Excitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene

We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 13; no. 8; pp. 3698 - 3702
Main Authors Gao, Weilu, Shi, Gang, Jin, Zehua, Shu, Jie, Zhang, Qi, Vajtai, Robert, Ajayan, Pulickel M, Kono, Junichiro, Xu, Qianfan
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 14.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ∼80 cm–1 by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems.
AbstractList We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ∼80 cm–1 by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems.
We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ~80 cm(-1) by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems.
We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of 80 cm super(-1) by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems.
We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ~80 cm(-1) by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems.We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ~80 cm(-1) by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems.
Author Kono, Junichiro
Zhang, Qi
Jin, Zehua
Shi, Gang
Ajayan, Pulickel M
Xu, Qianfan
Vajtai, Robert
Gao, Weilu
Shu, Jie
AuthorAffiliation Department of Electrical and Computer Engineering
Department of Physics and Astronomy
Department of Mechanical Engineering & Materials Science
Rice University
AuthorAffiliation_xml – name: Department of Electrical and Computer Engineering
– name: Department of Mechanical Engineering & Materials Science
– name: Department of Physics and Astronomy
– name: Rice University
Author_xml – sequence: 1
  givenname: Weilu
  surname: Gao
  fullname: Gao, Weilu
– sequence: 2
  givenname: Gang
  surname: Shi
  fullname: Shi, Gang
– sequence: 3
  givenname: Zehua
  surname: Jin
  fullname: Jin, Zehua
– sequence: 4
  givenname: Jie
  surname: Shu
  fullname: Shu, Jie
– sequence: 5
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 6
  givenname: Robert
  surname: Vajtai
  fullname: Vajtai, Robert
– sequence: 7
  givenname: Pulickel M
  surname: Ajayan
  fullname: Ajayan, Pulickel M
– sequence: 8
  givenname: Junichiro
  surname: Kono
  fullname: Kono, Junichiro
– sequence: 9
  givenname: Qianfan
  surname: Xu
  fullname: Xu, Qianfan
  email: qianfan@rice.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27663398$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23895501$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1PGzEQBmALUZGEcugfQL4gtYcUf61jH1GU0kpIjUR7Xk2cMTU4drB3Ufvvu4gQJMSBk-fwzIw174QcppyQkE-cfeVM8PMUFeON5XcHZMwbyabaWnG4r40akUmtt4wxKxt2REZCGts0jI_J9eKvCx10IScKaU0vXBcekM5z6kqONHu6LHkLN4NIN_S6Lx4c0mWEuhk6ljlCCV1OlYZELwts_2DCj-SDh1jxZPcek9_fFr_m36dXPy9_zC-upqCU6qZOGKHWaJGh53q1QquFtCCcXEEjYagA0IOYMS2YRuMNZ054w4xSmqGRx-Tz09xtyfc91q7dhOowRkiY-9ryWSOVEcK8gyqhpNBSNAM93dF-tcF1uy1hA-Vf-3yzAZztAFQH0RdILtQXN9NaSvu488uTcyXXWtDvCWftY27tPrfBnr-yz6l0BUJ8s2P3C3C1vc19ScOp33D_AY8FpE8
CitedBy_id crossref_primary_10_1021_acs_jpclett_4c02815
crossref_primary_10_1038_srep28799
crossref_primary_10_1515_zna_2024_0056
crossref_primary_10_1038_s41598_022_09176_y
crossref_primary_10_1063_1_4922401
crossref_primary_10_1103_PhysRevB_94_195421
crossref_primary_10_1103_PhysRevB_89_245434
crossref_primary_10_7567_1882_0786_ab2f95
crossref_primary_10_1039_C7NR07045D
crossref_primary_10_1088_1402_4896_aca5c6
crossref_primary_10_1016_j_spmi_2016_05_021
crossref_primary_10_1063_1_4894090
crossref_primary_10_1002_adom_201500237
crossref_primary_10_7498_aps_64_108402
crossref_primary_10_1007_s11468_016_0251_0
crossref_primary_10_1021_acsphotonics_5b00536
crossref_primary_10_1038_s41928_024_01197_x
crossref_primary_10_1016_j_ijleo_2023_171010
crossref_primary_10_1103_PhysRevApplied_11_064002
crossref_primary_10_1103_PhysRevB_90_195411
crossref_primary_10_1002_ctpp_202300172
crossref_primary_10_1063_1_4879017
crossref_primary_10_4191_kcers_2017_54_5_10
crossref_primary_10_1002_lpor_201800040
crossref_primary_10_1088_1361_6463_aab8bd
crossref_primary_10_1364_JOSAA_31_000691
crossref_primary_10_3390_nano14040378
crossref_primary_10_1088_1361_6463_ad8ed6
crossref_primary_10_1021_acs_chemrev_9b00592
crossref_primary_10_1002_smll_201501627
crossref_primary_10_1364_AO_58_001824
crossref_primary_10_1088_1361_6463_ac360f
crossref_primary_10_1021_acs_jpcc_9b04693
crossref_primary_10_1038_s41566_017_0069_0
crossref_primary_10_1016_j_carbon_2020_05_019
crossref_primary_10_1007_s00339_017_1147_3
crossref_primary_10_1038_s41598_021_90876_2
crossref_primary_10_1016_j_rinp_2019_102796
crossref_primary_10_1016_j_rinp_2019_102313
crossref_primary_10_1364_OL_43_000026
crossref_primary_10_1364_JOSAB_484596
crossref_primary_10_1515_nanoph_2015_0007
crossref_primary_10_1364_OME_473110
crossref_primary_10_1002_lpor_201300199
crossref_primary_10_7567_JJAP_53_08MG02
crossref_primary_10_1021_acsphotonics_9b01578
crossref_primary_10_1002_adma_201305905
crossref_primary_10_1515_nanoph_2017_0133
crossref_primary_10_1364_AO_58_004762
crossref_primary_10_1063_1_4954948
crossref_primary_10_1109_JLT_2014_2350481
crossref_primary_10_7498_aps_67_20180196
crossref_primary_10_1007_s11468_017_0653_7
crossref_primary_10_1038_srep05763
crossref_primary_10_1103_PhysRevApplied_13_034020
crossref_primary_10_1063_1_5096417
crossref_primary_10_7567_APEX_9_012001
crossref_primary_10_1186_s11671_018_2750_8
crossref_primary_10_5772_58558
crossref_primary_10_1364_OE_25_004680
crossref_primary_10_7498_aps_69_20191645
crossref_primary_10_1002_advs_201800175
crossref_primary_10_1021_acs_nanolett_9b01945
crossref_primary_10_1021_acsphotonics_7b00384
crossref_primary_10_1364_JOSAB_393908
crossref_primary_10_1364_JOSAB_512365
crossref_primary_10_1364_JOSAB_34_000884
crossref_primary_10_1016_j_cocis_2015_11_007
crossref_primary_10_1038_s41598_025_90517_y
crossref_primary_10_1016_j_apmt_2024_102287
crossref_primary_10_1063_5_0189124
crossref_primary_10_1088_1361_648X_abee02
crossref_primary_10_1007_s11468_018_0724_4
crossref_primary_10_1016_j_ssc_2015_08_013
crossref_primary_10_1063_5_0027159
crossref_primary_10_1007_s11082_018_1708_5
crossref_primary_10_1016_j_jqsrt_2018_01_009
crossref_primary_10_1016_j_optcom_2014_10_009
crossref_primary_10_1364_JOSAB_33_002051
crossref_primary_10_1021_acsphotonics_8b00584
crossref_primary_10_1063_1_4963276
crossref_primary_10_1098_rsta_2016_0066
crossref_primary_10_1364_OE_411795
crossref_primary_10_1007_s11468_015_0028_x
crossref_primary_10_1021_acsphotonics_7b00477
crossref_primary_10_1016_j_ssc_2023_115269
crossref_primary_10_1515_nanoph_2020_0211
crossref_primary_10_1364_OE_23_007809
crossref_primary_10_1007_s40766_021_00018_7
crossref_primary_10_1021_acs_chemrev_7b00252
crossref_primary_10_3390_s16060899
crossref_primary_10_1007_s11468_015_0151_8
crossref_primary_10_1016_j_optcom_2016_06_007
crossref_primary_10_1002_lpor_201900098
crossref_primary_10_1021_acs_nanolett_6b04076
crossref_primary_10_1007_s11468_017_0607_0
crossref_primary_10_1002_ange_201508586
crossref_primary_10_1364_OE_395098
crossref_primary_10_1021_nl500158y
crossref_primary_10_1038_s43246_019_0002_9
crossref_primary_10_1364_OL_482706
crossref_primary_10_7498_aps_64_106801
crossref_primary_10_3390_ma12121892
crossref_primary_10_1002_smll_201400515
crossref_primary_10_1364_OE_25_017306
crossref_primary_10_1557_mrc_2018_173
crossref_primary_10_1007_s00339_019_2872_6
crossref_primary_10_1038_nphys3545
crossref_primary_10_1038_s41566_017_0033_z
crossref_primary_10_1002_anie_201508586
crossref_primary_10_1038_s41598_020_78594_7
crossref_primary_10_1364_OE_434993
crossref_primary_10_1016_j_optcom_2017_12_080
crossref_primary_10_1038_srep37898
crossref_primary_10_1002_adfm_201604414
crossref_primary_10_1016_j_ijleo_2017_01_049
crossref_primary_10_1088_2515_7647_ab8f1f
crossref_primary_10_1364_OE_24_016961
crossref_primary_10_1063_5_0086515
crossref_primary_10_1021_acsaelm_9b00499
crossref_primary_10_1088_2040_8986_aad87b
crossref_primary_10_1063_5_0206742
crossref_primary_10_1088_1361_6528_aa7128
crossref_primary_10_1364_OE_22_006680
crossref_primary_10_1080_02678292_2018_1500651
crossref_primary_10_1007_s11467_016_0551_z
crossref_primary_10_1103_PhysRevApplied_18_024052
crossref_primary_10_1016_j_rinp_2017_02_006
crossref_primary_10_1088_1361_6528_aba785
crossref_primary_10_1002_adom_201400100
crossref_primary_10_1088_2040_8986_abc315
crossref_primary_10_1109_JPHOT_2014_2331248
crossref_primary_10_1364_OL_40_004524
crossref_primary_10_1021_acsphotonics_9b01037
crossref_primary_10_1109_JSTQE_2017_2660881
crossref_primary_10_1016_j_spmi_2018_11_015
crossref_primary_10_1021_acsphotonics_9b00193
crossref_primary_10_1002_lpor_202300469
crossref_primary_10_1103_PhysRevB_107_085414
crossref_primary_10_1021_acs_nanolett_6b05077
crossref_primary_10_1016_j_jqsrt_2019_106788
crossref_primary_10_3390_nano9030398
crossref_primary_10_1021_acsphotonics_8b00544
crossref_primary_10_1016_j_ijleo_2016_01_201
crossref_primary_10_1063_5_0131964
crossref_primary_10_1016_j_jqsrt_2021_107700
crossref_primary_10_1007_s11468_024_02205_8
crossref_primary_10_1088_2040_8978_17_7_075001
crossref_primary_10_1021_acs_nanolett_7b05190
crossref_primary_10_1364_OE_22_028635
crossref_primary_10_1063_5_0144913
crossref_primary_10_1364_JOSAB_514255
crossref_primary_10_1088_1742_6596_1092_1_012017
crossref_primary_10_1103_PhysRevResearch_6_033063
crossref_primary_10_1364_JOSAB_416185
crossref_primary_10_1088_1361_6528_ab9394
crossref_primary_10_1063_5_0123589
crossref_primary_10_1016_j_carbon_2018_10_002
crossref_primary_10_1063_1_4913993
crossref_primary_10_1039_D0NR02047H
crossref_primary_10_1364_JOSAB_36_000451
crossref_primary_10_1002_adom_201901416
crossref_primary_10_1039_C8NR04623A
crossref_primary_10_1590_2179_10742019v18i11634
crossref_primary_10_1364_OL_39_001345
crossref_primary_10_1364_OE_27_035914
crossref_primary_10_1007_s11431_019_1496_2
crossref_primary_10_1364_OE_26_029183
crossref_primary_10_1364_JOSAB_449405
crossref_primary_10_1063_5_0152664
crossref_primary_10_1515_nanoph_2014_0019
crossref_primary_10_1016_j_physleta_2015_12_020
crossref_primary_10_1103_PhysRevB_97_085419
crossref_primary_10_1364_OME_421216
crossref_primary_10_1016_j_revip_2021_100054
crossref_primary_10_1016_j_ssc_2018_06_005
crossref_primary_10_1021_acs_nanolett_7b02029
crossref_primary_10_1364_JOSAB_403612
crossref_primary_10_3390_nano11112941
crossref_primary_10_1063_1_4916721
crossref_primary_10_1038_srep27550
crossref_primary_10_1103_PhysRevB_99_165408
crossref_primary_10_1039_C8NR00678D
crossref_primary_10_1103_PhysRevB_91_235436
crossref_primary_10_1364_OE_27_026569
crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_107
crossref_primary_10_1007_s11082_024_06450_3
crossref_primary_10_1117_1_APN_2_5_056003
crossref_primary_10_1364_OE_26_003709
crossref_primary_10_1109_TTHZ_2016_2525776
crossref_primary_10_1007_s11082_023_05256_z
crossref_primary_10_1103_PhysRevLett_121_057404
crossref_primary_10_1016_j_spmi_2020_106396
crossref_primary_10_1364_OE_25_016400
crossref_primary_10_1109_JPHOT_2019_2907318
crossref_primary_10_1038_srep17688
crossref_primary_10_1515_nanoph_2024_0588
crossref_primary_10_1039_C8NR04996C
crossref_primary_10_1103_PhysRevB_89_195447
crossref_primary_10_1109_JLT_2017_2750200
crossref_primary_10_1364_PRJ_5_000377
crossref_primary_10_1038_srep27565
crossref_primary_10_1016_j_mee_2015_03_010
crossref_primary_10_3390_app9163297
crossref_primary_10_3390_nano13222922
crossref_primary_10_1088_0957_4484_25_32_322001
crossref_primary_10_1016_j_optlastec_2024_111370
crossref_primary_10_1002_lpor_202000300
crossref_primary_10_1002_adom_201901056
crossref_primary_10_1038_srep39309
crossref_primary_10_1209_0295_5075_104_37001
crossref_primary_10_1016_j_jqsrt_2020_107230
crossref_primary_10_1016_j_progsurf_2023_100719
crossref_primary_10_1364_OPTICA_2_000135
crossref_primary_10_1039_C5RA15204F
crossref_primary_10_1021_acsphotonics_5b00410
crossref_primary_10_1063_1_4883885
crossref_primary_10_1007_s11468_019_00986_x
crossref_primary_10_1364_OE_401694
crossref_primary_10_1016_j_diamond_2023_110728
crossref_primary_10_1109_TTHZ_2015_2477600
crossref_primary_10_1007_s11468_017_0530_4
crossref_primary_10_1103_PhysRevB_100_155432
crossref_primary_10_1007_s11468_015_9975_5
crossref_primary_10_1103_PhysRevApplied_11_054017
crossref_primary_10_1134_S1063782621100195
crossref_primary_10_1364_OE_22_020214
crossref_primary_10_1088_1361_6463_ac3f5b
crossref_primary_10_1364_OE_528565
Cites_doi 10.1109/3.641320
10.1103/PhysRevB.44.6393
10.1038/nature11254
10.1038/nature11253
10.1021/nn300989g
10.1038/nnano.2010.89
10.1038/nnano.2012.59
10.1021/nn3055835
10.1126/science.1102896
10.1021/nl0808839
10.1126/science.1171245
10.1038/nnano.2011.146
10.1038/nature10067
10.1088/1367-2630/14/12/125001
10.1038/nphoton.2011.57
10.1103/PhysRevLett.105.055501
10.1364/JOSAA.14.000588
10.1103/PhysRevB.83.165113
10.1021/nl301496r
10.1364/OE.19.011236
10.1038/nphoton.2012.262
10.1038/nmat2630
10.1038/nphoton.2011.102
10.1021/nl201771h
10.1038/nphoton.2008.249
10.1109/TNANO.2007.910334
10.1103/PhysRevLett.79.3978
10.1103/PhysRevLett.38.980
10.1038/nphoton.2012.27
10.1103/PhysRevLett.97.187401
10.1021/nn201207c
10.1021/nl301551a
10.1038/nmat1849
10.1103/RevModPhys.81.109
10.1038/nphys989
10.1021/nl803868k
10.1021/nn301888e
10.1103/PhysRevB.82.195414
10.1103/PhysRevB.80.245435
10.1038/nature05343
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nl401591k
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 3702
ExternalDocumentID 23895501
27663398
10_1021_nl401591k
b144185185
Genre Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a444t-c2824de9e0ef16bbe96239a2c3ba53a9a2aaefa2706206e8f810c2f8084460e83
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 00:31:06 EDT 2025
Fri Jul 11 07:33:04 EDT 2025
Thu Jan 02 22:13:06 EST 2025
Mon Jul 21 09:15:24 EDT 2025
Tue Jul 01 00:42:54 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Thu Aug 27 13:42:49 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords nanophotonics
infrared optoelectronics
graphene surface plasmon polaritons
Active plasmonics
Calcium nitride
Graphene
Resonance frequency
Plasmon polariton interaction
Gallium tellurides
Monolayers
Logic gates
Silicon
Infrared spectra
Absorption spectra
Surface plasmons
Gates
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a444t-c2824de9e0ef16bbe96239a2c3ba53a9a2aaefa2706206e8f810c2f8084460e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23895501
PQID 1424326325
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1753482288
proquest_miscellaneous_1424326325
pubmed_primary_23895501
pascalfrancis_primary_27663398
crossref_primary_10_1021_nl401591k
crossref_citationtrail_10_1021_nl401591k
acs_journals_10_1021_nl401591k
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-14
PublicationDateYYYYMMDD 2013-08-14
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-14
  day: 14
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Schuller J. A. (ref7/cit7) 2010; 9
Jablan M. (ref9/cit9) 2009; 80
Gjonaj B. (ref5/cit5) 2011; 5
Ruzicka B. A. (ref40/cit40) 2010; 82
Ferrari A. C. (ref32/cit32) 2006; 97
Pala R. A. (ref18/cit18) 2008; 8
Allen S. J. (ref20/cit20) 1977; 38
Grigorenko A. N. (ref14/cit14) 2012; 6
Li Z. Q. (ref35/cit35) 2008; 4
Peres N. M. R. (ref36/cit36) 2010; 105
Buron J. D. (ref34/cit34) 2012; 12
MacDonald K. F. (ref4/cit4) 2009; 3
Elston S. J. (ref27/cit27) 1991; 44
Horng J. (ref29/cit29) 2011; 83
Suk J. W. (ref39/cit39) 2011; 5
Novoselov K. S. (ref1/cit1) 2004; 306
Castro Neto A. H. (ref3/cit3) 2009; 81
Sharon A. (ref25/cit25) 1997; 14
Yan H. G. (ref16/cit16) 2012; 14
Chen H. T. (ref6/cit6) 2006; 444
Yan H. G. (ref15/cit15) 2012; 7
Koppens F. H. L. (ref12/cit12) 2011; 11
Bao Q. L. (ref13/cit13) 2012; 6
Fei Z. (ref22/cit22) 2012; 487
Rana F. (ref8/cit8) 2008; 7
Liu M. (ref23/cit23) 2011; 474
Watts R. A. (ref28/cit28) 1997; 79
Li X. S. (ref38/cit38) 2009; 324
Chen J. N. (ref21/cit21) 2012; 487
Ren L. (ref30/cit30) 2012; 12
Ju L. (ref11/cit11) 2011; 6
Rosenblatt D. (ref24/cit24) 1997; 33
Schwierz F. (ref33/cit33) 2010; 5
Tassin P. (ref37/cit37) 2012; 6
Dionne J. A. (ref19/cit19) 2009; 9
Jablan M. (ref31/cit31) 2011; 19
Bao Q. L. (ref10/cit10) 2011; 5
Geim A. K. (ref2/cit2) 2007; 6
Fang Z. Y. (ref17/cit17) 2013; 7
Gao W. L. (ref26/cit26) 2012; 6
References_xml – volume: 33
  start-page: 2038
  issue: 11
  year: 1997
  ident: ref24/cit24
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.641320
– volume: 44
  start-page: 6393
  issue: 12
  year: 1991
  ident: ref27/cit27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.44.6393
– volume: 487
  start-page: 77
  issue: 7405
  year: 2012
  ident: ref21/cit21
  publication-title: Nature
  doi: 10.1038/nature11254
– volume: 487
  start-page: 82
  issue: 7405
  year: 2012
  ident: ref22/cit22
  publication-title: Nature
  doi: 10.1038/nature11253
– volume: 6
  start-page: 3677
  issue: 5
  year: 2012
  ident: ref13/cit13
  publication-title: ACS Nano
  doi: 10.1021/nn300989g
– volume: 5
  start-page: 487
  issue: 7
  year: 2010
  ident: ref33/cit33
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.89
– volume: 7
  start-page: 330
  issue: 5
  year: 2012
  ident: ref15/cit15
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.59
– volume: 7
  start-page: 2388
  issue: 3
  year: 2013
  ident: ref17/cit17
  publication-title: ACS Nano
  doi: 10.1021/nn3055835
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 8
  start-page: 1506
  issue: 5
  year: 2008
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl0808839
– volume: 324
  start-page: 1312
  issue: 5932
  year: 2009
  ident: ref38/cit38
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 6
  start-page: 630
  issue: 10
  year: 2011
  ident: ref11/cit11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.146
– volume: 474
  start-page: 64
  issue: 7349
  year: 2011
  ident: ref23/cit23
  publication-title: Nature
  doi: 10.1038/nature10067
– volume: 14
  start-page: 125001
  year: 2012
  ident: ref16/cit16
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/12/125001
– volume: 5
  start-page: 360
  issue: 6
  year: 2011
  ident: ref5/cit5
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.57
– volume: 105
  start-page: 055501
  issue: 5
  year: 2010
  ident: ref36/cit36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.055501
– volume: 14
  start-page: 588
  issue: 3
  year: 1997
  ident: ref25/cit25
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.14.000588
– volume: 83
  start-page: 165113
  issue: 16
  year: 2011
  ident: ref29/cit29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.165113
– volume: 12
  start-page: 3711
  issue: 7
  year: 2012
  ident: ref30/cit30
  publication-title: Nano Lett.
  doi: 10.1021/nl301496r
– volume: 19
  start-page: 11236
  issue: 12
  year: 2011
  ident: ref31/cit31
  publication-title: Opt. Express
  doi: 10.1364/OE.19.011236
– volume: 6
  start-page: 749
  issue: 11
  year: 2012
  ident: ref14/cit14
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.262
– volume: 9
  start-page: 193
  issue: 4
  year: 2010
  ident: ref7/cit7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2630
– volume: 5
  start-page: 411
  issue: 7
  year: 2011
  ident: ref10/cit10
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.102
– volume: 11
  start-page: 3370
  issue: 8
  year: 2011
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl201771h
– volume: 3
  start-page: 55
  issue: 1
  year: 2009
  ident: ref4/cit4
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2008.249
– volume: 7
  start-page: 91
  issue: 1
  year: 2008
  ident: ref8/cit8
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2007.910334
– volume: 79
  start-page: 3978
  issue: 20
  year: 1997
  ident: ref28/cit28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.3978
– volume: 38
  start-page: 980
  issue: 17
  year: 1977
  ident: ref20/cit20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.38.980
– volume: 6
  start-page: 259
  issue: 4
  year: 2012
  ident: ref37/cit37
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.27
– volume: 97
  start-page: 187401
  issue: 18
  year: 2006
  ident: ref32/cit32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 5
  start-page: 6916
  issue: 9
  year: 2011
  ident: ref39/cit39
  publication-title: ACS Nano
  doi: 10.1021/nn201207c
– volume: 12
  start-page: 5074
  issue: 10
  year: 2012
  ident: ref34/cit34
  publication-title: Nano Lett.
  doi: 10.1021/nl301551a
– volume: 6
  start-page: 183
  issue: 3
  year: 2007
  ident: ref2/cit2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 81
  start-page: 109
  issue: 1
  year: 2009
  ident: ref3/cit3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 4
  start-page: 532
  issue: 7
  year: 2008
  ident: ref35/cit35
  publication-title: Nat. Phys.
  doi: 10.1038/nphys989
– volume: 9
  start-page: 897
  issue: 2
  year: 2009
  ident: ref19/cit19
  publication-title: Nano Lett.
  doi: 10.1021/nl803868k
– volume: 6
  start-page: 7806
  issue: 9
  year: 2012
  ident: ref26/cit26
  publication-title: ACS Nano
  doi: 10.1021/nn301888e
– volume: 82
  start-page: 195414
  issue: 19
  year: 2010
  ident: ref40/cit40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.195414
– volume: 80
  start-page: 245435
  issue: 24
  year: 2009
  ident: ref9/cit9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.245435
– volume: 444
  start-page: 597
  issue: 7119
  year: 2006
  ident: ref6/cit6
  publication-title: Nature
  doi: 10.1038/nature05343
SSID ssj0009350
Score 2.5467792
Snippet We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3698
SubjectTerms Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science; rheology
Diffraction gratings
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Excitation
Fullerenes and related materials
Fullerenes and related materials; diamonds, graphite
Gates
Graphene
Infrared and raman spectra and scattering
Materials science
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Physics
Plasmonics
Polaritons
Propagation
Specific materials
Surface and interface electron states
Surface chemistry
Visible and ultraviolet spectra
Title Excitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene
URI http://dx.doi.org/10.1021/nl401591k
https://www.ncbi.nlm.nih.gov/pubmed/23895501
https://www.proquest.com/docview/1424326325
https://www.proquest.com/docview/1753482288
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JasMwEB26XFpK9yVdgrocenFqybIjH0O6UWgJpIHcjKTIpSQoJQuUfn1Hdpw0dLvpMJYtzYz0HpLfAFxEMhQd3Ec8pzXmcVXlHjYCD9fL1I81k9Q4ovj4FN23-EM7bC_A-S8n-Ixe2R5SgDCm3UVYZpGoOoZVqzdnyrpBVoYVMxd5UCx4IR_09VG39ejh3Naz9iaHOAtpXr7id3yZ7TO3G3Bd_K2TXy_pVsYjVdEf38Ub_xrCJqxPcCap5YGxBQvGbsPqF_XBHWjevOuJQjeRtkNq2dJH6vnlddJPSWOAlNpJcNgX0hwPUqkNaSDcxtAlDceJcTmwQ_JqyZ3TvcZlcxdatzfP9XtvUmPBk5zzkaeRcvGOiY1vUhopZWLEQ7FkOlAyDCS2pDSpZFU_Yn5kRCqor1kqfIE80jci2IMl27fmAIjC3BdoQoVveMSwrw6lSgdCIUZRsSpBGZ2QTHJkmGTH34wm09kpwWXhn6QYvyuU0fvJ9Gxq-pbLcvxkVJ5z8tSSVRFnBbEowWnh9QSzyh2VSGv6Y_w2znjgpOzDP2yQ6XHEVwL72c9DZvYGxIHI_ejhf2M-ghWWFdhALs-PYWk0GJsThDkjVc7C_BNkBvTW
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcoCq4v0Ij7AgkHpx8a7XzvrAIQotKX0oUlqpN7PrrKWqlVPFidryU_gr_Dm-9SNpUYFTJW4-jMb7mJ2Zzzv-huh9pEM1QhzxHNeYJ01HengIPPjLzI9Tobl1QHF3L-ofyK-H4eES_Wj-hcEgCmgqykv8BbsA_5ifAAmEMT-uCyi37cUZ4Fnxaesz9vKDEJsb-72-V3cQ8LSUcuqlABRyZGPr24xHxtgY0T7WIg2MDgONJ61tpkXHj4QfWZUp7qciU74CSvKtCqD3Ft1G0iMcsOv2hgtC36Ds_gqHAfgVK9mwFl0eqot4aXEl4q2e6gKLn1VdM_6c1pbhbfM-_ZwvTFnVcrw-m5r19PtvnJH_58o9oHt1Vs261TF4SEs2f0Qrl7gWH9Nw4zyt-ciZzkesWzp61qtK9dk4Y4PJGN5VuzpwNpxNMp1aNgC4wEFlA_cFAM4vL9hRzr44lm8EiSd0cCOzekrL-Ti3z4kZeDoFEa58KyMBXSPOTRoog4zMxKZFbWxGUnuEIikv-wVP5rvRorXGLJJm_q4tyMl1ou_moqcVCcl1Qu0rtjWXFB1klUGsWvS2MbYEPsRdDOncjmcYmxQycMT94V9kgGslskkFPc8qS128AVkvkC5_8a85v6E7_f3dnWRna2_7Jd0VZWsR5XH5ipank5l9jQRvatrlSWP07aYN9BdMn1eQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtNAFL0qRUKgivcjPMKAQOrGxTMeO-MFiyhtaClUkUKl7syMPZZQKyeKExX4GH6lv9YzfqQtKrCqxM6Lq-t53NfxjM8lehPpUGXII57jGvOk6UkPD4GHeJn7cSo0tw4oft6Ltvflx4PwYIV-tf_CYBAlNJXVIb7z6mmWNwwD_F1xBDQQxvywuUS5a38cA6KV73c2sZ9vhRhufRlse00XAU9LKedeClAhMxtb3-Y8MsbGyPixFmlgdBhoPGltcy16fiT8yKpccT8VufIVkJJvVQC91-i6Ox504K4_GJ-R-gZVB1gEDUCwWMmWuej8UF3WS8sLWW9tqktsQF53zvhzaVuluOEdOlkuTnWz5XBjMTcb6c_feCP_39W7S7eb6pr1a3e4Ryu2uE-3znEuPqDx1ve04SVnushYvwr4bFBf2WeTnI1mE0RZ7e6Ds_FiluvUshFABhyWjdyXAATBomTfCvbBsX0jWTyk_SuZ1SNaLSaFfULMIOIpiHDlWxkJ6Mo4N2mgDCozE5sOdbEhSRMZyqQ69Bc8We5Gh9Zb00ja-bv2IEeXib5eik5rMpLLhLoX7GspKXqoLoNYdehVa3AJYok7INKFnSwwNilk4Aj8w7_IAN9KVJUKeh7X1nr2BlS_QLz86b_m_JJujDaHyaedvd1ndFNUHUaUx-VzWp3PFvYF6ry56VbOxujrVdvnKbPeWhM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation+and+Active+Control+of+Propagating+Surface+Plasmon+Polaritons+in+Graphene&rft.jtitle=Nano+letters&rft.au=Gao%2C+Weilu&rft.au=Shi%2C+Gang&rft.au=Jin%2C+Zehua&rft.au=Shu%2C+Jie&rft.date=2013-08-14&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=13&rft.issue=8&rft.spage=3698&rft.epage=3702-3698-3702&rft_id=info:doi/10.1021%2Fnl401591k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon