Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties
We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, ele...
Saved in:
Published in | Nano letters Vol. 12; no. 6; pp. 2810 - 2816 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
13.06.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve ∼4200 cm2 V–1 s–1 on Si/SiO2 and ∼20 000 cm2 V–1 s–1 on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics. |
---|---|
AbstractList | We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve ∼4200 cm(2) V(-1) s(-1) on Si/SiO(2) and ∼20 000 cm(2) V(-1 )s(-1) on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics.We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve ∼4200 cm(2) V(-1) s(-1) on Si/SiO(2) and ∼20 000 cm(2) V(-1 )s(-1) on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics. We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve ∼4200 cm2 V–1 s–1 on Si/SiO2 and ∼20 000 cm2 V–1 s–1 on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics. We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve ∼4200 cm(2) V(-1) s(-1) on Si/SiO(2) and ∼20 000 cm(2) V(-1 )s(-1) on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics. We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 mu m. Controlled growth of graphene flowers with four lobes and six lobes has been achieved by varying the growth pressure and the methane to hydrogen ratio. Surprisingly, electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Field effect transistors were fabricated based on graphene flowers and the fitted device mobility could achieve 4200 cm super(2) V super(-1) s super(-1) on Si/SiO sub(2) and 20 000 cm super(2) V super(-1 )s super(-1) on hexagonal boron nitride (h-BN). Our vapor trapping method provides a viable way for large-grain single-crystalline graphene synthesis for potential high-performance graphene-based electronics. |
Author | Li, Zhen Zhang, Yi Zhang, Luyao Kim, Pyojae Ge, Mingyuan Zhou, Chongwu |
AuthorAffiliation | Department of Chemistry University of Southern California Department of Electrical Engineering Department of Chemical Engineering and Materials Science |
AuthorAffiliation_xml | – name: University of Southern California – name: Department of Chemistry – name: Department of Electrical Engineering – name: Department of Chemical Engineering and Materials Science |
Author_xml | – sequence: 1 givenname: Yi surname: Zhang fullname: Zhang, Yi – sequence: 2 givenname: Luyao surname: Zhang fullname: Zhang, Luyao – sequence: 3 givenname: Pyojae surname: Kim fullname: Kim, Pyojae – sequence: 4 givenname: Mingyuan surname: Ge fullname: Ge, Mingyuan – sequence: 5 givenname: Zhen surname: Li fullname: Li, Zhen – sequence: 6 givenname: Chongwu surname: Zhou fullname: Zhou, Chongwu email: chongwuz@usc.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25989654$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22536825$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0d1rFDEQAPAgFfuhD_4DkhehQtfmc3fjWznaKlQU-vG6ZLOTXkouWZMc5f57U3qeIAWfZob8khkmh2gvxAAIvafkMyWMngbPCSFc6VfogEpOmlYptrfLe7GPDnN-qEZxSd6gfcYkb3smD1C403NM-CbpeXbhHl-m-FiWOFp8XUsPzSJtctHeuwD1UM9LqMmFj4-Q8hd8vQllCdnlE_w9pnkZfbzfnGAdJnzuwZQUgzP4Z4ozpOIgv0WvrfYZ3m3jEbq9OL9ZfG2uflx-W5xdNVoIURrL1SjAsp53msI4Cc57ScCMrbJMsb4b7Shla7idYLKTZJYRKqaR0H4UUnX8CB0_vzun-GsNuQwrlw14rwPEdR5o1zIiSdu3_6fkSaqO8ko_bOl6XME0zMmtdNoMf9ZZwcct0Nlob5MOxuW_TqpetVJU9-nZmRRzTmB3hJKnhnTYfWm1p_9Y44ouLoaStPMv3thOoU0eHuI6hbrqF9xv_I2unA |
CitedBy_id | crossref_primary_10_1021_nn4047138 crossref_primary_10_1038_s41598_018_28560_1 crossref_primary_10_1039_C5TC00235D crossref_primary_10_1039_C7NJ01461A crossref_primary_10_1088_0957_4484_25_26_265201 crossref_primary_10_1002_admi_201600347 crossref_primary_10_1021_nl4033928 crossref_primary_10_1039_C3TC31738B crossref_primary_10_1002_jrs_5094 crossref_primary_10_1021_nl303410g crossref_primary_10_1038_srep00707 crossref_primary_10_1016_j_carbon_2015_05_108 crossref_primary_10_1021_nl404207f crossref_primary_10_1002_cvde_201300051 crossref_primary_10_1007_s10853_016_0003_8 crossref_primary_10_1016_j_est_2020_101386 crossref_primary_10_1021_acsami_8b07655 crossref_primary_10_1021_acsnano_4c02070 crossref_primary_10_1088_0957_4484_24_32_325601 crossref_primary_10_3390_nano11071672 crossref_primary_10_1021_nn500209d crossref_primary_10_1016_j_carbon_2018_07_072 crossref_primary_10_1021_ar300203n crossref_primary_10_1088_1674_4926_43_6_061101 crossref_primary_10_1021_acs_chemmater_4c00078 crossref_primary_10_1016_j_carbon_2021_09_016 crossref_primary_10_1021_nn3049297 crossref_primary_10_1039_C3TA13033A crossref_primary_10_1007_s12274_016_1169_8 crossref_primary_10_1021_acs_jpclett_4c03481 crossref_primary_10_1021_jz400400u crossref_primary_10_1002_admi_202101500 crossref_primary_10_1016_j_apsusc_2017_07_092 crossref_primary_10_1039_C4SC02223H crossref_primary_10_1016_j_scib_2017_11_011 crossref_primary_10_1039_c3nr00972f crossref_primary_10_1002_cvde_201307075 crossref_primary_10_1002_smtd_202000102 crossref_primary_10_1016_j_carbon_2020_10_057 crossref_primary_10_1016_j_nantod_2014_09_002 crossref_primary_10_1038_ncomms3096 crossref_primary_10_7567_JJAP_55_105101 crossref_primary_10_1039_C8CP00263K crossref_primary_10_1002_adfm_202207324 crossref_primary_10_1021_jz3007029 crossref_primary_10_1063_1_4893696 crossref_primary_10_1021_cm303445s crossref_primary_10_1039_C4EE00531G crossref_primary_10_1016_j_carbon_2013_05_050 crossref_primary_10_3367_UFNe_0183_201310i_1115 crossref_primary_10_1016_j_triboint_2024_109896 crossref_primary_10_1063_1_4979837 crossref_primary_10_1016_j_electacta_2015_08_079 crossref_primary_10_1063_1_4867120 crossref_primary_10_1002_cjoc_201500429 crossref_primary_10_1016_j_carbon_2014_09_026 crossref_primary_10_1021_nn5059826 crossref_primary_10_1515_psr_2016_0107 crossref_primary_10_1002_adfm_201301732 crossref_primary_10_1007_s12274_017_1942_3 crossref_primary_10_1016_j_carbon_2015_06_023 crossref_primary_10_1021_nn305223y crossref_primary_10_1002_advs_201700087 crossref_primary_10_1038_srep24143 crossref_primary_10_1021_acsnano_6b03668 crossref_primary_10_1039_c3ra43066a crossref_primary_10_1002_adma_201800996 crossref_primary_10_1016_j_jpowsour_2016_07_086 crossref_primary_10_1016_j_snb_2014_07_024 crossref_primary_10_1007_s12274_016_1107_9 crossref_primary_10_1016_j_carbon_2013_12_073 crossref_primary_10_1088_1361_6528_aa68a8 crossref_primary_10_1039_c3tc30124a crossref_primary_10_1021_acssuschemeng_9b03117 crossref_primary_10_1021_acsnano_6b06265 crossref_primary_10_1002_cnma_202300143 crossref_primary_10_1021_acs_jpcc_3c01131 crossref_primary_10_1016_j_carbon_2020_07_025 crossref_primary_10_1039_C5RA13672E crossref_primary_10_1021_acsnano_5b03043 crossref_primary_10_1016_j_matchemphys_2018_04_018 crossref_primary_10_1142_S1793604717300031 crossref_primary_10_1016_j_carbon_2015_01_018 crossref_primary_10_1021_acs_jpcc_8b11897 crossref_primary_10_1002_adfm_201302166 crossref_primary_10_1016_j_matlet_2014_05_113 crossref_primary_10_1021_ar4003043 crossref_primary_10_1021_acsanm_9b00766 crossref_primary_10_1016_j_progpolymsci_2017_11_006 crossref_primary_10_1116_6_0002893 crossref_primary_10_3390_mi11121101 crossref_primary_10_1021_jp309549z crossref_primary_10_1039_c3nr00963g crossref_primary_10_1039_D2TC03227A crossref_primary_10_1016_j_physe_2016_04_013 crossref_primary_10_1021_jp510556t crossref_primary_10_1016_j_tsf_2022_139436 crossref_primary_10_1038_srep04395 crossref_primary_10_1016_j_carbon_2015_08_114 crossref_primary_10_1021_jp400996s crossref_primary_10_7567_JJAP_55_04EC11 crossref_primary_10_1016_j_carbon_2015_03_034 crossref_primary_10_1016_j_carbon_2015_08_115 crossref_primary_10_1557_jmr_2013_388 crossref_primary_10_1002_admi_201600413 crossref_primary_10_1021_acsomega_1c01614 crossref_primary_10_1039_C4NR04153D crossref_primary_10_1186_s40580_015_0042_x crossref_primary_10_1039_C4RA11734D crossref_primary_10_1002_ppsc_201300125 crossref_primary_10_1002_pat_3543 crossref_primary_10_1016_j_cej_2017_10_002 crossref_primary_10_1109_ACCESS_2019_2958136 crossref_primary_10_1016_j_carbon_2017_04_068 crossref_primary_10_1021_acs_jpcc_7b06142 crossref_primary_10_1002_adma_201405887 crossref_primary_10_1016_j_carbon_2013_07_048 crossref_primary_10_1039_c3ra23388j crossref_primary_10_1021_acsnano_6b08027 crossref_primary_10_1021_jp5070215 crossref_primary_10_1039_C7RA13169K crossref_primary_10_1063_1_4827209 crossref_primary_10_1002_adma_201801583 crossref_primary_10_1021_nl304706j crossref_primary_10_1038_srep09034 crossref_primary_10_1039_C5TC02906F crossref_primary_10_1039_C7RA04139J crossref_primary_10_1088_0022_3727_46_28_285303 crossref_primary_10_1002_er_8479 crossref_primary_10_37934_arnht_27_1_2844 crossref_primary_10_1007_s10915_021_01676_9 crossref_primary_10_1007_s00339_014_8320_8 crossref_primary_10_1038_nmat4477 crossref_primary_10_1039_C4FD90039A crossref_primary_10_1080_10667857_2015_1112584 crossref_primary_10_1088_1361_6528_abb04a crossref_primary_10_1021_acs_chemmater_6b03672 crossref_primary_10_1063_5_0061129 crossref_primary_10_1021_acs_chemmater_6b04928 crossref_primary_10_1115_1_4048494 crossref_primary_10_1016_j_compositesb_2019_107174 crossref_primary_10_1039_C6RA13457B crossref_primary_10_1016_j_flatc_2017_08_009 crossref_primary_10_1007_s12613_015_1049_3 crossref_primary_10_1016_j_cej_2017_02_048 crossref_primary_10_1088_0957_4484_24_36_365603 crossref_primary_10_1039_C8NR09915D crossref_primary_10_1016_j_apsusc_2014_02_004 crossref_primary_10_1016_j_comptc_2015_06_009 crossref_primary_10_1039_C3RA47834C crossref_primary_10_1134_S106378261601005X crossref_primary_10_1016_j_carbon_2022_08_054 crossref_primary_10_1039_c3ta12931d crossref_primary_10_1039_c3ta12789c crossref_primary_10_1039_C4CE00744A crossref_primary_10_1021_nl4014315 crossref_primary_10_1021_acs_chemmater_5b01430 crossref_primary_10_1016_j_apsusc_2016_12_126 crossref_primary_10_1007_s10853_015_9440_z crossref_primary_10_3367_UFNr_0183_201310i_1115 crossref_primary_10_1007_s12034_015_1045_2 crossref_primary_10_1038_s41598_017_06276_y crossref_primary_10_1002_adfm_201201577 crossref_primary_10_1007_s41127_020_00035_z crossref_primary_10_1021_nn303352k crossref_primary_10_7567_JJAP_55_02BE05 crossref_primary_10_1021_cm401669k crossref_primary_10_1021_nn506041t |
Cites_doi | 10.1038/nature04235 10.1126/science.1171245 10.1063/1.2982585 10.1021/nl101629g 10.1126/science.1196893 10.1021/ja109793s 10.1109/TNANO.2009.2013620 10.1021/nn202996r 10.1126/science.1102896 10.1021/ja200245p 10.1021/nl104000b 10.1021/nn201978y 10.1038/nmat2830 10.1038/nmat1849 10.1038/nature04233 10.1021/nl801827v 10.1038/nmat3010 10.1021/nl100022u 10.1038/nature07719 10.1038/nature09718 10.1021/nl102788f |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nl300039a |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1530-6992 |
EndPage | 2816 |
ExternalDocumentID | 22536825 25989654 10_1021_nl300039a c645491710 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a444t-f39b4ef2837a1ebd433850ecb69f29287bfb556c3fdedfd52f2014db018b45973 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 01:09:15 EDT 2025 Thu Jul 10 19:10:55 EDT 2025 Thu Jan 02 22:27:54 EST 2025 Mon Jul 21 09:17:23 EDT 2025 Tue Jul 01 00:42:47 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Thu Aug 27 13:44:40 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Vapor trapping large-grain graphene morphology graphene growth graphene transistors Grain size Methane Electronic properties Electron backscattering Electron diffraction Field effect transistors Boron nitride Crystal growth from vapors Monocrystals Trapping Hexagonal crystals Graphene Morphology Growth mechanism |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a444t-f39b4ef2837a1ebd433850ecb69f29287bfb556c3fdedfd52f2014db018b45973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22536825 |
PQID | 1020509713 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1762050686 proquest_miscellaneous_1020509713 pubmed_primary_22536825 pascalfrancis_primary_25989654 crossref_primary_10_1021_nl300039a crossref_citationtrail_10_1021_nl300039a acs_journals_10_1021_nl300039a |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-13 |
PublicationDateYYYYMMDD | 2012-06-13 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Reina A. (ref8/cit8) 2009; 9 Yu Q. K. (ref6/cit6) 2008; 93 Li X. S. (ref9/cit9) 2009; 324 Vlassiouk I. (ref21/cit21) 2011; 5 Yu Q. K. (ref11/cit11) 2011; 10 Gannett W. (ref23/cit23) 2011 Li X. S. (ref10/cit10) 2011; 133 Li X. S. (ref13/cit13) 2010; 10 Zhang Y. B. (ref4/cit4) 2005; 438 Novoselov K. S. (ref3/cit3) 2005; 438 Zhang Z. Y. (ref22/cit22) 2010; 10 Huang P. Y. (ref12/cit12) 2011; 469 Shenoy V. B. (ref15/cit15) 2010; 330 Zhang Y. (ref16/cit16) 2011; 6 Rasool H. I. (ref20/cit20) 2011; 133 Chen S. S. (ref17/cit17) 2011 Liu Z. F. (ref18/cit18) 2011; 11 Wofford J. M. (ref19/cit19) 2010; 10 Kim K. S. (ref7/cit7) 2009; 457 Yazyev O. V. (ref14/cit14) 2010; 9 Geim A. K. (ref1/cit1) 2007; 6 Kim E. (ref24/cit24) 2011 De Arco L. G. (ref5/cit5) 2009; 8 Novoselov K. S. (ref2/cit2) 2004; 306 |
References_xml | – volume: 438 start-page: 201 year: 2005 ident: ref4/cit4 publication-title: Nature doi: 10.1038/nature04235 – volume: 324 start-page: 1312 year: 2009 ident: ref9/cit9 publication-title: Science doi: 10.1126/science.1171245 – start-page: 98 year: 2011 ident: ref23/cit23 publication-title: Appl. Phys. Lett. – volume: 93 start-page: 113103 year: 2008 ident: ref6/cit6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2982585 – volume: 10 start-page: 4328 year: 2010 ident: ref13/cit13 publication-title: Nano Lett. doi: 10.1021/nl101629g – volume: 330 start-page: 946 year: 2010 ident: ref15/cit15 publication-title: Science doi: 10.1126/science.1196893 – volume: 133 start-page: 2816 year: 2011 ident: ref10/cit10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109793s – volume: 8 start-page: 135 year: 2009 ident: ref5/cit5 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2009.2013620 – volume: 6 start-page: 126 year: 2011 ident: ref16/cit16 publication-title: ACS Nano doi: 10.1021/nn202996r – volume: 306 start-page: 666 year: 2004 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.1102896 – start-page: 98 year: 2011 ident: ref24/cit24 publication-title: Appl. Phys. Lett. – volume: 133 start-page: 12536 year: 2011 ident: ref20/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200245p – volume: 11 start-page: 1106 year: 2011 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl104000b – volume: 5 start-page: 6069 year: 2011 ident: ref21/cit21 publication-title: ACS Nano doi: 10.1021/nn201978y – volume: 9 start-page: 806 year: 2010 ident: ref14/cit14 publication-title: Nat. Mater. doi: 10.1038/nmat2830 – volume: 6 start-page: 183 year: 2007 ident: ref1/cit1 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 438 start-page: 197 year: 2005 ident: ref3/cit3 publication-title: Nature doi: 10.1038/nature04233 – volume: 9 start-page: 30 year: 2009 ident: ref8/cit8 publication-title: Nano Lett. doi: 10.1021/nl801827v – volume: 10 start-page: 443 year: 2011 ident: ref11/cit11 publication-title: Nat. Mater. doi: 10.1038/nmat3010 – year: 2011 ident: ref17/cit17 publication-title: Nano Lett. – volume: 10 start-page: 2024 year: 2010 ident: ref22/cit22 publication-title: Nano Lett. doi: 10.1021/nl100022u – volume: 457 start-page: 706 year: 2009 ident: ref7/cit7 publication-title: Nature doi: 10.1038/nature07719 – volume: 469 start-page: 389 year: 2011 ident: ref12/cit12 publication-title: Nature doi: 10.1038/nature09718 – volume: 10 start-page: 4890 year: 2010 ident: ref19/cit19 publication-title: Nano Lett. doi: 10.1021/nl102788f |
SSID | ssj0009350 |
Score | 2.4813755 |
Snippet | We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 μm. Controlled growth of... We report a vapor trapping method for the growth of large-grain, single-crystalline graphene flowers with grain size up to 100 mu m. Controlled growth of... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2810 |
SubjectTerms | Applied sciences Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Crystallization - methods Electric Conductivity Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronics Exact sciences and technology Flowers Fullerenes and related materials; diamonds, graphite Gases - chemistry Graphene Graphite - chemistry Lobes Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Macromolecular Substances - chemistry Materials science Materials Testing Molecular Conformation Morphology Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Particle Size Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Single crystals Specific materials Surface Properties Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) Synthesis Transistors Trapping |
Title | Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties |
URI | http://dx.doi.org/10.1021/nl300039a https://www.ncbi.nlm.nih.gov/pubmed/22536825 https://www.proquest.com/docview/1020509713 https://www.proquest.com/docview/1762050686 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB0huIAQ-1KWyiwHDqQQZ-Ik3FChICQQUgFxi-zEBkSVoiY9wNczTtoCYrslykSJPR7Ne17eAOzSKAlQUyDJgKODiY9OlArheJi4UaA1l6Xa_uWVOL_Fi3v_fgx2flnB5-5B1vHKE6QEgia4CAPLsI6b7Q9lXa8sw0qRSzwoCnEoH_T5VZt6kvxL6pl-kTn1gqnKV_yOL8s805qFk-FpnWp7yXOjX6hG8vZdvPGvJszBzABnsuNqYMzDmM4WYOqT-uAiZHeSwDejbGU1Gh7YGTHy4pF1DWvTbUc7zd4rYUcr2q3pobS7wTRrdcq6akes_ZoReMyf8n122SVvlfPz-0xmKTsd1dZh13ayv2dVW5fgtnV60zx3BuUXHImIhWO8SKE2Vh5HulqlSGzWP9SJEpHhETEtZZTvi8QzqU5N6nNDYAJTdeiGComneMswnnUzvQpMELIKJIaYGImEOKVMjaELZTMo6rAGdfJPPAifPC5XxrkbjzquBntD18XJQLzc1tDo_GS6PTJ9qRQ7fjKqf_H_yJLYYBgJH2uwNRwQMQWcXUWRme727b9xq5lD5P4PG0oxZCRCUYOVajR9fIH7niBevvZfm9dhkjqU231prrcB40WvrzcJARWqXkbAO-y1_vk |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLXQ9gAI8f3RAcUgHnhYxuLcuAlvU7XSjXVC6ob2FtmJDYgqnZr0Yfv1O3bSdps24C1RbhLHvlf3nNg-l7GP8JIeGQSS6gkKKI8pSAspg4jyMO0ZI5RX2x8dyuEx7Z_EJ61MjtsLg0ZUeFLlJ_FX6gLh53IS-Y2kwELrACHCEa2d_nglsBv5aqwIYNChNKGFitDlW10GyqsrGejBqarQGbapYnE7zPTpZvCoqVvkG-pXmfzZmtd6Kz-_puH4f1_ymD1sUSffadzkCbtjyqfs_iUtwmes_KEAxTlyl1Ns-Mm_gp_Xv_jU8jFOJyboz86AJJ2Et8FF5daGGT6Y-CprX_j4rASUrH5Xm3w0xdj5v_WbXJUF311W2uHf3a__mdNwfc6OB7tH_WHQFmMIFBHVgY1STcY6sRwVGl0QuG28bXItUytS8C5tdRzLPLKFKWwRCwtoQYXeDhNNYC3RC7ZWTkvzinEJnNVTlFBuFQF_KlVYiwPt8imZpMO66LesDaYq8_PkIsyWHddhnxYjmOWtlLmrqDG5yfTD0vS00e-4yah7xQ2WluCGSSpj6rD3C7_IEH5uTkWVZjp3bRNOQQdU_y82SDgwkonssJeNU63eIOJIgqVv_Oub37G7w6PRQXawd_jtNbuHzhVuxVoYvWFr9Wxu3gIb1brrg-IC20IHaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5VRapACChQCI90QRw41G1tjzc2typtKI-WSqFVb9aud7dFRE4UO4fy65nZOO5D5XGz5bG9Xs9ovs-z_gbgHXlJDy0FkupFGGCRYJAZKYMYizDrWRspr7Z_cCj3j_HzaXLaEEX-F4YGUdGVKl_E56ieGNcoDIRb5Sj2P5MSHrrD5TomWzv94aXIbuw7slIQEyXKUlwoCV09lbNQUV3LQvcnqqIJcfNOFn-Gmj7lDB7Ct3awfqXJz81ZrTeLXzd0HP__aR7BgwZ9ip25u6zCki0fw70rmoRPoDxRBMkF5TBWbjgTH4mn1-di7MSQdkc26E8vCFGylLelg4rXiFkxGPluax_E8KIkSFn9qDbEwZjeof9qvyFUacRe23FHHHEJYMpark_heLD3vb8fNE0ZAoWIdeDiTKN1LJqjQqsNEsdNtm2hZeaijPiXdjpJZBE7Y40zSeQIYqDR22GqkdhLvAbL5bi0z0FIwls9hSkWTiHhUKWMc7ShOa-iTTvQpbnLm6Cqcl8vj8K8nbgOvF-8xbxoJM25s8boNtO3relkruNxm1H3miu0lsQR00wm2IE3C9_IKQy5tqJKO57x2CJW0iHK_xcbSjxkJFPZgWdzx7q8Q5TEktj6i3898zqsHO0O8q-fDr-8hLs0txEvXAvjV7BcT2f2NUGkWnd9XPwGaSAJ7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vapor+Trapping+Growth+of+Single-Crystalline+Graphene+Flowers%3A+Synthesis%2C+Morphology%2C+and+Electronic+Properties&rft.jtitle=Nano+letters&rft.au=Zhang%2C+Yi&rft.au=Zhang%2C+Luyao&rft.au=Kim%2C+Pyojae&rft.au=Ge%2C+Mingyuan&rft.date=2012-06-13&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=12&rft.issue=6&rft.spage=2810&rft.epage=2816&rft_id=info:doi/10.1021%2Fnl300039a&rft.externalDocID=c645491710 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |