Molecular Characterization of Zebrafish Embryogenesis via DNA Microarrays and Multiplatform Time Course Metabolomics Studies

One of the greatest strengths of “-omics” technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously. Transcriptomics, proteomics, and metabolomics have, individually, been used in wide-ranging studies involving cell lines, tissues, model organisms, a...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 10; no. 11; pp. 5102 - 5117
Main Authors Soanes, Kelly H, Achenbach, John C, Burton, Ian W, Hui, Joseph P. M, Penny, Susanne L, Karakach, Tobias K
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.11.2011
Subjects
Online AccessGet full text
ISSN1535-3893
1535-3907
1535-3907
DOI10.1021/pr2005549

Cover

Loading…
Abstract One of the greatest strengths of “-omics” technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously. Transcriptomics, proteomics, and metabolomics have, individually, been used in wide-ranging studies involving cell lines, tissues, model organisms, and human subjects. Nonetheless, despite the fact that their power lies in the global acquisition of parallel data streams, these methods continue to be employed separately. We highlight work done to merge transcriptomics and metabolomics technologies to study zebrafish (Danio rerio) embryogenesis. We combine information from three bioanalytical platforms, that is, DNA microarrays, 1H nuclear magnetic resonance (1H NMR), and mass spectrometry (MS)-based metabolomics, to identify and provide insights into the organism’s developmental regulators. We apply a customized approach to the analysis of such time-ordered measurements to provide temporal profiles that depict the modulation of metabolites and gene transcription. Initially, the three data sets were analyzed individually but later they were fused to highlight the advantages gained through such an integrated approach. Unique challenges posed by fusion of such data are discussed given differences in the measurement error structures, the wide dynamic range for the molecular species, and the analytical platforms used to measure them (i.e., fluorescence ratios, NMR, and MS intensities). Our data analysis reveals that changes in transcript levels at specific developmental stages correlate with previously published data with over 90% accuracy. In addition, transcript profiles exhibited trends that were similar to the accumulation of metabolites over time. Profiles for metabolites such as choline-like compounds (Trimethylamine-N-oxide, phosphocholine, betaine), creatinine/creatine, and other metabolites involved in energy metabolism exhibited a steady increase from 15 hours post fertilization (hpf) to 48 hpf. Other metabolite and transcript profiles were transiently rising and then falling back to baseline. The “house keeping” metabolites such as branched chain amino acids exhibited a steady presence throughout embryogenesis. Although the transcript profiling corresponds to only 16 384 genes, a subset of the total number of genes in the zebrafish genome, we identified examples where gene transcript and metabolite profiles correlate with one another, reflective of a relationship between gene and metabolite regulation over the course of embryogenesis.
AbstractList One of the greatest strengths of “-omics” technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously. Transcriptomics, proteomics, and metabolomics have, individually, been used in wide-ranging studies involving cell lines, tissues, model organisms, and human subjects. Nonetheless, despite the fact that their power lies in the global acquisition of parallel data streams, these methods continue to be employed separately. We highlight work done to merge transcriptomics and metabolomics technologies to study zebrafish (Danio rerio) embryogenesis. We combine information from three bioanalytical platforms, that is, DNA microarrays, 1H nuclear magnetic resonance (1H NMR), and mass spectrometry (MS)-based metabolomics, to identify and provide insights into the organism’s developmental regulators. We apply a customized approach to the analysis of such time-ordered measurements to provide temporal profiles that depict the modulation of metabolites and gene transcription. Initially, the three data sets were analyzed individually but later they were fused to highlight the advantages gained through such an integrated approach. Unique challenges posed by fusion of such data are discussed given differences in the measurement error structures, the wide dynamic range for the molecular species, and the analytical platforms used to measure them (i.e., fluorescence ratios, NMR, and MS intensities). Our data analysis reveals that changes in transcript levels at specific developmental stages correlate with previously published data with over 90% accuracy. In addition, transcript profiles exhibited trends that were similar to the accumulation of metabolites over time. Profiles for metabolites such as choline-like compounds (Trimethylamine-N-oxide, phosphocholine, betaine), creatinine/creatine, and other metabolites involved in energy metabolism exhibited a steady increase from 15 hours post fertilization (hpf) to 48 hpf. Other metabolite and transcript profiles were transiently rising and then falling back to baseline. The “house keeping” metabolites such as branched chain amino acids exhibited a steady presence throughout embryogenesis. Although the transcript profiling corresponds to only 16 384 genes, a subset of the total number of genes in the zebrafish genome, we identified examples where gene transcript and metabolite profiles correlate with one another, reflective of a relationship between gene and metabolite regulation over the course of embryogenesis.
One of the greatest strengths of "-omics" technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously. Transcriptomics, proteomics, and metabolomics have, individually, been used in wide-ranging studies involving cell lines, tissues, model organisms, and human subjects. Nonetheless, despite the fact that their power lies in the global acquisition of parallel data streams, these methods continue to be employed separately. We highlight work done to merge transcriptomics and metabolomics technologies to study zebrafish (Danio rerio) embryogenesis. We combine information from three bioanalytical platforms, that is, DNA microarrays, (1)H nuclear magnetic resonance ((1)H NMR), and mass spectrometry (MS)-based metabolomics, to identify and provide insights into the organism's developmental regulators. We apply a customized approach to the analysis of such time-ordered measurements to provide temporal profiles that depict the modulation of metabolites and gene transcription. Initially, the three data sets were analyzed individually but later they were fused to highlight the advantages gained through such an integrated approach. Unique challenges posed by fusion of such data are discussed given differences in the measurement error structures, the wide dynamic range for the molecular species, and the analytical platforms used to measure them (i.e., fluorescence ratios, NMR, and MS intensities). Our data analysis reveals that changes in transcript levels at specific developmental stages correlate with previously published data with over 90% accuracy. In addition, transcript profiles exhibited trends that were similar to the accumulation of metabolites over time. Profiles for metabolites such as choline-like compounds (Trimethylamine-N-oxide, phosphocholine, betaine), creatinine/creatine, and other metabolites involved in energy metabolism exhibited a steady increase from 15 hours post fertilization (hpf) to 48 hpf. Other metabolite and transcript profiles were transiently rising and then falling back to baseline. The "house keeping" metabolites such as branched chain amino acids exhibited a steady presence throughout embryogenesis. Although the transcript profiling corresponds to only 16 384 genes, a subset of the total number of genes in the zebrafish genome, we identified examples where gene transcript and metabolite profiles correlate with one another, reflective of a relationship between gene and metabolite regulation over the course of embryogenesis.One of the greatest strengths of "-omics" technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously. Transcriptomics, proteomics, and metabolomics have, individually, been used in wide-ranging studies involving cell lines, tissues, model organisms, and human subjects. Nonetheless, despite the fact that their power lies in the global acquisition of parallel data streams, these methods continue to be employed separately. We highlight work done to merge transcriptomics and metabolomics technologies to study zebrafish (Danio rerio) embryogenesis. We combine information from three bioanalytical platforms, that is, DNA microarrays, (1)H nuclear magnetic resonance ((1)H NMR), and mass spectrometry (MS)-based metabolomics, to identify and provide insights into the organism's developmental regulators. We apply a customized approach to the analysis of such time-ordered measurements to provide temporal profiles that depict the modulation of metabolites and gene transcription. Initially, the three data sets were analyzed individually but later they were fused to highlight the advantages gained through such an integrated approach. Unique challenges posed by fusion of such data are discussed given differences in the measurement error structures, the wide dynamic range for the molecular species, and the analytical platforms used to measure them (i.e., fluorescence ratios, NMR, and MS intensities). Our data analysis reveals that changes in transcript levels at specific developmental stages correlate with previously published data with over 90% accuracy. In addition, transcript profiles exhibited trends that were similar to the accumulation of metabolites over time. Profiles for metabolites such as choline-like compounds (Trimethylamine-N-oxide, phosphocholine, betaine), creatinine/creatine, and other metabolites involved in energy metabolism exhibited a steady increase from 15 hours post fertilization (hpf) to 48 hpf. Other metabolite and transcript profiles were transiently rising and then falling back to baseline. The "house keeping" metabolites such as branched chain amino acids exhibited a steady presence throughout embryogenesis. Although the transcript profiling corresponds to only 16 384 genes, a subset of the total number of genes in the zebrafish genome, we identified examples where gene transcript and metabolite profiles correlate with one another, reflective of a relationship between gene and metabolite regulation over the course of embryogenesis.
One of the greatest strengths of "-omics" technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously. Transcriptomics, proteomics, and metabolomics have, individually, been used in wide-ranging studies involving cell lines, tissues, model organisms, and human subjects. Nonetheless, despite the fact that their power lies in the global acquisition of parallel data streams, these methods continue to be employed separately. We highlight work done to merge transcriptomics and metabolomics technologies to study zebrafish (Danio rerio) embryogenesis. We combine information from three bioanalytical platforms, that is, DNA microarrays, (1)H nuclear magnetic resonance ((1)H NMR), and mass spectrometry (MS)-based metabolomics, to identify and provide insights into the organism's developmental regulators. We apply a customized approach to the analysis of such time-ordered measurements to provide temporal profiles that depict the modulation of metabolites and gene transcription. Initially, the three data sets were analyzed individually but later they were fused to highlight the advantages gained through such an integrated approach. Unique challenges posed by fusion of such data are discussed given differences in the measurement error structures, the wide dynamic range for the molecular species, and the analytical platforms used to measure them (i.e., fluorescence ratios, NMR, and MS intensities). Our data analysis reveals that changes in transcript levels at specific developmental stages correlate with previously published data with over 90% accuracy. In addition, transcript profiles exhibited trends that were similar to the accumulation of metabolites over time. Profiles for metabolites such as choline-like compounds (Trimethylamine-N-oxide, phosphocholine, betaine), creatinine/creatine, and other metabolites involved in energy metabolism exhibited a steady increase from 15 hours post fertilization (hpf) to 48 hpf. Other metabolite and transcript profiles were transiently rising and then falling back to baseline. The "house keeping" metabolites such as branched chain amino acids exhibited a steady presence throughout embryogenesis. Although the transcript profiling corresponds to only 16 384 genes, a subset of the total number of genes in the zebrafish genome, we identified examples where gene transcript and metabolite profiles correlate with one another, reflective of a relationship between gene and metabolite regulation over the course of embryogenesis.
One of the greatest strengths of "-omics" technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously. Transcriptomics, proteomics, and metabolomics have, individually, been used in wide-ranging studies involving cell lines, tissues, model organisms, and human subjects. Nonetheless, despite the fact that their power lies in the global acquisition of parallel data streams, these methods continue to be employed separately. We highlight work done to merge transcriptomics and metabolomics technologies to study zebrafish (Danio rerio) embryogenesis. We combine information from three bioanalytical platforms, that is, DNA microarrays, 1H nuclear magnetic resonance (1H NMR), and mass spectrometry (MS)-based metabolomics, to identify and provide insights into the organism's developmental regulators. We apply a customized approach to the analysis of such time-ordered measurements to provide temporal profiles that depict the modulation of metabolites and gene transcription. Initially, the three data sets were analyzed individually but later they were fused to highlight the advantages gained through such an integrated approach. Unique challenges posed by fusion of such data are discussed given differences in the measurement error structures, the wide dynamic range for the molecular species, and the analytical platforms used to measure them (i.e., fluorescence ratios, NMR, and MS intensities). Our data analysis reveals that changes in transcript levels at specific developmental stages correlate with previously published data with over 90% accuracy. In addition, transcript profiles exhibited trends that were similar to the accumulation of metabolites over time. Profiles for metabolites such as choline-like compounds (Trimethylamine-N- oxide, phosphocholine, betaine), creatinine/creatine, and other metabolites involved in energy metabolism exhibited a steady increase from 15 hours post fertilization (hpf) to 48 hpf. Other metabolite and transcript profiles were transiently rising and then falling back to baseline. The "house keeping" metabolites such as branched chain amino acids exhibited a steady presence throughout embryogenesis. Although the transcript profiling corresponds to only 16 384 genes, a subset of the total number of genes in the zebrafish genome, we identified examples where gene transcript and metabolite profiles correlate with one another, reflective of a relationship between gene and metabolite regulation over the course of embryogenesis. © Published 2011 by the American Chemical Society.
Author Penny, Susanne L
Burton, Ian W
Karakach, Tobias K
Achenbach, John C
Hui, Joseph P. M
Soanes, Kelly H
AuthorAffiliation Institute for Marine Biosciences
AuthorAffiliation_xml – name: Institute for Marine Biosciences
Author_xml – sequence: 1
  givenname: Kelly H
  surname: Soanes
  fullname: Soanes, Kelly H
– sequence: 2
  givenname: John C
  surname: Achenbach
  fullname: Achenbach, John C
– sequence: 3
  givenname: Ian W
  surname: Burton
  fullname: Burton, Ian W
– sequence: 4
  givenname: Joseph P. M
  surname: Hui
  fullname: Hui, Joseph P. M
– sequence: 5
  givenname: Susanne L
  surname: Penny
  fullname: Penny, Susanne L
– sequence: 6
  givenname: Tobias K
  surname: Karakach
  fullname: Karakach, Tobias K
  email: tobias.karakach@nrc.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21910437$$D View this record in MEDLINE/PubMed
BookMark eNptkU1v3CAQhlGVqPloD_0DFZeqymEbvmyvj9EmaSplk0PTSy9oDLghwuACrrRVf3zZOJtDlAvDwDPvwDtHaM8HbxD6QMkXShg9HSMjpKpE-wYd0opXC96SZm-3X7b8AB2l9EAIrRrC36IDRltKBG8O0b91cEZNDiJe3UMElU20fyHb4HHo8U_TRehtuscXQxc34ZfxJtmE_1jA5zdneG1VDBAjbBIGr_F6ctmODnIf4oDv7GDwKkwxGbw2GbrgwmBVwt_zpK1J79B-Dy6Z90_xGP24vLhbXS2ub79-W51dL0CIKi-4gq7SRIia1bRWWkF5fy1oz9ulIURxTSnopmOsJlpTUYNh5a5RpGt12wM_Rp9n3TGG35NJWQ42KeMceBOmJFvCOGdLxgr58YmcusFoOUY7QNzInWEFOJ2B8u-UoumlsvnRrhzBOkmJ3I5EPo-kVJy8qNiJvsZezayPSoEHDc9wAFtapWyl3QZZCKkeF5jP_Qgl2xrT1ktRpD7NUqCSfCgz8MXhV1r-B46Qs7U
CitedBy_id crossref_primary_10_1039_c3mb25450j
crossref_primary_10_1021_acschemneuro_7b00304
crossref_primary_10_3390_md14050103
crossref_primary_10_1039_c2an35780a
crossref_primary_10_1016_j_aquatox_2016_11_016
crossref_primary_10_1371_journal_pone_0213661
crossref_primary_10_1371_journal_pone_0082685
crossref_primary_10_1016_j_marpolbul_2014_04_005
crossref_primary_10_1016_j_envpol_2017_07_095
crossref_primary_10_3390_md10040849
crossref_primary_10_1007_s11306_012_0493_6
crossref_primary_10_1007_s13206_017_2102_2
crossref_primary_10_1016_j_bbr_2013_08_012
crossref_primary_10_1371_journal_pone_0099519
crossref_primary_10_3389_fcell_2019_00015
crossref_primary_10_1111_raq_12152
crossref_primary_10_1007_s00253_021_11489_3
crossref_primary_10_1021_acs_est_6b02081
crossref_primary_10_1021_cr4000013
crossref_primary_10_1017_S0007114514003869
crossref_primary_10_1242_jeb_095463
crossref_primary_10_1080_02648725_2013_801238
Cites_doi 10.1007/s00216-004-2776-x
10.1039/b109430k
10.1016/j.aca.2006.12.043
10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S
10.1016/S0169-7439(02)00016-3
10.1016/j.aca.2005.04.054
10.1016/j.chemolab.2004.09.017
10.1093/bioinformatics/btp558
10.1002/(SICI)1099-128X(199707)11:4<339::AID-CEM476>3.0.CO;2-L
10.1038/nature09882
10.1021/ac00063a019
10.1038/nrm1857
10.1093/nar/gkl923
10.1371/journal.pgen.0010029
10.1016/j.chemolab.2010.07.006
10.1366/0003702011953766
10.1186/1471-2229-8-5
10.1007/s001840300272
10.1021/ac702584g
10.1089/omi.2009.0023
10.1038/nrg2091
10.1002/mrc.2535
10.1016/S0003-2670(02)00116-2
10.1016/j.bbrc.2009.06.041
10.1016/j.bbrc.2003.09.092
10.1016/S0003-2670(97)90069-6
10.1186/1471-2105-10-340
10.1080/00401706.1971.10488823
10.1016/j.molimm.2004.11.014
10.1016/j.tibtech.2004.03.007
10.1093/jxb/erl216
10.1089/106652701753307485
10.1016/j.jmr.2007.10.005
10.1002/dvdy.20444
10.1002/env.3170050203
10.1007/s00216-007-1617-0
10.1186/1752-0509-2-51
10.1016/0169-7439(96)00009-3
10.1038/nbt852
10.1016/j.ab.2007.10.002
10.1093/bioinformatics/bth283
10.1021/ac051080y
10.1016/j.jpba.2003.12.019
10.1186/1471-2105-7-343
10.1038/nature09806
10.1016/j.aca.2009.01.048
ContentType Journal Article
Copyright Copyright © 2011 U.K. or Canada
Copyright_xml – notice: Copyright © 2011 U.K. or Canada
DBID -LJ
GXV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/pr2005549
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Sciences
EISSN 1535-3907
EndPage 5117
ExternalDocumentID 21910437
10_1021_pr2005549
oai_cisti_icist_nrc_cnrc_ca_cistinparc_19649684
a732787972
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ZA5
---
-LJ
AAHBH
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CUPRZ
GGK
GXV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a445t-3cab5d04462616cdca219641f398e00c3d11ad7b2260dd146ae2f397c0b9d9fa3
IEDL.DBID ACS
ISSN 1535-3893
1535-3907
IngestDate Fri Jul 11 06:28:59 EDT 2025
Thu Jan 02 22:12:19 EST 2025
Thu Apr 24 22:50:22 EDT 2025
Tue Jul 01 01:36:23 EDT 2025
Tue Sep 02 20:54:01 EDT 2025
Thu Aug 27 13:42:19 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords data fusion
NMR
embryogenesis
Danio rerio
time course metabolomics and transcriptomics
multivariate curve resolution
LC−MS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a445t-3cab5d04462616cdca219641f398e00c3d11ad7b2260dd146ae2f397c0b9d9fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21910437
PQID 902332822
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_902332822
pubmed_primary_21910437
crossref_citationtrail_10_1021_pr2005549
crossref_primary_10_1021_pr2005549
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_19649684
acs_journals_10_1021_pr2005549
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-04
PublicationDateYYYYMMDD 2011-11-04
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of proteome research
PublicationTitleAlternate J. Proteome Res
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Linney E. (ref8/cit8) 2004; 138
Wentzell P. D. (ref45/cit45) 1997; 11
Azmi J. (ref24/cit24) 2002; 127
Liu Y. (ref12/cit12) 2004; 380
Mathavan S. (ref9/cit9) 2005; 1
Leger M. N. (ref33/cit33) 2002; 62
Paatero P. (ref48/cit48) 1994; 5
Karakach T. K. (ref28/cit28) 2007; 389
Smilde A. K. (ref13/cit13) 2005; 77
Coen M. (ref35/cit35) 2004; 35
Wishart D. S. (ref50/cit50) 2007; 35
Rocke D. M. (ref27/cit27) 2001; 8
Saint-Amant L. (ref51/cit51) 1998; 37
Bar-Joseph Z. (ref23/cit23) 2004; 20
White R. M. (ref4/cit4) 2011; 471
Best J. D. (ref3/cit3) 2004; 4
Richards S. E. (ref16/cit16) 2010; 104
Richards S. (ref36/cit36) 2008; 80
de Juan A. (ref40/cit40) 1996; 33
de Juan A. (ref39/cit39) 1997; 346
Papan C. (ref10/cit10) 2009; 13
Joyce A. R. (ref17/cit17) 2006; 7
Beebe R. K. (ref31/cit31) 1989
Tauler R. (ref38/cit38) 1993; 65
Goodacre R. (ref42/cit42) 2004; 22
Hayashi S. (ref11/cit11) 2009; 386
Pichler F. B. (ref5/cit5) 2003; 21
Meijer A. H. (ref7/cit7) 2005; 42
Leger M. N. (ref46/cit46) 2005; 77
Kukush A. (ref47/cit47) 2004; 59
Lieschke G. J. (ref1/cit1) 2007; 8
Ceol C. J. (ref2/cit2) 2011; 471
Karakach T. K. (ref29/cit29) 2006
Karakach T. K. (ref22/cit22) 2009; 47
Lawton W. H. (ref34/cit34) 1971; 13
Stanimirova I. (ref43/cit43) 2005; 545
Kim J. K. (ref18/cit18) 2006; 58
Mathavan S. (ref49/cit49) 2005; 1
Viant M. R. (ref26/cit26) 2003; 310
Tauler R. (ref32/cit32) 2007; 595
Nam H. (ref14/cit14) 2009; 25
van den Berg R. (ref15/cit15) 2009; 10
Wu H. (ref25/cit25) 2008; 372
Qian F. (ref6/cit6) 2005; 233
Zulak K. G. (ref20/cit20) 2008; 8
Macho S. (ref30/cit30) 2001; 55
Bezemer E. (ref41/cit41) 2002; 459
Karakach T. K. (ref44/cit44) 2009; 636
Winning H. (ref37/cit37) 2008; 190
Sato S. (ref19/cit19) 2008; 2
Wentzell P. D. (ref21/cit21) 2006; 7
References_xml – volume-title: Chemometrics: A practical guide
  year: 1989
  ident: ref31/cit31
– volume: 380
  start-page: 445
  year: 2004
  ident: ref12/cit12
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-004-2776-x
– volume: 127
  start-page: 271
  year: 2002
  ident: ref24/cit24
  publication-title: Analyst
  doi: 10.1039/b109430k
– volume: 595
  start-page: 289
  year: 2007
  ident: ref32/cit32
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2006.12.043
– volume: 37
  start-page: 622
  issue: 4
  year: 1998
  ident: ref51/cit51
  publication-title: J. Neurobiol.
  doi: 10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S
– volume: 62
  start-page: 171
  year: 2002
  ident: ref33/cit33
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(02)00016-3
– volume: 545
  start-page: 1
  year: 2005
  ident: ref43/cit43
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2005.04.054
– volume: 77
  start-page: 181
  year: 2005
  ident: ref46/cit46
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.09.017
– volume: 25
  start-page: 3151
  issue: 23
  year: 2009
  ident: ref14/cit14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp558
– volume: 11
  start-page: 339
  year: 1997
  ident: ref45/cit45
  publication-title: J. Chemmom.
  doi: 10.1002/(SICI)1099-128X(199707)11:4<339::AID-CEM476>3.0.CO;2-L
– volume: 471
  start-page: 518
  issue: 7339
  year: 2011
  ident: ref4/cit4
  publication-title: Nature
  doi: 10.1038/nature09882
– volume: 65
  start-page: 2040
  year: 1993
  ident: ref38/cit38
  publication-title: Anal. Chem.
  doi: 10.1021/ac00063a019
– volume: 7
  start-page: 198
  issue: 3
  year: 2006
  ident: ref17/cit17
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1857
– volume-title: Analysis of gene expression microarray data by multivariate curve resolution
  year: 2006
  ident: ref29/cit29
– volume: 35
  start-page: D521
  year: 2007
  ident: ref50/cit50
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl923
– volume: 1
  start-page: e29
  issue: 2
  year: 2005
  ident: ref49/cit49
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0010029
– volume: 104
  start-page: 121
  issue: 1
  year: 2010
  ident: ref16/cit16
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2010.07.006
– volume: 55
  start-page: 1532
  year: 2001
  ident: ref30/cit30
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702011953766
– volume: 8
  start-page: 5
  year: 2008
  ident: ref20/cit20
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-8-5
– volume: 59
  start-page: 75
  issue: 1
  year: 2004
  ident: ref47/cit47
  publication-title: Metrika
  doi: 10.1007/s001840300272
– volume: 80
  start-page: 4876
  year: 2008
  ident: ref36/cit36
  publication-title: Anal. Chem.
  doi: 10.1021/ac702584g
– volume: 13
  start-page: 1
  issue: 5
  year: 2009
  ident: ref10/cit10
  publication-title: OMICS J. Integ. Biol.
  doi: 10.1089/omi.2009.0023
– volume: 8
  start-page: 353
  year: 2007
  ident: ref1/cit1
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2091
– volume: 47
  start-page: S105
  year: 2009
  ident: ref22/cit22
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.2535
– volume: 459
  start-page: 277
  year: 2002
  ident: ref41/cit41
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(02)00116-2
– volume: 386
  start-page: 268
  year: 2009
  ident: ref11/cit11
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2009.06.041
– volume: 310
  start-page: 943
  year: 2003
  ident: ref26/cit26
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2003.09.092
– volume: 346
  start-page: 307
  year: 1997
  ident: ref39/cit39
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(97)90069-6
– volume: 10
  start-page: 340
  issue: 1
  year: 2009
  ident: ref15/cit15
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-10-340
– volume: 13
  start-page: 617
  year: 1971
  ident: ref34/cit34
  publication-title: Technometrics
  doi: 10.1080/00401706.1971.10488823
– volume: 42
  start-page: 1185
  issue: 10
  year: 2005
  ident: ref7/cit7
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2004.11.014
– volume: 22
  start-page: 245
  issue: 5
  year: 2004
  ident: ref42/cit42
  publication-title: Trends Biotech.
  doi: 10.1016/j.tibtech.2004.03.007
– volume: 58
  start-page: 415
  year: 2006
  ident: ref18/cit18
  publication-title: J. Expt. Bot.
  doi: 10.1093/jxb/erl216
– volume: 8
  start-page: 557
  year: 2001
  ident: ref27/cit27
  publication-title: J. Comput. Biol.
  doi: 10.1089/106652701753307485
– volume: 1
  start-page: 260
  year: 2005
  ident: ref9/cit9
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.0010029
– volume: 190
  start-page: 26
  issue: 1
  year: 2008
  ident: ref37/cit37
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2007.10.005
– volume: 233
  start-page: 1163
  year: 2005
  ident: ref6/cit6
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.20444
– volume: 5
  start-page: 111
  year: 1994
  ident: ref48/cit48
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– volume: 389
  start-page: 2125
  year: 2007
  ident: ref28/cit28
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-007-1617-0
– volume: 2
  start-page: 51
  year: 2008
  ident: ref19/cit19
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-2-51
– volume: 33
  start-page: 133
  year: 1996
  ident: ref40/cit40
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(96)00009-3
– volume: 21
  start-page: 879
  year: 2003
  ident: ref5/cit5
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt852
– volume: 372
  start-page: 204
  year: 2008
  ident: ref25/cit25
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2007.10.002
– volume: 20
  start-page: 2493
  year: 2004
  ident: ref23/cit23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth283
– volume: 138
  start-page: 351
  issue: 3
  year: 2004
  ident: ref8/cit8
  publication-title: Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol.
– volume: 77
  start-page: 6729
  issue: 20
  year: 2005
  ident: ref13/cit13
  publication-title: Anal. Chem.
  doi: 10.1021/ac051080y
– volume: 35
  start-page: 93
  year: 2004
  ident: ref35/cit35
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2003.12.019
– volume: 7
  start-page: 343
  year: 2006
  ident: ref21/cit21
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-7-343
– volume: 4
  start-page: 567
  issue: 3
  year: 2004
  ident: ref3/cit3
  publication-title: Neuropsychiatr. Dis. Treat.
– volume: 471
  start-page: 513
  issue: 7339
  year: 2011
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/nature09806
– volume: 636
  start-page: 163
  year: 2009
  ident: ref44/cit44
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.01.048
SSID ssj0015703
Score 2.1521733
Snippet One of the greatest strengths of “-omics” technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously....
One of the greatest strengths of "-omics" technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously....
SourceID proquest
pubmed
crossref
nrccanada
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5102
SubjectTerms Algorithms
Amino Acids - metabolism
Animals
Blastula - metabolism
Fish Proteins - genetics
Gastrula - metabolism
Gene Expression
Gene Expression Profiling
Magnetic Resonance Spectroscopy
Metabolomics
Multivariate Analysis
Oligonucleotide Array Sequence Analysis
Principal Component Analysis
Zebrafish - embryology
Zebrafish - genetics
Zebrafish - metabolism
Title Molecular Characterization of Zebrafish Embryogenesis via DNA Microarrays and Multiplatform Time Course Metabolomics Studies
URI http://dx.doi.org/10.1021/pr2005549
https://nrc-publications.canada.ca/eng/view/object/?id=c27605d1-c2cc-4115-9b89-d105da309cef
https://www.ncbi.nlm.nih.gov/pubmed/21910437
https://www.proquest.com/docview/902332822
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB7xOMAFWtrSQEGrwqEXU9trJ_ExCiCEZC4FCXFZjXfXJSJ1IttBouqPZ8YvgXj0Ykv2WLZ3Z-exM_MNwOFAJpa0OrL0k-ygeA6rBcdNEbnqPRxYdhTji_7ZVXB-HV4vwcEbEXzf-znPeeOD3JhlWPX7tHjZ_hn_6kIFDCFVg6KGDmvfFj7o6aOsenTxTPWsZbmu8qrwbduy0jGnm3DcVurUqSV3R4syOdJ_XwI3vvf5H2CjsTHFqGaKj7Bksy1YG7et3T7Bv7htiivGHWBzXY8pZqm44WByOiluxcmfJH-Y_WZ5OCnE_QTF8cVIxJzEh3mOD4XAzIi4TkrEkg1gwUUlglvhFVbEtiQmm3LlcyGalMXPcHV6cjk-c5o2DA4GQVg6UmMSGg78krfV10ajzyheXiqjoXVdLY3noRkkNOWuMSR50fp0b6DdJDJRivILrGSzzH4FoWksdGKRbAQTeG5Ez4QRplLa1A5DTHuwT_OkmmVUqCpC7nuqG8Qe_GinUOkGxJx7aUxfI_3ekc5r5I7XiEYdH3RUjLitWcKqCZ8UUShdHbC-ns1JCCkehKg_DHogWv5RNI8ccMHMzhaFisggkpyn24Ptmq-6d9AQegwrtfO_P96F9Wobm3eyg2-wUuYLu0d2UJnsV-vgEXilA00
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9NADLdgPJQXGF-jMMYJ8cBLRtJL2uaxKpsKLH1hkyZeTs7dBaqNtMqlSEP88diXDz40BC-JlDjJxXFs39n-GeDlROaWrDqy9pM8QYkCNgtBWCBy1XsysTxRzJbjxVn87jw5b2FyuBaGBuHoTs4H8X-iC0SvNxWvf9Bs5ibcIidkxNI8m3_oIwaMJNVgoyYBG-EORejXS9kCafebBRqUlfbpVfh3F9ObmuO7Tc8iP0ifYXJxuK3zQ_3tD_zG_3uLXbjTepxi1ojIPbhhy_swmHeN3h7A96xrkSvmPXxzU50p1oX4yKHlYuU-i6MveXW1_sTaceXE1xWKN8uZyDilD6sKr5zA0oisSVHEmt1hwSUmghvjOSsyW5PIXXIdtBNtAuNDODs-Op0vgrYpQ4BxnNSB1JgnhsPANPcaa6NxxJheUSHTqQ1DLU0UoZnkJAChMaSH0Y7o3ESHeWrSAuUj2CnXpX0MQhMvdG6RPAYTR2FK1yQpFlLawk4TLIZwQDxU7U_llI-XjyLVM3EIr7ovqXQLac6dNS6vI33Rk24aHI_riGa9OPRUjL-tWd-qFe8UUSjtN9gcLzekkhQzIR1P4yGITowUfUcOv2Bp11unUnKPJGftDmGvEa_-GcTCiEGmnvzrjZ_DYHGanaiTt8v3T-G2X-DmNe54H3bqamufkYdU5wf-1_gBtNALrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BkSiXljehUFaIAxe3dtZO4mOUNioPBySoVHFZjfcBEcWJvE6lIn48M34JUBFcYikZO_Z4dh47M98AvBjL3JJVR9Z-kgOUKGCzEIQOkbvek7HlQDFbjE5O49dnyVkbKHIvDN2Epyv5OonPq3ptXIswEB2uS94DoYjmOtzgdB1L9HT2oc8aMJpUg4-aBGyIOyShX09lK6T9b1Zouyh1XWKFf3cza3Mz34V3_Y3WVSZfDzZVfqC__4Hh-P9Pcht2Ws9TTBtRuQPXbHEXtmfdwLd78CPrRuWKWQ_j3HRpipUTnzjF7Jb-izj-lpeXq8-sJZdeXCxRHC2mIuPSPixLvPQCCyOyplQRK3aLBbeaCB6Q563IbEWid8790F60hYz34XR-_HF2ErTDGQKM46QKpMY8MZwOphhspI3GIWN7RU6mExuGWpooQjPOSRBCY0gfox3Sb2Md5qlJHcoHsFWsCvsIhCZe6NwieQ4mjsKUzklSdFJaZycJugHsEx9Vu7i8qvPmw0j1TBzAy-5tKt1Cm_OEjfOrSJ_3pOsGz-MqomkvEj0V43Br1rtqyQdFFErXH9h8X6xJNSlmQjqaxAMQnSgpeo-chsHCrjZepeQmSa7eHcDDRsT6_yAWRgw29fhfT_wMbr4_mqu3rxZv9uBWvc_NW93xE9iqyo19So5Sle_Xq-MnS0IOMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Characterization+of+Zebrafish+Embryogenesis+via+DNA+Microarrays+and+Multiplatform+Time+Course+Metabolomics+Studies&rft.jtitle=Journal+of+proteome+research&rft.au=Soanes%2C+Kelly+H&rft.au=Achenbach%2C+John+C&rft.au=Burton%2C+Ian+W&rft.au=Hui%2C+Joseph+P.+M&rft.date=2011-11-04&rft.pub=American+Chemical+Society&rft.issn=1535-3893&rft.eissn=1535-3907&rft.volume=10&rft.issue=11&rft.spage=5102&rft.epage=5117&rft_id=info:doi/10.1021%2Fpr2005549&rft.externalDocID=a732787972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon