Comparison of Fuzzy Clustering Methods and Their Applications to Geophysics Data
Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a prio...
Saved in:
Published in | Applied Computational Intelligence and Soft Computing Vol. 2009; no. 2009; pp. 74 - 89 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Limiteds
01.01.2009
Hindawi Puplishing Corporation Hindawi Publishing Corporation Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine how many clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzy α-cut to determine which provided better elimination of noise and non-relevant points. Results indicate that the α-cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis |
---|---|
AbstractList | Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine how many clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzy α-cut to determine which provided better elimination of noise and non-relevant points. Results indicate that the α-cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine how many clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzy alpha -cut to determine which provided better elimination of noise and non-relevant points. Results indicate that the alpha -cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine how many clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzy α -cut to determine which provided better elimination of noise and non-relevant points. Results indicate that the α -cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis |
Author | Cannon, Molly Boeka Miller, David J. Nelson, Carl A. Cannon, Kenneth P. |
Author_xml | – sequence: 1 fullname: Miller, David J. – sequence: 2 fullname: Nelson, Carl A. – sequence: 3 fullname: Cannon, Molly Boeka – sequence: 4 fullname: Cannon, Kenneth P. |
BookMark | eNqFkk1r3DAQhkVJoWmaU88F0UuhZRN9fxzDtpsGEtJDehayJGcVvJIr2YTNr68dly3tJbqMZubhZYZ33oKjlFMA4D1GZxhzfk4Q0udKCirwK3CMhZIrLSk5OvwJewNOa40NQhQhJpU6Bj_WedfbEmtOMLdwMz497eG6G-sQSkz38CYM2-wrtMnDu22IBV70fRedHWJOFQ4ZXobcb_c1ugq_2sG-A69b29Vw-ieegJ-bb3fr76vr28ur9cX1yjLGh5XGhLSMEN1o7ZuWOec8l4FRjXlwFFMvnLAtUpIR1gjeBsdE0EpI1TBEBD0BV4uuz_bB9CXubNmbbKN5LuRyb2wZouuCkUFr5Th2mCvWaqqopZgg7IXnTmA2aX1atPqSf42hDmYXqwtdZ1PIYzWSU0mnN5Mf_yMf8ljStKhRnBNCBKIT9GWBXMm1ltAexsPIzFaZ2SqzWDXRnxd6G5O3j_EF-MMChwkJrT3AHHGm1NTfLH0bSxzi3-nmE5gv4FkNkylgiTTRaBb_J5HMKE1_A3ZxrvU |
CitedBy_id | crossref_primary_10_1002_2013JD020751 crossref_primary_10_1016_j_procs_2022_01_374 crossref_primary_10_1071_EG11014 crossref_primary_10_1007_s13399_023_04506_0 crossref_primary_10_3390_sym14040658 crossref_primary_10_1007_s11760_014_0742_4 crossref_primary_10_1016_j_compag_2018_04_011 crossref_primary_10_1051_shsconf_20196504008 crossref_primary_10_1016_j_ins_2022_01_057 |
Cites_doi | 10.1016/j.patcog.2005.07.005 10.1016/S0165-0114(96)00232-1 10.1109/91.771092 10.1109/34.192473 10.2307/3557103 10.1016/S0019-9958(65)90241-X 10.1111/j.1469-1809.1936.tb02137.x 10.1080/01969727308546046 10.1109/TFUZZ.2004.840099 |
ContentType | Journal Article |
Contributor | Cannon, Molly Boeka Nelson, Carl A Miller, David J Cannon, Kenneth P |
Contributor_xml | – sequence: 1 fullname: Miller, David J – sequence: 2 fullname: Nelson, Carl A – sequence: 3 fullname: Cannon, Molly Boeka – sequence: 4 fullname: Cannon, Kenneth P |
Copyright | Copyright © 2009 Copyright © 2009 David J. Miller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Copyright_xml | – notice: Copyright © 2009 – notice: Copyright © 2009 David J. Miller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
DBID | 188 ADJCN AHFXO RHU RHW RHX AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1155/2009/876361 |
DatabaseName | Airiti Library الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Middle East & Africa Database ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access Journals url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1687-9732 |
Editor | Yang, Miin-Shen |
Editor_xml | – sequence: 1 givenname: Miin-Shen surname: Yang fullname: Yang, Miin-Shen |
EndPage | 89 |
ExternalDocumentID | oai_doaj_org_article_7e998c51c1584f9383a31201d6d5c614 2284950711 10_1155_2009_876361 505488 16879724_200912_201709290009_201709290009_74_89 |
GroupedDBID | 188 ALMA_UNASSIGNED_HOLDINGS M~E 24P 2UF 3V. 4.4 5VS 6J9 8FE 8FG 8R4 8R5 AAFWJ AAJEY AAKPC ABUWG ACIPV ADBBV ADDVE ADJCN AFKRA AFPKN AHFXO AINHJ ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ C1A CCPQU CNMHZ CVCKV CWDGH DWQXO EBS EJD GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA IL9 ITC K6V K7- KQ8 M0N OK1 P62 PIMPY PQQKQ PROAC Q2X RHU RHX RNS TR2 TUXDW UZ4 RHW AAYXX CITATION 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-a445t-9122f4229b99dbf4cccd57e43915ec313d6c6af087424b65fec46e98678b40263 |
IEDL.DBID | 8FG |
ISSN | 1687-9724 |
IngestDate | Mon Oct 07 19:33:15 EDT 2024 Fri Oct 25 02:37:57 EDT 2024 Thu Oct 10 22:20:26 EDT 2024 Fri Aug 23 00:39:35 EDT 2024 Sun Jun 02 18:53:34 EDT 2024 Wed Nov 06 06:02:55 EST 2024 Tue Oct 01 22:51:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2009 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a445t-9122f4229b99dbf4cccd57e43915ec313d6c6af087424b65fec46e98678b40263 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/855222603?pq-origsite=%requestingapplication% |
PQID | 855222603 |
PQPubID | 237331 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e998c51c1584f9383a31201d6d5c614 proquest_miscellaneous_753733334 proquest_journals_855222603 crossref_primary_10_1155_2009_876361 hindawi_primary_10_1155_2009_876361 emarefa_primary_505488 airiti_journals_16879724_200912_201709290009_201709290009_74_89 |
PublicationCentury | 2000 |
PublicationDate | 2009-01-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: New York |
PublicationTitle | Applied Computational Intelligence and Soft Computing |
PublicationYear | 2009 |
Publisher | Hindawi Limiteds Hindawi Puplishing Corporation Hindawi Publishing Corporation Hindawi Limited |
Publisher_xml | – name: Hindawi Limiteds – name: Hindawi Puplishing Corporation – name: Hindawi Publishing Corporation – name: Hindawi Limited |
References | (4) 1965; 8 GustafsonD. E.KesselW. C.Fuzzy clustering with a fuzzy covariance matrixProceedings of the IEEE Conference on Decision and Control (CDC '78)1979San Diego, Calif, USA761766 (12) 1999; 7 (10) 1935; 59 (11) 1936; 7 ClarkA. J.Seeing beneath the Soil: Prospecting Methods in Archaeology1996London, UKT. Batsford BezdekJ. C.Pattern Recognition with Fuzzy Objective Function Algorithms1981Norwell, Mass, USAKluwer Academic Publishers (6) 1989; 11 AitkenM. J.Physics and Archaeology1961New York, NY, USAInterscience BabuskaR.Fuzzy Modeling for Control1998Norwell, Mass, USAKluwer Academic Publishers RossT. J.Fuzzy Logic with Engineering Applications2004Hoboken, NJ, USAJohn Wiley & Sons (13) 1998; 93 BezdekJ. C.TsaoE. C. K.PalN. R.Fuzzy Kohonen clustering networksProceedings of the IEEE International Conference on Fuzzy Systems199210351043 (3) 2003; 68 (16) 2005; 13 (7) 1973; 3 (17) 2006; 39 11 (15) 2004 14 (9) 1973; 3 16 (4) 1981 (7) 1998; 93 (10) 1936; 7 (8) 1996 (1) 1961 (2) 1935; 59 (3) 1998 (17) 1965; 8 5 (13) 2003; 68 |
References_xml | – volume: 3 start-page: 32 issue: 3 year: 1973 end-page: 57 ident: 7 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters – volume: 59 start-page: 2 year: 1935 end-page: 5 ident: 10 article-title: The irises of the Gaspe peninsula – volume: 68 start-page: 435 issue: 3 year: 2003 end-page: 457 ident: 3 article-title: Geophysical surveys as landscape archaeology – volume: 93 start-page: 49 issue: 1 year: 1998 end-page: 56 ident: 13 article-title: Fast fuzzy clustering – volume: 7 start-page: 368 issue: 3 year: 1999 end-page: 369 ident: 12 article-title: Will the real iris data please stand up? – volume: 8 start-page: 338 issue: 3 year: 1965 end-page: 353 ident: 4 article-title: Fuzzy sets – volume: 39 start-page: 5 issue: 1 year: 2006 end-page: 21 ident: 17 article-title: Unsupervised possibilistic clustering – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: 11 article-title: The use of multiple measurements in taxonomic problems – volume: 13 start-page: 517 issue: 4 year: 2005 end-page: 530 ident: 16 article-title: A possibilistic fuzzy c-means clustering algorithm – volume: 11 start-page: 773 issue: 7 year: 1989 end-page: 780 ident: 6 article-title: Unsupervised optimal fuzzy clustering – ident: 16 doi: 10.1016/j.patcog.2005.07.005 – volume: 59 start-page: 2 year: 1935 ident: 2 publication-title: Bulletin of the American Iris Society – volume: 93 start-page: 49 issue: 1 year: 1998 ident: 7 publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(96)00232-1 – year: 1981 ident: 4 – ident: 5 doi: 10.1109/91.771092 – ident: 11 doi: 10.1109/34.192473 – volume: 68 start-page: 435 issue: 3 year: 2003 ident: 13 publication-title: American Antiquity doi: 10.2307/3557103 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 17 publication-title: Information and Control doi: 10.1016/S0019-9958(65)90241-X – year: 1998 ident: 3 – year: 2004 ident: 15 – year: 1961 ident: 1 – volume: 7 start-page: 179 year: 1936 ident: 10 publication-title: Annals of Eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – year: 1996 ident: 8 – volume: 3 start-page: 32 issue: 3 year: 1973 ident: 9 publication-title: Journal of Cybernetics doi: 10.1080/01969727308546046 – ident: 14 doi: 10.1109/TFUZZ.2004.840099 |
SSID | ssib003004788 ssib044730003 ssj0000395709 |
Score | 1.8073267 |
Snippet | Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters.... |
SourceID | doaj proquest crossref hindawi emarefa airiti |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 74 |
SubjectTerms | Algorithms Biomedical research Clustering Clusters Crisps Fuzzy Fuzzy logic Fuzzy set theory Fuzzy sets Magnetic fields Methods Optimization Standard deviation Studies |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kKLgRWy3GqgzYhS7CTTKPZFbSXr0WoeKihe7CPLEgSTG5iP31njMzvb1F0E2zCXkQMucx53w5me8QcsgtN5V0oWRNcCV3rSu1NV0J6b6vDAOtt7h2-PSrPDnnXy7ExVarL_wnLNEDJ8EtWg-AwIra1hAqgwJApVkNUctJJ6ysExNopbbAVLLcapsXnnOkZc_1xjhHY3kq_v9RS_Ay1TY8L96D-LrAisECqdqQOvuhvkR6oTtxK9L7xzW8Go4hpj36jgj61-VfM3oMU6un5EnOL-lRGtcueeCHPbKbPXii7zLN9Ptn5Nty04KQjoGu1tfXv-nyxxqZEyCe0dPYW3qienD0DMsJ9Gir2E3nkX72Y_owMtGPetbPyfnq09nypMz9FUrNuZhhnmuawJtGGaWcCdxa60TrcS2u8JbVzEkrdag6gM_cSBG85dKrDuKbAdgp2T7ZGcbBvyDUKld7ZyF_UBAWpdQa0gjj2sZx5oQMBfmQxNhnF5l6FDzKHRthwpvArgaNNNjEVN09aHnfqYIc3si_v0pEHH0EMELEJ_RJXwU5Rt1sbkH27HgCbKrPNtX_z6YKsp81u3kOJIow1RXkbVb0v9_h4MYIbofbCch0ATyygtDNVXBlrM_owY_rqQfk2DLY-Mv7GMQBeZwqX_i56BXZmX-u_WtIoGbzJvrKH2AaCEs priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access Journals dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEF60IPgitlqMtbJgH_Qh9JL9kexTqafnIVREWri3ZX9ioSRicoj9653ZbM-rBem9hFyOTW5nZ-f7drLfEHLEHbcz6WPJ6uhL7htfGmfbEuB-mFkGVm9w7_DZF7m84J9XYpVfkB3upvAh2h3j-v0xCqchy3nYtuh-35arrVE629aA5xwl2HNuMc3HmIpK73pUEjxKNTXPG_X-aR2CkLlEKaFbMSpJ-af9ugbOIX49-o5s-dflndk7haTFU_IkY0l6Ohl_lzwI3R7Zzd460LdZUvrdM_J1vik3SPtIF-vr6990frVGlQSIXfQs1ZEeqOk8PcfUAT3dSmzTsaefQj8tggz0gxnNc3Kx-Hg-X5a5lkJpOBcjzGl1HXldK6uUt5E757xoAu67FcGxinnppImzFqgyt1LE4LgMqoVYZoFiSrZPdrq-Cy8IdcpXwTvACgpCoJTGAGSwvqk9Z17IWJCTqRt1dodBY8djv2PRS3gSOFRgkRoLlqrbJw3XrSrI0U3_6x-T6IZOZEWI1IKe7FWQ92ibzU9QKTt9AaNHZ8fTTQBC6UTlKoBaUQEhN6yCW3rphQNsUpD9bNlNOwAKYVoryJts6P8_w8HNIPj7d1sBqBaIIisI3VwFt8VcjOlCvx40sMSGwYe_vNdtDsjjKY2Faz-vyM74cx0OAQ2N9nVyhj-aW_Z5 priority: 102 providerName: Hindawi Publishing |
Title | Comparison of Fuzzy Clustering Methods and Their Applications to Geophysics Data |
URI | https://www.airitilibrary.com/Article/Detail/16879724-200912-201709290009-201709290009-74-89 https://search.emarefa.net/detail/BIM-505488 https://dx.doi.org/10.1155/2009/876361 https://www.proquest.com/docview/855222603 https://search.proquest.com/docview/753733334 https://doaj.org/article/7e998c51c1584f9383a31201d6d5c614 |
Volume | 2009 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbu8FexrqtzOsWBOvD9mAS2_qwnkqb5oNBSikty5uRJbkrDLurHcb6sL99d7KSpQyaBxvbQXF0urvf6aTfEXLIDCtHwlZxllY2ZlbaWJsyjwHuu1GZgdQl7h1enIn5Ffu65MuwNqcNyyrXNtEbatsYnCMf5hyQAoDv7Oj2Z4xFozC5GipoPCW7SSolxl75dLY1fEfb5PCMITd7SDp6Q405Kr8IJBGgakqmLOzgAyc7xLTBEPnakD_7mb5BjqEHzstz_PuNvBquwbE9_45h9K-b_8y691XTV-RlAJn0uB8Ve-SJq1-TvaDGLf0cuKa_vCHn400dQtpUdLq6v_9Nxz9WSJ8ATo0ufIHplura0kvMKdDjrYw37Ro6c00_O9LSU93pt-RqOrkcz-NQZCHWjPEOjF2aVixNVamULStmjLFcOtyQy53JkswKI3Q1yiGGZqXglTNMOJWDkysh9hTZPtmpm9q9I9QomzhrAEQo8I1CaA1YorQytSyzXFQROeq7sQh60hbY8djvWA0T3gROCUgkxUqm6uGFZEWuInK47v_itmfjKHwUw7lvoejlFZETlM3mK0ih7W80d9dF0MhCOog0DU9MAhisUhCp6yyBn7TCcgOgJSL7QbKbdgAtgr2LyKcg6Mff4WA9CP793c0gjgjdPAV9xiSNrl2zagsIH2UGH_b-0QYOyIs-r4WTQR_ITne3ch8BHnXlwCvBgOyeTM7OL-A8_nY6mw_8ZAMcF38mcLyYL_8CAhoHEw |
link.rule.ids | 315,783,787,866,867,880,881,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgA8ELYsBEGD8ssQd4iNokthM_TVtZKbBWE-qkvVmO7YxJKBlLKsT-eu4cN3RCWl6qtJHj-nx33_ns7wjZZ4aVY2GrOEsrGzOb21ibsogB7rtxmYHUczw7PF-I2Rn7es7Pw96cNmyrXNtEb6htY3CNfFRwQAoAvrODq18xFo3C5GqooHGfbCNTFcRe20fHi9PvGxN4vEkPzxiys4e0ozfVmKXy20ASAcom85SFM3zgZkeYOBghYxsyaD_Ql8gydMt9eZZ_f5RXwz24toc_MJD-ffmfYffeavqUPAkwkx7282KH3HP1M7ITFLmlHwLb9Mfn5HQyVCKkTUWnq5ubP3Tyc4UECuDW6NyXmG6pri1dYlaBHm7kvGnX0M-u6ddHWvpJd_oFOZseLyezOJRZiDVjvANzl6YVS1NZSmnLihljLM8dHsnlzmRJZoURuhoXEEWzUvDKGSacLMDNlRB9imyXbNVN7V4SaqRNnDUAIyR4RyG0BjRR2jy1LLNcVBE56IdRBU1pFQ48jjvWw4SewEcCEkmxlqm8fZMzVciI7K_HX131fBzKxzGc-xZUL6-IHKFshkeQRNt_0VxfqKCTKncQaxqemARQWCUhVtdZAq-0wnIDsCUiu0GyQzuAF8HiReR9EPTdfdhbT4J_f3eYxhGhw6-g0Zim0bVrVq2CADLP4GKv7mzgHXk0W85P1MmXxbc98rjPcuHS0Guy1V2v3BsAS135NqjEXyPjBQE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegA8QLYsBENj4ssQd4iJoP20mepq1bGR-rKrRJe7Mcf4xJKNmWVIj99dw5bumEtLxUaSPH9fnufuezf0fILtOsToRxcZ45EzNTmFjpuowB7tukzkHqBZ4dPpmJ4zP29ZyfB0qhLmyrXNpEb6hNq3GNfFxyQAoAvvOxC7si5ofTvavrGAtIYaI1VNN4SDYKJvJkRDYOjmbzH2uTOVmnimcMmdpDCtKbbcxY-S0hqQDFq4qMhfN84HLHmEQYI3sbsmk_UpfIOHTHlXnGf3-sV8E9uLnHPzGo_n35n5H3nmv6nDwLkJPuD3NkkzywzQuyGZS6ox8D8_Snl2Q-WVUlpK2j08Xt7R86-bVAMgVwcfTEl5vuqGoMPcUMA91fy3_TvqWfbTuslXT0UPXqFTmbHp1OjuNQciFWjPEeTF-WOZZlVV1VpnZMa214YfF4Lrc6T3MjtFAuKSGiZrXgzmombFWCy6shEhX5Fhk1bWNfE6ork1qjAVJU4CmFUAqQRW2KzLDccOEisjcMowxa00kceBx3rI0JPYGPFCSSYV3T6u5NwWRZRWR3Of7yauDmkD6m4dy3IAd5ReQAZbN6BAm1_RftzYUM-ikLC3Gn5qlOAZG5CuJ2lafwSiMM1wBhIrIVJLtqB7AjWL-IfAiCvr8PO8tJ8O_vrqZ0ROjqV9BuTNmoxraLTkIwWeRwse17G3hPnoA2yO9fZt92yNMh4YWrRG_IqL9Z2LeAm_r6XdCIvxLWCS8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Fuzzy+Clustering+Methods+and+Their+Applications+to+Geophysics+Data&rft.jtitle=Applied+computational+intelligence+and+soft+computing&rft.au=Miller%2C+David+J&rft.au=Nelson%2C+Carl+A&rft.au=Cannon%2C+Molly+Boeka&rft.au=Cannon%2C+Kenneth+P&rft.date=2009-01-01&rft.eissn=1687-9732&rft.volume=2009&rft_id=info:doi/10.1155%2F2009%2F876361&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F16879724-c.jpg |