Excitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene
We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be...
Saved in:
Published in | Nano letters Vol. 13; no. 8; pp. 3698 - 3702 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
14.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ∼80 cm–1 by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems. |
---|---|
AbstractList | We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ∼80 cm–1 by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems. We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ~80 cm(-1) by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems. We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of 80 cm super(-1) by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems. We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ~80 cm(-1) by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems.We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ~80 cm(-1) by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems. |
Author | Kono, Junichiro Zhang, Qi Jin, Zehua Shi, Gang Ajayan, Pulickel M Xu, Qianfan Vajtai, Robert Gao, Weilu Shu, Jie |
AuthorAffiliation | Department of Electrical and Computer Engineering Department of Physics and Astronomy Department of Mechanical Engineering & Materials Science Rice University |
AuthorAffiliation_xml | – name: Department of Electrical and Computer Engineering – name: Department of Mechanical Engineering & Materials Science – name: Department of Physics and Astronomy – name: Rice University |
Author_xml | – sequence: 1 givenname: Weilu surname: Gao fullname: Gao, Weilu – sequence: 2 givenname: Gang surname: Shi fullname: Shi, Gang – sequence: 3 givenname: Zehua surname: Jin fullname: Jin, Zehua – sequence: 4 givenname: Jie surname: Shu fullname: Shu, Jie – sequence: 5 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 6 givenname: Robert surname: Vajtai fullname: Vajtai, Robert – sequence: 7 givenname: Pulickel M surname: Ajayan fullname: Ajayan, Pulickel M – sequence: 8 givenname: Junichiro surname: Kono fullname: Kono, Junichiro – sequence: 9 givenname: Qianfan surname: Xu fullname: Xu, Qianfan email: qianfan@rice.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27663398$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23895501$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0U1PGzEQBmALUZGEcugfQL4gtYcUf61jH1GU0kpIjUR7Xk2cMTU4drB3Ufvvu4gQJMSBk-fwzIw174QcppyQkE-cfeVM8PMUFeON5XcHZMwbyabaWnG4r40akUmtt4wxKxt2REZCGts0jI_J9eKvCx10IScKaU0vXBcekM5z6kqONHu6LHkLN4NIN_S6Lx4c0mWEuhk6ljlCCV1OlYZELwts_2DCj-SDh1jxZPcek9_fFr_m36dXPy9_zC-upqCU6qZOGKHWaJGh53q1QquFtCCcXEEjYagA0IOYMS2YRuMNZ054w4xSmqGRx-Tz09xtyfc91q7dhOowRkiY-9ryWSOVEcK8gyqhpNBSNAM93dF-tcF1uy1hA-Vf-3yzAZztAFQH0RdILtQXN9NaSvu488uTcyXXWtDvCWftY27tPrfBnr-yz6l0BUJ8s2P3C3C1vc19ScOp33D_AY8FpE8 |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_4c02815 crossref_primary_10_1038_srep28799 crossref_primary_10_1515_zna_2024_0056 crossref_primary_10_1038_s41598_022_09176_y crossref_primary_10_1063_1_4922401 