A Strategy for the Synthesis of 1,2-Dichlorotetrafluorocyclobutene from Hexachlorobutadiene and Its Reaction Pathway
In this paper, a novel strategy for the preparation of 1,2-dichlorotetrafluorocyclobutene (DTB) was proposed via a catalytic gas-phase process of fluorination using hexachlorobutadiene (HCBD) and anhydrous HF. In order to search for suitable catalysts and reveal the reaction pathway for this synthet...
Saved in:
Published in | Industrial & Engineering Chemistry Research Vol. 56; no. 27; pp. 7623 - 7630 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
12.07.2017
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
ISSN | 0888-5885 1520-5045 1520-5045 |
DOI | 10.1021/acs.iecr.7b01166 |
Cover
Loading…
Abstract | In this paper, a novel strategy for the preparation of 1,2-dichlorotetrafluorocyclobutene (DTB) was proposed via a catalytic gas-phase process of fluorination using hexachlorobutadiene (HCBD) and anhydrous HF. In order to search for suitable catalysts and reveal the reaction pathway for this synthetic route, a series of studies were carried out. First, CrO x /ZnO catalysts with different promoters (Ni, Cu, In, Al) were prepared by a precipitate method and the optimum reaction conditions were investigated. The highest activity was achieved on the Cr–Ni–Zn catalyst, whose yield of DTB reached 90% by a multiple cycle reaction. Second, the effects of different promoters on the properties of catalysts were studied by Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), temperature-programmed desorption in ammonia (NH3-TPD), and X-ray photoelectron spectroscopy (XPS). It was found that the Cr–Ni–Zn catalyst showed the excellent catalytic performances with more CrO x F y species, higher oxygen concentration, and widely distributed acid strength on its surface. Third, combining experimental results with theoretical calculations, a reaction pathway has been proposed. This study offers an economic synthetic route for DTB from HCBD, which is a valuable and promising method for industrial production. |
---|---|
AbstractList | In this paper, a novel strategy for the preparation of 1,2-dichlorotetrafluorocyclobutene (DTB) was proposed via a catalytic gas-phase process of fluorination using hexachlorobutadiene (HCBD) and anhydrous HF. In order to search for suitable catalysts and reveal the reaction pathway for this synthetic route, a series of studies were carried out. First, CrO x /ZnO catalysts with different promoters (Ni, Cu, In, Al) were prepared by a precipitate method and the optimum reaction conditions were investigated. The highest activity was achieved on the Cr–Ni–Zn catalyst, whose yield of DTB reached 90% by a multiple cycle reaction. Second, the effects of different promoters on the properties of catalysts were studied by Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), temperature-programmed desorption in ammonia (NH3-TPD), and X-ray photoelectron spectroscopy (XPS). It was found that the Cr–Ni–Zn catalyst showed the excellent catalytic performances with more CrO x F y species, higher oxygen concentration, and widely distributed acid strength on its surface. Third, combining experimental results with theoretical calculations, a reaction pathway has been proposed. This study offers an economic synthetic route for DTB from HCBD, which is a valuable and promising method for industrial production. In this paper, a novel strategy for the preparation of 1,2-dichlorotetrafluorocyclobutene (DTB) was proposed via a catalytic gas-phase process of fluorination using hexachlorobutadiene (HCBD) and anhydrous HF. In order to search for suitable catalysts and reveal the reaction pathway for this synthetic route, a series of studies were carried out. First, CrOₓ/ZnO catalysts with different promoters (Ni, Cu, In, Al) were prepared by a precipitate method and the optimum reaction conditions were investigated. The highest activity was achieved on the Cr–Ni–Zn catalyst, whose yield of DTB reached 90% by a multiple cycle reaction. Second, the effects of different promoters on the properties of catalysts were studied by Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), temperature-programmed desorption in ammonia (NH₃-TPD), and X-ray photoelectron spectroscopy (XPS). It was found that the Cr–Ni–Zn catalyst showed the excellent catalytic performances with more CrOₓFy species, higher oxygen concentration, and widely distributed acid strength on its surface. Third, combining experimental results with theoretical calculations, a reaction pathway has been proposed. This study offers an economic synthetic route for DTB from HCBD, which is a valuable and promising method for industrial production. |
Author | Zhou, Xiaomeng He, Jinwei Zhang, Pingli Zhou, Biao |
AuthorAffiliation | The College of Environmental Science and Engineering Economics and Management College The University of Tokyo |
AuthorAffiliation_xml | – name: The College of Environmental Science and Engineering – name: Economics and Management College – name: The University of Tokyo |
Author_xml | – sequence: 1 givenname: Xiaomeng orcidid: 0000-0003-1258-9935 surname: Zhou fullname: Zhou, Xiaomeng email: zhouxm@nankai.edu.cn organization: Economics and Management College – sequence: 2 givenname: Pingli surname: Zhang fullname: Zhang, Pingli organization: The College of Environmental Science and Engineering – sequence: 3 givenname: Jinwei surname: He fullname: He, Jinwei organization: The College of Environmental Science and Engineering – sequence: 4 givenname: Biao surname: Zhou fullname: Zhou, Biao organization: The University of Tokyo |
BackLink | https://cir.nii.ac.jp/crid/1870583643248421120$$DView record in CiNii |
BookMark | eNp9kM1v3CAQxVGVSN0kvffIoYce4i2DwcbHKP1IpEiNkvZsjTF0ibyQAlbr_75YzqlSe2HQ8HtvmHdGTnzwhpC3wPbAOHxAnfbO6LhvBwbQNK_IDiRnlWRCnpAdU0pVUin5mpyl9MQYk1KIHclX9DFHzObHQm2INB8MfVx8KcklGiyFS159dPowhRiyKaid5nLVi57CMGfjDbUxHOmN-Y0bVbo4uvUB_Uhvc6IPBnV2wdN7zIdfuFyQU4tTMm9e6jn5_vnTt-ub6u7rl9vrq7sKhZC5Ul3T6VG1jNcwiKHlnS79RqDApoXWWBxrOQyac0DJ6rLuAHZs-Yhg23Hs6nPyfvN9juHnbFLujy5pM03oTZhTz4FB3XRKQEGbDdUxpBSN7bXLuH66rOymHli_xtyXmPs15v4l5iJkfwmfoztiXP4nebdJvHNlzHpC2VKquhE1F0pwAM4Kdrlhq8FTmKMvWf3b9Q-cop74 |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2017_10_102 crossref_primary_10_1016_j_jcat_2018_04_014 crossref_primary_10_1002_fam_3188 crossref_primary_10_1016_j_tsep_2023_101877 crossref_primary_10_1021_acsomega_0c01128 crossref_primary_10_1016_j_envpol_2024_124893 crossref_primary_10_1016_j_jpcs_2021_110337 crossref_primary_10_1016_j_mcat_2024_114052 crossref_primary_10_1016_j_tsep_2023_101913 crossref_primary_10_1016_j_envpol_2019_07_090 |
Cites_doi | 10.1126/science.280.5370.1735 10.1134/S1070428010090046 10.1016/j.jfluchem.2004.01.031 10.1021/cr941144x 10.1006/jcat.1997.1806 10.1039/b110792e 10.1006/jcat.1999.2441 10.1021/jp203615x 10.1039/a808021f 10.1021/jo00080a028 10.1006/jcat.1997.1704 10.1016/S0022-1139(99)00165-7 10.1016/S0926-860X(97)00335-9 10.1021/jo00987a015 10.1016/j.catcom.2014.02.013 10.1016/j.jcat.2005.01.028 10.1063/1.464304 10.1063/1.447079 10.1002/rog.20013 10.1038/249810a0 10.1016/0920-5861(89)80020-3 10.1016/0926-3373(95)00064-X 10.1016/j.cplett.2014.02.008 10.1021/jo01299a023 10.1016/j.jfluchem.2006.11.001 10.1016/0010-2180(95)00248-0 10.1021/es00055a023 10.1021/ja01149a131 10.1016/j.comptc.2012.11.024 10.1006/jcat.1997.1560 10.1016/0045-6535(96)00038-0 10.1021/jo00130a035 10.1021/ja0167203 10.1016/S0079-6786(98)00003-X 10.1007/s10562-010-0402-4 10.1126/science.1076397 10.1021/ja0032374 10.1016/0926-3373(94)00048-4 10.1021/ja01194a035 10.1021/ja00855a009 10.1021/jp960976r 10.1021/ja992337a |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | RYH AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.iecr.7b01166 |
DatabaseName | CiNii Complete CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 7630 |
ExternalDocumentID | 10_1021_acs_iecr_7b01166 a700520073 |
GroupedDBID | 02 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC .K2 4.4 5VS 6TJ ABBLG ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CUPRZ GGK RYH ~02 AAYXX CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-a445t-8969cd870231b4b729c44564a4a6717efad35bbc221a503152b1fd72da1f7dd93 |
IEDL.DBID | ACS |
ISSN | 0888-5885 1520-5045 |
IngestDate | Fri Jul 11 00:41:57 EDT 2025 Thu Apr 24 22:51:46 EDT 2025 Tue Jul 01 01:17:57 EDT 2025 Thu Jun 26 23:01:07 EDT 2025 Thu Aug 27 13:51:33 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a445t-8969cd870231b4b729c44564a4a6717efad35bbc221a503152b1fd72da1f7dd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1258-9935 |
PQID | 2101369841 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2101369841 crossref_citationtrail_10_1021_acs_iecr_7b01166 crossref_primary_10_1021_acs_iecr_7b01166 nii_cinii_1870583643248421120 acs_journals_10_1021_acs_iecr_7b01166 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-12 |
PublicationDateYYYYMMDD | 2017-07-12 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-12 day: 12 |
PublicationDecade | 2010 |
PublicationTitle | Industrial & Engineering Chemistry Research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2017 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref20/cit20 – ident: ref9/cit9 – ident: ref37/cit37 doi: 10.1126/science.280.5370.1735 – ident: ref31/cit31 – ident: ref8/cit8 doi: 10.1134/S1070428010090046 – ident: ref21/cit21 doi: 10.1016/j.jfluchem.2004.01.031 – ident: ref45/cit45 doi: 10.1021/cr941144x – ident: ref16/cit16 doi: 10.1006/jcat.1997.1806 – ident: ref23/cit23 doi: 10.1039/b110792e – ident: ref38/cit38 doi: 10.1006/jcat.1999.2441 – ident: ref47/cit47 doi: 10.1021/jp203615x – ident: ref19/cit19 doi: 10.1039/a808021f – ident: ref5/cit5 doi: 10.1021/jo00080a028 – ident: ref32/cit32 doi: 10.1006/jcat.1997.1704 – ident: ref6/cit6 – ident: ref34/cit34 doi: 10.1016/S0022-1139(99)00165-7 – ident: ref14/cit14 doi: 10.1016/S0926-860X(97)00335-9 – ident: ref10/cit10 doi: 10.1021/jo00987a015 – ident: ref39/cit39 doi: 10.1016/j.catcom.2014.02.013 – ident: ref18/cit18 doi: 10.1016/j.jcat.2005.01.028 – ident: ref29/cit29 doi: 10.1063/1.464304 – ident: ref28/cit28 doi: 10.1063/1.447079 – ident: ref2/cit2 doi: 10.1002/rog.20013 – ident: ref1/cit1 doi: 10.1038/249810a0 – ident: ref35/cit35 doi: 10.1016/0920-5861(89)80020-3 – ident: ref17/cit17 doi: 10.1016/0926-3373(95)00064-X – ident: ref30/cit30 doi: 10.1016/j.cplett.2014.02.008 – ident: ref42/cit42 doi: 10.1021/jo01299a023 – ident: ref36/cit36 doi: 10.1016/j.jfluchem.2006.11.001 – ident: ref41/cit41 doi: 10.1016/0010-2180(95)00248-0 – ident: ref43/cit43 doi: 10.1021/es00055a023 – ident: ref11/cit11 doi: 10.1021/ja01149a131 – ident: ref26/cit26 doi: 10.1016/j.comptc.2012.11.024 – ident: ref15/cit15 doi: 10.1006/jcat.1997.1560 – ident: ref40/cit40 doi: 10.1016/0045-6535(96)00038-0 – ident: ref3/cit3 doi: 10.1021/jo00130a035 – ident: ref4/cit4 doi: 10.1021/ja0167203 – ident: ref33/cit33 doi: 10.1016/S0079-6786(98)00003-X – ident: ref25/cit25 doi: 10.1007/s10562-010-0402-4 – ident: ref22/cit22 doi: 10.1126/science.1076397 – ident: ref24/cit24 doi: 10.1021/ja0032374 – ident: ref7/cit7 – ident: ref13/cit13 doi: 10.1016/0926-3373(94)00048-4 – ident: ref12/cit12 doi: 10.1021/ja01194a035 – ident: ref44/cit44 doi: 10.1021/ja00855a009 – ident: ref27/cit27 doi: 10.1021/jp960976r – ident: ref46/cit46 doi: 10.1021/ja992337a |
SSID | ssj0005544 ssib001100114 ssib028086731 ssib001965121 ssib006545614 ssib004836875 ssib053390278 ssib025654225 ssib055683552 ssib017384962 ssib058575026 |
Score | 2.2888792 |
Snippet | In this paper, a novel strategy for the preparation of 1,2-dichlorotetrafluorocyclobutene (DTB) was proposed via a catalytic gas-phase process of fluorination... |
SourceID | proquest crossref nii acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7623 |
SubjectTerms | aluminum ammonia catalysts catalytic activity copper desorption gases nickel oxygen process design scanning electron microscopy surface area X-ray diffraction X-ray photoelectron spectroscopy |
Title | A Strategy for the Synthesis of 1,2-Dichlorotetrafluorocyclobutene from Hexachlorobutadiene and Its Reaction Pathway |
URI | http://dx.doi.org/10.1021/acs.iecr.7b01166 https://cir.nii.ac.jp/crid/1870583643248421120 https://www.proquest.com/docview/2101369841 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoucChvMVCi4wEBySyrR3HsY-rQrUggRClUm_R-BERsUpQk4huf31nkpQCRVUvSWTZVmzPZL7J2N8w9so6l6PVUAnZ00SVNiTWGZFoV4IAbfYyTz_0P33WyyP18Tg7vqTJ-TeCL8Uu-HZeIYSa546CBnqD3Zba5MSTv9g_vNzOkQ2JW1Fp6CSRyaaQ5P96IEPk278M0UZdVVe-xoOJObg35ipqB2ZC2lnyY953bu7PrvI23uDt77OtCWnyxSgaD9itWD9kd__gH3zEugWf2GnXHMErRzDID9c13tqq5U3JxVuZvKv8d3Tqmy5i1XLV46Nf-1XjeoTbkdP5FL6MpzDWwtJhE1nkUAf-oWv51zieneBfEGz-gvVjdnTw_tv-MpnSMCSgVNYlxmrrA-o1QkGncGmtV0RCAwo0OoOxhJBmznkpBWSUNEI6UYZcBhBlHoJNn7DNuqnjU8aBEgCmGlLQpUJnFIw1waA_b6MVNg8z9honrJjUqC2GCLkUBRXSLBbTLM7Y7sXaFX7iMqeUGqtrWrz53eLnyONxTd0dFAfsmK4CB56ZVBNzoVHoLsu9GXt5ISgFKiNFWKCOTd8W6D-LVFujxLMbjuQ5uyMJKBBVp9xmm91JH3cQ5nTuxSDf5-jY9bo |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB615QAceFcsUDASHJDItnYcr31cFaottBXqQ-ot8isiYpUgkgiWX89MNtvyUgWXJLIcy4-ZzDcZ-xuAF8a5CVoNmZA9TWRhQmKc5olyheVW6Z3M0w_9wyM1O5PvzrPzNeCrszDYiQZbavog_iW7AN-mshKR1HjiKHag1uEaYhFBdPnT3ZPLXR1Zn78VdYcOFOlsiEz-rQWyR775xR6tV2X5x0e5tzR7t-H4oo_9BpNP4651Y__9N_rG_xrEHbg14E42XQrKXViL1T24-RMb4X1op2zgql0whLIMoSE7WVR4a8qG1QXjr0XypvQf0cWv24hVi3mHj37h57XrEHxHRqdV2Cx-s8taWNpvKYvMVoHttw07jsuTFOwDQs-vdvEAzvbenu7OkiEpQ2KlzNpEG2V8QC1HYOgkLrTxkihprLQKXcNY2JBmznkhuM0ohYRwvAgTESwvJiGYdBM2qrqKD4FZSgeYKptaVUh0Ta02Omj07k003EzCCF7ihOWDUjV5Hy8XPKdCmsV8mMURbK-WMPcDszkl2Jhf8carizc-L1k9rqi7hVKBDdOV48AznSriMdQSnWexM4LnK3nJUTUp3mKrWHdNjt40T5XRkj_6x5E8g-uz08OD_GD_6P1juCEIQhCJp3gCG-2XLm4hAGrd017kfwDa2P4b |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbaIiF4oJxioQUjwQMS2daO49iPq5bVlqOqKEV9i3yKiFVSkUSw_PrOZLMtlyp4SSLLsXzMZL7J2N8Q8lxbm4PVEAna00RE7RNtFUukjYYZqXYzhz_03x_K2Yl4c5qdrpFsdRYGOtFAS00fxEetPvNxYBhgO1heApoa5xbjB3KdXMOoHVLmT_aOL3d2ZH0OV9AfPFSksiE6-bcW0Ca55hebtF6V5R8f5t7aTDfJp4t-9ptMvoy71o7dj98oHP97ILfJrQF_0slSYO6QtVDdJTd_YiW8R9oJHThrFxQgLQWISI8XFdyasqF1pOwVT_ZL9xlc_boNUDXOO3h0CzevbQcgPFA8tUJn4btZ1oLSfmtZoKby9KBt6IewPFFBjwCCfjOL--Rk-vrj3iwZkjMkRoisTZSW2nnQdgCIVsCCayeQmsYII8FFDNH4NLPWcc5MhqkkuGXR59wbFnPvdfqAbFR1FR4SajAtYCpNamQU4KIapZVX4OXroJnO_Yi8gAkrBuVqij5uzlmBhTiLxTCLI7KzWsbCDQznmGhjfsUbLy_eOFuye1xRdxskAxrGK4OBZyqVyGeoBDjRfHdEnq1kpgAVxbiLqULdNQV41SyVWgn26B9H8pRcP9qfFu8ODt8-Jjc4Ignk8uRbZKP92oVtwEGtfdJL_TknGwCt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Strategy+for+the+Synthesis+of+1%2C2-Dichlorotetrafluorocyclobutene+from+Hexachlorobutadiene+and+Its+Reaction+Pathway&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Zhou%2C+Xiaomeng&rft.au=Zhang%2C+Pingli&rft.au=He%2C+Jinwei&rft.au=Zhou%2C+Biao&rft.date=2017-07-12&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=56&rft.issue=27&rft.spage=7623&rft.epage=7630&rft_id=info:doi/10.1021%2Facs.iecr.7b01166&rft.externalDocID=a700520073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |