Curious Binding Energy Increase between the Receptor-Binding Domain of the SARS-CoV‑2 Spike Protein and Angiotensin-Converting Enzyme 2 Adsorbed on a Silane Monolayer from Molecular Dynamics Simulations

In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 125; no. 39; pp. 11078 - 11090
Main Authors Lecot, Solène, Chevolot, Yann, Phaner-Goutorbe, Magali, Yeromonahos, Christelle
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations yielding more and more variants that might lose their affinity toward the currently used antibodies. The virus entry into the host cell involves interactions between the angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor-binding domain. Consequently, ACE2 could be a target with limited mutation escaping possibilities. However, as the enzyme has not evolved to recognize the virus, its affinity with the spike protein receptor-binding domain is lower than that with specific antibodies. The present molecular dynamics simulations study suggests that the adsorption of the ACE2 on specific silane monolayers could increase its affinity toward the spike protein receptor-binding domain. Indeed, silane monolayers, combining silane molecules with short alkyl chains and positively charged head groups and silane molecules without charged head groups, could adsorb the ACE2 while maintaining its bioactivity (orientation compatible with the spike protein trapping, low conformational changes) and increasing its interactions with the spike protein receptor-binding domain (number of hydrogen bonds and electrostatic interactions) to lead to an increase by 20% both in the binding free energy and in the enzyme /receptor-binding domain rupture force. This work could help develop biosensing tools efficient toward any variants of the SARS-CoV-2 spike protein.
AbstractList In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations yielding more and more variants that might lose their affinity toward the currently used antibodies. The virus entry into the host cell involves interactions between the angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor-binding domain. Consequently, ACE2 could be a target with limited mutation escaping possibilities. However, as the enzyme has not evolved to recognize the virus, its affinity with the spike protein receptor-binding domain is lower than that with specific antibodies. The present molecular dynamics simulations study suggests that the adsorption of the ACE2 on specific silane monolayers could increase its affinity toward the spike protein receptor-binding domain. Indeed, silane monolayers, combining silane molecules with short alkyl chains and positively charged head groups and silane molecules without charged head groups, could adsorb the ACE2 while maintaining its bioactivity (orientation compatible with the spike protein trapping, low conformational changes) and increasing its interactions with the spike protein receptor-binding domain (number of hydrogen bonds and electrostatic interactions) to lead to an increase by 20% both in the binding free energy and in the enzyme /receptor-binding domain rupture force. This work could help develop biosensing tools efficient toward any variants of the SARS-CoV-2 spike protein.
In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations yielding more and more variants that might lose their affinity toward the currently used antibodies. The virus entry into the host cell involves interactions between the angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor-binding domain. Consequently, ACE2 could be a target with limited mutation escaping possibilities. However, as the enzyme has not evolved to recognize the virus, its affinity with the spike protein receptor-binding domain is lower than that with specific antibodies. The present molecular dynamics simulations study suggests that the adsorption of the ACE2 on specific silane monolayers could increase its affinity toward the spike protein receptor-binding domain. Indeed, silane monolayers, combining silane molecules with short alkyl chains and positively charged head groups and silane molecules without charged head groups, could adsorb the ACE2 while maintaining its bioactivity (orientation compatible with the spike protein trapping, low conformational changes) and increasing its interactions with the spike protein receptor-binding domain (number of hydrogen bonds and electrostatic interactions) to lead to an increase by 20% both in the binding free energy and in the enzyme /receptor-binding domain rupture force. This work could help develop biosensing tools efficient toward any variants of the SARS-CoV-2 spike protein.In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations yielding more and more variants that might lose their affinity toward the currently used antibodies. The virus entry into the host cell involves interactions between the angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor-binding domain. Consequently, ACE2 could be a target with limited mutation escaping possibilities. However, as the enzyme has not evolved to recognize the virus, its affinity with the spike protein receptor-binding domain is lower than that with specific antibodies. The present molecular dynamics simulations study suggests that the adsorption of the ACE2 on specific silane monolayers could increase its affinity toward the spike protein receptor-binding domain. Indeed, silane monolayers, combining silane molecules with short alkyl chains and positively charged head groups and silane molecules without charged head groups, could adsorb the ACE2 while maintaining its bioactivity (orientation compatible with the spike protein trapping, low conformational changes) and increasing its interactions with the spike protein receptor-binding domain (number of hydrogen bonds and electrostatic interactions) to lead to an increase by 20% both in the binding free energy and in the enzyme /receptor-binding domain rupture force. This work could help develop biosensing tools efficient toward any variants of the SARS-CoV-2 spike protein.
Author Chevolot, Yann
Phaner-Goutorbe, Magali
Yeromonahos, Christelle
Lecot, Solène
AuthorAffiliation Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270
AuthorAffiliation_xml – name: Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270
Author_xml – sequence: 1
  givenname: Solène
  surname: Lecot
  fullname: Lecot, Solène
– sequence: 2
  givenname: Yann
  surname: Chevolot
  fullname: Chevolot, Yann
– sequence: 3
  givenname: Magali
  surname: Phaner-Goutorbe
  fullname: Phaner-Goutorbe, Magali
– sequence: 4
  givenname: Christelle
  orcidid: 0000-0002-1326-3091
  surname: Yeromonahos
  fullname: Yeromonahos, Christelle
  email: christelle.yeromonahos@ec-lyon.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34570497$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03622153$$DView record in HAL
BookMark eNqFks2O0zAQxyO0iP2AOyfkI0ik2Ikdt8fQXdiVikBb4Go59qTrJbGDnSwKJ16B9-IpeBLcpuWABBwse2Z-_7E9M6fJkXUWkuQxwTOCM_JCqjC77VQ1IwoXmOF7yQlhGU7j4kf7c0FwcZychnCLccayefEgOc4p45gu-EnyYzl444aAXhqrjd2gCwt-M6IrqzzIAKiC_guARf0NoGtQ0PXOpwf43LXSWOTqXXhdXq_Tpfv489v3DK078wnQO-96iIS0GpV2Y6Jlg7GRsnfg--nCr2MLKEOlDs5XoJGLPFqbRlpAb5x1jRzBo9q7NpoNqKGRHp2PVrZGhQi20dEbZ8PD5H4tmwCP9vtZ8uHVxfvlZbp6-_pqWa5SSSnrU64IJZpXADXRQDXXbAGyonOoNSvkAhagtZK0zgnkmks5r-uKAkRxRnWO87Pk2ZT3Rjai86aVfhROGnFZrsTWh_MiywjL70hkn05s593nAUIvWhMUNNvfxbqLrMgLHpvJ-P9RxjllOWE0ok_26FC1oH8_4tDYCBQToLwLwUMtlOl3Veq9NI0gWGwnSMQJEtsJEvsJikL8h_CQ-x-S55NkF3GDt7H4f8d_AeP-3aM
CitedBy_id crossref_primary_10_1021_acsomega_3c04266
crossref_primary_10_1021_acs_jpcb_4c05134
crossref_primary_10_1021_acs_jcim_2c01378
crossref_primary_10_1021_acs_langmuir_2c00837
crossref_primary_10_1016_j_apsusc_2023_158717
crossref_primary_10_1021_acsami_3c01181
crossref_primary_10_1021_acscentsci_3c00810
crossref_primary_10_1016_j_jcis_2023_06_121
crossref_primary_10_1021_acs_chemrev_1c00965
crossref_primary_10_1016_j_ab_2025_115792
crossref_primary_10_1002_advs_202404186
Cites_doi 10.1016/j.cell.2020.03.045
10.1021/acs.langmuir.1c00338
10.1073/pnas.1816909116
10.1021/ci500020m
10.1016/0263-7855(96)00018-5
10.1021/ja9621760
10.1021/acs.jpcb.1c03849
10.1021/acsptsci.0c00161
10.1126/science.abb2762
10.1002/pro.3280
10.1002/jcc.20291
10.1021/bc034146+
10.1021/j100401a037
10.1021/acs.chemrev.9b00410
10.1038/s41598-020-74715-4
10.1006/rwvi.1999.0055
10.1038/s41598-020-71188-3
10.1038/s41467-020-18319-6
10.1126/science.abc0870
10.1038/s41586-020-2180-5
10.1126/science.abb2507
10.1063/1.445869
10.1021/la3041055
10.1371/journal.pone.0237295
10.1021/acs.jpcc.0c05349
10.1021/j100384a009
10.1016/j.cocis.2018.12.004
10.1146/annurev-virology-110615-042301
10.1021/la504178g
10.3390/v12040428
10.1021/acs.jpcb.0c04382
10.1021/acs.langmuir.8b02286
10.1021/acsnano.0c10833
10.1016/j.bios.2012.08.019
10.1021/acsnano.0c04674
10.1016/j.bpj.2020.11.128
10.1021/acs.jpcc.6b03226
10.1016/j.bbrc.2020.02.071
10.1038/s41598-021-92388-5
10.1021/ja00316a012
10.1101/2020.11.24.20237628
10.1021/jp038048x
ContentType Journal Article
Copyright 2021 American Chemical Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 American Chemical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
VOOES
DOI 10.1021/acs.jpcb.1c06050
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 11090
ExternalDocumentID oai_HAL_hal_03622153v1
34570497
10_1021_acs_jpcb_1c06050
a45172469
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
123
29L
4.4
53G
55A
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
---
-~X
.DC
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
ED~
JG~
XSW
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
186
1XC
6TJ
9M8
ABDPE
ACRPL
ADNMO
AETEA
AEYZD
AFFNX
AGQPQ
AI.
ANPPW
ANTXH
EJD
LG6
MVM
NHB
UMC
UQL
VH1
VOH
VOOES
VQP
XOL
ZCG
ID FETCH-LOGICAL-a445t-7c141d7beef1de4d7d59eab48efd56a9e9eddca4f31e3d7aa8ffb4ee44524d303
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri May 09 12:19:46 EDT 2025
Fri Jul 11 05:43:50 EDT 2025
Fri Jul 11 05:10:07 EDT 2025
Thu Apr 03 07:07:29 EDT 2025
Tue Jul 01 04:08:21 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
Sat Oct 09 10:10:06 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a445t-7c141d7beef1de4d7d59eab48efd56a9e9eddca4f31e3d7aa8ffb4ee44524d303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1326-3091
0000-0002-5324-3853
0000-0003-3479-3371
OpenAccessLink https://hal.science/hal-03622153
PMID 34570497
PQID 2577453154
PQPubID 23479
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_03622153v1
proquest_miscellaneous_2636710257
proquest_miscellaneous_2577453154
pubmed_primary_34570497
crossref_citationtrail_10_1021_acs_jpcb_1c06050
crossref_primary_10_1021_acs_jpcb_1c06050
acs_journals_10_1021_acs_jpcb_1c06050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-07
PublicationDateYYYYMMDD 2021-10-07
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
Al Ahmad M. (ref5/cit5) 2020
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1016/j.cell.2020.03.045
– ident: ref22/cit22
  doi: 10.1021/acs.langmuir.1c00338
– ident: ref20/cit20
  doi: 10.1073/pnas.1816909116
– ident: ref33/cit33
  doi: 10.1021/ci500020m
– ident: ref25/cit25
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref26/cit26
  doi: 10.1021/ja9621760
– ident: ref40/cit40
  doi: 10.1021/acs.jpcb.1c03849
– ident: ref12/cit12
  doi: 10.1021/acsptsci.0c00161
– ident: ref9/cit9
  doi: 10.1126/science.abb2762
– ident: ref37/cit37
  doi: 10.1002/pro.3280
– ident: ref24/cit24
  doi: 10.1002/jcc.20291
– ident: ref42/cit42
  doi: 10.1021/bc034146+
– ident: ref28/cit28
  doi: 10.1021/j100401a037
– ident: ref41/cit41
  doi: 10.1021/acs.chemrev.9b00410
– ident: ref13/cit13
  doi: 10.1038/s41598-020-74715-4
– ident: ref1/cit1
  doi: 10.1006/rwvi.1999.0055
– ident: ref34/cit34
  doi: 10.1038/s41598-020-71188-3
– ident: ref3/cit3
  doi: 10.1038/s41467-020-18319-6
– ident: ref6/cit6
  doi: 10.1126/science.abc0870
– ident: ref15/cit15
  doi: 10.1038/s41586-020-2180-5
– ident: ref2/cit2
  doi: 10.1126/science.abb2507
– ident: ref29/cit29
  doi: 10.1063/1.445869
– ident: ref17/cit17
  doi: 10.1021/la3041055
– ident: ref14/cit14
  doi: 10.1371/journal.pone.0237295
– ident: ref23/cit23
  doi: 10.1021/acs.jpcc.0c05349
– ident: ref30/cit30
  doi: 10.1021/j100384a009
– ident: ref35/cit35
  doi: 10.1016/j.cocis.2018.12.004
– ident: ref4/cit4
  doi: 10.1146/annurev-virology-110615-042301
– ident: ref27/cit27
  doi: 10.1021/la504178g
– ident: ref10/cit10
  doi: 10.3390/v12040428
– ident: ref19/cit19
  doi: 10.1021/acs.jpcb.0c04382
– ident: ref32/cit32
  doi: 10.1021/acs.langmuir.8b02286
– ident: ref39/cit39
  doi: 10.1021/acsnano.0c10833
– ident: ref18/cit18
  doi: 10.1016/j.bios.2012.08.019
– ident: ref38/cit38
  doi: 10.1021/acsnano.0c04674
– ident: ref11/cit11
  doi: 10.1016/j.bpj.2020.11.128
– ident: ref21/cit21
  doi: 10.1021/acs.jpcc.6b03226
– ident: ref8/cit8
  doi: 10.1016/j.bbrc.2020.02.071
– ident: ref7/cit7
  doi: 10.1038/s41598-021-92388-5
– ident: ref31/cit31
  doi: 10.1021/ja00316a012
– volume-title: Development of an Optical Assay to Detect SARS-CoV-2 Spike Protein Binding Interactions with ACE2 and Disruption of these Interactions Using Electric Current
  year: 2020
  ident: ref5/cit5
  doi: 10.1101/2020.11.24.20237628
– ident: ref36/cit36
  doi: 10.1021/jp038048x
SSID ssj0025286
Score 2.432036
Snippet In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in...
SourceID hal
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11078
SubjectTerms adsorption
Angiotensin-Converting Enzyme 2
B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials
bioactive properties
Biochemistry, Molecular Biology
Chemical Sciences
COVID-19
COVID-19 infection
energy
Gibbs free energy
Humans
hydrogen
Life Sciences
Microbiology and Parasitology
molecular dynamics
Molecular Dynamics Simulation
mutation
or physical chemistry
peptidyl-dipeptidase A
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
silane
Silanes
Spike Glycoprotein, Coronavirus - genetics
Theoretical and
Virology
viruses
Title Curious Binding Energy Increase between the Receptor-Binding Domain of the SARS-CoV‑2 Spike Protein and Angiotensin-Converting Enzyme 2 Adsorbed on a Silane Monolayer from Molecular Dynamics Simulations
URI http://dx.doi.org/10.1021/acs.jpcb.1c06050
https://www.ncbi.nlm.nih.gov/pubmed/34570497
https://www.proquest.com/docview/2577453154
https://www.proquest.com/docview/2636710257
https://hal.science/hal-03622153
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagHOBS_unyJ4PgwCHb2rHjzXFJW60QIEQo6i2K7TGEsslqs4vUnngF3oun4EkYe5NF_K16TDJOFHvs-T758wwhTxIMMzplceRAyEjERkZ6pHQEhktuU8ad80Tx1etkciReHMvjX2ly_tzB52y3NO3w08zoITN7iL2Rnl_iCc5hD4OyfE2uJA9VHTEceTq0129J_usNPhCZ9rdAdPGjl0H-D2OGWHN4dVW0qA0pCr3E5GS4XOihOfs7geM5fuMa2e4gJx2vfOQ6uQD1DXI56yu93STfs-XcS2Hp8yqccaEH4UAgxbXDS9aBdmIuimCRIs6EGRL1qDfeb6ZlVdPGhcf5-G0eZc37H1-_cZrPqhOgb3wqCLQoa0vH9YeqCaL5Gq3qUAw6fPDsdAqU07Ftm7kGSxu0p3nlpbgU1x0k4MgNqD8Mg5ddRV-6f1qX08q0aDjtypC1t8jR4cG7bBJ1VR6iUgi5iJRhglmlARyzIKyyMoVSixE4K5MyhRSsNaVwMYPYqrIcOacFADbmwmIEvk226qaGHUKN0yphFimjtcJnNuQjNzJxbHkiQepkQJ7iMBTdLG2LsAHPWRFu4tgU3dgMyG7vGoXpUqX7ih2fN7R4tm4xW6UJ2WD7GL1tbebze0_GLwt_z8MJxGDxFzYgj3pnLNAb_C4Odji6QoFrrBK4ckqxwSaJEw8dpRqQOytPXn8vFlIhLVR3z9kZ98gV7nU8XjSh7pOtxXwJDxCILfTDMAN_Aqc1MSs
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NctMwENaUcigX_inhVzBw4OC0kiUrOZq0nQBph2lapjePJa3AlNiZOGWmPfEKvBdPwZOwUuwwMJCBo-WV_7TWft_o0y4hzxIMM7rP4siBkJGIjYx0T-kIDJfc9hl3zhPF_YNkeCxen8iTNcLavTD4EDVeqQ6L-D-zC7At3_ZxanSXmW2E4MjSLyMW4d6p08F4ybEkD8UdMSp5VrTdrkz-6Qo-Hpn6l3h06YNXQ_4NaoaQs3eNHC4fNihNTrtnc901F7_lcfyvt7lOrjYAlKYLj7lB1qC8STYGbd23W-Tb4GzmhbH0ZRF2vNDdsD2Q4kziBexAG2kXRehIEXXCFGl71BrvVJO8KGnlwulxejiOBtW771--cjqeFqdA3_rEEGiRl5am5fuiChL6Eq3KUBo63PDifAKU09TW1UyDpRXa03HhhbkUZyGk48gUqN8ag4dNfV-6c17mk8LUaDhpipLVt8nx3u7RYBg1NR-iXAg5j5RhglmlARyzIKyysg-5Fj1wViZ5H_pgrcmFixnEVuV5zzktALAzFxbj8R2yXlYl3CXUOK0SZpFAWit8nkPecz0Tx5YnEqROOuQ5DkPW_LN1FpbjOctCI45N1oxNh2y1HpKZJnG6r9_xaUWPF8se00XSkBW2T9HplmY-2_cwHWW-zYMLRGTxZ9YhT1qfzNAb_JoOfnB0hQxnXCVwHpVihU0SJx5IStUhmwuHXt4vFlIhSVT3_vFjPCYbw6P9UTZ6dfDmPrnCvcLHyynUA7I-n53BQ4Roc_0o_JQ_ANIAOYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELaWRQIu_C-UX4PgwCHdtWPH7TG0WxVYVivKrvYWxX8QliZV0yLtnngF3oun4EmYcZNKIFjBMc44ceKx5_s04xlCniVgZnSfxZF3QkYiNjLSPaUjZ7jkts-490gU3-4n40Px-lgebxDZnoWBQdTwpDo48XFVz6xvMgywbWz_NDO6y8wOwHBg6hfRa4eKnQ4ma54leSjwCJYJmdFO65380xPQJpn6F5t04SNGRP4NbgazM7pGjtYDDtEmJ93lQnfN2W-5HP_7i66Tqw0QpelKc26QDVfeJJcHbf23W-T7YDnHAFn6sggnX-huOCZIYUfBQHZHmxAvChCSAvp0M6DvUSs8rKZ5UdLKh9uT9N0kGlRHP75-43QyK04cPcAEESCRl5am5YeiCqH0JUiVoUR0eOHZ6dRRTlNbV3PtLK1Ank4KDNClsBsBLQfGQPGIDFw2dX7p8LTMp4WpQXDaFCerb5PD0e77wThqaj9EuRByESnDBLNKO-eZdcIqK_su16LnvJVJ3nd9Z63JhY-Zi63K8573WjgHnbmwYJe3yGZZle4uocZrlTALRNJagfkOec_3TBxbnkgnddIhz2Easmbt1llwy3OWhUaYm6yZmw7ZbrUkM00Cdazj8fmcHi_WPWar5CHnyD4FxVuLYdbvcbqXYRuCDEBm8RfWIU9avcxAG9C3Az8cVCGDnVcJ2E-lOEcmiRMElFJ1yJ2VUq_fFwupgCyqe__4Mx6TSwfDUbb3av_NfXKFY6APRlWoB2RzMV-6h4DUFvpRWJc_AbH-PA8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curious+Binding+Energy+Increase+between+the+Receptor-Binding+Domain+of+the+SARS-CoV-2+Spike+Protein+and+Angiotensin-Converting+Enzyme+2+Adsorbed+on+a+Silane+Monolayer+from+Molecular+Dynamics+Simulations&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Lecot%2C+Sol%C3%A8ne&rft.au=Chevolot%2C+Yann&rft.au=Phaner-Goutorbe%2C+Magali&rft.au=Yeromonahos%2C+Christelle&rft.date=2021-10-07&rft.eissn=1520-5207&rft.volume=125&rft.issue=39&rft.spage=11078&rft_id=info:doi/10.1021%2Facs.jpcb.1c06050&rft_id=info%3Apmid%2F34570497&rft.externalDocID=34570497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon