Reversible Binding of the HPLC6 Isoform of Type I Antifreeze Proteins to Ice Surfaces and the Antifreeze Mechanism Studied by Multiple Quantum Filtering−Spin Exchange NMR Experiment

Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly ac...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 125; no. 2; pp. 330 - 331
Main Authors Ba, Yong, Wongskhaluang, Jeff, Li, Jiabo
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.01.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering−spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect.
AbstractList Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering-spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect.Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering-spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect.
Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering-spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect.
Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering−spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect.
Author Wongskhaluang, Jeff
Ba, Yong
Li, Jiabo
Author_xml – sequence: 1
  givenname: Yong
  surname: Ba
  fullname: Ba, Yong
– sequence: 2
  givenname: Jeff
  surname: Wongskhaluang
  fullname: Wongskhaluang, Jeff
– sequence: 3
  givenname: Jiabo
  surname: Li
  fullname: Li, Jiabo
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14465081$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12517134$$D View this record in MEDLINE/PubMed
BookMark eNptkdFu0zAUhiM0xLrBBS-AfAMSF2G2E8fN5VatW0U7ujWCS8t1TjaXxAm2g1aegGtehvfhSXBp6RDaja1jf_9_fp1zFB2Y1kAUvST4HcGUnKwkppwx3j-JBoRRHDNCs4NogDGmMR9myWF05NwqlCkdkmfRIaGMcJKkg-jnDXwF6_SyBnSmTanNLWor5O8AXc6nowxNXFu1ttk8FusO0ASdGq8rC_AN0Ny2HrRxyLdoogAteltJBQ5JU_7x-IedgbqTRrsGLXxfaijRco1mfe11F3pf99L4vkFjXXuwIcWv7z8WnTbo_H4juwV0NbsJRRc-GzD-efS0krWDF7v7OCrG58XoMp5-uJiMTqexTFPmY54rjGWS5yUtgeQpz1Qmq5KqClPKISW0oolKM4UTlpUVx4SWLC_5MmEqHMlx9GZr29n2Sw_Oi0Y7BXUtDbS9E5zmDBOcB_DVDuyXDZSiCzGlXYu_kw7A6x0gnZJ1ZaVR2j1waZoxPCSBO9lyyrbOWaiE0l563Rpvpa4FwWKzc7HfeVC8_U-xN32Ejbesdh7u96C0n0XGE85EMV8I8r4Yf_p4fSGuHlJL5cSq7a0Jw37E9zccC8kB
CODEN JACSAT
CitedBy_id crossref_primary_10_1529_biophysj_106_096297
crossref_primary_10_1021_cg800269w
crossref_primary_10_1021_acs_jpcb_3c05934
crossref_primary_10_1016_j_colsurfb_2010_08_029
crossref_primary_10_1016_j_pbiomolbio_2015_09_001
crossref_primary_10_1007_s10867_012_9291_7
crossref_primary_10_1021_acs_biomac_4c00040
crossref_primary_10_1021_acs_chemrev_7b00285
crossref_primary_10_1116_1_4939462
crossref_primary_10_1021_acs_jpcb_5b04919
crossref_primary_10_1016_j_jct_2012_04_028
crossref_primary_10_3390_ijms23052639
crossref_primary_10_1073_pnas_2212456120
crossref_primary_10_1073_pnas_1009369107
crossref_primary_10_1021_bm300366f
crossref_primary_10_1021_acs_jpcb_8b00846
crossref_primary_10_1002_adts_202400642
crossref_primary_10_1016_j_cplett_2012_11_019
crossref_primary_10_1039_C6SM02867E
crossref_primary_10_1007_s00249_018_1285_3
crossref_primary_10_1002_prot_20889
crossref_primary_10_1021_acs_langmuir_7b01733
crossref_primary_10_1529_biophysj_105_071316
crossref_primary_10_1021_acs_jpcb_8b08506
crossref_primary_10_1080_08927022_2011_600759
crossref_primary_10_1021_jp508992e
crossref_primary_10_1063_1_2238870
crossref_primary_10_1021_jp412528b
crossref_primary_10_1016_j_ijbiomac_2021_09_211
crossref_primary_10_1073_pnas_1213603110
Cites_doi 10.1016/S0006-3495(92)81750-2
10.1016/S0006-3495(98)77862-2
10.1074/jbc.273.19.11714
10.1016/S0006-3495(91)82234-2
10.1016/S0021-9258(19)84574-X
10.1111/j.1432-1033.1992.tb19824.x
10.1016/0300-9629(76)90035-9
10.1016/S0021-9258(19)49684-1
10.1021/cr950260c
10.1021/bi970817d
10.1046/j.1432-1327.1999.00617.x
10.1063/1.476288
10.1007/s000180050289
10.1038/375427a0
10.1016/0005-2795(77)90395-6
ContentType Journal Article
Copyright Copyright © 2003 American Chemical Society
2003 INIST-CNRS
Copyright_xml – notice: Copyright © 2003 American Chemical Society
– notice: 2003 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ja027557u
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 331
ExternalDocumentID 12517134
14465081
10_1021_ja027557u
ark_67375_TPS_1KTFWVQG_N
e74730661
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM08101
– fundername: NIGMS NIH HHS
  grantid: S06 GM008101
GroupedDBID -
.K2
02
186
3EH
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABDEX
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
ADKFC
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F20
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
MVM
NHB
OHT
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZCG
ZE2
ZGI
ZHY
---
-DZ
-ET
-~X
.DC
.GJ
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
ADOJD
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
IH2
XOL
XSW
YQT
ZCA
~02
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
ADXHL
AEYZD
AGQPQ
AHDLI
ANPPW
CITATION
YR5
.HR
1WB
3O-
41~
AAUPJ
AAYJJ
AAYWT
ABHMW
ABWLT
ACBNA
ACKIV
AI.
BKOMP
D0S
IQODW
P-O
RNS
UBC
UBX
VH1
X7L
YXA
YXE
YYP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIN
7X8
ID FETCH-LOGICAL-a445t-79c00a399d2de19476c6afd2cf0227e412f23c46c0356df7012d59d7b35c7b33
IEDL.DBID ACS
ISSN 0002-7863
IngestDate Tue Aug 05 10:58:21 EDT 2025
Wed Feb 19 02:35:08 EST 2025
Mon Jul 21 09:14:31 EDT 2025
Tue Jul 01 02:25:26 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Wed Oct 30 09:39:00 EDT 2024
Thu Aug 27 13:50:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Binding
Antifreeze
Electrochemical analysis
NMR spectrometry
Investigation method
Antifreeze protein
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a445t-79c00a399d2de19476c6afd2cf0227e412f23c46c0356df7012d59d7b35c7b33
Notes istex:9FE9C21DEF73CA74ACBB6A0E17DBB6CE077DFEEA
ark:/67375/TPS-1KTFWVQG-N
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12517134
PQID 72950109
PQPubID 23479
PageCount 2
ParticipantIDs proquest_miscellaneous_72950109
pubmed_primary_12517134
pascalfrancis_primary_14465081
crossref_citationtrail_10_1021_ja027557u
crossref_primary_10_1021_ja027557u
istex_primary_ark_67375_TPS_1KTFWVQG_N
acs_journals_10_1021_ja027557u
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-01-15
PublicationDateYYYYMMDD 2003-01-15
PublicationDate_xml – month: 01
  year: 2003
  text: 2003-01-15
  day: 15
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2003
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Devries A. L. (ja027557ub00008/ja027557ub00008_1) 1977; 495
Sicheri F. (ja027557ub00005/ja027557ub00005_1) 1995; 375
Chao H. (ja027557ub00010/ja027557ub00010_1) 1997; 36
Wen D. (ja027557ub00016/ja027557ub00016_1) 1992; 63
Harding M. M. (ja027557ub00004/ja027557ub00004_1) 1999; 264
Ewart K. V. (ja027557ub00001/ja027557ub00001_1) 1999; 55
Yeh Y. (ja027557ub00012/ja027557ub00012_1) 1996; 96
Atkins P. (ja027557ub00015/ja027557ub00015_1) 2002
Burcham T. S. (ja027557ub00018/ja027557ub00018_1) 1986; 261
Wilson P. W (ja027557ub00011/ja027557ub00011_1) 1993; 14
Wen D. (ja027557ub00009/ja027557ub00009_1) 1992; 267
Duman J. G. (ja027557ub00002/ja027557ub00002_1) 1993; 2
Ba Y. (ja027557ub00013/ja027557ub00013_1) 1998; 108
The HPLC6 peptide (90−99%) purified from the serum of winter flounder was purchased from A/F Protein Inc. (ja027557ub00014/ja027557ub00014_1)
Hew C. L. (ja027557ub00019/ja027557ub00019_1) 1992; 203
Knight C. A. (ja027557ub00006/ja027557ub00006_1) 1991; 59
Duman J. G. (ja027557ub00003/ja027557ub00003_1) 1976; 54
Houston M. E. (ja027557ub00007/ja027557ub00007_1) 1998; 273
DeLuca C. I. (ja027557ub00017/ja027557ub00017_1) 1998; 74
References_xml – volume: 2
  start-page: 131
  year: 1993
  ident: ja027557ub00002/ja027557ub00002_1
  publication-title: Adv. Low-Temp. Biol.
– volume: 63
  start-page: 1659
  year: 1992
  ident: ja027557ub00016/ja027557ub00016_1
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(92)81750-2
– volume: 74
  start-page: 1502
  year: 1998
  ident: ja027557ub00017/ja027557ub00017_1
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77862-2
– volume: 273
  start-page: 11714
  year: 1998
  ident: ja027557ub00007/ja027557ub00007_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.19.11714
– volume: 59
  start-page: 409
  year: 1991
  ident: ja027557ub00006/ja027557ub00006_1
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(91)82234-2
– volume: 261
  start-page: 6390
  year: 1986
  ident: ja027557ub00018/ja027557ub00018_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)84574-X
– volume: 203
  start-page: 33
  year: 1992
  ident: ja027557ub00019/ja027557ub00019_1
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1992.tb19824.x
– volume: 54
  start-page: 375
  year: 1976
  ident: ja027557ub00003/ja027557ub00003_1
  publication-title: Comp. Biochem. Physiol.
  doi: 10.1016/0300-9629(76)90035-9
– volume: 267
  start-page: 14102
  year: 1992
  ident: ja027557ub00009/ja027557ub00009_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)49684-1
– volume: 96
  start-page: 601
  year: 1996
  ident: ja027557ub00012/ja027557ub00012_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr950260c
– volume-title: The peptide was pretreated twice by being dissolved in deuterated water (99.996%
  ident: ja027557ub00014/ja027557ub00014_1
– volume: 36
  start-page: 14652
  year: 1997
  ident: ja027557ub00010/ja027557ub00010_1
  publication-title: Biochemistry
  doi: 10.1021/bi970817d
– volume: 264
  start-page: 653
  year: 1999
  ident: ja027557ub00004/ja027557ub00004_1
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.1999.00617.x
– volume: 14
  start-page: 31
  year: 1993
  ident: ja027557ub00011/ja027557ub00011_1
  publication-title: Cryo-Lett.
– volume: 108
  start-page: 8589
  year: 1998
  ident: ja027557ub00013/ja027557ub00013_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476288
– volume-title: Physical Chemistry
  year: 2002
  ident: ja027557ub00015/ja027557ub00015_1
– volume: 55
  start-page: 271
  year: 1999
  ident: ja027557ub00001/ja027557ub00001_1
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s000180050289
– volume: 375
  start-page: 427
  year: 1995
  ident: ja027557ub00005/ja027557ub00005_1
  publication-title: Nature
  doi: 10.1038/375427a0
– volume: 495
  start-page: 388
  year: 1977
  ident: ja027557ub00008/ja027557ub00008_1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2795(77)90395-6
SSID ssj0004281
Score 1.8809587
Snippet Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that...
SourceID proquest
pubmed
pascalfrancis
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 330
SubjectTerms Analytical chemistry
Antifreeze Proteins, Type I - chemistry
Antifreeze Proteins, Type I - metabolism
Chemistry
Deuterium
Electrochemical methods
Exact sciences and technology
Ice
Kinetics
Nuclear Magnetic Resonance, Biomolecular - methods
Protein Binding
Quantum Theory
Title Reversible Binding of the HPLC6 Isoform of Type I Antifreeze Proteins to Ice Surfaces and the Antifreeze Mechanism Studied by Multiple Quantum Filtering−Spin Exchange NMR Experiment
URI http://dx.doi.org/10.1021/ja027557u
https://api.istex.fr/ark:/67375/TPS-1KTFWVQG-N/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/12517134
https://www.proquest.com/docview/72950109
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dbtMwFLbGdgE3_P-Un3EECHGTKXbspLkcpaUFWnVrYbuLHNuRom3J1CTS2BNwzcvwPjwJPknTbmKDm1xEx5ZjH8efdb7zHULeCFeFSnDmcKpDhxsj7X_Q85zYD0Oh_DiUqibITvzhV_7pUBxukNfXRPAZ6gNhZE0E1Q2yxXy7eRH_9Gbr5EfWpS3GDbq-18oHXWyKR48qLh09WziLZ0iFlIWdjaQpY3E9zqzPm8Ed8qHN2mloJkc7VRnvqPO_RRz_9Sl3ye0l3oTdxkHukQ2T3Sc3e22Ztwfk176pmRnxsYH3aZ3jAnkCFhfCcPql58OoyBHY4ku8tMIIdpFgtDDm3MAUZR7SrIAyh5EyMKsWCZK8QGa67uOC7dhglnFanEBDXtQQf4fxktAIe5Vd4-oEBinG7-0ofv_4OTtNM-ifNcnJMBnvQ39VkOAhmQ_6897QWVZzcCTnonSCULmutHhIM21oyANf-TLRTCWoYmg4ZQnzFPeV6wlfJ4E9ObUIdRB7QtmH94hsZnlmnhCgPE7CGMGa0Jxy2U10oBPXItturJkMO2Tbrna03IxFVMfZmb3ntNPfIe9aR4jUUgodK3IcX2X6amV62uh_XGX0tvamlYVcHCFhLhDRfDqL6Of54ODb3sdoYkd2yd3WXaJunUVnHfKy9b_I-gEGb2Rm8qqI7CVIYBizQx43brlui6pz1ONP__fZz8itmoroUoeK52SzXFTmhYVUZbxdb6k_aEwb8A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbtMwFLZguxg3_DPKz3aEEOImU37spLksVUvL2qpbC-wucmxHirYlU5NIY0_ANS_D-_Ak-DhJu6EhuMlFdGzZznH8Wec73yHkLbNFKBh1LerI0KJKcf0f9Dwr9sOQCT8OuTAE2Zk_-kw_nbCTRiYHc2H0IArdU2GC-Bt1AZQJwgAbC6q7ZFuDEBe9uddfbHIg3a7TQt2g63utitD1pngCieLGCbSNi3mJjEhe6EVJ6moWf4eb5tgZPqjrF5kBG7bJ6UFVxgfi6g8tx_-b0UNyv0Gf0Kvd5RG5o7LHZKffFn17Qn4eK8PTiM8UfEhNxgvkCWiUCKP5pO_DuMgR5uJLvMLCGHpIN1opdaVgjqIPaVZAmcNYKFhUqwQpX8Azafq4ZjtVmHOcFudQUxklxN9g2tAb4ajSX7w6h2GK0Xw9il_ffywu0gwGl3WqMsymxzBYlyd4SpbDwbI_spraDhanlJVWEArb5hodSVcqJ6SBL3yeSFckqGmoqOMmrieoL2yP-TIJ9DkqWSiD2GNCP7xnZCvLM_WcgEPjJIwRujFJHcq7iQxkYmuc242ly8MO2dOrHzVbs4hM1N3Vt552-TvkfesPkWiE0bE-x9ltpm_Wphe1GshtRu-MU60t-OoU6XMBi5bzReQcLodfvxx9jGZ6ZDe8btMlqthprNYh-60bRtoPMJTDM5VXRaSvRAyDmh2yW3vnpi1q0DkeffGvae-TndFyOokm49nhS3LPkBRtx3LYK7JVrir1WoOtMt4zu-w3bu0kUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgk4CXcWflsh0hhHjJlIudNI-ltLRsLd1axt4ixxep2pZWTSON_QKe-TP8H34JPk7SbmgIXvIQHVuOfRx_1vnOdwh5w1wRC0Z9h3oydqhS3PwHg8BJwzhmIkxjLixBdhj2vtBPJ-ykuihiLowZRG56ym0QH3f1XOpKYQClgjDIxqLiNtnEcB16dKs9XudB-k2vhrtRMwxqJaGrTfEUEvm1U2gTJ_QCWZE8NxOjy4oWf4ec9ujp3iefV4O2jJPTvWKZ7onLP_Qc__-rHpCtCoVCq3Sbh-SWyh6Ru-26-Ntj8vNIWb5Geqbg_dRmvsBMg0GL0BsdtEPo5zOEu_gSr7LQhxbSjhZKXSoYofjDNMthOYO-UDAuFhqpX8Azafu4YjtQmHs8zc-hpDRKSL_BoKI5wmFhVr44h-4Uo_pmFL--_xjPpxl0LsqUZRgOjqCzKlPwhEy6nUm751Q1HhxOKVs6USxclxuUJH2pvJhGoQi5lr7QqG2oqOdrPxA0FG7AQqkjc55KFssoDZgwj-Ap2chmmdom4NFUxylCOCapR3lTy0hq1-DdZip9HjfIjlmBpNqieWKj7765_dTT3yDvap9IRCWQjnU6zm4yfb0ynZeqIDcZvbWOtbLgi1Ok0UUsmYzGibc_6X49PvyYDM3IrnneuktUszOYrUF2a1dMjB9gSIdnalbkibkaMQxuNsiz0kPXbVGLzgvo83999i65M_rQTQ76w_0X5J7lKrqe47GXZGO5KNQrg7mW6Y7daL8Bytcm1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+Binding+of+the+HPLC6+Isoform+of+Type+I+Antifreeze+Proteins+to+Ice+Surfaces+and+the+Antifreeze+Mechanism+Studied+by+Multiple+Quantum+Filtering%E2%88%92Spin+Exchange+NMR+Experiment&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=BA%2C+Yong&rft.au=WONGSKHALUANG%2C+Jeff&rft.au=LI%2C+Jiabo&rft.date=2003-01-15&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=125&rft.issue=2&rft.spage=330&rft.epage=331&rft_id=info:doi/10.1021%2Fja027557u&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_1KTFWVQG_N
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon