Curious Binding Energy Increase between the Receptor-Binding Domain of the SARS-CoV‑2 Spike Protein and Angiotensin-Converting Enzyme 2 Adsorbed on a Silane Monolayer from Molecular Dynamics Simulations
In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations...
Saved in:
Published in | The journal of physical chemistry. B Vol. 125; no. 39; pp. 11078 - 11090 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations yielding more and more variants that might lose their affinity toward the currently used antibodies. The virus entry into the host cell involves interactions between the angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor-binding domain. Consequently, ACE2 could be a target with limited mutation escaping possibilities. However, as the enzyme has not evolved to recognize the virus, its affinity with the spike protein receptor-binding domain is lower than that with specific antibodies. The present molecular dynamics simulations study suggests that the adsorption of the ACE2 on specific silane monolayers could increase its affinity toward the spike protein receptor-binding domain. Indeed, silane monolayers, combining silane molecules with short alkyl chains and positively charged head groups and silane molecules without charged head groups, could adsorb the ACE2 while maintaining its bioactivity (orientation compatible with the spike protein trapping, low conformational changes) and increasing its interactions with the spike protein receptor-binding domain (number of hydrogen bonds and electrostatic interactions) to lead to an increase by 20% both in the binding free energy and in the enzyme /receptor-binding domain rupture force. This work could help develop biosensing tools efficient toward any variants of the SARS-CoV-2 spike protein. |
---|---|
AbstractList | In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations yielding more and more variants that might lose their affinity toward the currently used antibodies. The virus entry into the host cell involves interactions between the angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor-binding domain. Consequently, ACE2 could be a target with limited mutation escaping possibilities. However, as the enzyme has not evolved to recognize the virus, its affinity with the spike protein receptor-binding domain is lower than that with specific antibodies. The present molecular dynamics simulations study suggests that the adsorption of the ACE2 on specific silane monolayers could increase its affinity toward the spike protein receptor-binding domain. Indeed, silane monolayers, combining silane molecules with short alkyl chains and positively charged head groups and silane molecules without charged head groups, could adsorb the ACE2 while maintaining its bioactivity (orientation compatible with the spike protein trapping, low conformational changes) and increasing its interactions with the spike protein receptor-binding domain (number of hydrogen bonds and electrostatic interactions) to lead to an increase by 20% both in the binding free energy and in the enzyme /receptor-binding domain rupture force. This work could help develop biosensing tools efficient toward any variants of the SARS-CoV-2 spike protein. In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations yielding more and more variants that might lose their affinity toward the currently used antibodies. The virus entry into the host cell involves interactions between the angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor-binding domain. Consequently, ACE2 could be a target with limited mutation escaping possibilities. However, as the enzyme has not evolved to recognize the virus, its affinity with the spike protein receptor-binding domain is lower than that with specific antibodies. The present molecular dynamics simulations study suggests that the adsorption of the ACE2 on specific silane monolayers could increase its affinity toward the spike protein receptor-binding domain. Indeed, silane monolayers, combining silane molecules with short alkyl chains and positively charged head groups and silane molecules without charged head groups, could adsorb the ACE2 while maintaining its bioactivity (orientation compatible with the spike protein trapping, low conformational changes) and increasing its interactions with the spike protein receptor-binding domain (number of hydrogen bonds and electrostatic interactions) to lead to an increase by 20% both in the binding free energy and in the enzyme /receptor-binding domain rupture force. This work could help develop biosensing tools efficient toward any variants of the SARS-CoV-2 spike protein.In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations yielding more and more variants that might lose their affinity toward the currently used antibodies. The virus entry into the host cell involves interactions between the angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor-binding domain. Consequently, ACE2 could be a target with limited mutation escaping possibilities. However, as the enzyme has not evolved to recognize the virus, its affinity with the spike protein receptor-binding domain is lower than that with specific antibodies. The present molecular dynamics simulations study suggests that the adsorption of the ACE2 on specific silane monolayers could increase its affinity toward the spike protein receptor-binding domain. Indeed, silane monolayers, combining silane molecules with short alkyl chains and positively charged head groups and silane molecules without charged head groups, could adsorb the ACE2 while maintaining its bioactivity (orientation compatible with the spike protein trapping, low conformational changes) and increasing its interactions with the spike protein receptor-binding domain (number of hydrogen bonds and electrostatic interactions) to lead to an increase by 20% both in the binding free energy and in the enzyme /receptor-binding domain rupture force. This work could help develop biosensing tools efficient toward any variants of the SARS-CoV-2 spike protein. |
Author | Chevolot, Yann Phaner-Goutorbe, Magali Yeromonahos, Christelle Lecot, Solène |
AuthorAffiliation | Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270 |
AuthorAffiliation_xml | – name: Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270 |
Author_xml | – sequence: 1 givenname: Solène surname: Lecot fullname: Lecot, Solène – sequence: 2 givenname: Yann surname: Chevolot fullname: Chevolot, Yann – sequence: 3 givenname: Magali surname: Phaner-Goutorbe fullname: Phaner-Goutorbe, Magali – sequence: 4 givenname: Christelle orcidid: 0000-0002-1326-3091 surname: Yeromonahos fullname: Yeromonahos, Christelle email: christelle.yeromonahos@ec-lyon.fr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34570497$$D View this record in MEDLINE/PubMed https://hal.science/hal-03622153$$DView record in HAL |
BookMark | eNqFks2O0zAQxyO0iP2AOyfkI0ik2Ikdt8fQXdiVikBb4Go59qTrJbGDnSwKJ16B9-IpeBLcpuWABBwse2Z-_7E9M6fJkXUWkuQxwTOCM_JCqjC77VQ1IwoXmOF7yQlhGU7j4kf7c0FwcZychnCLccayefEgOc4p45gu-EnyYzl444aAXhqrjd2gCwt-M6IrqzzIAKiC_guARf0NoGtQ0PXOpwf43LXSWOTqXXhdXq_Tpfv489v3DK078wnQO-96iIS0GpV2Y6Jlg7GRsnfg--nCr2MLKEOlDs5XoJGLPFqbRlpAb5x1jRzBo9q7NpoNqKGRHp2PVrZGhQi20dEbZ8PD5H4tmwCP9vtZ8uHVxfvlZbp6-_pqWa5SSSnrU64IJZpXADXRQDXXbAGyonOoNSvkAhagtZK0zgnkmks5r-uKAkRxRnWO87Pk2ZT3Rjai86aVfhROGnFZrsTWh_MiywjL70hkn05s593nAUIvWhMUNNvfxbqLrMgLHpvJ-P9RxjllOWE0ok_26FC1oH8_4tDYCBQToLwLwUMtlOl3Veq9NI0gWGwnSMQJEtsJEvsJikL8h_CQ-x-S55NkF3GDt7H4f8d_AeP-3aM |
CitedBy_id | crossref_primary_10_1021_acsomega_3c04266 crossref_primary_10_1021_acs_jpcb_4c05134 crossref_primary_10_1021_acs_jcim_2c01378 crossref_primary_10_1021_acs_langmuir_2c00837 crossref_primary_10_1016_j_apsusc_2023_158717 crossref_primary_10_1021_acsami_3c01181 crossref_primary_10_1021_acscentsci_3c00810 crossref_primary_10_1016_j_jcis_2023_06_121 crossref_primary_10_1021_acs_chemrev_1c00965 crossref_primary_10_1016_j_ab_2025_115792 crossref_primary_10_1002_advs_202404186 |
Cites_doi | 10.1016/j.cell.2020.03.045 10.1021/acs.langmuir.1c00338 10.1073/pnas.1816909116 10.1021/ci500020m 10.1016/0263-7855(96)00018-5 10.1021/ja9621760 10.1021/acs.jpcb.1c03849 10.1021/acsptsci.0c00161 10.1126/science.abb2762 10.1002/pro.3280 10.1002/jcc.20291 10.1021/bc034146+ 10.1021/j100401a037 10.1021/acs.chemrev.9b00410 10.1038/s41598-020-74715-4 10.1006/rwvi.1999.0055 10.1038/s41598-020-71188-3 10.1038/s41467-020-18319-6 10.1126/science.abc0870 10.1038/s41586-020-2180-5 10.1126/science.abb2507 10.1063/1.445869 10.1021/la3041055 10.1371/journal.pone.0237295 10.1021/acs.jpcc.0c05349 10.1021/j100384a009 10.1016/j.cocis.2018.12.004 10.1146/annurev-virology-110615-042301 10.1021/la504178g 10.3390/v12040428 10.1021/acs.jpcb.0c04382 10.1021/acs.langmuir.8b02286 10.1021/acsnano.0c10833 10.1016/j.bios.2012.08.019 10.1021/acsnano.0c04674 10.1016/j.bpj.2020.11.128 10.1021/acs.jpcc.6b03226 10.1016/j.bbrc.2020.02.071 10.1038/s41598-021-92388-5 10.1021/ja00316a012 10.1101/2020.11.24.20237628 10.1021/jp038048x |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 American Chemical Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1021/acs.jpcb.1c06050 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 11090 |
ExternalDocumentID | oai_HAL_hal_03622153v1 34570497 10_1021_acs_jpcb_1c06050 a45172469 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 123 29L 4.4 53G 55A 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED F5P GGK GNL IH9 IHE JG K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI --- -~X .DC .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV CITATION CUPRZ ED~ JG~ XSW YQT ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 186 1XC 6TJ 9M8 ABDPE ACRPL ADNMO AETEA AEYZD AFFNX AGQPQ AI. ANPPW ANTXH EJD LG6 MVM NHB UMC UQL VH1 VOH VOOES VQP XOL ZCG |
ID | FETCH-LOGICAL-a445t-7c141d7beef1de4d7d59eab48efd56a9e9eddca4f31e3d7aa8ffb4ee44524d303 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Fri May 09 12:19:46 EDT 2025 Fri Jul 11 05:43:50 EDT 2025 Fri Jul 11 05:10:07 EDT 2025 Thu Apr 03 07:07:29 EDT 2025 Tue Jul 01 04:08:21 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Sat Oct 09 10:10:06 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a445t-7c141d7beef1de4d7d59eab48efd56a9e9eddca4f31e3d7aa8ffb4ee44524d303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1326-3091 0000-0002-5324-3853 0000-0003-3479-3371 |
OpenAccessLink | https://hal.science/hal-03622153 |
PMID | 34570497 |
PQID | 2577453154 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_03622153v1 proquest_miscellaneous_2636710257 proquest_miscellaneous_2577453154 pubmed_primary_34570497 crossref_citationtrail_10_1021_acs_jpcb_1c06050 crossref_primary_10_1021_acs_jpcb_1c06050 acs_journals_10_1021_acs_jpcb_1c06050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-07 |
PublicationDateYYYYMMDD | 2021-10-07 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 Al Ahmad M. (ref5/cit5) 2020 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref16/cit16 doi: 10.1016/j.cell.2020.03.045 – ident: ref22/cit22 doi: 10.1021/acs.langmuir.1c00338 – ident: ref20/cit20 doi: 10.1073/pnas.1816909116 – ident: ref33/cit33 doi: 10.1021/ci500020m – ident: ref25/cit25 doi: 10.1016/0263-7855(96)00018-5 – ident: ref26/cit26 doi: 10.1021/ja9621760 – ident: ref40/cit40 doi: 10.1021/acs.jpcb.1c03849 – ident: ref12/cit12 doi: 10.1021/acsptsci.0c00161 – ident: ref9/cit9 doi: 10.1126/science.abb2762 – ident: ref37/cit37 doi: 10.1002/pro.3280 – ident: ref24/cit24 doi: 10.1002/jcc.20291 – ident: ref42/cit42 doi: 10.1021/bc034146+ – ident: ref28/cit28 doi: 10.1021/j100401a037 – ident: ref41/cit41 doi: 10.1021/acs.chemrev.9b00410 – ident: ref13/cit13 doi: 10.1038/s41598-020-74715-4 – ident: ref1/cit1 doi: 10.1006/rwvi.1999.0055 – ident: ref34/cit34 doi: 10.1038/s41598-020-71188-3 – ident: ref3/cit3 doi: 10.1038/s41467-020-18319-6 – ident: ref6/cit6 doi: 10.1126/science.abc0870 – ident: ref15/cit15 doi: 10.1038/s41586-020-2180-5 – ident: ref2/cit2 doi: 10.1126/science.abb2507 – ident: ref29/cit29 doi: 10.1063/1.445869 – ident: ref17/cit17 doi: 10.1021/la3041055 – ident: ref14/cit14 doi: 10.1371/journal.pone.0237295 – ident: ref23/cit23 doi: 10.1021/acs.jpcc.0c05349 – ident: ref30/cit30 doi: 10.1021/j100384a009 – ident: ref35/cit35 doi: 10.1016/j.cocis.2018.12.004 – ident: ref4/cit4 doi: 10.1146/annurev-virology-110615-042301 – ident: ref27/cit27 doi: 10.1021/la504178g – ident: ref10/cit10 doi: 10.3390/v12040428 – ident: ref19/cit19 doi: 10.1021/acs.jpcb.0c04382 – ident: ref32/cit32 doi: 10.1021/acs.langmuir.8b02286 – ident: ref39/cit39 doi: 10.1021/acsnano.0c10833 – ident: ref18/cit18 doi: 10.1016/j.bios.2012.08.019 – ident: ref38/cit38 doi: 10.1021/acsnano.0c04674 – ident: ref11/cit11 doi: 10.1016/j.bpj.2020.11.128 – ident: ref21/cit21 doi: 10.1021/acs.jpcc.6b03226 – ident: ref8/cit8 doi: 10.1016/j.bbrc.2020.02.071 – ident: ref7/cit7 doi: 10.1038/s41598-021-92388-5 – ident: ref31/cit31 doi: 10.1021/ja00316a012 – volume-title: Development of an Optical Assay to Detect SARS-CoV-2 Spike Protein Binding Interactions with ACE2 and Disruption of these Interactions Using Electric Current year: 2020 ident: ref5/cit5 doi: 10.1101/2020.11.24.20237628 – ident: ref36/cit36 doi: 10.1021/jp038048x |
SSID | ssj0025286 |
Score | 2.432036 |
Snippet | In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in... |
SourceID | hal proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11078 |
SubjectTerms | adsorption Angiotensin-Converting Enzyme 2 B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials bioactive properties Biochemistry, Molecular Biology Chemical Sciences COVID-19 COVID-19 infection energy Gibbs free energy Humans hydrogen Life Sciences Microbiology and Parasitology molecular dynamics Molecular Dynamics Simulation mutation or physical chemistry peptidyl-dipeptidase A SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 silane Silanes Spike Glycoprotein, Coronavirus - genetics Theoretical and Virology viruses |
Title | Curious Binding Energy Increase between the Receptor-Binding Domain of the SARS-CoV‑2 Spike Protein and Angiotensin-Converting Enzyme 2 Adsorbed on a Silane Monolayer from Molecular Dynamics Simulations |
URI | http://dx.doi.org/10.1021/acs.jpcb.1c06050 https://www.ncbi.nlm.nih.gov/pubmed/34570497 https://www.proquest.com/docview/2577453154 https://www.proquest.com/docview/2636710257 https://hal.science/hal-03622153 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagHOBS_unyJ4PgwCHb2rHjzXFJW60QIEQo6i2K7TGEsslqs4vUnngF3oun4EkYe5NF_K16TDJOFHvs-T758wwhTxIMMzplceRAyEjERkZ6pHQEhktuU8ad80Tx1etkciReHMvjX2ly_tzB52y3NO3w08zoITN7iL2Rnl_iCc5hD4OyfE2uJA9VHTEceTq0129J_usNPhCZ9rdAdPGjl0H-D2OGWHN4dVW0qA0pCr3E5GS4XOihOfs7geM5fuMa2e4gJx2vfOQ6uQD1DXI56yu93STfs-XcS2Hp8yqccaEH4UAgxbXDS9aBdmIuimCRIs6EGRL1qDfeb6ZlVdPGhcf5-G0eZc37H1-_cZrPqhOgb3wqCLQoa0vH9YeqCaL5Gq3qUAw6fPDsdAqU07Ftm7kGSxu0p3nlpbgU1x0k4MgNqD8Mg5ddRV-6f1qX08q0aDjtypC1t8jR4cG7bBJ1VR6iUgi5iJRhglmlARyzIKyyMoVSixE4K5MyhRSsNaVwMYPYqrIcOacFADbmwmIEvk226qaGHUKN0yphFimjtcJnNuQjNzJxbHkiQepkQJ7iMBTdLG2LsAHPWRFu4tgU3dgMyG7vGoXpUqX7ih2fN7R4tm4xW6UJ2WD7GL1tbebze0_GLwt_z8MJxGDxFzYgj3pnLNAb_C4Odji6QoFrrBK4ckqxwSaJEw8dpRqQOytPXn8vFlIhLVR3z9kZ98gV7nU8XjSh7pOtxXwJDxCILfTDMAN_Aqc1MSs |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NctMwENaUcigX_inhVzBw4OC0kiUrOZq0nQBph2lapjePJa3AlNiZOGWmPfEKvBdPwZOwUuwwMJCBo-WV_7TWft_o0y4hzxIMM7rP4siBkJGIjYx0T-kIDJfc9hl3zhPF_YNkeCxen8iTNcLavTD4EDVeqQ6L-D-zC7At3_ZxanSXmW2E4MjSLyMW4d6p08F4ybEkD8UdMSp5VrTdrkz-6Qo-Hpn6l3h06YNXQ_4NaoaQs3eNHC4fNihNTrtnc901F7_lcfyvt7lOrjYAlKYLj7lB1qC8STYGbd23W-Tb4GzmhbH0ZRF2vNDdsD2Q4kziBexAG2kXRehIEXXCFGl71BrvVJO8KGnlwulxejiOBtW771--cjqeFqdA3_rEEGiRl5am5fuiChL6Eq3KUBo63PDifAKU09TW1UyDpRXa03HhhbkUZyGk48gUqN8ag4dNfV-6c17mk8LUaDhpipLVt8nx3u7RYBg1NR-iXAg5j5RhglmlARyzIKyysg-5Fj1wViZ5H_pgrcmFixnEVuV5zzktALAzFxbj8R2yXlYl3CXUOK0SZpFAWit8nkPecz0Tx5YnEqROOuQ5DkPW_LN1FpbjOctCI45N1oxNh2y1HpKZJnG6r9_xaUWPF8se00XSkBW2T9HplmY-2_cwHWW-zYMLRGTxZ9YhT1qfzNAb_JoOfnB0hQxnXCVwHpVihU0SJx5IStUhmwuHXt4vFlIhSVT3_vFjPCYbw6P9UTZ6dfDmPrnCvcLHyynUA7I-n53BQ4Roc_0o_JQ_ANIAOYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELaWRQIu_C-UX4PgwCHdtWPH7TG0WxVYVivKrvYWxX8QliZV0yLtnngF3oun4EmYcZNKIFjBMc44ceKx5_s04xlCniVgZnSfxZF3QkYiNjLSPaUjZ7jkts-490gU3-4n40Px-lgebxDZnoWBQdTwpDo48XFVz6xvMgywbWz_NDO6y8wOwHBg6hfRa4eKnQ4ma54leSjwCJYJmdFO65380xPQJpn6F5t04SNGRP4NbgazM7pGjtYDDtEmJ93lQnfN2W-5HP_7i66Tqw0QpelKc26QDVfeJJcHbf23W-T7YDnHAFn6sggnX-huOCZIYUfBQHZHmxAvChCSAvp0M6DvUSs8rKZ5UdLKh9uT9N0kGlRHP75-43QyK04cPcAEESCRl5am5YeiCqH0JUiVoUR0eOHZ6dRRTlNbV3PtLK1Ank4KDNClsBsBLQfGQPGIDFw2dX7p8LTMp4WpQXDaFCerb5PD0e77wThqaj9EuRByESnDBLNKO-eZdcIqK_su16LnvJVJ3nd9Z63JhY-Zi63K8573WjgHnbmwYJe3yGZZle4uocZrlTALRNJagfkOec_3TBxbnkgnddIhz2Easmbt1llwy3OWhUaYm6yZmw7ZbrUkM00Cdazj8fmcHi_WPWar5CHnyD4FxVuLYdbvcbqXYRuCDEBm8RfWIU9avcxAG9C3Az8cVCGDnVcJ2E-lOEcmiRMElFJ1yJ2VUq_fFwupgCyqe__4Mx6TSwfDUbb3av_NfXKFY6APRlWoB2RzMV-6h4DUFvpRWJc_AbH-PA8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curious+Binding+Energy+Increase+between+the+Receptor-Binding+Domain+of+the+SARS-CoV-2+Spike+Protein+and+Angiotensin-Converting+Enzyme+2+Adsorbed+on+a+Silane+Monolayer+from+Molecular+Dynamics+Simulations&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Lecot%2C+Sol%C3%A8ne&rft.au=Chevolot%2C+Yann&rft.au=Phaner-Goutorbe%2C+Magali&rft.au=Yeromonahos%2C+Christelle&rft.date=2021-10-07&rft.eissn=1520-5207&rft.volume=125&rft.issue=39&rft.spage=11078&rft_id=info:doi/10.1021%2Facs.jpcb.1c06050&rft_id=info%3Apmid%2F34570497&rft.externalDocID=34570497 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |