A Strategy for the Synthesis of 1,2-Dichlorotetrafluorocyclobutene from Hexachlorobutadiene and Its Reaction Pathway

In this paper, a novel strategy for the preparation of 1,2-dichlorotetrafluorocyclobutene (DTB) was proposed via a catalytic gas-phase process of fluorination using hexachlorobutadiene (HCBD) and anhydrous HF. In order to search for suitable catalysts and reveal the reaction pathway for this synthet...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & Engineering Chemistry Research Vol. 56; no. 27; pp. 7623 - 7630
Main Authors Zhou, Xiaomeng, Zhang, Pingli, He, Jinwei, Zhou, Biao
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.07.2017
American Chemical Society (ACS)
Subjects
Online AccessGet full text
ISSN0888-5885
1520-5045
1520-5045
DOI10.1021/acs.iecr.7b01166

Cover

Loading…
Abstract In this paper, a novel strategy for the preparation of 1,2-dichlorotetrafluorocyclobutene (DTB) was proposed via a catalytic gas-phase process of fluorination using hexachlorobutadiene (HCBD) and anhydrous HF. In order to search for suitable catalysts and reveal the reaction pathway for this synthetic route, a series of studies were carried out. First, CrO x /ZnO catalysts with different promoters (Ni, Cu, In, Al) were prepared by a precipitate method and the optimum reaction conditions were investigated. The highest activity was achieved on the Cr–Ni–Zn catalyst, whose yield of DTB reached 90% by a multiple cycle reaction. Second, the effects of different promoters on the properties of catalysts were studied by Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), temperature-programmed desorption in ammonia (NH3-TPD), and X-ray photoelectron spectroscopy (XPS). It was found that the Cr–Ni–Zn catalyst showed the excellent catalytic performances with more CrO x F y species, higher oxygen concentration, and widely distributed acid strength on its surface. Third, combining experimental results with theoretical calculations, a reaction pathway has been proposed. This study offers an economic synthetic route for DTB from HCBD, which is a valuable and promising method for industrial production.
AbstractList In this paper, a novel strategy for the preparation of 1,2-dichlorotetrafluorocyclobutene (DTB) was proposed via a catalytic gas-phase process of fluorination using hexachlorobutadiene (HCBD) and anhydrous HF. In order to search for suitable catalysts and reveal the reaction pathway for this synthetic route, a series of studies were carried out. First, CrO x /ZnO catalysts with different promoters (Ni, Cu, In, Al) were prepared by a precipitate method and the optimum reaction conditions were investigated. The highest activity was achieved on the Cr–Ni–Zn catalyst, whose yield of DTB reached 90% by a multiple cycle reaction. Second, the effects of different promoters on the properties of catalysts were studied by Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), temperature-programmed desorption in ammonia (NH3-TPD), and X-ray photoelectron spectroscopy (XPS). It was found that the Cr–Ni–Zn catalyst showed the excellent catalytic performances with more CrO x F y species, higher oxygen concentration, and widely distributed acid strength on its surface. Third, combining experimental results with theoretical calculations, a reaction pathway has been proposed. This study offers an economic synthetic route for DTB from HCBD, which is a valuable and promising method for industrial production.
In this paper, a novel strategy for the preparation of 1,2-dichlorotetrafluorocyclobutene (DTB) was proposed via a catalytic gas-phase process of fluorination using hexachlorobutadiene (HCBD) and anhydrous HF. In order to search for suitable catalysts and reveal the reaction pathway for this synthetic route, a series of studies were carried out. First, CrOₓ/ZnO catalysts with different promoters (Ni, Cu, In, Al) were prepared by a precipitate method and the optimum reaction conditions were investigated. The highest activity was achieved on the Cr–Ni–Zn catalyst, whose yield of DTB reached 90% by a multiple cycle reaction. Second, the effects of different promoters on the properties of catalysts were studied by Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), temperature-programmed desorption in ammonia (NH₃-TPD), and X-ray photoelectron spectroscopy (XPS). It was found that the Cr–Ni–Zn catalyst showed the excellent catalytic performances with more CrOₓFy species, higher oxygen concentration, and widely distributed acid strength on its surface. Third, combining experimental results with theoretical calculations, a reaction pathway has been proposed. This study offers an economic synthetic route for DTB from HCBD, which is a valuable and promising method for industrial production.
Author Zhou, Xiaomeng
He, Jinwei
Zhang, Pingli
Zhou, Biao
AuthorAffiliation The College of Environmental Science and Engineering
Economics and Management College
The University of Tokyo
AuthorAffiliation_xml – name: The College of Environmental Science and Engineering
– name: Economics and Management College
– name: The University of Tokyo
Author_xml – sequence: 1
  givenname: Xiaomeng
  orcidid: 0000-0003-1258-9935
  surname: Zhou
  fullname: Zhou, Xiaomeng
  email: zhouxm@nankai.edu.cn
  organization: Economics and Management College
– sequence: 2
  givenname: Pingli
  surname: Zhang
  fullname: Zhang, Pingli
  organization: The College of Environmental Science and Engineering
– sequence: 3
  givenname: Jinwei
  surname: He
  fullname: He, Jinwei
  organization: The College of Environmental Science and Engineering
– sequence: 4
  givenname: Biao
  surname: Zhou
  fullname: Zhou, Biao
  organization: The University of Tokyo
BackLink https://cir.nii.ac.jp/crid/1870583643248421120$$DView record in CiNii
BookMark eNp9kM1v3CAQxVGVSN0kvffIoYce4i2DwcbHKP1IpEiNkvZsjTF0ibyQAlbr_75YzqlSe2HQ8HtvmHdGTnzwhpC3wPbAOHxAnfbO6LhvBwbQNK_IDiRnlWRCnpAdU0pVUin5mpyl9MQYk1KIHclX9DFHzObHQm2INB8MfVx8KcklGiyFS159dPowhRiyKaid5nLVi57CMGfjDbUxHOmN-Y0bVbo4uvUB_Uhvc6IPBnV2wdN7zIdfuFyQU4tTMm9e6jn5_vnTt-ub6u7rl9vrq7sKhZC5Ul3T6VG1jNcwiKHlnS79RqDApoXWWBxrOQyac0DJ6rLuAHZs-Yhg23Hs6nPyfvN9juHnbFLujy5pM03oTZhTz4FB3XRKQEGbDdUxpBSN7bXLuH66rOymHli_xtyXmPs15v4l5iJkfwmfoztiXP4nebdJvHNlzHpC2VKquhE1F0pwAM4Kdrlhq8FTmKMvWf3b9Q-cop74
CitedBy_id crossref_primary_10_1016_j_apsusc_2017_10_102
crossref_primary_10_1016_j_jcat_2018_04_014
crossref_primary_10_1002_fam_3188
crossref_primary_10_1016_j_tsep_2023_101877
crossref_primary_10_1021_acsomega_0c01128
crossref_primary_10_1016_j_envpol_2024_124893
crossref_primary_10_1016_j_jpcs_2021_110337
crossref_primary_10_1016_j_mcat_2024_114052
crossref_primary_10_1016_j_tsep_2023_101913
crossref_primary_10_1016_j_envpol_2019_07_090
Cites_doi 10.1126/science.280.5370.1735
10.1134/S1070428010090046
10.1016/j.jfluchem.2004.01.031
10.1021/cr941144x
10.1006/jcat.1997.1806
10.1039/b110792e
10.1006/jcat.1999.2441
10.1021/jp203615x
10.1039/a808021f
10.1021/jo00080a028
10.1006/jcat.1997.1704
10.1016/S0022-1139(99)00165-7
10.1016/S0926-860X(97)00335-9
10.1021/jo00987a015
10.1016/j.catcom.2014.02.013
10.1016/j.jcat.2005.01.028
10.1063/1.464304
10.1063/1.447079
10.1002/rog.20013
10.1038/249810a0
10.1016/0920-5861(89)80020-3
10.1016/0926-3373(95)00064-X
10.1016/j.cplett.2014.02.008
10.1021/jo01299a023
10.1016/j.jfluchem.2006.11.001
10.1016/0010-2180(95)00248-0
10.1021/es00055a023
10.1021/ja01149a131
10.1016/j.comptc.2012.11.024
10.1006/jcat.1997.1560
10.1016/0045-6535(96)00038-0
10.1021/jo00130a035
10.1021/ja0167203
10.1016/S0079-6786(98)00003-X
10.1007/s10562-010-0402-4
10.1126/science.1076397
10.1021/ja0032374
10.1016/0926-3373(94)00048-4
10.1021/ja01194a035
10.1021/ja00855a009
10.1021/jp960976r
10.1021/ja992337a
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID RYH
AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.iecr.7b01166
DatabaseName CiNii Complete
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 7630
ExternalDocumentID 10_1021_acs_iecr_7b01166
a700520073
GroupedDBID 02
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
X
-~X
.DC
.K2
4.4
5VS
6TJ
ABBLG
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CUPRZ
GGK
RYH
~02
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-a445t-8969cd870231b4b729c44564a4a6717efad35bbc221a503152b1fd72da1f7dd93
IEDL.DBID ACS
ISSN 0888-5885
1520-5045
IngestDate Fri Jul 11 00:41:57 EDT 2025
Thu Apr 24 22:51:46 EDT 2025
Tue Jul 01 01:17:57 EDT 2025
Thu Jun 26 23:01:07 EDT 2025
Thu Aug 27 13:51:33 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a445t-8969cd870231b4b729c44564a4a6717efad35bbc221a503152b1fd72da1f7dd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1258-9935
PQID 2101369841
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2101369841
crossref_citationtrail_10_1021_acs_iecr_7b01166
crossref_primary_10_1021_acs_iecr_7b01166
nii_cinii_1870583643248421120
acs_journals_10_1021_acs_iecr_7b01166
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-12
PublicationDateYYYYMMDD 2017-07-12
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-12
  day: 12
PublicationDecade 2010
PublicationTitle Industrial & Engineering Chemistry Research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2017
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref20/cit20
– ident: ref9/cit9
– ident: ref37/cit37
  doi: 10.1126/science.280.5370.1735
– ident: ref31/cit31
– ident: ref8/cit8
  doi: 10.1134/S1070428010090046
– ident: ref21/cit21
  doi: 10.1016/j.jfluchem.2004.01.031
– ident: ref45/cit45
  doi: 10.1021/cr941144x
– ident: ref16/cit16
  doi: 10.1006/jcat.1997.1806
– ident: ref23/cit23
  doi: 10.1039/b110792e
– ident: ref38/cit38
  doi: 10.1006/jcat.1999.2441
– ident: ref47/cit47
  doi: 10.1021/jp203615x
– ident: ref19/cit19
  doi: 10.1039/a808021f
– ident: ref5/cit5
  doi: 10.1021/jo00080a028
– ident: ref32/cit32
  doi: 10.1006/jcat.1997.1704
– ident: ref6/cit6
– ident: ref34/cit34
  doi: 10.1016/S0022-1139(99)00165-7
– ident: ref14/cit14
  doi: 10.1016/S0926-860X(97)00335-9
– ident: ref10/cit10
  doi: 10.1021/jo00987a015
– ident: ref39/cit39
  doi: 10.1016/j.catcom.2014.02.013
– ident: ref18/cit18
  doi: 10.1016/j.jcat.2005.01.028
– ident: ref29/cit29
  doi: 10.1063/1.464304
– ident: ref28/cit28
  doi: 10.1063/1.447079
– ident: ref2/cit2
  doi: 10.1002/rog.20013
– ident: ref1/cit1
  doi: 10.1038/249810a0
– ident: ref35/cit35
  doi: 10.1016/0920-5861(89)80020-3
– ident: ref17/cit17
  doi: 10.1016/0926-3373(95)00064-X
– ident: ref30/cit30
  doi: 10.1016/j.cplett.2014.02.008
– ident: ref42/cit42
  doi: 10.1021/jo01299a023
– ident: ref36/cit36
  doi: 10.1016/j.jfluchem.2006.11.001
– ident: ref41/cit41
  doi: 10.1016/0010-2180(95)00248-0
– ident: ref43/cit43
  doi: 10.1021/es00055a023
– ident: ref11/cit11
  doi: 10.1021/ja01149a131
– ident: ref26/cit26
  doi: 10.1016/j.comptc.2012.11.024
– ident: ref15/cit15
  doi: 10.1006/jcat.1997.1560
– ident: ref40/cit40
  doi: 10.1016/0045-6535(96)00038-0
– ident: ref3/cit3
  doi: 10.1021/jo00130a035
– ident: ref4/cit4
  doi: 10.1021/ja0167203
– ident: ref33/cit33
  doi: 10.1016/S0079-6786(98)00003-X
– ident: ref25/cit25
  doi: 10.1007/s10562-010-0402-4
– ident: ref22/cit22
  doi: 10.1126/science.1076397
– ident: ref24/cit24
  doi: 10.1021/ja0032374
– ident: ref7/cit7
– ident: ref13/cit13
  doi: 10.1016/0926-3373(94)00048-4
– ident: ref12/cit12
  doi: 10.1021/ja01194a035
– ident: ref44/cit44
  doi: 10.1021/ja00855a009
– ident: ref27/cit27
  doi: 10.1021/jp960976r
– ident: ref46/cit46
  doi: 10.1021/ja992337a
SSID ssj0005544
ssib001100114
ssib028086731
ssib001965121
ssib006545614
ssib004836875
ssib053390278
ssib025654225
ssib055683552
ssib017384962
ssib058575026
Score 2.2888792
Snippet In this paper, a novel strategy for the preparation of 1,2-dichlorotetrafluorocyclobutene (DTB) was proposed via a catalytic gas-phase process of fluorination...
SourceID proquest
crossref
nii
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7623
SubjectTerms aluminum
ammonia
catalysts
catalytic activity
copper
desorption
gases
nickel
oxygen
process design
scanning electron microscopy
surface area
X-ray diffraction
X-ray photoelectron spectroscopy
Title A Strategy for the Synthesis of 1,2-Dichlorotetrafluorocyclobutene from Hexachlorobutadiene and Its Reaction Pathway
URI http://dx.doi.org/10.1021/acs.iecr.7b01166
https://cir.nii.ac.jp/crid/1870583643248421120
https://www.proquest.com/docview/2101369841
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoucChvMVCi4wEBySyrR3HsY-rQrUggRClUm_R-BERsUpQk4huf31nkpQCRVUvSWTZVmzPZL7J2N8w9so6l6PVUAnZ00SVNiTWGZFoV4IAbfYyTz_0P33WyyP18Tg7vqTJ-TeCL8Uu-HZeIYSa546CBnqD3Zba5MSTv9g_vNzOkQ2JW1Fp6CSRyaaQ5P96IEPk278M0UZdVVe-xoOJObg35ipqB2ZC2lnyY953bu7PrvI23uDt77OtCWnyxSgaD9itWD9kd__gH3zEugWf2GnXHMErRzDID9c13tqq5U3JxVuZvKv8d3Tqmy5i1XLV46Nf-1XjeoTbkdP5FL6MpzDWwtJhE1nkUAf-oWv51zieneBfEGz-gvVjdnTw_tv-MpnSMCSgVNYlxmrrA-o1QkGncGmtV0RCAwo0OoOxhJBmznkpBWSUNEI6UYZcBhBlHoJNn7DNuqnjU8aBEgCmGlLQpUJnFIw1waA_b6MVNg8z9honrJjUqC2GCLkUBRXSLBbTLM7Y7sXaFX7iMqeUGqtrWrz53eLnyONxTd0dFAfsmK4CB56ZVBNzoVHoLsu9GXt5ISgFKiNFWKCOTd8W6D-LVFujxLMbjuQ5uyMJKBBVp9xmm91JH3cQ5nTuxSDf5-jY9bo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB615QAceFcsUDASHJDItnYcr31cFaottBXqQ-ot8isiYpUgkgiWX89MNtvyUgWXJLIcy4-ZzDcZ-xuAF8a5CVoNmZA9TWRhQmKc5olyheVW6Z3M0w_9wyM1O5PvzrPzNeCrszDYiQZbavog_iW7AN-mshKR1HjiKHag1uEaYhFBdPnT3ZPLXR1Zn78VdYcOFOlsiEz-rQWyR775xR6tV2X5x0e5tzR7t-H4oo_9BpNP4651Y__9N_rG_xrEHbg14E42XQrKXViL1T24-RMb4X1op2zgql0whLIMoSE7WVR4a8qG1QXjr0XypvQf0cWv24hVi3mHj37h57XrEHxHRqdV2Cx-s8taWNpvKYvMVoHttw07jsuTFOwDQs-vdvEAzvbenu7OkiEpQ2KlzNpEG2V8QC1HYOgkLrTxkihprLQKXcNY2JBmznkhuM0ohYRwvAgTESwvJiGYdBM2qrqKD4FZSgeYKptaVUh0Ta02Omj07k003EzCCF7ihOWDUjV5Hy8XPKdCmsV8mMURbK-WMPcDszkl2Jhf8carizc-L1k9rqi7hVKBDdOV48AznSriMdQSnWexM4LnK3nJUTUp3mKrWHdNjt40T5XRkj_6x5E8g-uz08OD_GD_6P1juCEIQhCJp3gCG-2XLm4hAGrd017kfwDa2P4b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbaIiF4oJxioQUjwQMS2daO49iPq5bVlqOqKEV9i3yKiFVSkUSw_PrOZLMtlyp4SSLLsXzMZL7J2N8Q8lxbm4PVEAna00RE7RNtFUukjYYZqXYzhz_03x_K2Yl4c5qdrpFsdRYGOtFAS00fxEetPvNxYBhgO1heApoa5xbjB3KdXMOoHVLmT_aOL3d2ZH0OV9AfPFSksiE6-bcW0Ca55hebtF6V5R8f5t7aTDfJp4t-9ptMvoy71o7dj98oHP97ILfJrQF_0slSYO6QtVDdJTd_YiW8R9oJHThrFxQgLQWISI8XFdyasqF1pOwVT_ZL9xlc_boNUDXOO3h0CzevbQcgPFA8tUJn4btZ1oLSfmtZoKby9KBt6IewPFFBjwCCfjOL--Rk-vrj3iwZkjMkRoisTZSW2nnQdgCIVsCCayeQmsYII8FFDNH4NLPWcc5MhqkkuGXR59wbFnPvdfqAbFR1FR4SajAtYCpNamQU4KIapZVX4OXroJnO_Yi8gAkrBuVqij5uzlmBhTiLxTCLI7KzWsbCDQznmGhjfsUbLy_eOFuye1xRdxskAxrGK4OBZyqVyGeoBDjRfHdEnq1kpgAVxbiLqULdNQV41SyVWgn26B9H8pRcP9qfFu8ODt8-Jjc4Ignk8uRbZKP92oVtwEGtfdJL_TknGwCt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Strategy+for+the+Synthesis+of+1%2C2-Dichlorotetrafluorocyclobutene+from+Hexachlorobutadiene+and+Its+Reaction+Pathway&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Zhou%2C+Xiaomeng&rft.au=Zhang%2C+Pingli&rft.au=He%2C+Jinwei&rft.au=Zhou%2C+Biao&rft.date=2017-07-12&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=56&rft.issue=27&rft.spage=7623&rft.epage=7630&rft_id=info:doi/10.1021%2Facs.iecr.7b01166&rft.externalDocID=a700520073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon