Water regime shifts in the active soil layer of the Qinghai–Tibet Plateau permafrost region, under different levels of vegetation
Soil moisture and water cycling in a permafrost active layer are affected in a synergistic manner by both the sequence of soil temperature and changes in vegetative cover. Between 2004 and 2007, the dynamics of soil water content and water movement in the active layer of alpine meadow soils were mon...
Saved in:
Published in | Geoderma Vol. 149; no. 3; pp. 280 - 289 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.03.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil moisture and water cycling in a permafrost active layer are affected in a synergistic manner by both the sequence of soil temperature and changes in vegetative cover. Between 2004 and 2007, the dynamics of soil water content and water movement in the active layer of alpine meadow soils were monitored at sites located in the permafrost region of the Qinghai–Tibetan Plateau, China for four years to examine the synergistic effects of freeze–thaw cycles and levels of vegetation cover. The analysis of variations in monthly and seasonal soil moisture, soil-desiccation index, and soil available indicated that soil moisture exhibited a relatively stable and consistent pattern over the growing season (July–September), independent from the vegetation cover. Greater soil moisture was present in the upper root zone and at the bottom of the soil profile, whereas lower moisture levels occurred in the middle portion of the profile. Irrespective of soil depth, the lower the vegetation cover, the quicker the increase in soil liquid water during the thaw initiation period (May and June), and the quicker its decrease during the freeze initiation period (October and November). In addition, the greater the vegetation cover, the greater the available water content of the upper root zone and the less the water content of the soil layer at 0.60−0.70 m depth below the root zone. Both the soil hydraulic parameters and the spatiotemporal distribution of the water content were subject to the synergistic action of the freeze–thaw cycle and the extent of vegetation cover. The variances in active soil heat transmission and heat-water coupling relationship under the different vegetation covers were considered the main driving factors in the distribution and dynamics of the active soil water regime. The permafrost supports the development of alpine frost meadow ecosystems, and well-ordered, high-cover alpine meadow vegetation favors the protection of permafrost from degradation. |
---|---|
AbstractList | Soil moisture and water cycling in a permafrost active layer are affected in a synergistic manner by both the sequence of soil temperature and changes in vegetative cover. Between 2004 and 2007, the dynamics of soil water content and water movement in the active layer of alpine meadow soils were monitored at sites located in the permafrost region of the Qinghai-Tibetan Plateau, China for four years to examine the synergistic effects of freeze-thaw cycles and levels of vegetation cover. The analysis of variations in monthly and seasonal soil moisture, soil-desiccation index, and soil available indicated that soil moisture exhibited a relatively stable and consistent pattern over the growing season (July-September), independent from the vegetation cover. Greater soil moisture was present in the upper root zone and at the bottom of the soil profile, whereas lower moisture levels occurred in the middle portion of the profile. Irrespective of soil depth, the lower the vegetation cover, the quicker the increase in soil liquid water during the thaw initiation period (May and June), and the quicker its decrease during the freeze initiation period (October and November). In addition, the greater the vegetation cover, the greater the available water content of the upper root zone and the less the water content of the soil layer at 0.60-0.70 m depth below the root zone. Both the soil hydraulic parameters and the spatiotemporal distribution of the water content were subject to the synergistic action of the freeze-thaw cycle and the extent of vegetation cover. The variances in active soil heat transmission and heat-water coupling relationship under the different vegetation covers were considered the main driving factors in the distribution and dynamics of the active soil water regime. The permafrost supports the development of alpine frost meadow ecosystems, and well-ordered, high-cover alpine meadow vegetation favors the protection of permafrost from degradation. Soil moisture and water cycling in a permafrost active layer are affected in a synergistic manner by both the sequence of soil temperature and changes in vegetative cover. Between 2004 and 2007, the dynamics of soil water content and water movement in the active layer of alpine meadow soils were monitored at sites located in the permafrost region of the Qinghai–Tibetan Plateau, China for four years to examine the synergistic effects of freeze–thaw cycles and levels of vegetation cover. The analysis of variations in monthly and seasonal soil moisture, soil-desiccation index, and soil available indicated that soil moisture exhibited a relatively stable and consistent pattern over the growing season (July–September), independent from the vegetation cover. Greater soil moisture was present in the upper root zone and at the bottom of the soil profile, whereas lower moisture levels occurred in the middle portion of the profile. Irrespective of soil depth, the lower the vegetation cover, the quicker the increase in soil liquid water during the thaw initiation period (May and June), and the quicker its decrease during the freeze initiation period (October and November). In addition, the greater the vegetation cover, the greater the available water content of the upper root zone and the less the water content of the soil layer at 0.60−0.70 m depth below the root zone. Both the soil hydraulic parameters and the spatiotemporal distribution of the water content were subject to the synergistic action of the freeze–thaw cycle and the extent of vegetation cover. The variances in active soil heat transmission and heat-water coupling relationship under the different vegetation covers were considered the main driving factors in the distribution and dynamics of the active soil water regime. The permafrost supports the development of alpine frost meadow ecosystems, and well-ordered, high-cover alpine meadow vegetation favors the protection of permafrost from degradation. |
Author | Genxu, Wang Shengnan, Li Hongchang, Hu Yuanshou, Li |
Author_xml | – sequence: 1 givenname: Wang surname: Genxu fullname: Genxu, Wang email: gxwang@ns.lzb.ac.cn, wanggx@imde.ac.cn organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, PR China – sequence: 2 givenname: Li surname: Shengnan fullname: Shengnan, Li organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, PR China – sequence: 3 givenname: Hu surname: Hongchang fullname: Hongchang, Hu organization: College of Resources & Environment, Lanzhou University, Lanzhou, 730000, PR China – sequence: 4 givenname: Li surname: Yuanshou fullname: Yuanshou, Li organization: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21270791$$DView record in Pascal Francis |
BookMark | eNqFkc1u1DAUhS3USkwLr4C8gRUJtidxHIkFqOJPqkQrtWJp3TjXMx55nMH2jNQdEo_AG_IkOJ3Cgk1XR7a_c3R9zxk5CVNAQl5wVnPG5ZtNvcJpxLiFWjCmai7qIk_IgqtOVFK0_QlZsEJWHZP8KTlLaVOOHRNsQX5-g4yRRly5LdK0djYn6gLNa6RgsjuUy8l56uGuYJO9f7h2YbUG9_vHrxs3YKZXvoTAnu7mIWycUr4PnMJrug9lMjo6azFiyNTjAX2agw64wgy5UM_IqQWf8PmDnpPbjx9uLj5Xl18_fbl4f1lB0zS5gkEZGJlqoRNWILZLwzscetm0UthlPyoAK4SSwygBQI6tXPJeKT6aVrKBL8_Jq2PuLk7f95iy3rpk0HsIOO2TFqwRLVesgC8fQEgGvI0QjEt6F90W4p0WXHSs6-dAeeRM-XOKaP8hnOm5G73Rf7vRczeaC12kGN_-ZzTuuIscwfnH7e-O9rJKPDiMOhmHweDoIpqsx8k9FvEHcwS0tA |
CODEN | GEDMAB |
CitedBy_id | crossref_primary_10_1657_AAAR00C_14_016 crossref_primary_10_3389_feart_2021_806309 crossref_primary_10_1007_s11284_012_0951_7 crossref_primary_10_1016_j_ecolind_2024_112097 crossref_primary_10_1016_j_rse_2013_07_006 crossref_primary_10_1117_1_JRS_8_083653 crossref_primary_10_1007_s12665_011_1405_1 crossref_primary_10_1007_s11629_011_1004_3 crossref_primary_10_1016_j_geoderma_2020_114176 crossref_primary_10_2136_vzj2017_05_0102 crossref_primary_10_1155_2017_9451802 crossref_primary_10_1007_s11629_013_2893_0 crossref_primary_10_1007_s40333_013_0151_5 crossref_primary_10_1016_j_ejrh_2020_100759 crossref_primary_10_3390_rs14225815 crossref_primary_10_1088_1748_9326_abfa4c crossref_primary_10_1007_s11629_021_7139_y crossref_primary_10_1007_s11676_019_00962_5 crossref_primary_10_1016_j_scitotenv_2020_137677 crossref_primary_10_17221_105_2022_SWR crossref_primary_10_1080_15230430_2018_1439155 crossref_primary_10_1016_j_jhydrol_2021_126330 crossref_primary_10_1007_s00704_021_03798_4 crossref_primary_10_1007_s10668_009_9228_x crossref_primary_10_1002_ppp_2003 crossref_primary_10_1016_j_scitotenv_2020_139261 crossref_primary_10_1016_j_actao_2012_01_012 crossref_primary_10_1016_j_accre_2020_07_002 crossref_primary_10_1007_s11676_018_0866_4 crossref_primary_10_1111_sum_12910 crossref_primary_10_1080_02626667_2021_1883619 crossref_primary_10_1016_j_ejrh_2021_100807 crossref_primary_10_3389_fenvs_2022_912209 crossref_primary_10_3390_agronomy13092193 |
