Developments in Glycopeptide Antibiotics
Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic...
Saved in:
Published in | ACS infectious diseases Vol. 4; no. 5; pp. 715 - 735 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development. |
---|---|
AbstractList | Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development.Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development. Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development. Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development. |
Author | Blaskovich, Mark A. T Hansford, Karl A Jia, ZhiGuang Butler, Mark S Mark, Alan E Cooper, Matthew A |
AuthorAffiliation | The University of Queensland School of Chemistry and Molecular Biosciences Institute for Molecular Bioscience |
AuthorAffiliation_xml | – name: School of Chemistry and Molecular Biosciences – name: Institute for Molecular Bioscience – name: The University of Queensland |
Author_xml | – sequence: 1 givenname: Mark A. T orcidid: 0000-0001-9447-2292 surname: Blaskovich fullname: Blaskovich, Mark A. T email: m.blaskovich@uq.edu.au – sequence: 2 givenname: Karl A orcidid: 0000-0003-2535-9071 surname: Hansford fullname: Hansford, Karl A – sequence: 3 givenname: Mark S orcidid: 0000-0001-6689-4236 surname: Butler fullname: Butler, Mark S – sequence: 4 givenname: ZhiGuang surname: Jia fullname: Jia, ZhiGuang – sequence: 5 givenname: Alan E orcidid: 0000-0001-5880-4798 surname: Mark fullname: Mark, Alan E – sequence: 6 givenname: Matthew A orcidid: 0000-0003-3147-3460 surname: Cooper fullname: Cooper, Matthew A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29363950$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9Lw0AQxRep2Fr7CQTp0Uva_ZPNZi9CqVqFghc9L5vNRLckuzGbFvrtTWkt1YOeZmDe780w7xL1nHeA0DXBE4IpmWoTrCvA5DZMRIYx5ekZGlAmWJRSKnonfR-NQlhhjAlLeRzzC9SnkiVMcjxAt_ewgdLXFbg2jK0bL8qt8TXUrc1hPHOtzaxvrQlX6LzQZYDRoQ7R2-PD6_wpWr4snuezZaQ76zbSmBgiWWySTOjMQEx1kqWpzHIMGdWiiDkludACKEhmJJW5yTnPE9CFNLFkQ3S3963XWQW56e5qdKnqxla62Sqvrfo5cfZDvfuN4pJTykVncHswaPznGkKrKhsMlKV24NdBESlxyjlLd9Kb013HJd_v6QRsLzCND6GB4ighWO1yUCc5qEMOHSV_Uca2urV-d7At_2Gne7YbqpVfN6579p_EFww4owc |
CitedBy_id | crossref_primary_10_1016_j_ejmech_2021_113156 crossref_primary_10_1007_s12551_021_00912_8 crossref_primary_10_1038_s41467_020_19138_5 crossref_primary_10_1128_AAC_02443_20 crossref_primary_10_3389_fmicb_2024_1382332 crossref_primary_10_3390_ph15010077 crossref_primary_10_37349_eds_2025_100887 crossref_primary_10_1002_advs_201901872 crossref_primary_10_1021_acs_jpcb_4c00332 crossref_primary_10_1016_j_bmcl_2021_128027 crossref_primary_10_1016_j_apsusc_2020_147714 crossref_primary_10_3390_microorganisms12020396 crossref_primary_10_1002_ange_202001124 crossref_primary_10_3389_fchem_2021_659845 crossref_primary_10_1038_s41429_021_00474_7 crossref_primary_10_3390_antibiotics11091142 crossref_primary_10_1039_D1SC01446C crossref_primary_10_1002_ange_202104528 crossref_primary_10_2174_1385272824999200701121037 crossref_primary_10_1021_acs_joc_9b02314 crossref_primary_10_3389_fmicb_2021_641756 crossref_primary_10_1021_acs_joc_9b03401 crossref_primary_10_1016_j_eti_2021_101822 crossref_primary_10_1126_scitranslmed_abo4736 crossref_primary_10_1016_j_bmc_2019_07_023 crossref_primary_10_1126_science_abq3206 crossref_primary_10_1038_s41598_022_20182_y crossref_primary_10_1016_j_bmc_2019_03_034 crossref_primary_10_1016_j_talanta_2020_121603 crossref_primary_10_1002_anie_201902210 crossref_primary_10_1038_s44222_024_00250_w crossref_primary_10_1007_s11172_019_2506_3 crossref_primary_10_1021_acs_jmedchem_9b00246 crossref_primary_10_1186_s12934_024_02464_4 crossref_primary_10_3390_nano8121009 crossref_primary_10_1021_acscentsci_1c01389 crossref_primary_10_3389_fphar_2023_1158152 crossref_primary_10_1021_acsinfecdis_1c00246 crossref_primary_10_1021_acsinfecdis_1c00367 crossref_primary_10_3390_ph14111182 crossref_primary_10_1016_j_trac_2022_116691 crossref_primary_10_1016_j_cplett_2020_138269 crossref_primary_10_1016_j_biotechadv_2024_108371 crossref_primary_10_1016_j_coph_2019_05_001 crossref_primary_10_3390_pharmaceutics13030321 crossref_primary_10_1016_j_ejmech_2023_115638 crossref_primary_10_1039_C8NP00044A crossref_primary_10_1021_acsinfecdis_9b00413 crossref_primary_10_1016_j_jenvman_2024_122402 crossref_primary_10_1016_j_jpba_2025_116745 crossref_primary_10_1007_s11095_023_03588_9 crossref_primary_10_1128_AAC_02416_20 crossref_primary_10_1021_acsmedchemlett_1c00455 crossref_primary_10_1021_jacs_8b08711 crossref_primary_10_1186_s41120_022_00067_0 crossref_primary_10_1038_s41598_023_38036_6 crossref_primary_10_1002_ange_201902210 crossref_primary_10_1039_D1CC06635H crossref_primary_10_2166_wh_2020_029 crossref_primary_10_1002_pro_3819 crossref_primary_10_1016_j_aca_2020_11_053 crossref_primary_10_1093_toxsci_kfab084 crossref_primary_10_1134_S1070363222130047 crossref_primary_10_3390_antibiotics12071205 crossref_primary_10_1021_acs_chemrev_1c00773 crossref_primary_10_1016_j_molstruc_2021_131380 crossref_primary_10_1021_acsinfecdis_8b00317 crossref_primary_10_1021_acssynbio_1c00317 crossref_primary_10_3390_ph14020083 crossref_primary_10_1186_s41120_023_00076_7 crossref_primary_10_3390_molecules29174065 crossref_primary_10_1016_j_mib_2023_102385 crossref_primary_10_1021_acsinfecdis_4c00115 crossref_primary_10_3390_antiox10060895 crossref_primary_10_1002_cbic_202000309 crossref_primary_10_1002_cmdc_201800252 crossref_primary_10_1021_acsanm_9b01987 crossref_primary_10_1016_j_jconrel_2020_06_002 crossref_primary_10_3390_antibiotics12050928 crossref_primary_10_1021_acs_jmedchem_2c01293 crossref_primary_10_1186_s42269_023_01072_3 crossref_primary_10_1021_jacsau_3c00369 crossref_primary_10_1039_D0CS00729C crossref_primary_10_3390_antibiotics11010040 crossref_primary_10_3390_antibiotics13080783 crossref_primary_10_3762_bjoc_16_80 crossref_primary_10_1021_acs_jmedchem_8b01093 crossref_primary_10_1039_D3CC01070H crossref_primary_10_1016_j_ejmech_2020_112686 crossref_primary_10_3390_molecules28248076 crossref_primary_10_1021_acs_jmedchem_3c00633 crossref_primary_10_1002_anie_202104528 crossref_primary_10_1016_j_bmc_2025_118144 crossref_primary_10_1021_acsinfecdis_2c00253 crossref_primary_10_1021_acs_jmedchem_3c01835 crossref_primary_10_1016_j_matdes_2024_112904 crossref_primary_10_3390_molecules27227685 crossref_primary_10_1021_jacs_4c17175 crossref_primary_10_1039_D2SC05600C crossref_primary_10_1042_BST20200425 crossref_primary_10_1002_ejoc_202200677 crossref_primary_10_1039_C9MD00292H crossref_primary_10_1002_anie_202003726 crossref_primary_10_1002_cmdc_202200708 crossref_primary_10_1177_2472555218812657 crossref_primary_10_1080_17435889_2024_2377063 crossref_primary_10_1111_febs_15489 crossref_primary_10_1016_j_tifs_2025_104899 crossref_primary_10_1021_acssuschemeng_8b03540 crossref_primary_10_1039_D1OB00448D crossref_primary_10_2147_IDR_S340623 crossref_primary_10_1016_S1636_5410_22_46452_X crossref_primary_10_1039_D0TB02568B crossref_primary_10_3390_pharmaceutics13122047 crossref_primary_10_1016_j_jpba_2019_02_017 crossref_primary_10_1002_med_21869 crossref_primary_10_1021_acschembio_1c00626 crossref_primary_10_1021_acsinfecdis_1c00318 crossref_primary_10_1038_s41413_022_00227_8 crossref_primary_10_1128_AAC_01216_19 crossref_primary_10_1016_j_aca_2024_342309 crossref_primary_10_1080_14787210_2022_2013809 crossref_primary_10_1002_psc_3285 crossref_primary_10_1016_j_ymben_2023_05_005 crossref_primary_10_2147_IDR_S428103 crossref_primary_10_1016_S1634_7358_22_46549_1 crossref_primary_10_1021_jacs_3c06978 crossref_primary_10_3390_foods11192991 crossref_primary_10_7554_eLife_80246 crossref_primary_10_1021_acs_orglett_2c02520 crossref_primary_10_1038_s41598_023_28740_8 crossref_primary_10_1074_jbc_REV119_006349 crossref_primary_10_1016_j_xphs_2024_10_056 crossref_primary_10_3390_pathogens10101343 crossref_primary_10_1021_acs_oprd_1c00064 crossref_primary_10_1007_s12088_024_01273_y crossref_primary_10_3390_pathogens13110966 crossref_primary_10_1002_ddr_22095 crossref_primary_10_1021_acs_jmedchem_3c02197 crossref_primary_10_1007_s11172_023_4016_6 crossref_primary_10_1073_pnas_2208737120 crossref_primary_10_1002_chem_201902788 crossref_primary_10_1016_j_ejmech_2021_113459 crossref_primary_10_3390_pharmaceutics14081749 crossref_primary_10_1177_11786337211037355 crossref_primary_10_37489_0235_2990_2022_67_9_10_18_24 crossref_primary_10_1016_j_bmcl_2021_128122 crossref_primary_10_1111_nyas_14541 crossref_primary_10_3390_antibiotics14030295 crossref_primary_10_1021_acscatal_0c01719 crossref_primary_10_1039_D2CB00169A crossref_primary_10_3390_pharmaceutics13060773 crossref_primary_10_3390_antibiotics12030628 crossref_primary_10_1002_slct_201802146 crossref_primary_10_1021_acs_jmedchem_3c02064 crossref_primary_10_3390_antibiotics9060300 crossref_primary_10_3390_molecules24061004 crossref_primary_10_1016_j_agrcom_2024_100027 crossref_primary_10_1016_j_xphs_2023_02_006 crossref_primary_10_1002_ange_202003726 crossref_primary_10_1021_acsabm_0c00044 crossref_primary_10_1038_s41598_022_24807_0 crossref_primary_10_1002_adhm_202303654 crossref_primary_10_3390_ph14121227 crossref_primary_10_1080_19490976_2024_2418412 crossref_primary_10_1021_acsinfecdis_9b00102 crossref_primary_10_4103_ijmm_IJMM_20_34 crossref_primary_10_47429_lmo_2022_12_4_285 crossref_primary_10_1016_j_surfin_2024_104963 crossref_primary_10_3390_ph15060661 crossref_primary_10_3390_bios9020052 crossref_primary_10_1039_D2OB01381A crossref_primary_10_1016_j_heliyon_2024_e38392 crossref_primary_10_1007_s11274_024_04105_9 crossref_primary_10_1073_pnas_2218973120 crossref_primary_10_37349_eds_2023_00028 crossref_primary_10_21931_RB_2023_08_01_67 crossref_primary_10_1038_s42003_023_04745_x crossref_primary_10_1016_j_nano_2023_102731 crossref_primary_10_1021_acsinfecdis_3c00168 crossref_primary_10_4274_atfm_galenos_2023_19480 crossref_primary_10_1007_s11696_023_02735_1 crossref_primary_10_1002_anie_202001124 crossref_primary_10_1016_j_jgar_2019_04_016 crossref_primary_10_1080_07391102_2021_1905555 |
Cites_doi | 10.1016/j.bmcl.2014.03.093 10.1086/527392 10.1021/acs.jmedchem.7b01345 10.1128/AAC.00271-10 10.1021/ja208755j 10.1093/cid/civ311 10.1517/14656566.2015.1075508 10.1211/CP.2017.20203363 10.1128/AAC.01710-08 10.1021/ja021273s 10.1021/jm4004494 10.1126/science.280.5364.708 10.1186/1471-2334-14-92 10.1128/AAC.00452-10 10.1038/ja.2014.111 10.1038/nprot.2014.093 10.2146/ajhp080434 10.1086/491712 10.1093/cid/civ534 10.1128/AAC.05532-11 10.1007/s11999-010-1266-z 10.2165/00003495-200868050-00006 10.1007/s40121-016-0103-4 10.1021/cb300007j 10.1021/jm500270w 10.1093/ofid/ofv156 10.1016/j.diagmicrobio.2007.11.011 10.1093/cid/cis001 10.1039/B613319C 10.1128/AAC.39.3.781 10.1021/ja971225l 10.1016/j.drup.2012.03.005 10.1093/jac/40.1.135 10.1021/jm501872s 10.1021/ja9621298 10.1021/ja00379a062 10.1039/C4OB02452D 10.1002/(SICI)1098-1128(199701)17:1<69::AID-MED3>3.0.CO;2-R 10.1089/mdr.2017.0022 10.1002/chem.201604765 10.7164/antibiotics.57.326 10.1016/S0040-4039(98)00895-8 10.1086/491709 10.1002/anie.201601621 10.1016/j.bcp.2016.09.025 10.1128/AAC.05382-11 10.1021/acs.jmedchem.5b01578 10.7164/antibiotics.39.58 10.1128/AAC.49.3.1127-1134.2005 10.1038/ja.2013.117 10.1089/mdr.2017.0147 10.1038/ncomms3584 10.1128/AAC.01737-09 10.1021/ja0359761 10.1002/cbic.201402179 10.1128/AAC.31.12.1961 10.1021/acs.biochem.6b01102 10.1021/ja209937s 10.1111/febs.12121 10.1016/0968-0896(95)00161-1 10.1186/s13756-017-0193-0 10.1016/j.jmb.2009.06.064 10.1021/acsinfecdis.6b00105 10.2165/10481380-000000000-00000 10.1038/s41467-017-02123-w 10.1016/j.cmi.2017.07.028 10.2174/1871526517666161108130148 10.1128/AAC.01111-17 10.1128/AAC.49.1.195-201.2005 10.1038/ja.2016.80 10.1128/AAC.01674-10 10.1021/ja302808p 10.1021/bi801597b 10.1038/nature10388 10.1021/ja406067v 10.1093/cid/cir920 10.1016/j.ijantimicag.2015.05.014 10.1021/jm801549b 10.1002/cmdc.201400072 10.1111/tid.12123 10.1093/jac/dki005 10.1021/jm9017543 10.1128/AAC.00712-12 10.1021/ja207142h 10.1021/jm100946e 10.2147/TCRM.S86330 10.1016/S1074-5521(00)80008-3 10.1073/pnas.1704125114 10.1186/2193-1801-2-329 10.1021/acsinfecdis.5b00114 10.1016/j.bmcl.2015.12.027 10.2217/fmb.15.53 10.1039/C7SC00460E 10.1016/j.diagmicrobio.2017.06.023 10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F 10.1016/j.bmcl.2013.06.080 10.1021/bm900410a 10.1021/ja0572912 10.1002/1521-3765(20010903)7:17<3824::AID-CHEM3824>3.0.CO;2-1 10.1073/pnas.0600829103 10.1021/ja507009a 10.4155/fmc.13.16 10.1517/13543784.16.5.717 10.2174/187152110790886745 10.1021/ja067674f 10.1128/AAC.00281-17 10.1111/jcpt.12580 10.2165/11534440-000000000-00000 10.1002/cbic.201500542 10.1128/AAC.01873-17 10.1016/j.bmcl.2012.06.039 10.1021/ja00329a044 10.1128/AAC.06274-11 10.1128/AAC.48.8.3043-3050.2004 10.1016/j.diagmicrobio.2017.03.003 10.1111/j.1365-2141.1974.tb06675.x 10.1016/j.bmcl.2015.10.083 10.1039/C3OB42428F 10.1021/ja4038998 10.1128/AAC.01609-15 10.1002/cbic.201600241 10.1128/CMR.13.4.686-707.2000 10.1038/nbt.2685 10.1038/ja.2016.72 10.1016/j.jgar.2017.03.018 10.1172/JCI68834 10.1021/ja301566t 10.1016/j.jmb.2008.01.031 10.1007/s10096-016-2865-8 10.1016/j.ijantimicag.2015.02.013 10.1038/ja.2017.2 10.1038/ja.2014.144 10.1021/acs.chemrev.6b00820 10.1128/AAC.03147-14 10.1002/1521-3773(20001103)39:21<3823::AID-ANIE3823>3.0.CO;2-3 10.1002/phar.1641 10.1038/srep35584 10.1016/S0960-894X(99)00402-3 10.1038/nchembio.350 10.1002/anie.201507567 10.1021/jacs.5b01008 10.1002/cmdc.201300011 10.1128/JCM.02187-13 10.1093/jac/44.2.179 10.1016/j.jgar.2015.12.007 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical Society 2018 American Chemical Society |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society 2018 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/acsinfecdis.7b00258 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2373-8227 |
EndPage | 735 |
ExternalDocumentID | PMC5952257 29363950 10_1021_acsinfecdis_7b00258 b036645681 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 094977/Z/10/Z – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: WT141107 |
GroupedDBID | ABMVS ABUCX ACGFS ACS AEESW AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS EJD UI2 VF5 VG9 W1F 53G AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a445t-a01c1934c6b7abce42a6b889bd0eb2a7f4521d7a7e2e93c929dcd55d6eaf9c493 |
IEDL.DBID | ACS |
ISSN | 2373-8227 |
IngestDate | Thu Aug 21 18:11:18 EDT 2025 Fri Jul 11 16:53:16 EDT 2025 Wed Feb 19 02:31:37 EST 2025 Thu Apr 24 23:06:09 EDT 2025 Tue Jul 01 01:32:27 EDT 2025 Thu Aug 27 13:42:07 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | vancomycin glycopeptides antimicrobial resistance antibiotics |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a445t-a01c1934c6b7abce42a6b889bd0eb2a7f4521d7a7e2e93c929dcd55d6eaf9c493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5880-4798 0000-0003-3147-3460 0000-0001-9447-2292 0000-0003-2535-9071 0000-0001-6689-4236 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5952257 |
PMID | 29363950 |
PQID | 1990855387 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5952257 proquest_miscellaneous_1990855387 pubmed_primary_29363950 crossref_primary_10_1021_acsinfecdis_7b00258 crossref_citationtrail_10_1021_acsinfecdis_7b00258 acs_journals_10_1021_acsinfecdis_7b00258 |
ProviderPackageCode | ACS AEESW AFEFF VF5 VG9 ABMVS ABUCX AQSVZ W1F UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-11 |
PublicationDateYYYYMMDD | 2018-05-11 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS infectious diseases |
PublicationTitleAlternate | ACS Infect. Dis |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 Yao R. C. (ref28/cit28) 1994 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref76/cit76 ref86/cit86 ref170/cit170 ref32/cit32 ref168/cit168 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref121/cit121 ref175/cit175 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 Goldstein B. P. (ref26/cit26) 1994 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref152/cit152 ref153/cit153 ref154/cit154 ref27/cit27 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref159/cit159 ref39/ref39_1 ref92/cit92 ref155/cit155 ref156/cit156 ref157/cit157 ref158/cit158 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref160/cit160 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref166/cit166 ref149/cit149 ref162/cit162 ref46/cit46 ref164/cit164 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref172/cit172 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref169/cit169 ref51/cit51 CLSI (ref60/ref60_1) 2016 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 McGuinness W. A. (ref12/cit12) 2017; 90 ref161/cit161 ref142/cit142 ref73/cit73 ref69/cit69 ref165/cit165 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref107/cit107 doi: 10.1016/j.bmcl.2014.03.093 – ident: ref16/cit16 doi: 10.1086/527392 – ident: ref121/cit121 doi: 10.1021/acs.jmedchem.7b01345 – ident: ref169/cit169 – ident: ref59/cit59 doi: 10.1128/AAC.00271-10 – ident: ref66/cit66 – ident: ref174/cit174 – ident: ref71/cit71 doi: 10.1021/ja208755j – ident: ref79/cit79 doi: 10.1093/cid/civ311 – ident: ref74/cit74 doi: 10.1517/14656566.2015.1075508 – ident: ref8/cit8 doi: 10.1211/CP.2017.20203363 – ident: ref35/cit35 doi: 10.1128/AAC.01710-08 – ident: ref137/cit137 doi: 10.1021/ja021273s – ident: ref115/cit115 doi: 10.1021/jm4004494 – ident: ref132/cit132 doi: 10.1126/science.280.5364.708 – volume-title: Performance Standards for Antimicrobial Susceptibility Testing year: 2016 ident: ref60/ref60_1 – ident: ref61/cit61 – ident: ref7/cit7 doi: 10.1186/1471-2334-14-92 – ident: ref145/cit145 doi: 10.1128/AAC.00452-10 – ident: ref15/cit15 doi: 10.1038/ja.2014.111 – ident: ref32/cit32 doi: 10.1038/nprot.2014.093 – ident: ref52/cit52 doi: 10.2146/ajhp080434 – ident: ref56/cit56 doi: 10.1086/491712 – ident: ref44/cit44 doi: 10.1093/cid/civ534 – ident: ref143/cit143 doi: 10.1128/AAC.05532-11 – ident: ref157/cit157 doi: 10.1007/s11999-010-1266-z – ident: ref70/cit70 doi: 10.2165/00003495-200868050-00006 – ident: ref81/cit81 doi: 10.1007/s40121-016-0103-4 – ident: ref22/cit22 doi: 10.1021/cb300007j – ident: ref95/cit95 doi: 10.1021/jm500270w – ident: ref78/cit78 doi: 10.1093/ofid/ofv156 – start-page: 1 volume-title: Glycopeptide Antibiotics year: 1994 ident: ref28/cit28 – ident: ref43/cit43 doi: 10.1016/j.diagmicrobio.2007.11.011 – ident: ref80/cit80 doi: 10.1093/cid/cis001 – ident: ref97/cit97 – ident: ref138/cit138 doi: 10.1039/B613319C – ident: ref19/cit19 doi: 10.1128/AAC.39.3.781 – ident: ref133/cit133 doi: 10.1021/ja971225l – ident: ref175/cit175 doi: 10.1016/j.drup.2012.03.005 – ident: ref14/cit14 doi: 10.1093/jac/40.1.135 – ident: ref103/cit103 doi: 10.1021/jm501872s – ident: ref129/cit129 doi: 10.1021/ja9621298 – ident: ref146/cit146 – ident: ref25/cit25 doi: 10.1021/ja00379a062 – ident: ref53/cit53 – ident: ref166/cit166 doi: 10.1039/C4OB02452D – ident: ref86/cit86 doi: 10.1002/(SICI)1098-1128(199701)17:1<69::AID-MED3>3.0.CO;2-R – ident: ref50/cit50 doi: 10.1089/mdr.2017.0022 – ident: ref140/cit140 doi: 10.1002/chem.201604765 – ident: ref33/cit33 doi: 10.7164/antibiotics.57.326 – ident: ref54/cit54 – ident: ref135/cit135 doi: 10.1016/S0040-4039(98)00895-8 – ident: ref23/cit23 doi: 10.1086/491709 – ident: ref65/cit65 – ident: ref93/cit93 doi: 10.1002/anie.201601621 – ident: ref149/cit149 – ident: ref2/cit2 doi: 10.1016/j.bcp.2016.09.025 – ident: ref144/cit144 doi: 10.1128/AAC.05382-11 – ident: ref151/cit151 doi: 10.1021/acs.jmedchem.5b01578 – ident: ref30/cit30 doi: 10.7164/antibiotics.39.58 – ident: ref34/cit34 doi: 10.1128/AAC.49.3.1127-1134.2005 – ident: ref88/cit88 doi: 10.1038/ja.2013.117 – ident: ref11/cit11 doi: 10.1089/mdr.2017.0147 – ident: ref158/cit158 doi: 10.1038/ncomms3584 – start-page: 273 volume-title: Glycopeptide Antibiotics year: 1994 ident: ref26/cit26 – ident: ref45/cit45 doi: 10.1128/AAC.01737-09 – ident: ref134/cit134 doi: 10.1021/ja0359761 – ident: ref164/cit164 doi: 10.1002/cbic.201402179 – ident: ref62/cit62 doi: 10.1128/AAC.31.12.1961 – ident: ref165/cit165 doi: 10.1021/acs.biochem.6b01102 – ident: ref110/cit110 doi: 10.1021/ja209937s – ident: ref20/cit20 doi: 10.1111/febs.12121 – ident: ref152/cit152 doi: 10.1016/0968-0896(95)00161-1 – ident: ref6/cit6 doi: 10.1186/s13756-017-0193-0 – ident: ref84/cit84 doi: 10.1016/j.jmb.2009.06.064 – ident: ref163/cit163 doi: 10.1021/acsinfecdis.6b00105 – ident: ref36/cit36 doi: 10.2165/10481380-000000000-00000 – ident: ref92/cit92 doi: 10.1038/s41467-017-02123-w – ident: ref75/cit75 doi: 10.1016/j.cmi.2017.07.028 – ident: ref98/cit98 – ident: ref77/cit77 doi: 10.2174/1871526517666161108130148 – ident: ref40/cit40 doi: 10.1128/AAC.01111-17 – ident: ref42/cit42 doi: 10.1128/AAC.49.1.195-201.2005 – ident: ref128/cit128 doi: 10.1038/ja.2016.80 – ident: ref57/cit57 doi: 10.1128/AAC.01674-10 – ident: ref39/ref39_1 – ident: ref111/cit111 doi: 10.1021/ja302808p – ident: ref148/cit148 – ident: ref150/cit150 doi: 10.1021/bi801597b – ident: ref172/cit172 – ident: ref13/cit13 doi: 10.1038/nature10388 – ident: ref122/cit122 doi: 10.1021/ja406067v – ident: ref82/cit82 doi: 10.1093/cid/cir920 – ident: ref99/cit99 – ident: ref105/cit105 doi: 10.1016/j.ijantimicag.2015.05.014 – ident: ref126/cit126 doi: 10.1021/jm801549b – ident: ref153/cit153 doi: 10.1002/cmdc.201400072 – ident: ref51/cit51 doi: 10.1111/tid.12123 – ident: ref64/cit64 doi: 10.1093/jac/dki005 – ident: ref117/cit117 doi: 10.1021/jm9017543 – ident: ref141/cit141 doi: 10.1128/AAC.00712-12 – ident: ref109/cit109 doi: 10.1021/ja207142h – ident: ref123/cit123 doi: 10.1021/jm100946e – ident: ref4/cit4 – ident: ref55/cit55 – ident: ref68/cit68 doi: 10.2147/TCRM.S86330 – ident: ref21/cit21 doi: 10.1016/S1074-5521(00)80008-3 – ident: ref114/cit114 doi: 10.1073/pnas.1704125114 – ident: ref154/cit154 doi: 10.1186/2193-1801-2-329 – ident: ref102/cit102 doi: 10.1021/acsinfecdis.5b00114 – ident: ref118/cit118 doi: 10.1016/j.bmcl.2015.12.027 – ident: ref41/cit41 doi: 10.2217/fmb.15.53 – ident: ref168/cit168 doi: 10.1039/C7SC00460E – ident: ref46/cit46 doi: 10.1016/j.diagmicrobio.2017.06.023 – ident: ref29/cit29 doi: 10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F – ident: ref116/cit116 doi: 10.1016/j.bmcl.2013.06.080 – ident: ref156/cit156 doi: 10.1021/bm900410a – ident: ref108/cit108 doi: 10.1021/ja0572912 – ident: ref130/cit130 doi: 10.1002/1521-3765(20010903)7:17<3824::AID-CHEM3824>3.0.CO;2-1 – ident: ref159/cit159 doi: 10.1073/pnas.0600829103 – ident: ref112/cit112 doi: 10.1021/ja507009a – ident: ref94/cit94 doi: 10.4155/fmc.13.16 – ident: ref58/cit58 doi: 10.1517/13543784.16.5.717 – ident: ref5/cit5 – ident: ref76/cit76 doi: 10.2174/187152110790886745 – ident: ref90/cit90 – ident: ref160/cit160 doi: 10.1021/ja067674f – ident: ref38/cit38 doi: 10.1128/AAC.00281-17 – ident: ref67/cit67 doi: 10.1111/jcpt.12580 – ident: ref69/cit69 doi: 10.2165/11534440-000000000-00000 – ident: ref89/cit89 doi: 10.1002/cbic.201500542 – ident: ref147/cit147 – ident: ref85/cit85 doi: 10.1128/AAC.01873-17 – ident: ref124/cit124 doi: 10.1016/j.bmcl.2012.06.039 – ident: ref27/cit27 doi: 10.1021/ja00329a044 – ident: ref142/cit142 doi: 10.1128/AAC.06274-11 – ident: ref37/cit37 doi: 10.1128/AAC.48.8.3043-3050.2004 – ident: ref48/cit48 doi: 10.1016/j.diagmicrobio.2017.03.003 – ident: ref173/cit173 – ident: ref24/cit24 doi: 10.1111/j.1365-2141.1974.tb06675.x – ident: ref139/cit139 doi: 10.1016/j.bmcl.2015.10.083 – ident: ref72/cit72 doi: 10.1039/C3OB42428F – ident: ref120/cit120 doi: 10.1021/ja4038998 – ident: ref155/cit155 doi: 10.1128/AAC.01609-15 – ident: ref162/cit162 doi: 10.1002/cbic.201600241 – ident: ref9/cit9 doi: 10.1128/CMR.13.4.686-707.2000 – ident: ref31/cit31 doi: 10.1038/nbt.2685 – ident: ref1/cit1 doi: 10.1038/ja.2016.72 – ident: ref47/cit47 doi: 10.1016/j.jgar.2017.03.018 – ident: ref10/cit10 doi: 10.1172/JCI68834 – ident: ref119/cit119 doi: 10.1021/ja301566t – ident: ref83/cit83 doi: 10.1016/j.jmb.2008.01.031 – ident: ref49/cit49 doi: 10.1007/s10096-016-2865-8 – ident: ref91/cit91 – ident: ref100/cit100 doi: 10.1016/j.ijantimicag.2015.02.013 – ident: ref3/cit3 – ident: ref127/cit127 doi: 10.1038/ja.2017.2 – ident: ref96/cit96 – ident: ref104/cit104 doi: 10.1038/ja.2014.144 – volume: 90 start-page: 269 issue: 2 year: 2017 ident: ref12/cit12 publication-title: Yale J. Biol. Med. – ident: ref87/cit87 doi: 10.1021/acs.chemrev.6b00820 – ident: ref18/cit18 doi: 10.1128/AAC.03147-14 – ident: ref131/cit131 doi: 10.1002/1521-3773(20001103)39:21<3823::AID-ANIE3823>3.0.CO;2-3 – ident: ref73/cit73 doi: 10.1002/phar.1641 – ident: ref170/cit170 – ident: ref167/cit167 doi: 10.1038/srep35584 – ident: ref136/cit136 doi: 10.1016/S0960-894X(99)00402-3 – ident: ref161/cit161 doi: 10.1038/nchembio.350 – ident: ref106/cit106 doi: 10.1002/anie.201507567 – ident: ref113/cit113 doi: 10.1021/jacs.5b01008 – ident: ref125/cit125 doi: 10.1002/cmdc.201300011 – ident: ref171/cit171 – ident: ref17/cit17 doi: 10.1128/JCM.02187-13 – ident: ref63/cit63 doi: 10.1093/jac/44.2.179 – ident: ref101/cit101 doi: 10.1016/j.jgar.2015.12.007 |
SSID | ssj0001385445 |
Score | 2.5023084 |
SecondaryResourceType | review_article |
Snippet | Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious... Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 715 |
SubjectTerms | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Drug Development - methods Drug Discovery Drug Resistance, Bacterial Glycopeptides - chemistry Glycopeptides - pharmacology Gram-Positive Bacteria - drug effects Gram-Positive Bacterial Infections - drug therapy Gram-Positive Bacterial Infections - microbiology Humans Molecular Structure Review Structure-Activity Relationship |
Title | Developments in Glycopeptide Antibiotics |
URI | http://dx.doi.org/10.1021/acsinfecdis.7b00258 https://www.ncbi.nlm.nih.gov/pubmed/29363950 https://www.proquest.com/docview/1990855387 https://pubmed.ncbi.nlm.nih.gov/PMC5952257 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QXzxfpk3KviwBzvXpG2axzGcQ9hedLC3kltxODqx3YP-ek96md0mY2-FJiEnJ8n5knPOF4TuARVH0mHUlkpy28W8ZXMKXxETUijmKCFNonB_4PeG7svIG1WS1Zc8-Nh55DLJ4pLUOGnSzEYH22gH-wE1Z6125_XvSoUEhlome06OEhtMHy15hv5vx1gkmSxapBWYuRwtWTE_3QM0KJN48qiTj-YsFU35s8rpuJlkh2i_AKJWO585R2hLx8dot1-42k9QoxJOlFjj2HqefJsMFthilLbasck1mRqO51M07D69dXp28ayCzWF0Upu3HNAOcaUvKAdVgIJ8EQRMqBYcszmNXDDpinKqsWZEAn5SUnme8jWPmHQZOUO1eBrrC2TJKJJaMKod4ruCR0IRLCmOCA48QQitowYIGRbLIgkzjzd2workYSF5HeFSC6Es6MnNKxmT9ZUe5pU-c3aO9cXvSvWGsIqMa4THejqDjoFRDjzY_KHL57m65w0CIAIY57XqiC5MhHkBw9C9-Ccev2dM3R4DeOvRy82H4QrtASQLTHyC41yjWvo10zcAe1Jxm032XyitAn8 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ74SNSL70d9YuKhB6nAAsseG6PWR71ok97IvoiNDTVCD_rrnaUUWzVGbwR2NzM7C_MtM_MtwAmi4kS6jNpSSW77HndsTvEqYUIKxVwlpCkUbt-HrY5_0w26ZVGYqYVBITIcKSuC-J_sAu4Z3ivSk1Qva9DCVUezMI9wxDNbrub5w-efFRIZhpniVDlKbPSAdEw39PM4xjHJbNoxfUObX5MmJ7zQ5Qp0KvmL5JPnxjAXDfn-hdrxvwquwnIJS63maB2twYxO12GhXQbeN6A-kVyUWb3Uuuq_mXoW_OAobTVTU3kyMIzPm9C5vHg8b9nlIQs2x0nKbe64aCviy1BQjoZBc4UiiphQDm66OU18dPCKcqo9zYhENKWkCgIVap4w6TOyBXPpINU7YMkkkVowql0S-oInQhFPUi8hXhQIQmgN6qhkXL4kWVzEvz03ntA8LjWvgTc2RixLsnJzZkb_906nVaeXEVfH782Px1aO8Z0ygRKe6sEQBUMXHQXoClDk7ZHVqwERHiGoC5wa0Kn1UDUwfN3TT9LeU8HbHTAEuwHd_fs0HMFi67F9F99d39_uwRKCtchkLrjuPszlr0N9gIAoF4fF-v8AHREK4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58QPHi-1GfETz0YGqTTbLZY1Hruwgq6CnsE4slFdMe9Nc7m6a1VSniLSSbZWdnJ_NtZuZbgANExUZ6jLpSSe4GPq-5nOKVYUIKxTwlpC0UvmlG5w_B5WP4OAXxoBYGB5FhT1kexLdW_apMwTDgHeH9PEVJtbIqzd11PA2zNnBnt13147uvvysktiwz-clylLjoBemAcuj3fqxzktm4c_qBOL8nTo54osYCPA1lyBNQXqq9rqjKj2_0jv8RchHmC3jq1PvraQmmdLoMpZsiAL8ClZEko8xppc5Z-93WteCHR2mnntoKlI5lfl6Fh8bp_fG5Wxy24HKcqK7Lax7qjAQyEpSjglBtkYhjJlQNN9-cmgAdvaKcal8zIhFVKanCUEWaGyYDRtZgJu2kegMcaYzUglHtkSgQ3AhFfEl9Q_w4FITQMlRQyKQwlizJ4-C-l4xInhSSl8EfKCSRBWm5PTujPfmlw-FLr33OjsnN9weaTtC2bMCEp7rTw4Ghq45DdAk45PW-5ocdIkxCcBfWykDH1sSwgeXtHn-Stp5z_u6QIegN6ebfp2EPSrcnjeT6onm1BXOI2WKbwOB52zDTfevpHcRFXbGbm8AnmMoNYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developments+in+Glycopeptide+Antibiotics&rft.jtitle=ACS+infectious+diseases&rft.au=Blaskovich%2C+Mark+A.+T.&rft.au=Hansford%2C+Karl+A.&rft.au=Butler%2C+Mark+S.&rft.au=Jia%2C+ZhiGuang&rft.date=2018-05-11&rft.pub=American+Chemical+Society&rft.eissn=2373-8227&rft.volume=4&rft.issue=5&rft.spage=715&rft.epage=735&rft_id=info:doi/10.1021%2Facsinfecdis.7b00258&rft_id=info%3Apmid%2F29363950&rft.externalDocID=PMC5952257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-8227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-8227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-8227&client=summon |