crossref_primary_10_1103_PhysRevB_94_195421 crossref_primary_10_1103_PhysRevB_89_245434 crossref_primary_10_7567_1882_0786_ab2f95 crossref_primary_10_1039_C7NR07045D crossref_primary_10_1088_1402_4896_aca5c6 crossref_primary_10_1016_j_spmi_2016_05_021 crossref_primary_10_1063_1_4894090 crossref_primary_10_1002_adom_201500237 crossref_primary_10_7498_aps_64_108402 crossref_primary_10_1007_s11468_016_0251_0 crossref_primary_10_1021_acsphotonics_5b00536 crossref_primary_10_1038_s41928_024_01197_x crossref_primary_10_1016_j_ijleo_2023_171010 crossref_primary_10_1103_PhysRevApplied_11_064002 crossref_primary_10_1103_PhysRevB_90_195411 crossref_primary_10_1002_ctpp_202300172 crossref_primary_10_1063_1_4879017 crossref_primary_10_4191_kcers_2017_54_5_10 crossref_primary_10_1002_lpor_201800040 crossref_primary_10_1088_1361_6463_aab8bd crossref_primary_10_1364_JOSAA_31_000691 crossref_primary_10_3390_nano14040378 crossref_primary_10_1088_1361_6463_ad8ed6 crossref_primary_10_1021_acs_chemrev_9b00592 crossref_primary_10_1002_smll_201501627 crossref_primary_10_1364_AO_58_001824 crossref_primary_10_1088_1361_6463_ac360f crossref_primary_10_1021_acs_jpcc_9b04693 crossref_primary_10_1038_s41566_017_0069_0 crossref_primary_10_1016_j_carbon_2020_05_019 crossref_primary_10_1007_s00339_017_1147_3 crossref_primary_10_1038_s41598_021_90876_2 crossref_primary_10_1016_j_rinp_2019_102796 crossref_primary_10_1016_j_rinp_2019_102313 crossref_primary_10_1364_OL_43_000026 crossref_primary_10_1364_JOSAB_484596 crossref_primary_10_1515_nanoph_2015_0007 crossref_primary_10_1364_OME_473110 crossref_primary_10_1002_lpor_201300199 crossref_primary_10_7567_JJAP_53_08MG02 crossref_primary_10_1021_acsphotonics_9b01578 crossref_primary_10_1002_adma_201305905 crossref_primary_10_1515_nanoph_2017_0133 crossref_primary_10_1364_AO_58_004762 crossref_primary_10_1063_1_4954948 crossref_primary_10_1109_JLT_2014_2350481 crossref_primary_10_7498_aps_67_20180196 crossref_primary_10_1007_s11468_017_0653_7 crossref_primary_10_1038_srep05763 crossref_primary_10_1103_PhysRevApplied_13_034020 crossref_primary_10_1063_1_5096417 crossref_primary_10_7567_APEX_9_012001 crossref_primary_10_1186_s11671_018_2750_8 crossref_primary_10_5772_58558 crossref_primary_10_1364_OE_25_004680 crossref_primary_10_7498_aps_69_20191645 crossref_primary_10_1002_advs_201800175 crossref_primary_10_1021_acs_nanolett_9b01945 crossref_primary_10_1021_acsphotonics_7b00384 crossref_primary_10_1364_JOSAB_393908 crossref_primary_10_1364_JOSAB_512365 crossref_primary_10_1364_JOSAB_34_000884 crossref_primary_10_1016_j_cocis_2015_11_007 crossref_primary_10_1038_s41598_025_90517_y crossref_primary_10_1016_j_apmt_2024_102287 crossref_primary_10_1063_5_0189124 crossref_primary_10_1088_1361_648X_abee02 crossref_primary_10_1007_s11468_018_0724_4 crossref_primary_10_1016_j_ssc_2015_08_013 crossref_primary_10_1063_5_0027159 crossref_primary_10_1007_s11082_018_1708_5 crossref_primary_10_1016_j_jqsrt_2018_01_009 crossref_primary_10_1016_j_optcom_2014_10_009 crossref_primary_10_1364_JOSAB_33_002051 crossref_primary_10_1021_acsphotonics_8b00584 crossref_primary_10_1063_1_4963276 crossref_primary_10_1098_rsta_2016_0066 crossref_primary_10_1364_OE_411795 crossref_primary_10_1007_s11468_015_0028_x crossref_primary_10_1021_acsphotonics_7b00477 crossref_primary_10_1016_j_ssc_2023_115269 crossref_primary_10_1515_nanoph_2020_0211 crossref_primary_10_1364_OE_23_007809 crossref_primary_10_1007_s40766_021_00018_7 crossref_primary_10_1021_acs_chemrev_7b00252 crossref_primary_10_3390_s16060899 crossref_primary_10_1007_s11468_015_0151_8 crossref_primary_10_1016_j_optcom_2016_06_007 crossref_primary_10_1002_lpor_201900098 crossref_primary_10_1021_acs_nanolett_6b04076 crossref_primary_10_1007_s11468_017_0607_0 crossref_primary_10_1002_ange_201508586 crossref_primary_10_1364_OE_395098 crossref_primary_10_1021_nl500158y crossref_primary_10_1038_s43246_019_0002_9 crossref_primary_10_1364_OL_482706 crossref_primary_10_7498_aps_64_106801 crossref_primary_10_3390_ma12121892 crossref_primary_10_1002_smll_201400515 crossref_primary_10_1364_OE_25_017306 crossref_primary_10_1557_mrc_2018_173 crossref_primary_10_1007_s00339_019_2872_6 crossref_primary_10_1038_nphys3545 crossref_primary_10_1038_s41566_017_0033_z crossref_primary_10_1002_anie_201508586 crossref_primary_10_1038_s41598_020_78594_7 crossref_primary_10_1364_OE_434993 crossref_primary_10_1016_j_optcom_2017_12_080 crossref_primary_10_1038_srep37898 crossref_primary_10_1002_adfm_201604414 crossref_primary_10_1016_j_ijleo_2017_01_049 crossref_primary_10_1088_2515_7647_ab8f1f crossref_primary_10_1364_OE_24_016961 crossref_primary_10_1063_5_0086515 crossref_primary_10_1021_acsaelm_9b00499 crossref_primary_10_1088_2040_8986_aad87b crossref_primary_10_1063_5_0206742 crossref_primary_10_1088_1361_6528_aa7128 crossref_primary_10_1364_OE_22_006680 crossref_primary_10_1080_02678292_2018_1500651 crossref_primary_10_1007_s11467_016_0551_z crossref_primary_10_1103_PhysRevApplied_18_024052 crossref_primary_10_1016_j_rinp_2017_02_006 crossref_primary_10_1088_1361_6528_aba785 crossref_primary_10_1002_adom_201400100 crossref_primary_10_1088_2040_8986_abc315 crossref_primary_10_1109_JPHOT_2014_2331248 crossref_primary_10_1364_OL_40_004524 crossref_primary_10_1021_acsphotonics_9b01037 crossref_primary_10_1109_JSTQE_2017_2660881 crossref_primary_10_1016_j_spmi_2018_11_015 crossref_primary_10_1021_acsphotonics_9b00193 crossref_primary_10_1002_lpor_202300469 crossref_primary_10_1103_PhysRevB_107_085414 crossref_primary_10_1021_acs_nanolett_6b05077 crossref_primary_10_1016_j_jqsrt_2019_106788 crossref_primary_10_3390_nano9030398 crossref_primary_10_1021_acsphotonics_8b00544 crossref_primary_10_1016_j_ijleo_2016_01_201 crossref_primary_10_1063_5_0131964 crossref_primary_10_1016_j_jqsrt_2021_107700 crossref_primary_10_1007_s11468_024_02205_8 crossref_primary_10_1088_2040_8978_17_7_075001 crossref_primary_10_1021_acs_nanolett_7b05190 crossref_primary_10_1364_OE_22_028635 crossref_primary_10_1063_5_0144913 crossref_primary_10_1364_JOSAB_514255 crossref_primary_10_1088_1742_6596_1092_1_012017 crossref_primary_10_1103_PhysRevResearch_6_033063 crossref_primary_10_1364_JOSAB_416185 crossref_primary_10_1088_1361_6528_ab9394 crossref_primary_10_1063_5_0123589 crossref_primary_10_1016_j_carbon_2018_10_002 crossref_primary_10_1063_1_4913993 crossref_primary_10_1039_D0NR02047H crossref_primary_10_1364_JOSAB_36_000451 crossref_primary_10_1002_adom_201901416 crossref_primary_10_1039_C8NR04623A crossref_primary_10_1590_2179_10742019v18i11634 crossref_primary_10_1364_OL_39_001345 crossref_primary_10_1364_OE_27_035914 crossref_primary_10_1007_s11431_019_1496_2 crossref_primary_10_1364_OE_26_029183 crossref_primary_10_1364_JOSAB_449405 crossref_primary_10_1063_5_0152664 crossref_primary_10_1515_nanoph_2014_0019 crossref_primary_10_1016_j_physleta_2015_12_020 crossref_primary_10_1103_PhysRevB_97_085419 crossref_primary_10_1364_OME_421216 crossref_primary_10_1016_j_revip_2021_100054 crossref_primary_10_1016_j_ssc_2018_06_005 crossref_primary_10_1021_acs_nanolett_7b02029 crossref_primary_10_1364_JOSAB_403612 crossref_primary_10_3390_nano11112941 crossref_primary_10_1063_1_4916721 crossref_primary_10_1038_srep27550 crossref_primary_10_1103_PhysRevB_99_165408 crossref_primary_10_1039_C8NR00678D crossref_primary_10_1103_PhysRevB_91_235436 crossref_primary_10_1364_OE_27_026569 crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_107 crossref_primary_10_1007_s11082_024_06450_3 crossref_primary_10_1117_1_APN_2_5_056003 crossref_primary_10_1364_OE_26_003709 crossref_primary_10_1109_TTHZ_2016_2525776 crossref_primary_10_1007_s11082_023_05256_z crossref_primary_10_1103_PhysRevLett_121_057404 crossref_primary_10_1016_j_spmi_2020_106396 crossref_primary_10_1364_OE_25_016400 crossref_primary_10_1109_JPHOT_2019_2907318 crossref_primary_10_1038_srep17688 crossref_primary_10_1515_nanoph_2024_0588 crossref_primary_10_1039_C8NR04996C crossref_primary_10_1103_PhysRevB_89_195447 crossref_primary_10_1109_JLT_2017_2750200 crossref_primary_10_1364_PRJ_5_000377 crossref_primary_10_1038_srep27565 crossref_primary_10_1016_j_mee_2015_03_010 crossref_primary_10_3390_app9163297 crossref_primary_10_3390_nano13222922 crossref_primary_10_1088_0957_4484_25_32_322001 crossref_primary_10_1016_j_optlastec_2024_111370 crossref_primary_10_1002_lpor_202000300 crossref_primary_10_1002_adom_201901056 crossref_primary_10_1038_srep39309 crossref_primary_10_1209_0295_5075_104_37001 crossref_primary_10_1016_j_jqsrt_2020_107230 crossref_primary_10_1016_j_progsurf_2023_100719 crossref_primary_10_1364_OPTICA_2_000135 crossref_primary_10_1039_C5RA15204F crossref_primary_10_1021_acsphotonics_5b00410 crossref_primary_10_1063_1_4883885 crossref_primary_10_1007_s11468_019_00986_x crossref_primary_10_1364_OE_401694 crossref_primary_10_1016_j_diamond_2023_110728 crossref_primary_10_1109_TTHZ_2015_2477600 crossref_primary_10_1007_s11468_017_0530_4 crossref_primary_10_1103_PhysRevB_100_155432 crossref_primary_10_1007_s11468_015_9975_5 crossref_primary_10_1103_PhysRevApplied_11_054017 crossref_primary_10_1134_S1063782621100195 crossref_primary_10_1364_OE_22_020214 crossref_primary_10_1088_1361_6463_ac3f5b crossref_primary_10_1364_OE_528565 |
Cites_doi | 10.1109/3.641320 10.1103/PhysRevB.44.6393 10.1038/nature11254 10.1038/nature11253 10.1021/nn300989g 10.1038/nnano.2010.89 10.1038/nnano.2012.59 10.1021/nn3055835 10.1126/science.1102896 10.1021/nl0808839 10.1126/science.1171245 10.1038/nnano.2011.146 10.1038/nature10067 10.1088/1367-2630/14/12/125001 10.1038/nphoton.2011.57 10.1103/PhysRevLett.105.055501 10.1364/JOSAA.14.000588 10.1103/PhysRevB.83.165113 10.1021/nl301496r 10.1364/OE.19.011236 10.1038/nphoton.2012.262 10.1038/nmat2630 10.1038/nphoton.2011.102 10.1021/nl201771h 10.1038/nphoton.2008.249 10.1109/TNANO.2007.910334 10.1103/PhysRevLett.79.3978 10.1103/PhysRevLett.38.980 10.1038/nphoton.2012.27 10.1103/PhysRevLett.97.187401 10.1021/nn201207c 10.1021/nl301551a 10.1038/nmat1849 10.1103/RevModPhys.81.109 10.1038/nphys989 10.1021/nl803868k 10.1021/nn301888e 10.1103/PhysRevB.82.195414 10.1103/PhysRevB.80.245435 10.1038/nature05343 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nl401591k |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 3702 |
ExternalDocumentID | 23895501 27663398 10_1021_nl401591k b144185185 |
Genre | Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a444t-c2824de9e0ef16bbe96239a2c3ba53a9a2aaefa2706206e8f810c2f8084460e83 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 00:31:06 EDT 2025 Fri Jul 11 07:33:04 EDT 2025 Thu Jan 02 22:13:06 EST 2025 Mon Jul 21 09:15:24 EDT 2025 Tue Jul 01 00:42:54 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Thu Aug 27 13:42:49 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | nanophotonics infrared optoelectronics graphene surface plasmon polaritons Active plasmonics Calcium nitride Graphene Resonance frequency Plasmon polariton interaction Gallium tellurides Monolayers Logic gates Silicon Infrared spectra Absorption spectra Surface plasmons Gates |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a444t-c2824de9e0ef16bbe96239a2c3ba53a9a2aaefa2706206e8f810c2f8084460e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23895501 |
PQID | 1424326325 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1753482288 proquest_miscellaneous_1424326325 pubmed_primary_23895501 pascalfrancis_primary_27663398 crossref_primary_10_1021_nl401591k crossref_citationtrail_10_1021_nl401591k acs_journals_10_1021_nl401591k |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-14 |
PublicationDateYYYYMMDD | 2013-08-14 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Schuller J. A. (ref7/cit7) 2010; 9 Jablan M. (ref9/cit9) 2009; 80 Gjonaj B. (ref5/cit5) 2011; 5 Ruzicka B. A. (ref40/cit40) 2010; 82 Ferrari A. C. (ref32/cit32) 2006; 97 Pala R. A. (ref18/cit18) 2008; 8 Allen S. J. (ref20/cit20) 1977; 38 Grigorenko A. N. (ref14/cit14) 2012; 6 Li Z. Q. (ref35/cit35) 2008; 4 Peres N. M. R. (ref36/cit36) 2010; 105 Buron J. D. (ref34/cit34) 2012; 12 MacDonald K. F. (ref4/cit4) 2009; 3 Elston S. J. (ref27/cit27) 1991; 44 Horng J. (ref29/cit29) 2011; 83 Suk J. W. (ref39/cit39) 2011; 5 Novoselov K. S. (ref1/cit1) 2004; 306 Castro Neto A. H. (ref3/cit3) 2009; 81 Sharon A. (ref25/cit25) 1997; 14 Yan H. G. (ref16/cit16) 2012; 14 Chen H. T. (ref6/cit6) 2006; 444 Yan H. G. (ref15/cit15) 2012; 7 Koppens F. H. L. (ref12/cit12) 2011; 11 Bao Q. L. (ref13/cit13) 2012; 6 Fei Z. (ref22/cit22) 2012; 487 Rana F. (ref8/cit8) 2008; 7 Liu M. (ref23/cit23) 2011; 474 Watts R. A. (ref28/cit28) 1997; 79 Li X. S. (ref38/cit38) 2009; 324 Chen J. N. (ref21/cit21) 2012; 487 Ren L. (ref30/cit30) 2012; 12 Ju L. (ref11/cit11) 2011; 6 Rosenblatt D. (ref24/cit24) 1997; 33 Schwierz F. (ref33/cit33) 2010; 5 Tassin P. (ref37/cit37) 2012; 6 Dionne J. A. (ref19/cit19) 2009; 9 Jablan M. (ref31/cit31) 2011; 19 Bao Q. L. (ref10/cit10) 2011; 5 Geim A. K. (ref2/cit2) 2007; 6 Fang Z. Y. (ref17/cit17) 2013; 7 Gao W. L. (ref26/cit26) 2012; 6 |
References_xml | – volume: 33 start-page: 2038 issue: 11 year: 1997 ident: ref24/cit24 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.641320 – volume: 44 start-page: 6393 issue: 12 year: 1991 ident: ref27/cit27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.6393 – volume: 487 start-page: 77 issue: 7405 year: 2012 ident: ref21/cit21 publication-title: Nature doi: 10.1038/nature11254 – volume: 487 start-page: 82 issue: 7405 year: 2012 ident: ref22/cit22 publication-title: Nature doi: 10.1038/nature11253 – volume: 6 start-page: 3677 issue: 5 year: 2012 ident: ref13/cit13 publication-title: ACS Nano doi: 10.1021/nn300989g – volume: 5 start-page: 487 issue: 7 year: 2010 ident: ref33/cit33 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.89 – volume: 7 start-page: 330 issue: 5 year: 2012 ident: ref15/cit15 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.59 – volume: 7 start-page: 2388 issue: 3 year: 2013 ident: ref17/cit17 publication-title: ACS Nano doi: 10.1021/nn3055835 – volume: 306 start-page: 666 issue: 5696 year: 2004 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.1102896 – volume: 8 start-page: 1506 issue: 5 year: 2008 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl0808839 – volume: 324 start-page: 1312 issue: 5932 year: 2009 ident: ref38/cit38 publication-title: Science doi: 10.1126/science.1171245 – volume: 6 start-page: 630 issue: 10 year: 2011 ident: ref11/cit11 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.146 – volume: 474 start-page: 64 issue: 7349 year: 2011 ident: ref23/cit23 publication-title: Nature doi: 10.1038/nature10067 – volume: 14 start-page: 125001 year: 2012 ident: ref16/cit16 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/12/125001 – volume: 5 start-page: 360 issue: 6 year: 2011 ident: ref5/cit5 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.57 – volume: 105 start-page: 055501 issue: 5 year: 2010 ident: ref36/cit36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.055501 – volume: 14 start-page: 588 issue: 3 year: 1997 ident: ref25/cit25 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.14.000588 – volume: 83 start-page: 165113 issue: 16 year: 2011 ident: ref29/cit29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.165113 – volume: 12 start-page: 3711 issue: 7 year: 2012 ident: ref30/cit30 publication-title: Nano Lett. doi: 10.1021/nl301496r – volume: 19 start-page: 11236 issue: 12 year: 2011 ident: ref31/cit31 publication-title: Opt. Express doi: 10.1364/OE.19.011236 – volume: 6 start-page: 749 issue: 11 year: 2012 ident: ref14/cit14 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.262 – volume: 9 start-page: 193 issue: 4 year: 2010 ident: ref7/cit7 publication-title: Nat. Mater. doi: 10.1038/nmat2630 – volume: 5 start-page: 411 issue: 7 year: 2011 ident: ref10/cit10 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.102 – volume: 11 start-page: 3370 issue: 8 year: 2011 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl201771h – volume: 3 start-page: 55 issue: 1 year: 2009 ident: ref4/cit4 publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.249 – volume: 7 start-page: 91 issue: 1 year: 2008 ident: ref8/cit8 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2007.910334 – volume: 79 start-page: 3978 issue: 20 year: 1997 ident: ref28/cit28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.3978 – volume: 38 start-page: 980 issue: 17 year: 1977 ident: ref20/cit20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.38.980 – volume: 6 start-page: 259 issue: 4 year: 2012 ident: ref37/cit37 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.27 – volume: 97 start-page: 187401 issue: 18 year: 2006 ident: ref32/cit32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 5 start-page: 6916 issue: 9 year: 2011 ident: ref39/cit39 publication-title: ACS Nano doi: 10.1021/nn201207c – volume: 12 start-page: 5074 issue: 10 year: 2012 ident: ref34/cit34 publication-title: Nano Lett. doi: 10.1021/nl301551a – volume: 6 start-page: 183 issue: 3 year: 2007 ident: ref2/cit2 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 81 start-page: 109 issue: 1 year: 2009 ident: ref3/cit3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 4 start-page: 532 issue: 7 year: 2008 ident: ref35/cit35 publication-title: Nat. Phys. doi: 10.1038/nphys989 – volume: 9 start-page: 897 issue: 2 year: 2009 ident: ref19/cit19 publication-title: Nano Lett. doi: 10.1021/nl803868k – volume: 6 start-page: 7806 issue: 9 year: 2012 ident: ref26/cit26 publication-title: ACS Nano doi: 10.1021/nn301888e – volume: 82 start-page: 195414 issue: 19 year: 2010 ident: ref40/cit40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.195414 – volume: 80 start-page: 245435 issue: 24 year: 2009 ident: ref9/cit9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.245435 – volume: 444 start-page: 597 issue: 7119 year: 2006 ident: ref6/cit6 publication-title: Nature doi: 10.1038/nature05343 |
SSID | ssj0009350 |
Score | 2.5467792 |
Snippet | We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3698 |
SubjectTerms | Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science; rheology Diffraction gratings Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Excitation Fullerenes and related materials Fullerenes and related materials; diamonds, graphite Gates Graphene Infrared and raman spectra and scattering Materials science Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Physics Plasmonics Polaritons Propagation Specific materials Surface and interface electron states Surface chemistry Visible and ultraviolet spectra |
Title | Excitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene |
URI | http://dx.doi.org/10.1021/nl401591k https://www.ncbi.nlm.nih.gov/pubmed/23895501 https://www.proquest.com/docview/1424326325 https://www.proquest.com/docview/1753482288 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JasMwEB26XFpK9yVdgrocenFqybIjH0O6UWgJpIHcjKTIpSQoJQuUfn1Hdpw0dLvpMJYtzYz0HpLfAFxEMhQd3Ec8pzXmcVXlHjYCD9fL1I81k9Q4ovj4FN23-EM7bC_A-S8n-Ixe2R5SgDCm3UVYZpGoOoZVqzdnyrpBVoYVMxd5UCx4IR_09VG39ejh3Naz9iaHOAtpXr7id3yZ7TO3G3Bd_K2TXy_pVsYjVdEf38Ub_xrCJqxPcCap5YGxBQvGbsPqF_XBHWjevOuJQjeRtkNq2dJH6vnlddJPSWOAlNpJcNgX0hwPUqkNaSDcxtAlDceJcTmwQ_JqyZ3TvcZlcxdatzfP9XtvUmPBk5zzkaeRcvGOiY1vUhopZWLEQ7FkOlAyDCS2pDSpZFU_Yn5kRCqor1kqfIE80jci2IMl27fmAIjC3BdoQoVveMSwrw6lSgdCIUZRsSpBGZ2QTHJkmGTH34wm09kpwWXhn6QYvyuU0fvJ9Gxq-pbLcvxkVJ5z8tSSVRFnBbEowWnh9QSzyh2VSGv6Y_w2znjgpOzDP2yQ6XHEVwL72c9DZvYGxIHI_ejhf2M-ghWWFdhALs-PYWk0GJsThDkjVc7C_BNkBvTW |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcoCq4v0Ij7AgkHpx8a7XzvrAIQotKX0oUlqpN7PrrKWqlVPFidryU_gr_Dm-9SNpUYFTJW4-jMb7mJ2Zzzv-huh9pEM1QhzxHNeYJ01HengIPPjLzI9Tobl1QHF3L-ofyK-H4eES_Wj-hcEgCmgqykv8BbsA_5ifAAmEMT-uCyi37cUZ4Fnxaesz9vKDEJsb-72-V3cQ8LSUcuqlABRyZGPr24xHxtgY0T7WIg2MDgONJ61tpkXHj4QfWZUp7qciU74CSvKtCqD3Ft1G0iMcsOv2hgtC36Ds_gqHAfgVK9mwFl0eqot4aXEl4q2e6gKLn1VdM_6c1pbhbfM-_ZwvTFnVcrw-m5r19PtvnJH_58o9oHt1Vs261TF4SEs2f0Qrl7gWH9Nw4zyt-ciZzkesWzp61qtK9dk4Y4PJGN5VuzpwNpxNMp1aNgC4wEFlA_cFAM4vL9hRzr44lm8EiSd0cCOzekrL-Ti3z4kZeDoFEa58KyMBXSPOTRoog4zMxKZFbWxGUnuEIikv-wVP5rvRorXGLJJm_q4tyMl1ou_moqcVCcl1Qu0rtjWXFB1klUGsWvS2MbYEPsRdDOncjmcYmxQycMT94V9kgGslskkFPc8qS128AVkvkC5_8a85v6E7_f3dnWRna2_7Jd0VZWsR5XH5ipank5l9jQRvatrlSWP07aYN9BdMn1eQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtNAFL0qRUKgivcjPMKAQOrGxTMeO-MFiyhtaClUkUKl7syMPZZQKyeKExX4GH6lv9YzfqQtKrCqxM6Lq-t53NfxjM8lehPpUGXII57jGvOk6UkPD4GHeJn7cSo0tw4oft6Ltvflx4PwYIV-tf_CYBAlNJXVIb7z6mmWNwwD_F1xBDQQxvywuUS5a38cA6KV73c2sZ9vhRhufRlse00XAU9LKedeClAhMxtb3-Y8MsbGyPixFmlgdBhoPGltcy16fiT8yKpccT8VufIVkJJvVQC91-i6Ox504K4_GJ-R-gZVB1gEDUCwWMmWuej8UF3WS8sLWW9tqktsQF53zvhzaVuluOEdOlkuTnWz5XBjMTcb6c_feCP_39W7S7eb6pr1a3e4Ryu2uE-3znEuPqDx1ve04SVnushYvwr4bFBf2WeTnI1mE0RZ7e6Ds_FiluvUshFABhyWjdyXAATBomTfCvbBsX0jWTyk_SuZ1SNaLSaFfULMIOIpiHDlWxkJ6Mo4N2mgDCozE5sOdbEhSRMZyqQ69Bc8We5Gh9Zb00ja-bv2IEeXib5eik5rMpLLhLoX7GspKXqoLoNYdehVa3AJYok7INKFnSwwNilk4Aj8w7_IAN9KVJUKeh7X1nr2BlS_QLz86b_m_JJujDaHyaedvd1ndFNUHUaUx-VzWp3PFvYF6ry56VbOxujrVdvnKbPeWhM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation+and+Active+Control+of+Propagating+Surface+Plasmon+Polaritons+in+Graphene&rft.jtitle=Nano+letters&rft.au=Gao%2C+Weilu&rft.au=Shi%2C+Gang&rft.au=Jin%2C+Zehua&rft.au=Shu%2C+Jie&rft.date=2013-08-14&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=13&rft.issue=8&rft.spage=3698&rft.epage=3702-3698-3702&rft_id=info:doi/10.1021%2Fnl401591k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |