Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties

We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, ele...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 12; no. 6; pp. 2810 - 2816
Main Authors Zhang, Yi, Zhang, Luyao, Kim, Pyojae, Ge, Mingyuan, Li, Zhen, Zhou, Chongwu
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 13.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve ∼4200 cm2 V–1 s–1 on Si/SiO2 and ∼20 000 cm2 V–1 s–1 on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics.
AbstractList We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve ∼4200 cm(2) V(-1) s(-1) on Si/SiO(2) and ∼20 000 cm(2) V(-1 )s(-1) on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics.We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve ∼4200 cm(2) V(-1) s(-1) on Si/SiO(2) and ∼20 000 cm(2) V(-1 )s(-1) on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics.
We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve ∼4200 cm2 V–1 s–1 on Si/SiO2 and ∼20 000 cm2 V–1 s–1 on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics.
We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve ∼4200 cm(2) V(-1) s(-1) on Si/SiO(2) and ∼20 000 cm(2) V(-1 )s(-1) on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics.
We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 mu m. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve 4200 cm super(2) V super(-1) s super(-1) on Si/SiO sub(2) and 20 000 cm super(2) V super(-1 )s super(-1) on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics.
Author Li, Zhen
Zhang, Yi
Zhang, Luyao
Kim, Pyojae
Ge, Mingyuan
Zhou, Chongwu
AuthorAffiliation Department of Chemistry
University of Southern California
Department of Electrical Engineering
Department of Chemical Engineering and Materials Science
AuthorAffiliation_xml – name: University of Southern California
– name: Department of Chemistry
– name: Department of Electrical Engineering
– name: Department of Chemical Engineering and Materials Science
Author_xml – sequence: 1
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
– sequence: 2
  givenname: Luyao
  surname: Zhang
  fullname: Zhang, Luyao
– sequence: 3
  givenname: Pyojae
  surname: Kim
  fullname: Kim, Pyojae
– sequence: 4
  givenname: Mingyuan
  surname: Ge
  fullname: Ge, Mingyuan
– sequence: 5
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
– sequence: 6
  givenname: Chongwu
  surname: Zhou
  fullname: Zhou, Chongwu
  email: chongwuz@usc.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25989654$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22536825$$D View this record in MEDLINE/PubMed
BookMark eNqF0d1rFDEQAPAgFfuhD_4DkhehQtfmc3fjWznaKlQU-vG6ZLOTXkouWZMc5f57U3qeIAWfZob8khkmh2gvxAAIvafkMyWMngbPCSFc6VfogEpOmlYptrfLe7GPDnN-qEZxSd6gfcYkb3smD1C403NM-CbpeXbhHl-m-FiWOFp8XUsPzSJtctHeuwD1UM9LqMmFj4-Q8hd8vQllCdnlE_w9pnkZfbzfnGAdJnzuwZQUgzP4Z4ozpOIgv0WvrfYZ3m3jEbq9OL9ZfG2uflx-W5xdNVoIURrL1SjAsp53msI4Cc57ScCMrbJMsb4b7Shla7idYLKTZJYRKqaR0H4UUnX8CB0_vzun-GsNuQwrlw14rwPEdR5o1zIiSdu3_6fkSaqO8ko_bOl6XME0zMmtdNoMf9ZZwcct0Nlob5MOxuW_TqpetVJU9-nZmRRzTmB3hJKnhnTYfWm1p_9Y44ouLoaStPMv3thOoU0eHuI6hbrqF9xv_I2unA
CitedBy_id crossref_primary_10_1021_nn4047138
crossref_primary_10_1038_s41598_018_28560_1
crossref_primary_10_1039_C5TC00235D
crossref_primary_10_1039_C7NJ01461A
crossref_primary_10_1088_0957_4484_25_26_265201
crossref_primary_10_1002_admi_201600347
crossref_primary_10_1021_nl4033928
crossref_primary_10_1039_C3TC31738B
crossref_primary_10_1002_jrs_5094
crossref_primary_10_1021_nl303410g
crossref_primary_10_1038_srep00707
crossref_primary_10_1016_j_carbon_2015_05_108
crossref_primary_10_1021_nl404207f
crossref_primary_10_1002_cvde_201300051
crossref_primary_10_1007_s10853_016_0003_8
crossref_primary_10_1016_j_est_2020_101386
crossref_primary_10_1021_acsami_8b07655
crossref_primary_10_1021_acsnano_4c02070
crossref_primary_10_1088_0957_4484_24_32_325601
crossref_primary_10_3390_nano11071672
crossref_primary_10_1021_nn500209d
crossref_primary_10_1016_j_carbon_2018_07_072
crossref_primary_10_1021_ar300203n
crossref_primary_10_1088_1674_4926_43_6_061101
crossref_primary_10_1021_acs_chemmater_4c00078
crossref_primary_10_1016_j_carbon_2021_09_016
crossref_primary_10_1021_nn3049297
crossref_primary_10_1039_C3TA13033A
crossref_primary_10_1007_s12274_016_1169_8
crossref_primary_10_1021_acs_jpclett_4c03481
crossref_primary_10_1021_jz400400u
crossref_primary_10_1002_admi_202101500
crossref_primary_10_1016_j_apsusc_2017_07_092
crossref_primary_10_1039_C4SC02223H
crossref_primary_10_1016_j_scib_2017_11_011
crossref_primary_10_1039_c3nr00972f
crossref_primary_10_1002_cvde_201307075
crossref_primary_10_1002_smtd_202000102
crossref_primary_10_1016_j_carbon_2020_10_057
crossref_primary_10_1016_j_nantod_2014_09_002
crossref_primary_10_1038_ncomms3096
crossref_primary_10_7567_JJAP_55_105101
crossref_primary_10_1039_C8CP00263K
crossref_primary_10_1002_adfm_202207324
crossref_primary_10_1021_jz3007029
crossref_primary_10_1063_1_4893696
crossref_primary_10_1021_cm303445s
crossref_primary_10_1039_C4EE00531G
crossref_primary_10_1016_j_carbon_2013_05_050
crossref_primary_10_3367_UFNe_0183_201310i_1115
crossref_primary_10_1016_j_triboint_2024_109896
crossref_primary_10_1063_1_4979837
crossref_primary_10_1016_j_electacta_2015_08_079
crossref_primary_10_1063_1_4867120
crossref_primary_10_1002_cjoc_201500429
crossref_primary_10_1016_j_carbon_2014_09_026
crossref_primary_10_1021_nn5059826
crossref_primary_10_1515_psr_2016_0107
crossref_primary_10_1002_adfm_201301732
crossref_primary_10_1007_s12274_017_1942_3
crossref_primary_10_1016_j_carbon_2015_06_023
crossref_primary_10_1021_nn305223y
crossref_primary_10_1002_advs_201700087
crossref_primary_10_1038_srep24143
crossref_primary_10_1021_acsnano_6b03668
crossref_primary_10_1039_c3ra43066a
crossref_primary_10_1002_adma_201800996
crossref_primary_10_1016_j_jpowsour_2016_07_086
crossref_primary_10_1016_j_snb_2014_07_024
crossref_primary_10_1007_s12274_016_1107_9
crossref_primary_10_1016_j_carbon_2013_12_073
crossref_primary_10_1088_1361_6528_aa68a8
crossref_primary_10_1039_c3tc30124a
crossref_primary_10_1021_acssuschemeng_9b03117
crossref_primary_10_1021_acsnano_6b06265
crossref_primary_10_1002_cnma_202300143
crossref_primary_10_1021_acs_jpcc_3c01131
crossref_primary_10_1016_j_carbon_2020_07_025
crossref_primary_10_1039_C5RA13672E
crossref_primary_10_1021_acsnano_5b03043
crossref_primary_10_1016_j_matchemphys_2018_04_018
crossref_primary_10_1142_S1793604717300031
crossref_primary_10_1016_j_carbon_2015_01_018
crossref_primary_10_1021_acs_jpcc_8b11897
crossref_primary_10_1002_adfm_201302166
crossref_primary_10_1016_j_matlet_2014_05_113
crossref_primary_10_1021_ar4003043
crossref_primary_10_1021_acsanm_9b00766
crossref_primary_10_1016_j_progpolymsci_2017_11_006
crossref_primary_10_1116_6_0002893
crossref_primary_10_3390_mi11121101
crossref_primary_10_1021_jp309549z
crossref_primary_10_1039_c3nr00963g
crossref_primary_10_1039_D2TC03227A
crossref_primary_10_1016_j_physe_2016_04_013
crossref_primary_10_1021_jp510556t
crossref_primary_10_1016_j_tsf_2022_139436
crossref_primary_10_1038_srep04395
crossref_primary_10_1016_j_carbon_2015_08_114
crossref_primary_10_1021_jp400996s
crossref_primary_10_7567_JJAP_55_04EC11
crossref_primary_10_1016_j_carbon_2015_03_034
crossref_primary_10_1016_j_carbon_2015_08_115
crossref_primary_10_1557_jmr_2013_388
crossref_primary_10_1002_admi_201600413
crossref_primary_10_1021_acsomega_1c01614
crossref_primary_10_1039_C4NR04153D
crossref_primary_10_1186_s40580_015_0042_x
crossref_primary_10_1039_C4RA11734D
crossref_primary_10_1002_ppsc_201300125
crossref_primary_10_1002_pat_3543
crossref_primary_10_1016_j_cej_2017_10_002
crossref_primary_10_1109_ACCESS_2019_2958136
crossref_primary_10_1016_j_carbon_2017_04_068
crossref_primary_10_1021_acs_jpcc_7b06142
crossref_primary_10_1002_adma_201405887
crossref_primary_10_1016_j_carbon_2013_07_048
crossref_primary_10_1039_c3ra23388j
crossref_primary_10_1021_acsnano_6b08027
crossref_primary_10_1021_jp5070215
crossref_primary_10_1039_C7RA13169K
crossref_primary_10_1063_1_4827209
crossref_primary_10_1002_adma_201801583
crossref_primary_10_1021_nl304706j
crossref_primary_10_1038_srep09034
crossref_primary_10_1039_C5TC02906F
crossref_primary_10_1039_C7RA04139J
crossref_primary_10_1088_0022_3727_46_28_285303
crossref_primary_10_1002_er_8479
crossref_primary_10_37934_arnht_27_1_2844
crossref_primary_10_1007_s10915_021_01676_9
crossref_primary_10_1007_s00339_014_8320_8
crossref_primary_10_1038_nmat4477
crossref_primary_10_1039_C4FD90039A
crossref_primary_10_1080_10667857_2015_1112584
crossref_primary_10_1088_1361_6528_abb04a
crossref_primary_10_1021_acs_chemmater_6b03672
crossref_primary_10_1063_5_0061129
crossref_primary_10_1021_acs_chemmater_6b04928
crossref_primary_10_1115_1_4048494
crossref_primary_10_1016_j_compositesb_2019_107174
crossref_primary_10_1039_C6RA13457B
crossref_primary_10_1016_j_flatc_2017_08_009
crossref_primary_10_1007_s12613_015_1049_3
crossref_primary_10_1016_j_cej_2017_02_048
crossref_primary_10_1088_0957_4484_24_36_365603
crossref_primary_10_1039_C8NR09915D
crossref_primary_10_1016_j_apsusc_2014_02_004
crossref_primary_10_1016_j_comptc_2015_06_009
crossref_primary_10_1039_C3RA47834C
crossref_primary_10_1134_S106378261601005X
crossref_primary_10_1016_j_carbon_2022_08_054
crossref_primary_10_1039_c3ta12931d
crossref_primary_10_1039_c3ta12789c
crossref_primary_10_1039_C4CE00744A
crossref_primary_10_1021_nl4014315
crossref_primary_10_1021_acs_chemmater_5b01430
crossref_primary_10_1016_j_apsusc_2016_12_126
crossref_primary_10_1007_s10853_015_9440_z
crossref_primary_10_3367_UFNr_0183_201310i_1115
crossref_primary_10_1007_s12034_015_1045_2
crossref_primary_10_1038_s41598_017_06276_y
crossref_primary_10_1002_adfm_201201577
crossref_primary_10_1007_s41127_020_00035_z
crossref_primary_10_1021_nn303352k
crossref_primary_10_7567_JJAP_55_02BE05
crossref_primary_10_1021_cm401669k
crossref_primary_10_1021_nn506041t
Cites_doi 10.1038/nature04235
10.1126/science.1171245
10.1063/1.2982585
10.1021/nl101629g
10.1126/science.1196893
10.1021/ja109793s
10.1109/TNANO.2009.2013620
10.1021/nn202996r
10.1126/science.1102896
10.1021/ja200245p
10.1021/nl104000b
10.1021/nn201978y
10.1038/nmat2830
10.1038/nmat1849
10.1038/nature04233
10.1021/nl801827v
10.1038/nmat3010
10.1021/nl100022u
10.1038/nature07719
10.1038/nature09718
10.1021/nl102788f
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nl300039a
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic

MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 2816
ExternalDocumentID 22536825
25989654
10_1021_nl300039a
c645491710
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a444t-f39b4ef2837a1ebd433850ecb69f29287bfb556c3fdedfd52f2014db018b45973
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 01:09:15 EDT 2025
Thu Jul 10 19:10:55 EDT 2025
Thu Jan 02 22:27:54 EST 2025
Mon Jul 21 09:17:23 EDT 2025
Tue Jul 01 00:42:47 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Thu Aug 27 13:44:40 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Vapor trapping
large-grain graphene
morphology
graphene growth
graphene transistors
Grain size
Methane
Electronic properties
Electron backscattering
Electron diffraction
Field effect transistors
Boron nitride
Crystal growth from vapors
Monocrystals
Trapping
Hexagonal crystals
Graphene
Morphology
Growth mechanism
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a444t-f39b4ef2837a1ebd433850ecb69f29287bfb556c3fdedfd52f2014db018b45973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22536825
PQID 1020509713
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1762050686
proquest_miscellaneous_1020509713
pubmed_primary_22536825
pascalfrancis_primary_25989654
crossref_primary_10_1021_nl300039a
crossref_citationtrail_10_1021_nl300039a
acs_journals_10_1021_nl300039a
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-13
PublicationDateYYYYMMDD 2012-06-13
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-13
  day: 13
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Reina A. (ref8/cit8) 2009; 9
Yu Q. K. (ref6/cit6) 2008; 93
Li X. S. (ref9/cit9) 2009; 324
Vlassiouk I. (ref21/cit21) 2011; 5
Yu Q. K. (ref11/cit11) 2011; 10
Gannett W. (ref23/cit23) 2011
Li X. S. (ref10/cit10) 2011; 133
Li X. S. (ref13/cit13) 2010; 10
Zhang Y. B. (ref4/cit4) 2005; 438
Novoselov K. S. (ref3/cit3) 2005; 438
Zhang Z. Y. (ref22/cit22) 2010; 10
Huang P. Y. (ref12/cit12) 2011; 469
Shenoy V. B. (ref15/cit15) 2010; 330
Zhang Y. (ref16/cit16) 2011; 6
Rasool H. I. (ref20/cit20) 2011; 133
Chen S. S. (ref17/cit17) 2011
Liu Z. F. (ref18/cit18) 2011; 11
Wofford J. M. (ref19/cit19) 2010; 10
Kim K. S. (ref7/cit7) 2009; 457
Yazyev O. V. (ref14/cit14) 2010; 9
Geim A. K. (ref1/cit1) 2007; 6
Kim E. (ref24/cit24) 2011
De Arco L. G. (ref5/cit5) 2009; 8
Novoselov K. S. (ref2/cit2) 2004; 306
References_xml – volume: 438
  start-page: 201
  year: 2005
  ident: ref4/cit4
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref9/cit9
  publication-title: Science
  doi: 10.1126/science.1171245
– start-page: 98
  year: 2011
  ident: ref23/cit23
  publication-title: Appl. Phys. Lett.
– volume: 93
  start-page: 113103
  year: 2008
  ident: ref6/cit6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2982585
– volume: 10
  start-page: 4328
  year: 2010
  ident: ref13/cit13
  publication-title: Nano Lett.
  doi: 10.1021/nl101629g
– volume: 330
  start-page: 946
  year: 2010
  ident: ref15/cit15
  publication-title: Science
  doi: 10.1126/science.1196893
– volume: 133
  start-page: 2816
  year: 2011
  ident: ref10/cit10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109793s
– volume: 8
  start-page: 135
  year: 2009
  ident: ref5/cit5
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2009.2013620
– volume: 6
  start-page: 126
  year: 2011
  ident: ref16/cit16
  publication-title: ACS Nano
  doi: 10.1021/nn202996r
– volume: 306
  start-page: 666
  year: 2004
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.1102896
– start-page: 98
  year: 2011
  ident: ref24/cit24
  publication-title: Appl. Phys. Lett.
– volume: 133
  start-page: 12536
  year: 2011
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200245p
– volume: 11
  start-page: 1106
  year: 2011
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl104000b
– volume: 5
  start-page: 6069
  year: 2011
  ident: ref21/cit21
  publication-title: ACS Nano
  doi: 10.1021/nn201978y
– volume: 9
  start-page: 806
  year: 2010
  ident: ref14/cit14
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2830
– volume: 6
  start-page: 183
  year: 2007
  ident: ref1/cit1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 438
  start-page: 197
  year: 2005
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 9
  start-page: 30
  year: 2009
  ident: ref8/cit8
  publication-title: Nano Lett.
  doi: 10.1021/nl801827v
– volume: 10
  start-page: 443
  year: 2011
  ident: ref11/cit11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3010
– year: 2011
  ident: ref17/cit17
  publication-title: Nano Lett.
– volume: 10
  start-page: 2024
  year: 2010
  ident: ref22/cit22
  publication-title: Nano Lett.
  doi: 10.1021/nl100022u
– volume: 457
  start-page: 706
  year: 2009
  ident: ref7/cit7
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 469
  start-page: 389
  year: 2011
  ident: ref12/cit12
  publication-title: Nature
  doi: 10.1038/nature09718
– volume: 10
  start-page: 4890
  year: 2010
  ident: ref19/cit19
  publication-title: Nano Lett.
  doi: 10.1021/nl102788f
SSID ssj0009350
Score 2.4813755
Snippet We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of...
We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 mu m. Controlled growth of...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2810
SubjectTerms Applied sciences
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Crystallization - methods
Electric Conductivity
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronics
Exact sciences and technology
Flowers
Fullerenes and related materials; diamonds, graphite
Gases - chemistry
Graphene
Graphite - chemistry
Lobes
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Macromolecular Substances - chemistry
Materials science
Materials Testing
Molecular Conformation
Morphology
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Single crystals
Specific materials
Surface Properties
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Synthesis
Transistors
Trapping
Title Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties
URI http://dx.doi.org/10.1021/nl300039a
https://www.ncbi.nlm.nih.gov/pubmed/22536825
https://www.proquest.com/docview/1020509713
https://www.proquest.com/docview/1762050686
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB0huIAQ-1KWyiwHDqQQZ-Ik3FChICQQUgFxi-zEBkSVoiY9wNczTtoCYrslykSJPR7Ne17eAOzSKAlQUyDJgKODiY9OlArheJi4UaA1l6Xa_uWVOL_Fi3v_fgx2flnB5-5B1vHKE6QEgia4CAPLsI6b7Q9lXa8sw0qRSzwoCnEoH_T5VZt6kvxL6pl-kTn1gqnKV_yOL8s805qFk-FpnWp7yXOjX6hG8vZdvPGvJszBzABnsuNqYMzDmM4WYOqT-uAiZHeSwDejbGU1Gh7YGTHy4pF1DWvTbUc7zd4rYUcr2q3pobS7wTRrdcq6akes_ZoReMyf8n122SVvlfPz-0xmKTsd1dZh13ayv2dVW5fgtnV60zx3BuUXHImIhWO8SKE2Vh5HulqlSGzWP9SJEpHhETEtZZTvi8QzqU5N6nNDYAJTdeiGComneMswnnUzvQpMELIKJIaYGImEOKVMjaELZTMo6rAGdfJPPAifPC5XxrkbjzquBntD18XJQLzc1tDo_GS6PTJ9qRQ7fjKqf_H_yJLYYBgJH2uwNRwQMQWcXUWRme727b9xq5lD5P4PG0oxZCRCUYOVajR9fIH7niBevvZfm9dhkjqU231prrcB40WvrzcJARWqXkbAO-y1_vk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLXQ9gAI8f3RAcUgHnhYxuLcuAlvU7XSjXVC6ob2FtmJDYgqnZr0Yfv1O3bSdps24C1RbhLHvlf3nNg-l7GP8JIeGQSS6gkKKI8pSAspg4jyMO0ZI5RX2x8dyuEx7Z_EJ61MjtsLg0ZUeFLlJ_FX6gLh53IS-Y2kwELrACHCEa2d_nglsBv5aqwIYNChNKGFitDlW10GyqsrGejBqarQGbapYnE7zPTpZvCoqVvkG-pXmfzZmtd6Kz-_puH4f1_ymD1sUSffadzkCbtjyqfs_iUtwmes_KEAxTlyl1Ns-Mm_gp_Xv_jU8jFOJyboz86AJJ2Et8FF5daGGT6Y-CprX_j4rASUrH5Xm3w0xdj5v_WbXJUF311W2uHf3a__mdNwfc6OB7tH_WHQFmMIFBHVgY1STcY6sRwVGl0QuG28bXItUytS8C5tdRzLPLKFKWwRCwtoQYXeDhNNYC3RC7ZWTkvzinEJnNVTlFBuFQF_KlVYiwPt8imZpMO66LesDaYq8_PkIsyWHddhnxYjmOWtlLmrqDG5yfTD0vS00e-4yah7xQ2WluCGSSpj6rD3C7_IEH5uTkWVZjp3bRNOQQdU_y82SDgwkonssJeNU63eIOJIgqVv_Oub37G7w6PRQXawd_jtNbuHzhVuxVoYvWFr9Wxu3gIb1brrg-IC20IHaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5VRapACChQCI90QRw41G1tjzc2typtKI-WSqFVb9aud7dFRE4UO4fy65nZOO5D5XGz5bG9Xs9ovs-z_gbgHXlJDy0FkupFGGCRYJAZKYMYizDrWRspr7Z_cCj3j_HzaXLaEEX-F4YGUdGVKl_E56ieGNcoDIRb5Sj2P5MSHrrD5TomWzv94aXIbuw7slIQEyXKUlwoCV09lbNQUV3LQvcnqqIJcfNOFn-Gmj7lDB7Ct3awfqXJz81ZrTeLXzd0HP__aR7BgwZ9ip25u6zCki0fw70rmoRPoDxRBMkF5TBWbjgTH4mn1-di7MSQdkc26E8vCFGylLelg4rXiFkxGPluax_E8KIkSFn9qDbEwZjeof9qvyFUacRe23FHHHEJYMpark_heLD3vb8fNE0ZAoWIdeDiTKN1LJqjQqsNEsdNtm2hZeaijPiXdjpJZBE7Y40zSeQIYqDR22GqkdhLvAbL5bi0z0FIwls9hSkWTiHhUKWMc7ShOa-iTTvQpbnLm6Cqcl8vj8K8nbgOvF-8xbxoJM25s8boNtO3relkruNxm1H3miu0lsQR00wm2IE3C9_IKQy5tqJKO57x2CJW0iHK_xcbSjxkJFPZgWdzx7q8Q5TEktj6i3898zqsHO0O8q-fDr-8hLs0txEvXAvjV7BcT2f2NUGkWnd9XPwGaSAJ7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vapor+Trapping+Growth+of+Single-Crystalline+Graphene+Flowers%3A+Synthesis%2C+Morphology%2C+and+Electronic+Properties&rft.jtitle=Nano+letters&rft.au=Zhang%2C+Yi&rft.au=Zhang%2C+Luyao&rft.au=Kim%2C+Pyojae&rft.au=Ge%2C+Mingyuan&rft.date=2012-06-13&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=12&rft.issue=6&rft.spage=2810&rft.epage=2816&rft_id=info:doi/10.1021%2Fnl300039a&rft.externalDocID=c645491710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon