Water regime shifts in the active soil layer of the Qinghai–Tibet Plateau permafrost region, under different levels of vegetation

Soil moisture and water cycling in a permafrost active layer are affected in a synergistic manner by both the sequence of soil temperature and changes in vegetative cover. Between 2004 and 2007, the dynamics of soil water content and water movement in the active layer of alpine meadow soils were mon...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 149; no. 3; pp. 280 - 289
Main Authors Genxu, Wang, Shengnan, Li, Hongchang, Hu, Yuanshou, Li
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.03.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil moisture and water cycling in a permafrost active layer are affected in a synergistic manner by both the sequence of soil temperature and changes in vegetative cover. Between 2004 and 2007, the dynamics of soil water content and water movement in the active layer of alpine meadow soils were monitored at sites located in the permafrost region of the Qinghai–Tibetan Plateau, China for four years to examine the synergistic effects of freeze–thaw cycles and levels of vegetation cover. The analysis of variations in monthly and seasonal soil moisture, soil-desiccation index, and soil available indicated that soil moisture exhibited a relatively stable and consistent pattern over the growing season (July–September), independent from the vegetation cover. Greater soil moisture was present in the upper root zone and at the bottom of the soil profile, whereas lower moisture levels occurred in the middle portion of the profile. Irrespective of soil depth, the lower the vegetation cover, the quicker the increase in soil liquid water during the thaw initiation period (May and June), and the quicker its decrease during the freeze initiation period (October and November). In addition, the greater the vegetation cover, the greater the available water content of the upper root zone and the less the water content of the soil layer at 0.60−0.70 m depth below the root zone. Both the soil hydraulic parameters and the spatiotemporal distribution of the water content were subject to the synergistic action of the freeze–thaw cycle and the extent of vegetation cover. The variances in active soil heat transmission and heat-water coupling relationship under the different vegetation covers were considered the main driving factors in the distribution and dynamics of the active soil water regime. The permafrost supports the development of alpine frost meadow ecosystems, and well-ordered, high-cover alpine meadow vegetation favors the protection of permafrost from degradation.
AbstractList Soil moisture and water cycling in a permafrost active layer are affected in a synergistic manner by both the sequence of soil temperature and changes in vegetative cover. Between 2004 and 2007, the dynamics of soil water content and water movement in the active layer of alpine meadow soils were monitored at sites located in the permafrost region of the Qinghai-Tibetan Plateau, China for four years to examine the synergistic effects of freeze-thaw cycles and levels of vegetation cover. The analysis of variations in monthly and seasonal soil moisture, soil-desiccation index, and soil available indicated that soil moisture exhibited a relatively stable and consistent pattern over the growing season (July-September), independent from the vegetation cover. Greater soil moisture was present in the upper root zone and at the bottom of the soil profile, whereas lower moisture levels occurred in the middle portion of the profile. Irrespective of soil depth, the lower the vegetation cover, the quicker the increase in soil liquid water during the thaw initiation period (May and June), and the quicker its decrease during the freeze initiation period (October and November). In addition, the greater the vegetation cover, the greater the available water content of the upper root zone and the less the water content of the soil layer at 0.60-0.70 m depth below the root zone. Both the soil hydraulic parameters and the spatiotemporal distribution of the water content were subject to the synergistic action of the freeze-thaw cycle and the extent of vegetation cover. The variances in active soil heat transmission and heat-water coupling relationship under the different vegetation covers were considered the main driving factors in the distribution and dynamics of the active soil water regime. The permafrost supports the development of alpine frost meadow ecosystems, and well-ordered, high-cover alpine meadow vegetation favors the protection of permafrost from degradation.
Soil moisture and water cycling in a permafrost active layer are affected in a synergistic manner by both the sequence of soil temperature and changes in vegetative cover. Between 2004 and 2007, the dynamics of soil water content and water movement in the active layer of alpine meadow soils were monitored at sites located in the permafrost region of the Qinghai–Tibetan Plateau, China for four years to examine the synergistic effects of freeze–thaw cycles and levels of vegetation cover. The analysis of variations in monthly and seasonal soil moisture, soil-desiccation index, and soil available indicated that soil moisture exhibited a relatively stable and consistent pattern over the growing season (July–September), independent from the vegetation cover. Greater soil moisture was present in the upper root zone and at the bottom of the soil profile, whereas lower moisture levels occurred in the middle portion of the profile. Irrespective of soil depth, the lower the vegetation cover, the quicker the increase in soil liquid water during the thaw initiation period (May and June), and the quicker its decrease during the freeze initiation period (October and November). In addition, the greater the vegetation cover, the greater the available water content of the upper root zone and the less the water content of the soil layer at 0.60−0.70 m depth below the root zone. Both the soil hydraulic parameters and the spatiotemporal distribution of the water content were subject to the synergistic action of the freeze–thaw cycle and the extent of vegetation cover. The variances in active soil heat transmission and heat-water coupling relationship under the different vegetation covers were considered the main driving factors in the distribution and dynamics of the active soil water regime. The permafrost supports the development of alpine frost meadow ecosystems, and well-ordered, high-cover alpine meadow vegetation favors the protection of permafrost from degradation.
Author Genxu, Wang
Shengnan, Li
Hongchang, Hu
Yuanshou, Li
Author_xml – sequence: 1
  givenname: Wang
  surname: Genxu
  fullname: Genxu, Wang
  email: gxwang@ns.lzb.ac.cn, wanggx@imde.ac.cn
  organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, PR China
– sequence: 2
  givenname: Li
  surname: Shengnan
  fullname: Shengnan, Li
  organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, PR China
– sequence: 3
  givenname: Hu
  surname: Hongchang
  fullname: Hongchang, Hu
  organization: College of Resources & Environment, Lanzhou University, Lanzhou, 730000, PR China
– sequence: 4
  givenname: Li
  surname: Yuanshou
  fullname: Yuanshou, Li
  organization: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21270791$$DView record in Pascal Francis
BookMark eNqFkc1u1DAUhS3USkwLr4C8gRUJtidxHIkFqOJPqkQrtWJp3TjXMx55nMH2jNQdEo_AG_IkOJ3Cgk1XR7a_c3R9zxk5CVNAQl5wVnPG5ZtNvcJpxLiFWjCmai7qIk_IgqtOVFK0_QlZsEJWHZP8KTlLaVOOHRNsQX5-g4yRRly5LdK0djYn6gLNa6RgsjuUy8l56uGuYJO9f7h2YbUG9_vHrxs3YKZXvoTAnu7mIWycUr4PnMJrug9lMjo6azFiyNTjAX2agw64wgy5UM_IqQWf8PmDnpPbjx9uLj5Xl18_fbl4f1lB0zS5gkEZGJlqoRNWILZLwzscetm0UthlPyoAK4SSwygBQI6tXPJeKT6aVrKBL8_Jq2PuLk7f95iy3rpk0HsIOO2TFqwRLVesgC8fQEgGvI0QjEt6F90W4p0WXHSs6-dAeeRM-XOKaP8hnOm5G73Rf7vRczeaC12kGN_-ZzTuuIscwfnH7e-O9rJKPDiMOhmHweDoIpqsx8k9FvEHcwS0tA
CODEN GEDMAB
CitedBy_id crossref_primary_10_1657_AAAR00C_14_016
crossref_primary_10_3389_feart_2021_806309
crossref_primary_10_1007_s11284_012_0951_7
crossref_primary_10_1016_j_ecolind_2024_112097
crossref_primary_10_1016_j_rse_2013_07_006
crossref_primary_10_1117_1_JRS_8_083653
crossref_primary_10_1007_s12665_011_1405_1
crossref_primary_10_1007_s11629_011_1004_3
crossref_primary_10_1016_j_geoderma_2020_114176
crossref_primary_10_2136_vzj2017_05_0102
crossref_primary_10_1155_2017_9451802
crossref_primary_10_1007_s11629_013_2893_0
crossref_primary_10_1007_s40333_013_0151_5
crossref_primary_10_1016_j_ejrh_2020_100759
crossref_primary_10_3390_rs14225815
crossref_primary_10_1088_1748_9326_abfa4c
crossref_primary_10_1007_s11629_021_7139_y
crossref_primary_10_1007_s11676_019_00962_5
crossref_primary_10_1016_j_scitotenv_2020_137677
crossref_primary_10_17221_105_2022_SWR
crossref_primary_10_1080_15230430_2018_1439155
crossref_primary_10_1016_j_jhydrol_2021_126330
crossref_primary_10_1007_s00704_021_03798_4
crossref_primary_10_1007_s10668_009_9228_x
crossref_primary_10_1002_ppp_2003
crossref_primary_10_1016_j_scitotenv_2020_139261
crossref_primary_10_1016_j_actao_2012_01_012
crossref_primary_10_1016_j_accre_2020_07_002
crossref_primary_10_1007_s11676_018_0866_4
crossref_primary_10_1111_sum_12910
crossref_primary_10_1080_02626667_2021_1883619
crossref_primary_10_1016_j_ejrh_2021_100807
crossref_primary_10_3389_fenvs_2022_912209
crossref_primary_10_3390_agronomy13092193
Cites_doi 10.1002/ppp.582
10.1002/ppp.410
10.1002/ppp.606
10.1029/2005JD005957
10.1111/j.1365-2486.2007.01327.x
10.1023/A:1009769620488
10.1016/j.agrformet.2004.12.002
10.1016/j.jhydrol.2006.11.007
10.1002/ppp.452
10.1111/j.1654-1103.2002.tb02055.x
10.1002/hyp.6913
10.1016/S0165-232X(03)00064-8
10.2136/sssaj2003.1672
10.1017/S0266467403001299
ContentType Journal Article
Copyright 2008
2009 INIST-CNRS
Copyright_xml – notice: 2008
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7UA
C1K
F1W
H96
L.G
DOI 10.1016/j.geoderma.2008.12.008
DatabaseName CrossRef
Pascal-Francis
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 289
ExternalDocumentID 21270791
10_1016_j_geoderma_2008_12_008
S0016706108003728
GeographicLocations Xizang China
Far East
Asia
China
Qinghai-Xizang Plateau
Asia, Qinghai-Tibet Plateau
China, People's Rep
GeographicLocations_xml – name: Asia, Qinghai-Tibet Plateau
– name: China, People's Rep
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-a444t-ab8cad085a72f2ee53c17eb964562f39d8aaf2286bd6aaa6d56319881dc560b13
IEDL.DBID AIKHN
ISSN 0016-7061
IngestDate Tue Aug 05 09:06:54 EDT 2025
Mon Jul 21 09:14:54 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Tue Jul 01 02:24:38 EDT 2025
Fri Feb 23 02:20:28 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Qinghai–Tibetan Plateau
Soil water distribution pattern
Permafrost
Soil water dynamics
Alpine frost meadow soil
Available water
Grassland
active layer
Growing season
vegetation
Alpine grasslands
Water regime
Motion study
water content
Plant cover
soils
Dynamic characteristic
soil moisture
desiccation
Freeze thaw cycle
Rhizosphere
water regimes
Meadow soils
permafrost
Qinghai-Tibetan Plateau
seasonal variations
Soil temperature
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a444t-ab8cad085a72f2ee53c17eb964562f39d8aaf2286bd6aaa6d56319881dc560b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://ir.lzu.edu.cn/handle/262010/119856
PQID 20425180
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_20425180
pascalfrancis_primary_21270791
crossref_primary_10_1016_j_geoderma_2008_12_008
crossref_citationtrail_10_1016_j_geoderma_2008_12_008
elsevier_sciencedirect_doi_10_1016_j_geoderma_2008_12_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-15
PublicationDateYYYYMMDD 2009-03-15
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Geoderma
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fukui, Sone, Yamagata, Otsuki, Sawada, Vetrova, Vyatkina (bib23) 2008; 19
Casas, Ninot (bib2) 2007; 335
Wang, Ding, Wang, Liu (bib29) 2004; 15
Wang, Li, Wang, Shen (bib30) 2007; 29
National Soil Survey Office (NSSO) (bib24) 1998
Norusis (bib12) 1999
Smith, Riseborough (bib15) 2002; 13
Mölders, Romanovsky (bib10) 2006; 111
Sommer, Folster, Vielhauer, Maklouf, Vlek (bib16) 2003; 67
Wang, Li, Wang (bib26) 2008; 22
Wang, Liu, Lu (bib19) 2003; 23
Walker, Jia, Epstein (bib17) 2003; 14
Wu, Liu (bib20) 2004; 38
Yang, Shao, Peng (bib21) 1998; 28
Sarmiento, Pinillos, Pereira da Silva, Acevedo (bib13) 2004; 20
Zhou, Guo, Qiu, Cheng (bib31) 2000
Montgomery (bib11) 1997
Zhou (bib22) 2001
He, Huang, Dang (bib6) 2003; 18
Singh, Milchunas, Lauenroth (bib14) 1998; 134
Guo, Shao (bib5) 2006; 24
Sur, Jorgenson (bib25) 2007; 18
Yoshikawa, Bolton, Romanovsky, Fukuda, Hinzman (bib28) 2003; 108 D1
Dekker, Rietkerk, Bierkens (bib3) 2007; 13
Wang, Cheng, Shen (bib18) 2001
Yang, Ding, Chen, Liu (bib27) 2005
Gu, Tang, Cui, Kato, Du, Li, Zhao (bib4) 2005; 129
McGuire, Wirth, Apps, Beringer, Clein, Epstein, Kicklighter, Bhatti, Chapin, Groot, Efremov, Eugster, Fukuda, Gower, Hinzman, Huntley, Jia, Kasischke, Melillo, Romanovsky, Shvidenko, Vaganov, Walker (bib9) 2002; 13
Montgomery (10.1016/j.geoderma.2008.12.008_bib11) 1997
Wang (10.1016/j.geoderma.2008.12.008_bib29) 2004; 15
Yang (10.1016/j.geoderma.2008.12.008_bib21) 1998; 28
Norusis (10.1016/j.geoderma.2008.12.008_bib12) 1999
Sarmiento (10.1016/j.geoderma.2008.12.008_bib13) 2004; 20
Wang (10.1016/j.geoderma.2008.12.008_bib18) 2001
Wang (10.1016/j.geoderma.2008.12.008_bib19) 2003; 23
Zhou (10.1016/j.geoderma.2008.12.008_bib22) 2001
Smith (10.1016/j.geoderma.2008.12.008_bib15) 2002; 13
National Soil Survey Office (NSSO) (10.1016/j.geoderma.2008.12.008_bib24) 1998
Casas (10.1016/j.geoderma.2008.12.008_bib2) 2007; 335
Wang (10.1016/j.geoderma.2008.12.008_bib30) 2007; 29
Yang (10.1016/j.geoderma.2008.12.008_bib27) 2005
Mölders (10.1016/j.geoderma.2008.12.008_bib10) 2006; 111
Sur (10.1016/j.geoderma.2008.12.008_bib25) 2007; 18
Zhou (10.1016/j.geoderma.2008.12.008_bib31) 2000
Fukui (10.1016/j.geoderma.2008.12.008_bib23) 2008; 19
Gu (10.1016/j.geoderma.2008.12.008_bib4) 2005; 129
Walker (10.1016/j.geoderma.2008.12.008_bib17) 2003; 14
Wu (10.1016/j.geoderma.2008.12.008_bib20) 2004; 38
Dekker (10.1016/j.geoderma.2008.12.008_bib3) 2007; 13
Wang (10.1016/j.geoderma.2008.12.008_bib26) 2008; 22
He (10.1016/j.geoderma.2008.12.008_bib6) 2003; 18
Sommer (10.1016/j.geoderma.2008.12.008_bib16) 2003; 67
Guo (10.1016/j.geoderma.2008.12.008_bib5) 2006; 24
McGuire (10.1016/j.geoderma.2008.12.008_bib9) 2002; 13
Yoshikawa (10.1016/j.geoderma.2008.12.008_bib28) 2003; 108 D1
Singh (10.1016/j.geoderma.2008.12.008_bib14) 1998; 134
References_xml – volume: 28
  start-page: 357
  year: 1998
  end-page: 365
  ident: bib21
  article-title: The relationships between land surface aridity and soil water in Loess Plateau
  publication-title: Science in China (Series D)
– volume: 108 D1
  start-page: 8148
  year: 2003
  ident: bib28
  article-title: Impacts of wildfire on the permafrost in the boreal forests of interior Alaska
  publication-title: Journal of Geophysical Research
– volume: 20
  start-page: 209
  year: 2004
  end-page: 220
  ident: bib13
  article-title: Effects of soil water regime and grazing on vegetation diversity and production in a hyperseasonal savanna in the Apure Llanos, Venezuela
  publication-title: Journal of Tropical Ecology
– year: 1997
  ident: bib11
  article-title: Design and Analysis of Experiments
– year: 1998
  ident: bib24
  article-title: Soil of China (in Chinese)
– volume: 18
  start-page: 7
  year: 2007
  end-page: 19
  ident: bib25
  article-title: Patterns of permafrost fromation and degradation in relation to climate and ecosystems
  publication-title: Permafrost and Periglacial Processes
– volume: 24
  start-page: 56
  year: 2006
  end-page: 59
  ident: bib5
  article-title: Preliminary study of vegetation carrying capacity of soil water (VCCSW)
  publication-title: Science & Technology Review
– volume: 14
  start-page: 103
  year: 2003
  end-page: 123
  ident: bib17
  article-title: Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies
  publication-title: Permafrost and Periglacial Processes
– volume: 38
  start-page: 85
  year: 2004
  end-page: 92
  ident: bib20
  article-title: Ground temperature monitoring and its recent change in Qinghai–Tibet Plateau
  publication-title: Cold Regions Science and Technology
– volume: 19
  start-page: 85
  year: 2008
  end-page: 92
  ident: bib23
  article-title: Relationships between permafrost distribution and surface organic layers near Esso, central Kamchatka, Russian Far East
  publication-title: Permafrost and Periglacial Processes
– volume: 22
  start-page: 3310
  year: 2008
  end-page: 3320
  ident: bib26
  article-title: Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet
  publication-title: Hydrological Processes
– year: 1999
  ident: bib12
  article-title: SPSS 9.0 Guide to Data Analysis
– year: 2001
  ident: bib22
  article-title: Chinese Kobresia Pygmaea Meadow (in Chinese)
– volume: 335
  start-page: 98
  year: 2007
  end-page: 108
  ident: bib2
  article-title: Soil water regime through contrasting pasture communities in a Sub-mediterranean landscape
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 671
  year: 2007
  end-page: 678
  ident: bib3
  article-title: Coupling microscale vegetation–soil water and macroscale vegetation–precipitation feedbacks in semiarid ecosystems
  publication-title: Global Change Biology
– volume: 29
  start-page: 159
  year: 2007
  end-page: 168
  ident: bib30
  article-title: Impacts of alpine ecosystem and climatic changes on surface runoff in the source region of Yangtze River
  publication-title: Journal of Glaciology and Geocryology
– volume: 129
  start-page: 175
  year: 2005
  end-page: 185
  ident: bib4
  article-title: Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai–Tibetan Plateau
  publication-title: Agricultural and Forest Meteorology
– year: 2001
  ident: bib18
  article-title: Research on Ecological Environmental Changes in Yangtze and Yellow Rivers Source Regions and their Integrated Protection (in Chinese)
– volume: 15
  start-page: 163
  year: 2004
  end-page: 173
  ident: bib29
  article-title: Land ecological changes and evolutional patterns in the source regions of the Yangtze and Yellow Rivers
  publication-title: Acta Geographic Sinica
– volume: 67
  start-page: 1672
  year: 2003
  end-page: 1686
  ident: bib16
  article-title: Deep soil water dynamics and depletion by secondary vegetation in the Eastern Amazon
  publication-title: Soil Science Society of America Journal
– year: 2005
  ident: bib27
  article-title: Integrating research on the ecological environments changes in the source region of Yellow and Yangtze Rivers during recent 50 years (in Chinese)
– volume: 13
  start-page: 1
  year: 2002
  end-page: 15
  ident: bib15
  article-title: Climate and the limits of permafrost: a zonal analysis
  publication-title: Permafrost and Periglacial Processes
– volume: 13
  start-page: 301
  year: 2002
  end-page: 314
  ident: bib9
  article-title: Environmental variation, vegetation distribution, carbon dynamics, and water/energy exchange in high latitudes
  publication-title: Journal of Vegetation Science
– volume: 111
  start-page: D04105
  year: 2006
  ident: bib10
  article-title: Long-term evaluation of the Hydro-Thermo dynamic Soil-Vegetation Scheme's frozen ground/permafrost component using observations at Barrow, Alaska.
  publication-title: Journal of Geophysical Research
– volume: 134
  start-page: 77
  year: 1998
  end-page: 89
  ident: bib14
  article-title: Soil water dynamics and vegetation patterns in a semiarid grassland
  publication-title: Vegetation
– year: 2000
  ident: bib31
  article-title: Geocryology in China (in Chinese)
– volume: 18
  start-page: 30
  year: 2003
  end-page: 36
  ident: bib6
  article-title: Distribution characteristic of dried soil layer in Wangdonggou Watershed in gully region of the Loess Plateau
  publication-title: Journal of Natural Resources
– volume: 23
  start-page: 1944
  year: 2003
  end-page: 1950
  ident: bib19
  article-title: A study on water restoration of dry soil layers in the semi-arid area of Loess Plateau
  publication-title: Acta Ecological Sinica
– year: 1997
  ident: 10.1016/j.geoderma.2008.12.008_bib11
– volume: 18
  start-page: 7
  year: 2007
  ident: 10.1016/j.geoderma.2008.12.008_bib25
  article-title: Patterns of permafrost fromation and degradation in relation to climate and ecosystems
  publication-title: Permafrost and Periglacial Processes
  doi: 10.1002/ppp.582
– volume: 108 D1
  start-page: 8148
  year: 2003
  ident: 10.1016/j.geoderma.2008.12.008_bib28
  article-title: Impacts of wildfire on the permafrost in the boreal forests of interior Alaska
  publication-title: Journal of Geophysical Research
– volume: 13
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.geoderma.2008.12.008_bib15
  article-title: Climate and the limits of permafrost: a zonal analysis
  publication-title: Permafrost and Periglacial Processes
  doi: 10.1002/ppp.410
– volume: 19
  start-page: 85
  year: 2008
  ident: 10.1016/j.geoderma.2008.12.008_bib23
  article-title: Relationships between permafrost distribution and surface organic layers near Esso, central Kamchatka, Russian Far East
  publication-title: Permafrost and Periglacial Processes
  doi: 10.1002/ppp.606
– volume: 111
  start-page: D04105
  year: 2006
  ident: 10.1016/j.geoderma.2008.12.008_bib10
  article-title: Long-term evaluation of the Hydro-Thermo dynamic Soil-Vegetation Scheme's frozen ground/permafrost component using observations at Barrow, Alaska.
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2005JD005957
– volume: 13
  start-page: 671
  year: 2007
  ident: 10.1016/j.geoderma.2008.12.008_bib3
  article-title: Coupling microscale vegetation–soil water and macroscale vegetation–precipitation feedbacks in semiarid ecosystems
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2007.01327.x
– year: 2001
  ident: 10.1016/j.geoderma.2008.12.008_bib18
– volume: 28
  start-page: 357
  issue: 4
  year: 1998
  ident: 10.1016/j.geoderma.2008.12.008_bib21
  article-title: The relationships between land surface aridity and soil water in Loess Plateau
  publication-title: Science in China (Series D)
– volume: 134
  start-page: 77
  issue: 1
  year: 1998
  ident: 10.1016/j.geoderma.2008.12.008_bib14
  article-title: Soil water dynamics and vegetation patterns in a semiarid grassland
  publication-title: Vegetation
  doi: 10.1023/A:1009769620488
– volume: 129
  start-page: 175
  year: 2005
  ident: 10.1016/j.geoderma.2008.12.008_bib4
  article-title: Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai–Tibetan Plateau
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2004.12.002
– year: 2000
  ident: 10.1016/j.geoderma.2008.12.008_bib31
– volume: 335
  start-page: 98
  year: 2007
  ident: 10.1016/j.geoderma.2008.12.008_bib2
  article-title: Soil water regime through contrasting pasture communities in a Sub-mediterranean landscape
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2006.11.007
– volume: 14
  start-page: 103
  year: 2003
  ident: 10.1016/j.geoderma.2008.12.008_bib17
  article-title: Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies
  publication-title: Permafrost and Periglacial Processes
  doi: 10.1002/ppp.452
– volume: 13
  start-page: 301
  year: 2002
  ident: 10.1016/j.geoderma.2008.12.008_bib9
  article-title: Environmental variation, vegetation distribution, carbon dynamics, and water/energy exchange in high latitudes
  publication-title: Journal of Vegetation Science
  doi: 10.1111/j.1654-1103.2002.tb02055.x
– volume: 22
  start-page: 3310
  year: 2008
  ident: 10.1016/j.geoderma.2008.12.008_bib26
  article-title: Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.6913
– year: 2001
  ident: 10.1016/j.geoderma.2008.12.008_bib22
– year: 1998
  ident: 10.1016/j.geoderma.2008.12.008_bib24
– volume: 38
  start-page: 85
  year: 2004
  ident: 10.1016/j.geoderma.2008.12.008_bib20
  article-title: Ground temperature monitoring and its recent change in Qinghai–Tibet Plateau
  publication-title: Cold Regions Science and Technology
  doi: 10.1016/S0165-232X(03)00064-8
– volume: 29
  start-page: 159
  issue: 2
  year: 2007
  ident: 10.1016/j.geoderma.2008.12.008_bib30
  article-title: Impacts of alpine ecosystem and climatic changes on surface runoff in the source region of Yangtze River
  publication-title: Journal of Glaciology and Geocryology
– volume: 67
  start-page: 1672
  year: 2003
  ident: 10.1016/j.geoderma.2008.12.008_bib16
  article-title: Deep soil water dynamics and depletion by secondary vegetation in the Eastern Amazon
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2003.1672
– volume: 15
  start-page: 163
  issue: 2
  year: 2004
  ident: 10.1016/j.geoderma.2008.12.008_bib29
  article-title: Land ecological changes and evolutional patterns in the source regions of the Yangtze and Yellow Rivers
  publication-title: Acta Geographic Sinica
– volume: 20
  start-page: 209
  year: 2004
  ident: 10.1016/j.geoderma.2008.12.008_bib13
  article-title: Effects of soil water regime and grazing on vegetation diversity and production in a hyperseasonal savanna in the Apure Llanos, Venezuela
  publication-title: Journal of Tropical Ecology
  doi: 10.1017/S0266467403001299
– year: 2005
  ident: 10.1016/j.geoderma.2008.12.008_bib27
– volume: 24
  start-page: 56
  issue: 2
  year: 2006
  ident: 10.1016/j.geoderma.2008.12.008_bib5
  article-title: Preliminary study of vegetation carrying capacity of soil water (VCCSW)
  publication-title: Science & Technology Review
– volume: 23
  start-page: 1944
  issue: 9
  year: 2003
  ident: 10.1016/j.geoderma.2008.12.008_bib19
  article-title: A study on water restoration of dry soil layers in the semi-arid area of Loess Plateau
  publication-title: Acta Ecological Sinica
– volume: 18
  start-page: 30
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2008.12.008_bib6
  article-title: Distribution characteristic of dried soil layer in Wangdonggou Watershed in gully region of the Loess Plateau
  publication-title: Journal of Natural Resources
– year: 1999
  ident: 10.1016/j.geoderma.2008.12.008_bib12
SSID ssj0017020
Score 2.1493344
Snippet Soil moisture and water cycling in a permafrost active layer are affected in a synergistic manner by both the sequence of soil temperature and changes in...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 280
SubjectTerms Agronomy. Soil science and plant productions
Alpine frost meadow soil
Animal and plant ecology
Animal, plant and microbial ecology
Available water
Biological and medical sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Permafrost
Qinghai–Tibetan Plateau
Soil water distribution pattern
Soil water dynamics
Soils
Surficial geology
Synecology
Terrestrial ecosystems
Title Water regime shifts in the active soil layer of the Qinghai–Tibet Plateau permafrost region, under different levels of vegetation
URI https://dx.doi.org/10.1016/j.geoderma.2008.12.008
https://www.proquest.com/docview/20425180
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6uIAQKi-1QBcfOBJ27SS2c1xVVAuICqRW9BaNHbtNFZLVJssRIfET-If9JR0nzooKpB44RUo0duyZzHzOvAh5beJCgeMygtS4KJFcRSALHalEy8ykvDC9x_TTiVicJR_O0_MtcjTmwviwyqD7B53ea-twZxp2c7osS5_jy4REc-QxT4yTbJNdHmcCRXt3_v7j4mTjTJCzUJ2RicgT_JEofIVs8j3HhhJEqv8z6DtN_ttGPVhCizvnhpYXf2nv3iQd75GHAUvS-fC6j8iWrR-T-_OLVainYZ-QX18RS66ob7_wzdL2snRdS8uaIuyj0Ks62jZlRStA6E0b1z_4gubsEsrrn79PS207-rnCQWBNl34FzqeJ9AM29RvqU9BWdOyy0tHKxyC1fqDv9iJEMj4lZ8fvTo8WUei7EEGSJF0EWhkoEIuB5I5bm8aGSasz4U9LLs6Qu8heroQuBACIIhX4IStEvgbxk2bxM7JTN7XdJxQU11AwcNLyROlC43HVGAlgXFwIxg5IOu50bkJRct8bo8rH6LOrfOTQ0DGT8RwvB2S6oVsOZTnupMhGRua3BCxH23En7eQW5zdT-vL4M5nhMl6NopDj5-l9LlDbZt3iKKgUmZo9_4_pX5B7gw8rjlj6kux0q7U9RCjU6QnZfvuDTYLA3wADfA46
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQBCiKcolNYHjphd52E7x6pqtUBbgbQVvUVjx25ThWS1yXJElfoT-If8EsaJs6ICqQdOkZJ4HHs8M5_jeRDy1sSFAhdJBqlxLJGRYiALzVSiZWbSqDD9ienxiZidJh_P0rMNsj_Gwni3yqD7B53ea-twZxJmc7IoSx_jy4VEc-QxT4yd3CF3ExRfL53vf6z9PLichtyMXDD_-h9hwpfIJF9xbEhApPr_gr7O5L8t1MMFtDhvbih48Zfu7g3S4WPyKCBJujd87BOyYeun5MHe-TJk07DPyPVXRJJL6osvfLO0vShd19Kypgj6KPSKjrZNWdEKEHjTxvUPvqAxu4Dy19XPealtRz9XSARWdOFH4HyQSE-wqd9RH4C2pGONlY5W3gOp9YS-2_Pgx_icnB4ezPdnLFRdYJAkScdAKwMFIjGQkYusTWPDpdWZ8HslF2fIW2RupIQuBACIIhUoxgpxr0H0pHn8gmzWTW1fEgoq0lBwcNJGidKFxs2qMRLAuLgQnG-RdJzp3ISU5L4yRpWPvmeX-cihoV4mj3K8bJHJut1iSMpxa4tsZGR-Y3nlaDlubbtzg_PrLn1y_KnMcBi741LIUTj9iQvUtlm1SAVVIlfTV__R_S65N5sfH-VHH04-vSb3h9OsmPF0m2x2y5V9g6Co0zv9ov8NQ_UO_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+regime+shifts+in+the+active+soil+layer+of+the+Qinghai%E2%80%93Tibet+Plateau+permafrost+region%2C+under+different+levels+of+vegetation&rft.jtitle=Geoderma&rft.au=Genxu%2C+Wang&rft.au=Shengnan%2C+Li&rft.au=Hongchang%2C+Hu&rft.au=Yuanshou%2C+Li&rft.date=2009-03-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=149&rft.issue=3&rft.spage=280&rft.epage=289&rft_id=info:doi/10.1016%2Fj.geoderma.2008.12.008&rft.externalDocID=S0016706108003728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon