date=2016-03-11&rft.issn=2373-8227&rft.eissn=2373-8227&rft.volume=2&rft.issue=3&rft.spage=231&rft.epage=239&rft_id=info:doi/10.1021%2Facsinfecdis.5b00133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsinfecdis_5b00133 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-8227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-8227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-8227&client=summon |