Developments in Glycopeptide Antibiotics

Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic...

Full description

Saved in:
Bibliographic Details
Published inACS infectious diseases Vol. 4; no. 5; pp. 715 - 735
Main Authors Blaskovich, Mark A. T, Hansford, Karl A, Butler, Mark S, Jia, ZhiGuang, Mark, Alan E, Cooper, Matthew A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development.
AbstractList Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development.Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development.
Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development.
Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development.
Author Blaskovich, Mark A. T
Hansford, Karl A
Jia, ZhiGuang
Butler, Mark S
Mark, Alan E
Cooper, Matthew A
AuthorAffiliation The University of Queensland
School of Chemistry and Molecular Biosciences
Institute for Molecular Bioscience
AuthorAffiliation_xml – name: School of Chemistry and Molecular Biosciences
– name: Institute for Molecular Bioscience
– name: The University of Queensland
Author_xml – sequence: 1
  givenname: Mark A. T
  orcidid: 0000-0001-9447-2292
  surname: Blaskovich
  fullname: Blaskovich, Mark A. T
  email: m.blaskovich@uq.edu.au
– sequence: 2
  givenname: Karl A
  orcidid: 0000-0003-2535-9071
  surname: Hansford
  fullname: Hansford, Karl A
– sequence: 3
  givenname: Mark S
  orcidid: 0000-0001-6689-4236
  surname: Butler
  fullname: Butler, Mark S
– sequence: 4
  givenname: ZhiGuang
  surname: Jia
  fullname: Jia, ZhiGuang
– sequence: 5
  givenname: Alan E
  orcidid: 0000-0001-5880-4798
  surname: Mark
  fullname: Mark, Alan E
– sequence: 6
  givenname: Matthew A
  orcidid: 0000-0003-3147-3460
  surname: Cooper
  fullname: Cooper, Matthew A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29363950$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9Lw0AQxRep2Fr7CQTp0Uva_ZPNZi9CqVqFghc9L5vNRLckuzGbFvrtTWkt1YOeZmDe780w7xL1nHeA0DXBE4IpmWoTrCvA5DZMRIYx5ekZGlAmWJRSKnonfR-NQlhhjAlLeRzzC9SnkiVMcjxAt_ewgdLXFbg2jK0bL8qt8TXUrc1hPHOtzaxvrQlX6LzQZYDRoQ7R2-PD6_wpWr4snuezZaQ76zbSmBgiWWySTOjMQEx1kqWpzHIMGdWiiDkludACKEhmJJW5yTnPE9CFNLFkQ3S3963XWQW56e5qdKnqxla62Sqvrfo5cfZDvfuN4pJTykVncHswaPznGkKrKhsMlKV24NdBESlxyjlLd9Kb013HJd_v6QRsLzCND6GB4ighWO1yUCc5qEMOHSV_Uca2urV-d7At_2Gne7YbqpVfN6579p_EFww4owc
CitedBy_id crossref_primary_10_1016_j_ejmech_2021_113156
crossref_primary_10_1007_s12551_021_00912_8
crossref_primary_10_1038_s41467_020_19138_5
crossref_primary_10_1128_AAC_02443_20
crossref_primary_10_3389_fmicb_2024_1382332
crossref_primary_10_3390_ph15010077
crossref_primary_10_37349_eds_2025_100887
crossref_primary_10_1002_advs_201901872
crossref_primary_10_1021_acs_jpcb_4c00332
crossref_primary_10_1016_j_bmcl_2021_128027
crossref_primary_10_1016_j_apsusc_2020_147714
crossref_primary_10_3390_microorganisms12020396
crossref_primary_10_1002_ange_202001124
crossref_primary_10_3389_fchem_2021_659845
crossref_primary_10_1038_s41429_021_00474_7
crossref_primary_10_3390_antibiotics11091142
crossref_primary_10_1039_D1SC01446C
crossref_primary_10_1002_ange_202104528
crossref_primary_10_2174_1385272824999200701121037
crossref_primary_10_1021_acs_joc_9b02314
crossref_primary_10_3389_fmicb_2021_641756
crossref_primary_10_1021_acs_joc_9b03401
crossref_primary_10_1016_j_eti_2021_101822
crossref_primary_10_1126_scitranslmed_abo4736
crossref_primary_10_1016_j_bmc_2019_07_023
crossref_primary_10_1126_science_abq3206
crossref_primary_10_1038_s41598_022_20182_y
crossref_primary_10_1016_j_bmc_2019_03_034
crossref_primary_10_1016_j_talanta_2020_121603
crossref_primary_10_1002_anie_201902210
crossref_primary_10_1038_s44222_024_00250_w
crossref_primary_10_1007_s11172_019_2506_3
crossref_primary_10_1021_acs_jmedchem_9b00246
crossref_primary_10_1186_s12934_024_02464_4
crossref_primary_10_3390_nano8121009
crossref_primary_10_1021_acscentsci_1c01389
crossref_primary_10_3389_fphar_2023_1158152
crossref_primary_10_1021_acsinfecdis_1c00246
crossref_primary_10_1021_acsinfecdis_1c00367
crossref_primary_10_3390_ph14111182
crossref_primary_10_1016_j_trac_2022_116691
crossref_primary_10_1016_j_cplett_2020_138269
crossref_primary_10_1016_j_biotechadv_2024_108371
crossref_primary_10_1016_j_coph_2019_05_001
crossref_primary_10_3390_pharmaceutics13030321
crossref_primary_10_1016_j_ejmech_2023_115638
crossref_primary_10_1039_C8NP00044A
crossref_primary_10_1021_acsinfecdis_9b00413
crossref_primary_10_1016_j_jenvman_2024_122402
crossref_primary_10_1016_j_jpba_2025_116745
crossref_primary_10_1007_s11095_023_03588_9
crossref_primary_10_1128_AAC_02416_20
crossref_primary_10_1021_acsmedchemlett_1c00455
crossref_primary_10_1021_jacs_8b08711
crossref_primary_10_1186_s41120_022_00067_0
crossref_primary_10_1038_s41598_023_38036_6
crossref_primary_10_1002_ange_201902210
crossref_primary_10_1039_D1CC06635H
crossref_primary_10_2166_wh_2020_029
crossref_primary_10_1002_pro_3819
crossref_primary_10_1016_j_aca_2020_11_053
crossref_primary_10_1093_toxsci_kfab084
crossref_primary_10_1134_S1070363222130047
crossref_primary_10_3390_antibiotics12071205
crossref_primary_10_1021_acs_chemrev_1c00773
crossref_primary_10_1016_j_molstruc_2021_131380
crossref_primary_10_1021_acsinfecdis_8b00317
crossref_primary_10_1021_acssynbio_1c00317
crossref_primary_10_3390_ph14020083
crossref_primary_10_1186_s41120_023_00076_7
crossref_primary_10_3390_molecules29174065
crossref_primary_10_1016_j_mib_2023_102385
crossref_primary_10_1021_acsinfecdis_4c00115
crossref_primary_10_3390_antiox10060895
crossref_primary_10_1002_cbic_202000309
crossref_primary_10_1002_cmdc_201800252
crossref_primary_10_1021_acsanm_9b01987
crossref_primary_10_1016_j_jconrel_2020_06_002
crossref_primary_10_3390_antibiotics12050928
crossref_primary_10_1021_acs_jmedchem_2c01293
crossref_primary_10_1186_s42269_023_01072_3
crossref_primary_10_1021_jacsau_3c00369
crossref_primary_10_1039_D0CS00729C
crossref_primary_10_3390_antibiotics11010040
crossref_primary_10_3390_antibiotics13080783
crossref_primary_10_3762_bjoc_16_80
crossref_primary_10_1021_acs_jmedchem_8b01093
crossref_primary_10_1039_D3CC01070H
crossref_primary_10_1016_j_ejmech_2020_112686
crossref_primary_10_3390_molecules28248076
crossref_primary_10_1021_acs_jmedchem_3c00633
crossref_primary_10_1002_anie_202104528
crossref_primary_10_1016_j_bmc_2025_118144
crossref_primary_10_1021_acsinfecdis_2c00253
crossref_primary_10_1021_acs_jmedchem_3c01835
crossref_primary_10_1016_j_matdes_2024_112904
crossref_primary_10_3390_molecules27227685
crossref_primary_10_1021_jacs_4c17175
crossref_primary_10_1039_D2SC05600C
crossref_primary_10_1042_BST20200425
crossref_primary_10_1002_ejoc_202200677
crossref_primary_10_1039_C9MD00292H
crossref_primary_10_1002_anie_202003726
crossref_primary_10_1002_cmdc_202200708
crossref_primary_10_1177_2472555218812657
crossref_primary_10_1080_17435889_2024_2377063
crossref_primary_10_1111_febs_15489
crossref_primary_10_1016_j_tifs_2025_104899
crossref_primary_10_1021_acssuschemeng_8b03540
crossref_primary_10_1039_D1OB00448D
crossref_primary_10_2147_IDR_S340623
crossref_primary_10_1016_S1636_5410_22_46452_X
crossref_primary_10_1039_D0TB02568B
crossref_primary_10_3390_pharmaceutics13122047
crossref_primary_10_1016_j_jpba_2019_02_017
crossref_primary_10_1002_med_21869
crossref_primary_10_1021_acschembio_1c00626
crossref_primary_10_1021_acsinfecdis_1c00318
crossref_primary_10_1038_s41413_022_00227_8
crossref_primary_10_1128_AAC_01216_19
crossref_primary_10_1016_j_aca_2024_342309
crossref_primary_10_1080_14787210_2022_2013809
crossref_primary_10_1002_psc_3285
crossref_primary_10_1016_j_ymben_2023_05_005
crossref_primary_10_2147_IDR_S428103
crossref_primary_10_1016_S1634_7358_22_46549_1
crossref_primary_10_1021_jacs_3c06978
crossref_primary_10_3390_foods11192991
crossref_primary_10_7554_eLife_80246
crossref_primary_10_1021_acs_orglett_2c02520
crossref_primary_10_1038_s41598_023_28740_8
crossref_primary_10_1074_jbc_REV119_006349
crossref_primary_10_1016_j_xphs_2024_10_056
crossref_primary_10_3390_pathogens10101343
crossref_primary_10_1021_acs_oprd_1c00064
crossref_primary_10_1007_s12088_024_01273_y
crossref_primary_10_3390_pathogens13110966
crossref_primary_10_1002_ddr_22095
crossref_primary_10_1021_acs_jmedchem_3c02197
crossref_primary_10_1007_s11172_023_4016_6
crossref_primary_10_1073_pnas_2208737120
crossref_primary_10_1002_chem_201902788
crossref_primary_10_1016_j_ejmech_2021_113459
crossref_primary_10_3390_pharmaceutics14081749
crossref_primary_10_1177_11786337211037355
crossref_primary_10_37489_0235_2990_2022_67_9_10_18_24
crossref_primary_10_1016_j_bmcl_2021_128122
crossref_primary_10_1111_nyas_14541
crossref_primary_10_3390_antibiotics14030295
crossref_primary_10_1021_acscatal_0c01719
crossref_primary_10_1039_D2CB00169A
crossref_primary_10_3390_pharmaceutics13060773
crossref_primary_10_3390_antibiotics12030628
crossref_primary_10_1002_slct_201802146
crossref_primary_10_1021_acs_jmedchem_3c02064
crossref_primary_10_3390_antibiotics9060300
crossref_primary_10_3390_molecules24061004
crossref_primary_10_1016_j_agrcom_2024_100027
crossref_primary_10_1016_j_xphs_2023_02_006
crossref_primary_10_1002_ange_202003726
crossref_primary_10_1021_acsabm_0c00044
crossref_primary_10_1038_s41598_022_24807_0
crossref_primary_10_1002_adhm_202303654
crossref_primary_10_3390_ph14121227
crossref_primary_10_1080_19490976_2024_2418412
crossref_primary_10_1021_acsinfecdis_9b00102
crossref_primary_10_4103_ijmm_IJMM_20_34
crossref_primary_10_47429_lmo_2022_12_4_285
crossref_primary_10_1016_j_surfin_2024_104963
crossref_primary_10_3390_ph15060661
crossref_primary_10_3390_bios9020052
crossref_primary_10_1039_D2OB01381A
crossref_primary_10_1016_j_heliyon_2024_e38392
crossref_primary_10_1007_s11274_024_04105_9
crossref_primary_10_1073_pnas_2218973120
crossref_primary_10_37349_eds_2023_00028
crossref_primary_10_21931_RB_2023_08_01_67
crossref_primary_10_1038_s42003_023_04745_x
crossref_primary_10_1016_j_nano_2023_102731
crossref_primary_10_1021_acsinfecdis_3c00168
crossref_primary_10_4274_atfm_galenos_2023_19480
crossref_primary_10_1007_s11696_023_02735_1
crossref_primary_10_1002_anie_202001124
crossref_primary_10_1016_j_jgar_2019_04_016
crossref_primary_10_1080_07391102_2021_1905555
Cites_doi 10.1016/j.bmcl.2014.03.093
10.1086/527392
10.1021/acs.jmedchem.7b01345
10.1128/AAC.00271-10
10.1021/ja208755j
10.1093/cid/civ311
10.1517/14656566.2015.1075508
10.1211/CP.2017.20203363
10.1128/AAC.01710-08
10.1021/ja021273s
10.1021/jm4004494
10.1126/science.280.5364.708
10.1186/1471-2334-14-92
10.1128/AAC.00452-10
10.1038/ja.2014.111
10.1038/nprot.2014.093
10.2146/ajhp080434
10.1086/491712
10.1093/cid/civ534
10.1128/AAC.05532-11
10.1007/s11999-010-1266-z
10.2165/00003495-200868050-00006
10.1007/s40121-016-0103-4
10.1021/cb300007j
10.1021/jm500270w
10.1093/ofid/ofv156
10.1016/j.diagmicrobio.2007.11.011
10.1093/cid/cis001
10.1039/B613319C
10.1128/AAC.39.3.781
10.1021/ja971225l
10.1016/j.drup.2012.03.005
10.1093/jac/40.1.135
10.1021/jm501872s
10.1021/ja9621298
10.1021/ja00379a062
10.1039/C4OB02452D
10.1002/(SICI)1098-1128(199701)17:1<69::AID-MED3>3.0.CO;2-R
10.1089/mdr.2017.0022
10.1002/chem.201604765
10.7164/antibiotics.57.326
10.1016/S0040-4039(98)00895-8
10.1086/491709
10.1002/anie.201601621
10.1016/j.bcp.2016.09.025
10.1128/AAC.05382-11
10.1021/acs.jmedchem.5b01578
10.7164/antibiotics.39.58
10.1128/AAC.49.3.1127-1134.2005
10.1038/ja.2013.117
10.1089/mdr.2017.0147
10.1038/ncomms3584
10.1128/AAC.01737-09
10.1021/ja0359761
10.1002/cbic.201402179
10.1128/AAC.31.12.1961
10.1021/acs.biochem.6b01102
10.1021/ja209937s
10.1111/febs.12121
10.1016/0968-0896(95)00161-1
10.1186/s13756-017-0193-0
10.1016/j.jmb.2009.06.064
10.1021/acsinfecdis.6b00105
10.2165/10481380-000000000-00000
10.1038/s41467-017-02123-w
10.1016/j.cmi.2017.07.028
10.2174/1871526517666161108130148
10.1128/AAC.01111-17
10.1128/AAC.49.1.195-201.2005
10.1038/ja.2016.80
10.1128/AAC.01674-10
10.1021/ja302808p
10.1021/bi801597b
10.1038/nature10388
10.1021/ja406067v
10.1093/cid/cir920
10.1016/j.ijantimicag.2015.05.014
10.1021/jm801549b
10.1002/cmdc.201400072
10.1111/tid.12123
10.1093/jac/dki005
10.1021/jm9017543
10.1128/AAC.00712-12
10.1021/ja207142h
10.1021/jm100946e
10.2147/TCRM.S86330
10.1016/S1074-5521(00)80008-3
10.1073/pnas.1704125114
10.1186/2193-1801-2-329
10.1021/acsinfecdis.5b00114
10.1016/j.bmcl.2015.12.027
10.2217/fmb.15.53
10.1039/C7SC00460E
10.1016/j.diagmicrobio.2017.06.023
10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F
10.1016/j.bmcl.2013.06.080
10.1021/bm900410a
10.1021/ja0572912
10.1002/1521-3765(20010903)7:17<3824::AID-CHEM3824>3.0.CO;2-1
10.1073/pnas.0600829103
10.1021/ja507009a
10.4155/fmc.13.16
10.1517/13543784.16.5.717
10.2174/187152110790886745
10.1021/ja067674f
10.1128/AAC.00281-17
10.1111/jcpt.12580
10.2165/11534440-000000000-00000
10.1002/cbic.201500542
10.1128/AAC.01873-17
10.1016/j.bmcl.2012.06.039
10.1021/ja00329a044
10.1128/AAC.06274-11
10.1128/AAC.48.8.3043-3050.2004
10.1016/j.diagmicrobio.2017.03.003
10.1111/j.1365-2141.1974.tb06675.x
10.1016/j.bmcl.2015.10.083
10.1039/C3OB42428F
10.1021/ja4038998
10.1128/AAC.01609-15
10.1002/cbic.201600241
10.1128/CMR.13.4.686-707.2000
10.1038/nbt.2685
10.1038/ja.2016.72
10.1016/j.jgar.2017.03.018
10.1172/JCI68834
10.1021/ja301566t
10.1016/j.jmb.2008.01.031
10.1007/s10096-016-2865-8
10.1016/j.ijantimicag.2015.02.013
10.1038/ja.2017.2
10.1038/ja.2014.144
10.1021/acs.chemrev.6b00820
10.1128/AAC.03147-14
10.1002/1521-3773(20001103)39:21<3823::AID-ANIE3823>3.0.CO;2-3
10.1002/phar.1641
10.1038/srep35584
10.1016/S0960-894X(99)00402-3
10.1038/nchembio.350
10.1002/anie.201507567
10.1021/jacs.5b01008
10.1002/cmdc.201300011
10.1128/JCM.02187-13
10.1093/jac/44.2.179
10.1016/j.jgar.2015.12.007
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society 2018 American Chemical Society
Copyright_xml – notice: Copyright © 2018 American Chemical Society 2018 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/acsinfecdis.7b00258
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2373-8227
EndPage 735
ExternalDocumentID PMC5952257
29363950
10_1021_acsinfecdis_7b00258
b036645681
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 094977/Z/10/Z
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: WT141107
GroupedDBID ABMVS
ABUCX
ACGFS
ACS
AEESW
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
EJD
UI2
VF5
VG9
W1F
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a445t-a01c1934c6b7abce42a6b889bd0eb2a7f4521d7a7e2e93c929dcd55d6eaf9c493
IEDL.DBID ACS
ISSN 2373-8227
IngestDate Thu Aug 21 18:11:18 EDT 2025
Fri Jul 11 16:53:16 EDT 2025
Wed Feb 19 02:31:37 EST 2025
Thu Apr 24 23:06:09 EDT 2025
Tue Jul 01 01:32:27 EDT 2025
Thu Aug 27 13:42:07 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords vancomycin
glycopeptides
antimicrobial resistance
antibiotics
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a445t-a01c1934c6b7abce42a6b889bd0eb2a7f4521d7a7e2e93c929dcd55d6eaf9c493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5880-4798
0000-0003-3147-3460
0000-0001-9447-2292
0000-0003-2535-9071
0000-0001-6689-4236
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5952257
PMID 29363950
PQID 1990855387
PQPubID 23479
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5952257
proquest_miscellaneous_1990855387
pubmed_primary_29363950
crossref_primary_10_1021_acsinfecdis_7b00258
crossref_citationtrail_10_1021_acsinfecdis_7b00258
acs_journals_10_1021_acsinfecdis_7b00258
ProviderPackageCode ACS
AEESW
AFEFF
VF5
VG9
ABMVS
ABUCX
AQSVZ
W1F
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-11
PublicationDateYYYYMMDD 2018-05-11
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS infectious diseases
PublicationTitleAlternate ACS Infect. Dis
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
Yao R. C. (ref28/cit28) 1994
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref76/cit76
ref86/cit86
ref170/cit170
ref32/cit32
ref168/cit168
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref167/cit167
ref163/cit163
ref66/cit66
ref22/cit22
ref121/cit121
ref175/cit175
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
Goldstein B. P. (ref26/cit26) 1994
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref152/cit152
ref153/cit153
ref154/cit154
ref27/cit27
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref159/cit159
ref39/ref39_1
ref92/cit92
ref155/cit155
ref156/cit156
ref157/cit157
ref158/cit158
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref160/cit160
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref166/cit166
ref149/cit149
ref162/cit162
ref46/cit46
ref164/cit164
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref172/cit172
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref169/cit169
ref51/cit51
CLSI (ref60/ref60_1) 2016
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
McGuinness W. A. (ref12/cit12) 2017; 90
ref161/cit161
ref142/cit142
ref73/cit73
ref69/cit69
ref165/cit165
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref107/cit107
  doi: 10.1016/j.bmcl.2014.03.093
– ident: ref16/cit16
  doi: 10.1086/527392
– ident: ref121/cit121
  doi: 10.1021/acs.jmedchem.7b01345
– ident: ref169/cit169
– ident: ref59/cit59
  doi: 10.1128/AAC.00271-10
– ident: ref66/cit66
– ident: ref174/cit174
– ident: ref71/cit71
  doi: 10.1021/ja208755j
– ident: ref79/cit79
  doi: 10.1093/cid/civ311
– ident: ref74/cit74
  doi: 10.1517/14656566.2015.1075508
– ident: ref8/cit8
  doi: 10.1211/CP.2017.20203363
– ident: ref35/cit35
  doi: 10.1128/AAC.01710-08
– ident: ref137/cit137
  doi: 10.1021/ja021273s
– ident: ref115/cit115
  doi: 10.1021/jm4004494
– ident: ref132/cit132
  doi: 10.1126/science.280.5364.708
– volume-title: Performance Standards for Antimicrobial Susceptibility Testing
  year: 2016
  ident: ref60/ref60_1
– ident: ref61/cit61
– ident: ref7/cit7
  doi: 10.1186/1471-2334-14-92
– ident: ref145/cit145
  doi: 10.1128/AAC.00452-10
– ident: ref15/cit15
  doi: 10.1038/ja.2014.111
– ident: ref32/cit32
  doi: 10.1038/nprot.2014.093
– ident: ref52/cit52
  doi: 10.2146/ajhp080434
– ident: ref56/cit56
  doi: 10.1086/491712
– ident: ref44/cit44
  doi: 10.1093/cid/civ534
– ident: ref143/cit143
  doi: 10.1128/AAC.05532-11
– ident: ref157/cit157
  doi: 10.1007/s11999-010-1266-z
– ident: ref70/cit70
  doi: 10.2165/00003495-200868050-00006
– ident: ref81/cit81
  doi: 10.1007/s40121-016-0103-4
– ident: ref22/cit22
  doi: 10.1021/cb300007j
– ident: ref95/cit95
  doi: 10.1021/jm500270w
– ident: ref78/cit78
  doi: 10.1093/ofid/ofv156
– start-page: 1
  volume-title: Glycopeptide Antibiotics
  year: 1994
  ident: ref28/cit28
– ident: ref43/cit43
  doi: 10.1016/j.diagmicrobio.2007.11.011
– ident: ref80/cit80
  doi: 10.1093/cid/cis001
– ident: ref97/cit97
– ident: ref138/cit138
  doi: 10.1039/B613319C
– ident: ref19/cit19
  doi: 10.1128/AAC.39.3.781
– ident: ref133/cit133
  doi: 10.1021/ja971225l
– ident: ref175/cit175
  doi: 10.1016/j.drup.2012.03.005
– ident: ref14/cit14
  doi: 10.1093/jac/40.1.135
– ident: ref103/cit103
  doi: 10.1021/jm501872s
– ident: ref129/cit129
  doi: 10.1021/ja9621298
– ident: ref146/cit146
– ident: ref25/cit25
  doi: 10.1021/ja00379a062
– ident: ref53/cit53
– ident: ref166/cit166
  doi: 10.1039/C4OB02452D
– ident: ref86/cit86
  doi: 10.1002/(SICI)1098-1128(199701)17:1<69::AID-MED3>3.0.CO;2-R
– ident: ref50/cit50
  doi: 10.1089/mdr.2017.0022
– ident: ref140/cit140
  doi: 10.1002/chem.201604765
– ident: ref33/cit33
  doi: 10.7164/antibiotics.57.326
– ident: ref54/cit54
– ident: ref135/cit135
  doi: 10.1016/S0040-4039(98)00895-8
– ident: ref23/cit23
  doi: 10.1086/491709
– ident: ref65/cit65
– ident: ref93/cit93
  doi: 10.1002/anie.201601621
– ident: ref149/cit149
– ident: ref2/cit2
  doi: 10.1016/j.bcp.2016.09.025
– ident: ref144/cit144
  doi: 10.1128/AAC.05382-11
– ident: ref151/cit151
  doi: 10.1021/acs.jmedchem.5b01578
– ident: ref30/cit30
  doi: 10.7164/antibiotics.39.58
– ident: ref34/cit34
  doi: 10.1128/AAC.49.3.1127-1134.2005
– ident: ref88/cit88
  doi: 10.1038/ja.2013.117
– ident: ref11/cit11
  doi: 10.1089/mdr.2017.0147
– ident: ref158/cit158
  doi: 10.1038/ncomms3584
– start-page: 273
  volume-title: Glycopeptide Antibiotics
  year: 1994
  ident: ref26/cit26
– ident: ref45/cit45
  doi: 10.1128/AAC.01737-09
– ident: ref134/cit134
  doi: 10.1021/ja0359761
– ident: ref164/cit164
  doi: 10.1002/cbic.201402179
– ident: ref62/cit62
  doi: 10.1128/AAC.31.12.1961
– ident: ref165/cit165
  doi: 10.1021/acs.biochem.6b01102
– ident: ref110/cit110
  doi: 10.1021/ja209937s
– ident: ref20/cit20
  doi: 10.1111/febs.12121
– ident: ref152/cit152
  doi: 10.1016/0968-0896(95)00161-1
– ident: ref6/cit6
  doi: 10.1186/s13756-017-0193-0
– ident: ref84/cit84
  doi: 10.1016/j.jmb.2009.06.064
– ident: ref163/cit163
  doi: 10.1021/acsinfecdis.6b00105
– ident: ref36/cit36
  doi: 10.2165/10481380-000000000-00000
– ident: ref92/cit92
  doi: 10.1038/s41467-017-02123-w
– ident: ref75/cit75
  doi: 10.1016/j.cmi.2017.07.028
– ident: ref98/cit98
– ident: ref77/cit77
  doi: 10.2174/1871526517666161108130148
– ident: ref40/cit40
  doi: 10.1128/AAC.01111-17
– ident: ref42/cit42
  doi: 10.1128/AAC.49.1.195-201.2005
– ident: ref128/cit128
  doi: 10.1038/ja.2016.80
– ident: ref57/cit57
  doi: 10.1128/AAC.01674-10
– ident: ref39/ref39_1
– ident: ref111/cit111
  doi: 10.1021/ja302808p
– ident: ref148/cit148
– ident: ref150/cit150
  doi: 10.1021/bi801597b
– ident: ref172/cit172
– ident: ref13/cit13
  doi: 10.1038/nature10388
– ident: ref122/cit122
  doi: 10.1021/ja406067v
– ident: ref82/cit82
  doi: 10.1093/cid/cir920
– ident: ref99/cit99
– ident: ref105/cit105
  doi: 10.1016/j.ijantimicag.2015.05.014
– ident: ref126/cit126
  doi: 10.1021/jm801549b
– ident: ref153/cit153
  doi: 10.1002/cmdc.201400072
– ident: ref51/cit51
  doi: 10.1111/tid.12123
– ident: ref64/cit64
  doi: 10.1093/jac/dki005
– ident: ref117/cit117
  doi: 10.1021/jm9017543
– ident: ref141/cit141
  doi: 10.1128/AAC.00712-12
– ident: ref109/cit109
  doi: 10.1021/ja207142h
– ident: ref123/cit123
  doi: 10.1021/jm100946e
– ident: ref4/cit4
– ident: ref55/cit55
– ident: ref68/cit68
  doi: 10.2147/TCRM.S86330
– ident: ref21/cit21
  doi: 10.1016/S1074-5521(00)80008-3
– ident: ref114/cit114
  doi: 10.1073/pnas.1704125114
– ident: ref154/cit154
  doi: 10.1186/2193-1801-2-329
– ident: ref102/cit102
  doi: 10.1021/acsinfecdis.5b00114
– ident: ref118/cit118
  doi: 10.1016/j.bmcl.2015.12.027
– ident: ref41/cit41
  doi: 10.2217/fmb.15.53
– ident: ref168/cit168
  doi: 10.1039/C7SC00460E
– ident: ref46/cit46
  doi: 10.1016/j.diagmicrobio.2017.06.023
– ident: ref29/cit29
  doi: 10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F
– ident: ref116/cit116
  doi: 10.1016/j.bmcl.2013.06.080
– ident: ref156/cit156
  doi: 10.1021/bm900410a
– ident: ref108/cit108
  doi: 10.1021/ja0572912
– ident: ref130/cit130
  doi: 10.1002/1521-3765(20010903)7:17<3824::AID-CHEM3824>3.0.CO;2-1
– ident: ref159/cit159
  doi: 10.1073/pnas.0600829103
– ident: ref112/cit112
  doi: 10.1021/ja507009a
– ident: ref94/cit94
  doi: 10.4155/fmc.13.16
– ident: ref58/cit58
  doi: 10.1517/13543784.16.5.717
– ident: ref5/cit5
– ident: ref76/cit76
  doi: 10.2174/187152110790886745
– ident: ref90/cit90
– ident: ref160/cit160
  doi: 10.1021/ja067674f
– ident: ref38/cit38
  doi: 10.1128/AAC.00281-17
– ident: ref67/cit67
  doi: 10.1111/jcpt.12580
– ident: ref69/cit69
  doi: 10.2165/11534440-000000000-00000
– ident: ref89/cit89
  doi: 10.1002/cbic.201500542
– ident: ref147/cit147
– ident: ref85/cit85
  doi: 10.1128/AAC.01873-17
– ident: ref124/cit124
  doi: 10.1016/j.bmcl.2012.06.039
– ident: ref27/cit27
  doi: 10.1021/ja00329a044
– ident: ref142/cit142
  doi: 10.1128/AAC.06274-11
– ident: ref37/cit37
  doi: 10.1128/AAC.48.8.3043-3050.2004
– ident: ref48/cit48
  doi: 10.1016/j.diagmicrobio.2017.03.003
– ident: ref173/cit173
– ident: ref24/cit24
  doi: 10.1111/j.1365-2141.1974.tb06675.x
– ident: ref139/cit139
  doi: 10.1016/j.bmcl.2015.10.083
– ident: ref72/cit72
  doi: 10.1039/C3OB42428F
– ident: ref120/cit120
  doi: 10.1021/ja4038998
– ident: ref155/cit155
  doi: 10.1128/AAC.01609-15
– ident: ref162/cit162
  doi: 10.1002/cbic.201600241
– ident: ref9/cit9
  doi: 10.1128/CMR.13.4.686-707.2000
– ident: ref31/cit31
  doi: 10.1038/nbt.2685
– ident: ref1/cit1
  doi: 10.1038/ja.2016.72
– ident: ref47/cit47
  doi: 10.1016/j.jgar.2017.03.018
– ident: ref10/cit10
  doi: 10.1172/JCI68834
– ident: ref119/cit119
  doi: 10.1021/ja301566t
– ident: ref83/cit83
  doi: 10.1016/j.jmb.2008.01.031
– ident: ref49/cit49
  doi: 10.1007/s10096-016-2865-8
– ident: ref91/cit91
– ident: ref100/cit100
  doi: 10.1016/j.ijantimicag.2015.02.013
– ident: ref3/cit3
– ident: ref127/cit127
  doi: 10.1038/ja.2017.2
– ident: ref96/cit96
– ident: ref104/cit104
  doi: 10.1038/ja.2014.144
– volume: 90
  start-page: 269
  issue: 2
  year: 2017
  ident: ref12/cit12
  publication-title: Yale J. Biol. Med.
– ident: ref87/cit87
  doi: 10.1021/acs.chemrev.6b00820
– ident: ref18/cit18
  doi: 10.1128/AAC.03147-14
– ident: ref131/cit131
  doi: 10.1002/1521-3773(20001103)39:21<3823::AID-ANIE3823>3.0.CO;2-3
– ident: ref73/cit73
  doi: 10.1002/phar.1641
– ident: ref170/cit170
– ident: ref167/cit167
  doi: 10.1038/srep35584
– ident: ref136/cit136
  doi: 10.1016/S0960-894X(99)00402-3
– ident: ref161/cit161
  doi: 10.1038/nchembio.350
– ident: ref106/cit106
  doi: 10.1002/anie.201507567
– ident: ref113/cit113
  doi: 10.1021/jacs.5b01008
– ident: ref125/cit125
  doi: 10.1002/cmdc.201300011
– ident: ref171/cit171
– ident: ref17/cit17
  doi: 10.1128/JCM.02187-13
– ident: ref63/cit63
  doi: 10.1093/jac/44.2.179
– ident: ref101/cit101
  doi: 10.1016/j.jgar.2015.12.007
SSID ssj0001385445
Score 2.5023084
SecondaryResourceType review_article
Snippet Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious...
Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 715
SubjectTerms Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Drug Development - methods
Drug Discovery
Drug Resistance, Bacterial
Glycopeptides - chemistry
Glycopeptides - pharmacology
Gram-Positive Bacteria - drug effects
Gram-Positive Bacterial Infections - drug therapy
Gram-Positive Bacterial Infections - microbiology
Humans
Molecular Structure
Review
Structure-Activity Relationship
Title Developments in Glycopeptide Antibiotics
URI http://dx.doi.org/10.1021/acsinfecdis.7b00258
https://www.ncbi.nlm.nih.gov/pubmed/29363950
https://www.proquest.com/docview/1990855387
https://pubmed.ncbi.nlm.nih.gov/PMC5952257
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QXzxfpk3KviwBzvXpG2axzGcQ9hedLC3kltxODqx3YP-ek96md0mY2-FJiEnJ8n5knPOF4TuARVH0mHUlkpy28W8ZXMKXxETUijmKCFNonB_4PeG7svIG1WS1Zc8-Nh55DLJ4pLUOGnSzEYH22gH-wE1Z6125_XvSoUEhlome06OEhtMHy15hv5vx1gkmSxapBWYuRwtWTE_3QM0KJN48qiTj-YsFU35s8rpuJlkh2i_AKJWO585R2hLx8dot1-42k9QoxJOlFjj2HqefJsMFthilLbasck1mRqO51M07D69dXp28ayCzWF0Upu3HNAOcaUvKAdVgIJ8EQRMqBYcszmNXDDpinKqsWZEAn5SUnme8jWPmHQZOUO1eBrrC2TJKJJaMKod4ruCR0IRLCmOCA48QQitowYIGRbLIgkzjzd2workYSF5HeFSC6Es6MnNKxmT9ZUe5pU-c3aO9cXvSvWGsIqMa4THejqDjoFRDjzY_KHL57m65w0CIAIY57XqiC5MhHkBw9C9-Ccev2dM3R4DeOvRy82H4QrtASQLTHyC41yjWvo10zcAe1Jxm032XyitAn8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ74SNSL70d9YuKhB6nAAsseG6PWR71ok97IvoiNDTVCD_rrnaUUWzVGbwR2NzM7C_MtM_MtwAmi4kS6jNpSSW77HndsTvEqYUIKxVwlpCkUbt-HrY5_0w26ZVGYqYVBITIcKSuC-J_sAu4Z3ivSk1Qva9DCVUezMI9wxDNbrub5w-efFRIZhpniVDlKbPSAdEw39PM4xjHJbNoxfUObX5MmJ7zQ5Qp0KvmL5JPnxjAXDfn-hdrxvwquwnIJS63maB2twYxO12GhXQbeN6A-kVyUWb3Uuuq_mXoW_OAobTVTU3kyMIzPm9C5vHg8b9nlIQs2x0nKbe64aCviy1BQjoZBc4UiiphQDm66OU18dPCKcqo9zYhENKWkCgIVap4w6TOyBXPpINU7YMkkkVowql0S-oInQhFPUi8hXhQIQmgN6qhkXL4kWVzEvz03ntA8LjWvgTc2RixLsnJzZkb_906nVaeXEVfH782Px1aO8Z0ygRKe6sEQBUMXHQXoClDk7ZHVqwERHiGoC5wa0Kn1UDUwfN3TT9LeU8HbHTAEuwHd_fs0HMFi67F9F99d39_uwRKCtchkLrjuPszlr0N9gIAoF4fF-v8AHREK4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58QPHi-1GfETz0YGqTTbLZY1Hruwgq6CnsE4slFdMe9Nc7m6a1VSniLSSbZWdnJ_NtZuZbgANExUZ6jLpSSe4GPq-5nOKVYUIKxTwlpC0UvmlG5w_B5WP4OAXxoBYGB5FhT1kexLdW_apMwTDgHeH9PEVJtbIqzd11PA2zNnBnt13147uvvysktiwz-clylLjoBemAcuj3fqxzktm4c_qBOL8nTo54osYCPA1lyBNQXqq9rqjKj2_0jv8RchHmC3jq1PvraQmmdLoMpZsiAL8ClZEko8xppc5Z-93WteCHR2mnntoKlI5lfl6Fh8bp_fG5Wxy24HKcqK7Lax7qjAQyEpSjglBtkYhjJlQNN9-cmgAdvaKcal8zIhFVKanCUEWaGyYDRtZgJu2kegMcaYzUglHtkSgQ3AhFfEl9Q_w4FITQMlRQyKQwlizJ4-C-l4xInhSSl8EfKCSRBWm5PTujPfmlw-FLr33OjsnN9weaTtC2bMCEp7rTw4Ghq45DdAk45PW-5ocdIkxCcBfWykDH1sSwgeXtHn-Stp5z_u6QIegN6ebfp2EPSrcnjeT6onm1BXOI2WKbwOB52zDTfevpHcRFXbGbm8AnmMoNYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developments+in+Glycopeptide+Antibiotics&rft.jtitle=ACS+infectious+diseases&rft.au=Blaskovich%2C+Mark+A.+T.&rft.au=Hansford%2C+Karl+A.&rft.au=Butler%2C+Mark+S.&rft.au=Jia%2C+ZhiGuang&rft.date=2018-05-11&rft.pub=American+Chemical+Society&rft.eissn=2373-8227&rft.volume=4&rft.issue=5&rft.spage=715&rft.epage=735&rft_id=info:doi/10.1021%2Facsinfecdis.7b00258&rft_id=info%3Apmid%2F29363950&rft.externalDocID=PMC5952257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-8227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-8227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-8227&client=summon