Reversible Binding of the HPLC6 Isoform of Type I Antifreeze Proteins to Ice Surfaces and the Antifreeze Mechanism Studied by Multiple Quantum Filtering−Spin Exchange NMR Experiment
Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly ac...
Saved in:
Published in | Journal of the American Chemical Society Vol. 125; no. 2; pp. 330 - 331 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.01.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering−spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect. |
---|---|
AbstractList | Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering-spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect.Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering-spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect. Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering-spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect. Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering−spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect. |
Author | Wongskhaluang, Jeff Ba, Yong Li, Jiabo |
Author_xml | – sequence: 1 givenname: Yong surname: Ba fullname: Ba, Yong – sequence: 2 givenname: Jeff surname: Wongskhaluang fullname: Wongskhaluang, Jeff – sequence: 3 givenname: Jiabo surname: Li fullname: Li, Jiabo |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14465081$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12517134$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdFu0zAUhiM0xLrBBS-AfAMSF2G2E8fN5VatW0U7ujWCS8t1TjaXxAm2g1aegGtehvfhSXBp6RDaja1jf_9_fp1zFB2Y1kAUvST4HcGUnKwkppwx3j-JBoRRHDNCs4NogDGmMR9myWF05NwqlCkdkmfRIaGMcJKkg-jnDXwF6_SyBnSmTanNLWor5O8AXc6nowxNXFu1ttk8FusO0ASdGq8rC_AN0Ny2HrRxyLdoogAteltJBQ5JU_7x-IedgbqTRrsGLXxfaijRco1mfe11F3pf99L4vkFjXXuwIcWv7z8WnTbo_H4juwV0NbsJRRc-GzD-efS0krWDF7v7OCrG58XoMp5-uJiMTqexTFPmY54rjGWS5yUtgeQpz1Qmq5KqClPKISW0oolKM4UTlpUVx4SWLC_5MmEqHMlx9GZr29n2Sw_Oi0Y7BXUtDbS9E5zmDBOcB_DVDuyXDZSiCzGlXYu_kw7A6x0gnZJ1ZaVR2j1waZoxPCSBO9lyyrbOWaiE0l563Rpvpa4FwWKzc7HfeVC8_U-xN32Ejbesdh7u96C0n0XGE85EMV8I8r4Yf_p4fSGuHlJL5cSq7a0Jw37E9zccC8kB |
CODEN | JACSAT |
CitedBy_id | crossref_primary_10_1529_biophysj_106_096297 crossref_primary_10_1021_cg800269w crossref_primary_10_1021_acs_jpcb_3c05934 crossref_primary_10_1016_j_colsurfb_2010_08_029 crossref_primary_10_1016_j_pbiomolbio_2015_09_001 crossref_primary_10_1007_s10867_012_9291_7 crossref_primary_10_1021_acs_biomac_4c00040 crossref_primary_10_1021_acs_chemrev_7b00285 crossref_primary_10_1116_1_4939462 crossref_primary_10_1021_acs_jpcb_5b04919 crossref_primary_10_1016_j_jct_2012_04_028 crossref_primary_10_3390_ijms23052639 crossref_primary_10_1073_pnas_2212456120 crossref_primary_10_1073_pnas_1009369107 crossref_primary_10_1021_bm300366f crossref_primary_10_1021_acs_jpcb_8b00846 crossref_primary_10_1002_adts_202400642 crossref_primary_10_1016_j_cplett_2012_11_019 crossref_primary_10_1039_C6SM02867E crossref_primary_10_1007_s00249_018_1285_3 crossref_primary_10_1002_prot_20889 crossref_primary_10_1021_acs_langmuir_7b01733 crossref_primary_10_1529_biophysj_105_071316 crossref_primary_10_1021_acs_jpcb_8b08506 crossref_primary_10_1080_08927022_2011_600759 crossref_primary_10_1021_jp508992e crossref_primary_10_1063_1_2238870 crossref_primary_10_1021_jp412528b crossref_primary_10_1016_j_ijbiomac_2021_09_211 crossref_primary_10_1073_pnas_1213603110 |
Cites_doi | 10.1016/S0006-3495(92)81750-2 10.1016/S0006-3495(98)77862-2 10.1074/jbc.273.19.11714 10.1016/S0006-3495(91)82234-2 10.1016/S0021-9258(19)84574-X 10.1111/j.1432-1033.1992.tb19824.x 10.1016/0300-9629(76)90035-9 10.1016/S0021-9258(19)49684-1 10.1021/cr950260c 10.1021/bi970817d 10.1046/j.1432-1327.1999.00617.x 10.1063/1.476288 10.1007/s000180050289 10.1038/375427a0 10.1016/0005-2795(77)90395-6 |
ContentType | Journal Article |
Copyright | Copyright © 2003 American Chemical Society 2003 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2003 American Chemical Society – notice: 2003 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/ja027557u |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 331 |
ExternalDocumentID | 12517134 14465081 10_1021_ja027557u ark_67375_TPS_1KTFWVQG_N e74730661 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM08101 – fundername: NIGMS NIH HHS grantid: S06 GM008101 |
GroupedDBID | - .K2 02 186 3EH 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABDEX ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS ADKFC AEESW AENEX AETEA AFEFF AFFDN AFFNX AFMIJ AIDAL ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 DU5 DZ EBS ED ED~ EJD ET F20 F5P GJ GNL IH9 IHE JG JG~ K2 K78 LG6 MVM NHB OHT P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UNC UPT UQL VF5 VG9 VQA W1F WH7 X XFK YZZ ZCG ZE2 ZGI ZHY --- -DZ -ET -~X .DC .GJ 6TJ AAHBH AAYOK ABJNI ABQRX ACBEA ACGFO ADHLV ADOJD AGXLV AHGAQ BSCLL CUPRZ GGK IH2 XOL XSW YQT ZCA ~02 AAYXX ABBLG ABLBI ACRPL ADNMO ADXHL AEYZD AGQPQ AHDLI ANPPW CITATION YR5 .HR 1WB 3O- 41~ AAUPJ AAYJJ AAYWT ABHMW ABWLT ACBNA ACKIV AI. BKOMP D0S IQODW P-O RNS UBC UBX VH1 X7L YXA YXE YYP ZY4 CGR CUY CVF ECM EIF NPM VXZ YIN 7X8 |
ID | FETCH-LOGICAL-a445t-79c00a399d2de19476c6afd2cf0227e412f23c46c0356df7012d59d7b35c7b33 |
IEDL.DBID | ACS |
ISSN | 0002-7863 |
IngestDate | Tue Aug 05 10:58:21 EDT 2025 Wed Feb 19 02:35:08 EST 2025 Mon Jul 21 09:14:31 EDT 2025 Tue Jul 01 02:25:26 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Wed Oct 30 09:39:00 EDT 2024 Thu Aug 27 13:50:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Binding Antifreeze Electrochemical analysis NMR spectrometry Investigation method Antifreeze protein |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a445t-79c00a399d2de19476c6afd2cf0227e412f23c46c0356df7012d59d7b35c7b33 |
Notes | istex:9FE9C21DEF73CA74ACBB6A0E17DBB6CE077DFEEA ark:/67375/TPS-1KTFWVQG-N ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 12517134 |
PQID | 72950109 |
PQPubID | 23479 |
PageCount | 2 |
ParticipantIDs | proquest_miscellaneous_72950109 pubmed_primary_12517134 pascalfrancis_primary_14465081 crossref_citationtrail_10_1021_ja027557u crossref_primary_10_1021_ja027557u istex_primary_ark_67375_TPS_1KTFWVQG_N acs_journals_10_1021_ja027557u |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-01-15 |
PublicationDateYYYYMMDD | 2003-01-15 |
PublicationDate_xml | – month: 01 year: 2003 text: 2003-01-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2003 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Devries A. L. (ja027557ub00008/ja027557ub00008_1) 1977; 495 Sicheri F. (ja027557ub00005/ja027557ub00005_1) 1995; 375 Chao H. (ja027557ub00010/ja027557ub00010_1) 1997; 36 Wen D. (ja027557ub00016/ja027557ub00016_1) 1992; 63 Harding M. M. (ja027557ub00004/ja027557ub00004_1) 1999; 264 Ewart K. V. (ja027557ub00001/ja027557ub00001_1) 1999; 55 Yeh Y. (ja027557ub00012/ja027557ub00012_1) 1996; 96 Atkins P. (ja027557ub00015/ja027557ub00015_1) 2002 Burcham T. S. (ja027557ub00018/ja027557ub00018_1) 1986; 261 Wilson P. W (ja027557ub00011/ja027557ub00011_1) 1993; 14 Wen D. (ja027557ub00009/ja027557ub00009_1) 1992; 267 Duman J. G. (ja027557ub00002/ja027557ub00002_1) 1993; 2 Ba Y. (ja027557ub00013/ja027557ub00013_1) 1998; 108 The HPLC6 peptide (90−99%) purified from the serum of winter flounder was purchased from A/F Protein Inc. (ja027557ub00014/ja027557ub00014_1) Hew C. L. (ja027557ub00019/ja027557ub00019_1) 1992; 203 Knight C. A. (ja027557ub00006/ja027557ub00006_1) 1991; 59 Duman J. G. (ja027557ub00003/ja027557ub00003_1) 1976; 54 Houston M. E. (ja027557ub00007/ja027557ub00007_1) 1998; 273 DeLuca C. I. (ja027557ub00017/ja027557ub00017_1) 1998; 74 |
References_xml | – volume: 2 start-page: 131 year: 1993 ident: ja027557ub00002/ja027557ub00002_1 publication-title: Adv. Low-Temp. Biol. – volume: 63 start-page: 1659 year: 1992 ident: ja027557ub00016/ja027557ub00016_1 publication-title: Biophys. J. doi: 10.1016/S0006-3495(92)81750-2 – volume: 74 start-page: 1502 year: 1998 ident: ja027557ub00017/ja027557ub00017_1 publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77862-2 – volume: 273 start-page: 11714 year: 1998 ident: ja027557ub00007/ja027557ub00007_1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.19.11714 – volume: 59 start-page: 409 year: 1991 ident: ja027557ub00006/ja027557ub00006_1 publication-title: Biophys. J. doi: 10.1016/S0006-3495(91)82234-2 – volume: 261 start-page: 6390 year: 1986 ident: ja027557ub00018/ja027557ub00018_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)84574-X – volume: 203 start-page: 33 year: 1992 ident: ja027557ub00019/ja027557ub00019_1 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1992.tb19824.x – volume: 54 start-page: 375 year: 1976 ident: ja027557ub00003/ja027557ub00003_1 publication-title: Comp. Biochem. Physiol. doi: 10.1016/0300-9629(76)90035-9 – volume: 267 start-page: 14102 year: 1992 ident: ja027557ub00009/ja027557ub00009_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)49684-1 – volume: 96 start-page: 601 year: 1996 ident: ja027557ub00012/ja027557ub00012_1 publication-title: Chem. Rev. doi: 10.1021/cr950260c – volume-title: The peptide was pretreated twice by being dissolved in deuterated water (99.996% ident: ja027557ub00014/ja027557ub00014_1 – volume: 36 start-page: 14652 year: 1997 ident: ja027557ub00010/ja027557ub00010_1 publication-title: Biochemistry doi: 10.1021/bi970817d – volume: 264 start-page: 653 year: 1999 ident: ja027557ub00004/ja027557ub00004_1 publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1999.00617.x – volume: 14 start-page: 31 year: 1993 ident: ja027557ub00011/ja027557ub00011_1 publication-title: Cryo-Lett. – volume: 108 start-page: 8589 year: 1998 ident: ja027557ub00013/ja027557ub00013_1 publication-title: J. Chem. Phys. doi: 10.1063/1.476288 – volume-title: Physical Chemistry year: 2002 ident: ja027557ub00015/ja027557ub00015_1 – volume: 55 start-page: 271 year: 1999 ident: ja027557ub00001/ja027557ub00001_1 publication-title: Cell Mol. Life Sci. doi: 10.1007/s000180050289 – volume: 375 start-page: 427 year: 1995 ident: ja027557ub00005/ja027557ub00005_1 publication-title: Nature doi: 10.1038/375427a0 – volume: 495 start-page: 388 year: 1977 ident: ja027557ub00008/ja027557ub00008_1 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2795(77)90395-6 |
SSID | ssj0004281 |
Score | 1.8809587 |
Snippet | Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that... |
SourceID | proquest pubmed pascalfrancis crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 330 |
SubjectTerms | Analytical chemistry Antifreeze Proteins, Type I - chemistry Antifreeze Proteins, Type I - metabolism Chemistry Deuterium Electrochemical methods Exact sciences and technology Ice Kinetics Nuclear Magnetic Resonance, Biomolecular - methods Protein Binding Quantum Theory |
Title | Reversible Binding of the HPLC6 Isoform of Type I Antifreeze Proteins to Ice Surfaces and the Antifreeze Mechanism Studied by Multiple Quantum Filtering−Spin Exchange NMR Experiment |
URI | http://dx.doi.org/10.1021/ja027557u https://api.istex.fr/ark:/67375/TPS-1KTFWVQG-N/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/12517134 https://www.proquest.com/docview/72950109 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dbtMwFLbGdgE3_P-Un3EECHGTKXbspLkcpaUFWnVrYbuLHNuRom3J1CTS2BNwzcvwPjwJPknTbmKDm1xEx5ZjH8efdb7zHULeCFeFSnDmcKpDhxsj7X_Q85zYD0Oh_DiUqibITvzhV_7pUBxukNfXRPAZ6gNhZE0E1Q2yxXy7eRH_9Gbr5EfWpS3GDbq-18oHXWyKR48qLh09WziLZ0iFlIWdjaQpY3E9zqzPm8Ed8qHN2mloJkc7VRnvqPO_RRz_9Sl3ye0l3oTdxkHukQ2T3Sc3e22Ztwfk176pmRnxsYH3aZ3jAnkCFhfCcPql58OoyBHY4ku8tMIIdpFgtDDm3MAUZR7SrIAyh5EyMKsWCZK8QGa67uOC7dhglnFanEBDXtQQf4fxktAIe5Vd4-oEBinG7-0ofv_4OTtNM-ifNcnJMBnvQ39VkOAhmQ_6897QWVZzcCTnonSCULmutHhIM21oyANf-TLRTCWoYmg4ZQnzFPeV6wlfJ4E9ObUIdRB7QtmH94hsZnlmnhCgPE7CGMGa0Jxy2U10oBPXItturJkMO2Tbrna03IxFVMfZmb3ntNPfIe9aR4jUUgodK3IcX2X6amV62uh_XGX0tvamlYVcHCFhLhDRfDqL6Of54ODb3sdoYkd2yd3WXaJunUVnHfKy9b_I-gEGb2Rm8qqI7CVIYBizQx43brlui6pz1ONP__fZz8itmoroUoeK52SzXFTmhYVUZbxdb6k_aEwb8A |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbtMwFLZguxg3_DPKz3aEEOImU37spLksVUvL2qpbC-wucmxHirYlU5NIY0_ANS_D-_Ak-DhJu6EhuMlFdGzZznH8Wec73yHkLbNFKBh1LerI0KJKcf0f9Dwr9sOQCT8OuTAE2Zk_-kw_nbCTRiYHc2H0IArdU2GC-Bt1AZQJwgAbC6q7ZFuDEBe9uddfbHIg3a7TQt2g63utitD1pngCieLGCbSNi3mJjEhe6EVJ6moWf4eb5tgZPqjrF5kBG7bJ6UFVxgfi6g8tx_-b0UNyv0Gf0Kvd5RG5o7LHZKffFn17Qn4eK8PTiM8UfEhNxgvkCWiUCKP5pO_DuMgR5uJLvMLCGHpIN1opdaVgjqIPaVZAmcNYKFhUqwQpX8Azafq4ZjtVmHOcFudQUxklxN9g2tAb4ajSX7w6h2GK0Xw9il_ffywu0gwGl3WqMsymxzBYlyd4SpbDwbI_spraDhanlJVWEArb5hodSVcqJ6SBL3yeSFckqGmoqOMmrieoL2yP-TIJ9DkqWSiD2GNCP7xnZCvLM_WcgEPjJIwRujFJHcq7iQxkYmuc242ly8MO2dOrHzVbs4hM1N3Vt552-TvkfesPkWiE0bE-x9ltpm_Wphe1GshtRu-MU60t-OoU6XMBi5bzReQcLodfvxx9jGZ6ZDe8btMlqthprNYh-60bRtoPMJTDM5VXRaSvRAyDmh2yW3vnpi1q0DkeffGvae-TndFyOokm49nhS3LPkBRtx3LYK7JVrir1WoOtMt4zu-w3bu0kUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgk4CXcWflsh0hhHjJlIudNI-ltLRsLd1axt4ixxep2pZWTSON_QKe-TP8H34JPk7SbmgIXvIQHVuOfRx_1vnOdwh5w1wRC0Z9h3oydqhS3PwHg8BJwzhmIkxjLixBdhj2vtBPJ-ykuihiLowZRG56ym0QH3f1XOpKYQClgjDIxqLiNtnEcB16dKs9XudB-k2vhrtRMwxqJaGrTfEUEvm1U2gTJ_QCWZE8NxOjy4oWf4ec9ujp3iefV4O2jJPTvWKZ7onLP_Qc__-rHpCtCoVCq3Sbh-SWyh6Ru-26-Ntj8vNIWb5Geqbg_dRmvsBMg0GL0BsdtEPo5zOEu_gSr7LQhxbSjhZKXSoYofjDNMthOYO-UDAuFhqpX8Azafu4YjtQmHs8zc-hpDRKSL_BoKI5wmFhVr44h-4Uo_pmFL--_xjPpxl0LsqUZRgOjqCzKlPwhEy6nUm751Q1HhxOKVs6USxclxuUJH2pvJhGoQi5lr7QqG2oqOdrPxA0FG7AQqkjc55KFssoDZgwj-Ap2chmmdom4NFUxylCOCapR3lTy0hq1-DdZip9HjfIjlmBpNqieWKj7765_dTT3yDvap9IRCWQjnU6zm4yfb0ynZeqIDcZvbWOtbLgi1Ok0UUsmYzGibc_6X49PvyYDM3IrnneuktUszOYrUF2a1dMjB9gSIdnalbkibkaMQxuNsiz0kPXbVGLzgvo83999i65M_rQTQ76w_0X5J7lKrqe47GXZGO5KNQrg7mW6Y7daL8Bytcm1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+Binding+of+the+HPLC6+Isoform+of+Type+I+Antifreeze+Proteins+to+Ice+Surfaces+and+the+Antifreeze+Mechanism+Studied+by+Multiple+Quantum+Filtering%E2%88%92Spin+Exchange+NMR+Experiment&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=BA%2C+Yong&rft.au=WONGSKHALUANG%2C+Jeff&rft.au=LI%2C+Jiabo&rft.date=2003-01-15&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=125&rft.issue=2&rft.spage=330&rft.epage=331&rft_id=info:doi/10.1021%2Fja027557u&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_1KTFWVQG_N |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |