Comparison of Fuzzy Clustering Methods and Their Applications to Geophysics Data

Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a prio...

Full description

Saved in:
Bibliographic Details
Published inApplied Computational Intelligence and Soft Computing Vol. 2009; no. 2009; pp. 74 - 89
Main Authors Miller, David J., Nelson, Carl A., Cannon, Molly Boeka, Cannon, Kenneth P.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Limiteds 01.01.2009
Hindawi Puplishing Corporation
Hindawi Publishing Corporation
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine how many clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzy α-cut to determine which provided better elimination of noise and non-relevant points. Results indicate that the α-cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis
AbstractList Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine how many clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzy α-cut to determine which provided better elimination of noise and non-relevant points. Results indicate that the α-cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis
Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine how many clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzy alpha -cut to determine which provided better elimination of noise and non-relevant points. Results indicate that the alpha -cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis
Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine how many clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzy α -cut to determine which provided better elimination of noise and non-relevant points. Results indicate that the α -cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis
Author Cannon, Molly Boeka
Miller, David J.
Nelson, Carl A.
Cannon, Kenneth P.
Author_xml – sequence: 1
  fullname: Miller, David J.
– sequence: 2
  fullname: Nelson, Carl A.
– sequence: 3
  fullname: Cannon, Molly Boeka
– sequence: 4
  fullname: Cannon, Kenneth P.
BookMark eNqFkk1r3DAQhkVJoWmaU88F0UuhZRN9fxzDtpsGEtJDehayJGcVvJIr2YTNr68dly3tJbqMZubhZYZ33oKjlFMA4D1GZxhzfk4Q0udKCirwK3CMhZIrLSk5OvwJewNOa40NQhQhJpU6Bj_WedfbEmtOMLdwMz497eG6G-sQSkz38CYM2-wrtMnDu22IBV70fRedHWJOFQ4ZXobcb_c1ugq_2sG-A69b29Vw-ieegJ-bb3fr76vr28ur9cX1yjLGh5XGhLSMEN1o7ZuWOec8l4FRjXlwFFMvnLAtUpIR1gjeBsdE0EpI1TBEBD0BV4uuz_bB9CXubNmbbKN5LuRyb2wZouuCkUFr5Th2mCvWaqqopZgg7IXnTmA2aX1atPqSf42hDmYXqwtdZ1PIYzWSU0mnN5Mf_yMf8ljStKhRnBNCBKIT9GWBXMm1ltAexsPIzFaZ2SqzWDXRnxd6G5O3j_EF-MMChwkJrT3AHHGm1NTfLH0bSxzi3-nmE5gv4FkNkylgiTTRaBb_J5HMKE1_A3ZxrvU
CitedBy_id crossref_primary_10_1002_2013JD020751
crossref_primary_10_1016_j_procs_2022_01_374
crossref_primary_10_1071_EG11014
crossref_primary_10_1007_s13399_023_04506_0
crossref_primary_10_3390_sym14040658
crossref_primary_10_1007_s11760_014_0742_4
crossref_primary_10_1016_j_compag_2018_04_011
crossref_primary_10_1051_shsconf_20196504008
crossref_primary_10_1016_j_ins_2022_01_057
Cites_doi 10.1016/j.patcog.2005.07.005
10.1016/S0165-0114(96)00232-1
10.1109/91.771092
10.1109/34.192473
10.2307/3557103
10.1016/S0019-9958(65)90241-X
10.1111/j.1469-1809.1936.tb02137.x
10.1080/01969727308546046
10.1109/TFUZZ.2004.840099
ContentType Journal Article
Contributor Cannon, Molly Boeka
Nelson, Carl A
Miller, David J
Cannon, Kenneth P
Contributor_xml – sequence: 1
  fullname: Miller, David J
– sequence: 2
  fullname: Nelson, Carl A
– sequence: 3
  fullname: Cannon, Molly Boeka
– sequence: 4
  fullname: Cannon, Kenneth P
Copyright Copyright © 2009
Copyright © 2009 David J. Miller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright_xml – notice: Copyright © 2009
– notice: Copyright © 2009 David J. Miller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DBID 188
ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2009/876361
DatabaseName Airiti Library
الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Middle East & Africa Database
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
Computer and Information Systems Abstracts

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access Journals
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1687-9732
Editor Yang, Miin-Shen
Editor_xml – sequence: 1
  givenname: Miin-Shen
  surname: Yang
  fullname: Yang, Miin-Shen
EndPage 89
ExternalDocumentID oai_doaj_org_article_7e998c51c1584f9383a31201d6d5c614
2284950711
10_1155_2009_876361
505488
16879724_200912_201709290009_201709290009_74_89
GroupedDBID 188
ALMA_UNASSIGNED_HOLDINGS
M~E
24P
2UF
3V.
4.4
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABUWG
ACIPV
ADBBV
ADDVE
ADJCN
AFKRA
AFPKN
AHFXO
AINHJ
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C1A
CCPQU
CNMHZ
CVCKV
CWDGH
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
IL9
ITC
K6V
K7-
KQ8
M0N
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHX
RNS
TR2
TUXDW
UZ4
RHW
AAYXX
CITATION
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-a445t-9122f4229b99dbf4cccd57e43915ec313d6c6af087424b65fec46e98678b40263
IEDL.DBID 8FG
ISSN 1687-9724
IngestDate Mon Oct 07 19:33:15 EDT 2024
Fri Oct 25 02:37:57 EDT 2024
Thu Oct 10 22:20:26 EDT 2024
Fri Aug 23 00:39:35 EDT 2024
Sun Jun 02 18:53:34 EDT 2024
Wed Nov 06 06:02:55 EST 2024
Tue Oct 01 22:51:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2009
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a445t-9122f4229b99dbf4cccd57e43915ec313d6c6af087424b65fec46e98678b40263
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.proquest.com/docview/855222603?pq-origsite=%requestingapplication%
PQID 855222603
PQPubID 237331
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_7e998c51c1584f9383a31201d6d5c614
proquest_miscellaneous_753733334
proquest_journals_855222603
crossref_primary_10_1155_2009_876361
hindawi_primary_10_1155_2009_876361
emarefa_primary_505488
airiti_journals_16879724_200912_201709290009_201709290009_74_89
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: New York
PublicationTitle Applied Computational Intelligence and Soft Computing
PublicationYear 2009
Publisher Hindawi Limiteds
Hindawi Puplishing Corporation
Hindawi Publishing Corporation
Hindawi Limited
Publisher_xml – name: Hindawi Limiteds
– name: Hindawi Puplishing Corporation
– name: Hindawi Publishing Corporation
– name: Hindawi Limited
References (4) 1965; 8
GustafsonD. E.KesselW. C.Fuzzy clustering with a fuzzy covariance matrixProceedings of the IEEE Conference on Decision and Control (CDC '78)1979San Diego, Calif, USA761766
(12) 1999; 7
(10) 1935; 59
(11) 1936; 7
ClarkA. J.Seeing beneath the Soil: Prospecting Methods in Archaeology1996London, UKT. Batsford
BezdekJ. C.Pattern Recognition with Fuzzy Objective Function Algorithms1981Norwell, Mass, USAKluwer Academic Publishers
(6) 1989; 11
AitkenM. J.Physics and Archaeology1961New York, NY, USAInterscience
BabuskaR.Fuzzy Modeling for Control1998Norwell, Mass, USAKluwer Academic Publishers
RossT. J.Fuzzy Logic with Engineering Applications2004Hoboken, NJ, USAJohn Wiley & Sons
(13) 1998; 93
BezdekJ. C.TsaoE. C. K.PalN. R.Fuzzy Kohonen clustering networksProceedings of the IEEE International Conference on Fuzzy Systems199210351043
(3) 2003; 68
(16) 2005; 13
(7) 1973; 3
(17) 2006; 39
11
(15) 2004
14
(9) 1973; 3
16
(4) 1981
(7) 1998; 93
(10) 1936; 7
(8) 1996
(1) 1961
(2) 1935; 59
(3) 1998
(17) 1965; 8
5
(13) 2003; 68
References_xml – volume: 3
  start-page: 32
  issue: 3
  year: 1973
  end-page: 57
  ident: 7
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
– volume: 59
  start-page: 2
  year: 1935
  end-page: 5
  ident: 10
  article-title: The irises of the Gaspe peninsula
– volume: 68
  start-page: 435
  issue: 3
  year: 2003
  end-page: 457
  ident: 3
  article-title: Geophysical surveys as landscape archaeology
– volume: 93
  start-page: 49
  issue: 1
  year: 1998
  end-page: 56
  ident: 13
  article-title: Fast fuzzy clustering
– volume: 7
  start-page: 368
  issue: 3
  year: 1999
  end-page: 369
  ident: 12
  article-title: Will the real iris data please stand up?
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  end-page: 353
  ident: 4
  article-title: Fuzzy sets
– volume: 39
  start-page: 5
  issue: 1
  year: 2006
  end-page: 21
  ident: 17
  article-title: Unsupervised possibilistic clustering
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: 11
  article-title: The use of multiple measurements in taxonomic problems
– volume: 13
  start-page: 517
  issue: 4
  year: 2005
  end-page: 530
  ident: 16
  article-title: A possibilistic fuzzy c-means clustering algorithm
– volume: 11
  start-page: 773
  issue: 7
  year: 1989
  end-page: 780
  ident: 6
  article-title: Unsupervised optimal fuzzy clustering
– ident: 16
  doi: 10.1016/j.patcog.2005.07.005
– volume: 59
  start-page: 2
  year: 1935
  ident: 2
  publication-title: Bulletin of the American Iris Society
– volume: 93
  start-page: 49
  issue: 1
  year: 1998
  ident: 7
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(96)00232-1
– year: 1981
  ident: 4
– ident: 5
  doi: 10.1109/91.771092
– ident: 11
  doi: 10.1109/34.192473
– volume: 68
  start-page: 435
  issue: 3
  year: 2003
  ident: 13
  publication-title: American Antiquity
  doi: 10.2307/3557103
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 17
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(65)90241-X
– year: 1998
  ident: 3
– year: 2004
  ident: 15
– year: 1961
  ident: 1
– volume: 7
  start-page: 179
  year: 1936
  ident: 10
  publication-title: Annals of Eugenics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– year: 1996
  ident: 8
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  ident: 9
  publication-title: Journal of Cybernetics
  doi: 10.1080/01969727308546046
– ident: 14
  doi: 10.1109/TFUZZ.2004.840099
SSID ssib003004788
ssib044730003
ssj0000395709
Score 1.8073267
Snippet Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters....
SourceID doaj
proquest
crossref
hindawi
emarefa
airiti
SourceType Open Website
Aggregation Database
Publisher
StartPage 74
SubjectTerms Algorithms
Biomedical research
Clustering
Clusters
Crisps
Fuzzy
Fuzzy logic
Fuzzy set theory
Fuzzy sets
Magnetic fields
Methods
Optimization
Standard deviation
Studies
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kKLgRWy3GqgzYhS7CTTKPZFbSXr0WoeKihe7CPLEgSTG5iP31njMzvb1F0E2zCXkQMucx53w5me8QcsgtN5V0oWRNcCV3rSu1NV0J6b6vDAOtt7h2-PSrPDnnXy7ExVarL_wnLNEDJ8EtWg-AwIra1hAqgwJApVkNUctJJ6ysExNopbbAVLLcapsXnnOkZc_1xjhHY3kq_v9RS_Ay1TY8L96D-LrAisECqdqQOvuhvkR6oTtxK9L7xzW8Go4hpj36jgj61-VfM3oMU6un5EnOL-lRGtcueeCHPbKbPXii7zLN9Ptn5Nty04KQjoGu1tfXv-nyxxqZEyCe0dPYW3qienD0DMsJ9Gir2E3nkX72Y_owMtGPetbPyfnq09nypMz9FUrNuZhhnmuawJtGGaWcCdxa60TrcS2u8JbVzEkrdag6gM_cSBG85dKrDuKbAdgp2T7ZGcbBvyDUKld7ZyF_UBAWpdQa0gjj2sZx5oQMBfmQxNhnF5l6FDzKHRthwpvArgaNNNjEVN09aHnfqYIc3si_v0pEHH0EMELEJ_RJXwU5Rt1sbkH27HgCbKrPNtX_z6YKsp81u3kOJIow1RXkbVb0v9_h4MYIbofbCch0ATyygtDNVXBlrM_owY_rqQfk2DLY-Mv7GMQBeZwqX_i56BXZmX-u_WtIoGbzJvrKH2AaCEs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access Journals
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEF60IPgitlqMtbJgH_Qh9JL9kexTqafnIVREWri3ZX9ioSRicoj9653ZbM-rBem9hFyOTW5nZ-f7drLfEHLEHbcz6WPJ6uhL7htfGmfbEuB-mFkGVm9w7_DZF7m84J9XYpVfkB3upvAh2h3j-v0xCqchy3nYtuh-35arrVE629aA5xwl2HNuMc3HmIpK73pUEjxKNTXPG_X-aR2CkLlEKaFbMSpJ-af9ugbOIX49-o5s-dflndk7haTFU_IkY0l6Ohl_lzwI3R7Zzd460LdZUvrdM_J1vik3SPtIF-vr6990frVGlQSIXfQs1ZEeqOk8PcfUAT3dSmzTsaefQj8tggz0gxnNc3Kx-Hg-X5a5lkJpOBcjzGl1HXldK6uUt5E757xoAu67FcGxinnppImzFqgyt1LE4LgMqoVYZoFiSrZPdrq-Cy8IdcpXwTvACgpCoJTGAGSwvqk9Z17IWJCTqRt1dodBY8djv2PRS3gSOFRgkRoLlqrbJw3XrSrI0U3_6x-T6IZOZEWI1IKe7FWQ92ibzU9QKTt9AaNHZ8fTTQBC6UTlKoBaUQEhN6yCW3rphQNsUpD9bNlNOwAKYVoryJts6P8_w8HNIPj7d1sBqBaIIisI3VwFt8VcjOlCvx40sMSGwYe_vNdtDsjjKY2Faz-vyM74cx0OAQ2N9nVyhj-aW_Z5
  priority: 102
  providerName: Hindawi Publishing
Title Comparison of Fuzzy Clustering Methods and Their Applications to Geophysics Data
URI https://www.airitilibrary.com/Article/Detail/16879724-200912-201709290009-201709290009-74-89
https://search.emarefa.net/detail/BIM-505488
https://dx.doi.org/10.1155/2009/876361
https://www.proquest.com/docview/855222603
https://search.proquest.com/docview/753733334
https://doaj.org/article/7e998c51c1584f9383a31201d6d5c614
Volume 2009
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbu8FexrqtzOsWBOvD9mAS2_qwnkqb5oNBSikty5uRJbkrDLurHcb6sL99d7KSpQyaBxvbQXF0urvf6aTfEXLIDCtHwlZxllY2ZlbaWJsyjwHuu1GZgdQl7h1enIn5Ffu65MuwNqcNyyrXNtEbatsYnCMf5hyQAoDv7Oj2Z4xFozC5GipoPCW7SSolxl75dLY1fEfb5PCMITd7SDp6Q405Kr8IJBGgakqmLOzgAyc7xLTBEPnakD_7mb5BjqEHzstz_PuNvBquwbE9_45h9K-b_8y691XTV-RlAJn0uB8Ve-SJq1-TvaDGLf0cuKa_vCHn400dQtpUdLq6v_9Nxz9WSJ8ATo0ufIHplura0kvMKdDjrYw37Ro6c00_O9LSU93pt-RqOrkcz-NQZCHWjPEOjF2aVixNVamULStmjLFcOtyQy53JkswKI3Q1yiGGZqXglTNMOJWDkysh9hTZPtmpm9q9I9QomzhrAEQo8I1CaA1YorQytSyzXFQROeq7sQh60hbY8djvWA0T3gROCUgkxUqm6uGFZEWuInK47v_itmfjKHwUw7lvoejlFZETlM3mK0ih7W80d9dF0MhCOog0DU9MAhisUhCp6yyBn7TCcgOgJSL7QbKbdgAtgr2LyKcg6Mff4WA9CP793c0gjgjdPAV9xiSNrl2zagsIH2UGH_b-0QYOyIs-r4WTQR_ITne3ch8BHnXlwCvBgOyeTM7OL-A8_nY6mw_8ZAMcF38mcLyYL_8CAhoHEw
link.rule.ids 315,783,787,866,867,880,881,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgA8ELYsBEGD8ssQd4iNokthM_TVtZKbBWE-qkvVmO7YxJKBlLKsT-eu4cN3RCWl6qtJHj-nx33_ns7wjZZ4aVY2GrOEsrGzOb21ibsogB7rtxmYHUczw7PF-I2Rn7es7Pw96cNmyrXNtEb6htY3CNfFRwQAoAvrODq18xFo3C5GqooHGfbCNTFcRe20fHi9PvGxN4vEkPzxiys4e0ozfVmKXy20ASAcom85SFM3zgZkeYOBghYxsyaD_Ql8gydMt9eZZ_f5RXwz24toc_MJD-ffmfYffeavqUPAkwkx7282KH3HP1M7ITFLmlHwLb9Mfn5HQyVCKkTUWnq5ubP3Tyc4UECuDW6NyXmG6pri1dYlaBHm7kvGnX0M-u6ddHWvpJd_oFOZseLyezOJRZiDVjvANzl6YVS1NZSmnLihljLM8dHsnlzmRJZoURuhoXEEWzUvDKGSacLMDNlRB9imyXbNVN7V4SaqRNnDUAIyR4RyG0BjRR2jy1LLNcVBE56IdRBU1pFQ48jjvWw4SewEcCEkmxlqm8fZMzVciI7K_HX131fBzKxzGc-xZUL6-IHKFshkeQRNt_0VxfqKCTKncQaxqemARQWCUhVtdZAq-0wnIDsCUiu0GyQzuAF8HiReR9EPTdfdhbT4J_f3eYxhGhw6-g0Zim0bVrVq2CADLP4GKv7mzgHXk0W85P1MmXxbc98rjPcuHS0Guy1V2v3BsAS135NqjEXyPjBQE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegA8QLYsBENj4ssQd4iJoP20mepq1bGR-rKrRJe7Mcf4xJKNmWVIj99dw5bumEtLxUaSPH9fnufuezf0fILtOsToRxcZ45EzNTmFjpuowB7tukzkHqBZ4dPpmJ4zP29ZyfB0qhLmyrXNpEb6hNq3GNfFxyQAoAvvOxC7si5ofTvavrGAtIYaI1VNN4SDYKJvJkRDYOjmbzH2uTOVmnimcMmdpDCtKbbcxY-S0hqQDFq4qMhfN84HLHmEQYI3sbsmk_UpfIOHTHlXnGf3-sV8E9uLnHPzGo_n35n5H3nmv6nDwLkJPuD3NkkzywzQuyGZS6ox8D8_Snl2Q-WVUlpK2j08Xt7R86-bVAMgVwcfTEl5vuqGoMPcUMA91fy3_TvqWfbTuslXT0UPXqFTmbHp1OjuNQciFWjPEeTF-WOZZlVV1VpnZMa214YfF4Lrc6T3MjtFAuKSGiZrXgzmombFWCy6shEhX5Fhk1bWNfE6ork1qjAVJU4CmFUAqQRW2KzLDccOEisjcMowxa00kceBx3rI0JPYGPFCSSYV3T6u5NwWRZRWR3Of7yauDmkD6m4dy3IAd5ReQAZbN6BAm1_RftzYUM-ikLC3Gn5qlOAZG5CuJ2lafwSiMM1wBhIrIVJLtqB7AjWL-IfAiCvr8PO8tJ8O_vrqZ0ROjqV9BuTNmoxraLTkIwWeRwse17G3hPnoA2yO9fZt92yNMh4YWrRG_IqL9Z2LeAm_r6XdCIvxLWCS8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Fuzzy+Clustering+Methods+and+Their+Applications+to+Geophysics+Data&rft.jtitle=Applied+computational+intelligence+and+soft+computing&rft.au=Miller%2C+David+J&rft.au=Nelson%2C+Carl+A&rft.au=Cannon%2C+Molly+Boeka&rft.au=Cannon%2C+Kenneth+P&rft.date=2009-01-01&rft.eissn=1687-9732&rft.volume=2009&rft_id=info:doi/10.1155%2F2009%2F876361&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F16879724-c.jpg