Cites_doi | 10.1002/ppp.582 10.1002/ppp.410 10.1002/ppp.606 10.1029/2005JD005957 10.1111/j.1365-2486.2007.01327.x 10.1023/A:1009769620488 10.1016/j.agrformet.2004.12.002 10.1016/j.jhydrol.2006.11.007 10.1002/ppp.452 10.1111/j.1654-1103.2002.tb02055.x 10.1002/hyp.6913 10.1016/S0165-232X(03)00064-8 10.2136/sssaj2003.1672 10.1017/S0266467403001299 |
ContentType | Journal Article |
Copyright | 2008 2009 INIST-CNRS |
Copyright_xml | – notice: 2008 – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7UA C1K F1W H96 L.G |
DOI | 10.1016/j.geoderma.2008.12.008 |
DatabaseName | CrossRef Pascal-Francis Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 289 |
ExternalDocumentID | 21270791 10_1016_j_geoderma_2008_12_008 S0016706108003728 |
GeographicLocations | Xizang China Far East Asia China Qinghai-Xizang Plateau Asia, Qinghai-Tibet Plateau China, People's Rep |
GeographicLocations_xml | – name: Asia, Qinghai-Tibet Plateau – name: China, People's Rep |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7UA C1K F1W H96 L.G |
ID | FETCH-LOGICAL-a444t-ab8cad085a72f2ee53c17eb964562f39d8aaf2286bd6aaa6d56319881dc560b13 |
IEDL.DBID | AIKHN |
ISSN | 0016-7061 |
IngestDate | Tue Aug 05 09:06:54 EDT 2025 Mon Jul 21 09:14:54 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Tue Jul 01 02:24:38 EDT 2025 Fri Feb 23 02:20:28 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Qinghai–Tibetan Plateau Soil water distribution pattern Permafrost Soil water dynamics Alpine frost meadow soil Available water Grassland active layer Growing season vegetation Alpine grasslands Water regime Motion study water content Plant cover soils Dynamic characteristic soil moisture desiccation Freeze thaw cycle Rhizosphere water regimes Meadow soils permafrost Qinghai-Tibetan Plateau seasonal variations Soil temperature |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a444t-ab8cad085a72f2ee53c17eb964562f39d8aaf2286bd6aaa6d56319881dc560b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://ir.lzu.edu.cn/handle/262010/119856 |
PQID | 20425180 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_20425180 pascalfrancis_primary_21270791 crossref_primary_10_1016_j_geoderma_2008_12_008 crossref_citationtrail_10_1016_j_geoderma_2008_12_008 elsevier_sciencedirect_doi_10_1016_j_geoderma_2008_12_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03-15 |
PublicationDateYYYYMMDD | 2009-03-15 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Geoderma |
PublicationYear | 2009 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fukui, Sone, Yamagata, Otsuki, Sawada, Vetrova, Vyatkina (bib23) 2008; 19 Casas, Ninot (bib2) 2007; 335 Wang, Ding, Wang, Liu (bib29) 2004; 15 Wang, Li, Wang, Shen (bib30) 2007; 29 National Soil Survey Office (NSSO) (bib24) 1998 Norusis (bib12) 1999 Smith, Riseborough (bib15) 2002; 13 Mölders, Romanovsky (bib10) 2006; 111 Sommer, Folster, Vielhauer, Maklouf, Vlek (bib16) 2003; 67 Wang, Li, Wang (bib26) 2008; 22 Wang, Liu, Lu (bib19) 2003; 23 Walker, Jia, Epstein (bib17) 2003; 14 Wu, Liu (bib20) 2004; 38 Yang, Shao, Peng (bib21) 1998; 28 Sarmiento, Pinillos, Pereira da Silva, Acevedo (bib13) 2004; 20 Zhou, Guo, Qiu, Cheng (bib31) 2000 Montgomery (bib11) 1997 Zhou (bib22) 2001 He, Huang, Dang (bib6) 2003; 18 Singh, Milchunas, Lauenroth (bib14) 1998; 134 Guo, Shao (bib5) 2006; 24 Sur, Jorgenson (bib25) 2007; 18 Yoshikawa, Bolton, Romanovsky, Fukuda, Hinzman (bib28) 2003; 108 D1 Dekker, Rietkerk, Bierkens (bib3) 2007; 13 Wang, Cheng, Shen (bib18) 2001 Yang, Ding, Chen, Liu (bib27) 2005 Gu, Tang, Cui, Kato, Du, Li, Zhao (bib4) 2005; 129 McGuire, Wirth, Apps, Beringer, Clein, Epstein, Kicklighter, Bhatti, Chapin, Groot, Efremov, Eugster, Fukuda, Gower, Hinzman, Huntley, Jia, Kasischke, Melillo, Romanovsky, Shvidenko, Vaganov, Walker (bib9) 2002; 13 Montgomery (10.1016/j.geoderma.2008.12.008_bib11) 1997 Wang (10.1016/j.geoderma.2008.12.008_bib29) 2004; 15 Yang (10.1016/j.geoderma.2008.12.008_bib21) 1998; 28 Norusis (10.1016/j.geoderma.2008.12.008_bib12) 1999 Sarmiento (10.1016/j.geoderma.2008.12.008_bib13) 2004; 20 Wang (10.1016/j.geoderma.2008.12.008_bib18) 2001 Wang (10.1016/j.geoderma.2008.12.008_bib19) 2003; 23 Zhou (10.1016/j.geoderma.2008.12.008_bib22) 2001 Smith (10.1016/j.geoderma.2008.12.008_bib15) 2002; 13 National Soil Survey Office (NSSO) (10.1016/j.geoderma.2008.12.008_bib24) 1998 Casas (10.1016/j.geoderma.2008.12.008_bib2) 2007; 335 Wang (10.1016/j.geoderma.2008.12.008_bib30) 2007; 29 Yang (10.1016/j.geoderma.2008.12.008_bib27) 2005 Mölders (10.1016/j.geoderma.2008.12.008_bib10) 2006; 111 Sur (10.1016/j.geoderma.2008.12.008_bib25) 2007; 18 Zhou (10.1016/j.geoderma.2008.12.008_bib31) 2000 Fukui (10.1016/j.geoderma.2008.12.008_bib23) 2008; 19 Gu (10.1016/j.geoderma.2008.12.008_bib4) 2005; 129 Walker (10.1016/j.geoderma.2008.12.008_bib17) 2003; 14 Wu (10.1016/j.geoderma.2008.12.008_bib20) 2004; 38 Dekker (10.1016/j.geoderma.2008.12.008_bib3) 2007; 13 Wang (10.1016/j.geoderma.2008.12.008_bib26) 2008; 22 He (10.1016/j.geoderma.2008.12.008_bib6) 2003; 18 Sommer (10.1016/j.geoderma.2008.12.008_bib16) 2003; 67 Guo (10.1016/j.geoderma.2008.12.008_bib5) 2006; 24 McGuire (10.1016/j.geoderma.2008.12.008_bib9) 2002; 13 Yoshikawa (10.1016/j.geoderma.2008.12.008_bib28) 2003; 108 D1 Singh (10.1016/j.geoderma.2008.12.008_bib14) 1998; 134 |
References_xml | – volume: 28 start-page: 357 year: 1998 end-page: 365 ident: bib21 article-title: The relationships between land surface aridity and soil water in Loess Plateau publication-title: Science in China (Series D) – volume: 108 D1 start-page: 8148 year: 2003 ident: bib28 article-title: Impacts of wildfire on the permafrost in the boreal forests of interior Alaska publication-title: Journal of Geophysical Research – volume: 20 start-page: 209 year: 2004 end-page: 220 ident: bib13 article-title: Effects of soil water regime and grazing on vegetation diversity and production in a hyperseasonal savanna in the Apure Llanos, Venezuela publication-title: Journal of Tropical Ecology – year: 1997 ident: bib11 article-title: Design and Analysis of Experiments – year: 1998 ident: bib24 article-title: Soil of China (in Chinese) – volume: 18 start-page: 7 year: 2007 end-page: 19 ident: bib25 article-title: Patterns of permafrost fromation and degradation in relation to climate and ecosystems publication-title: Permafrost and Periglacial Processes – volume: 24 start-page: 56 year: 2006 end-page: 59 ident: bib5 article-title: Preliminary study of vegetation carrying capacity of soil water (VCCSW) publication-title: Science & Technology Review – volume: 14 start-page: 103 year: 2003 end-page: 123 ident: bib17 article-title: Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies publication-title: Permafrost and Periglacial Processes – volume: 38 start-page: 85 year: 2004 end-page: 92 ident: bib20 article-title: Ground temperature monitoring and its recent change in Qinghai–Tibet Plateau publication-title: Cold Regions Science and Technology – volume: 19 start-page: 85 year: 2008 end-page: 92 ident: bib23 article-title: Relationships between permafrost distribution and surface organic layers near Esso, central Kamchatka, Russian Far East publication-title: Permafrost and Periglacial Processes – volume: 22 start-page: 3310 year: 2008 end-page: 3320 ident: bib26 article-title: Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet publication-title: Hydrological Processes – year: 1999 ident: bib12 article-title: SPSS 9.0 Guide to Data Analysis – year: 2001 ident: bib22 article-title: Chinese Kobresia Pygmaea Meadow (in Chinese) – volume: 335 start-page: 98 year: 2007 end-page: 108 ident: bib2 article-title: Soil water regime through contrasting pasture communities in a Sub-mediterranean landscape publication-title: Journal of Hydrology – volume: 13 start-page: 671 year: 2007 end-page: 678 ident: bib3 article-title: Coupling microscale vegetation–soil water and macroscale vegetation–precipitation feedbacks in semiarid ecosystems publication-title: Global Change Biology – volume: 29 start-page: 159 year: 2007 end-page: 168 ident: bib30 article-title: Impacts of alpine ecosystem and climatic changes on surface runoff in the source region of Yangtze River publication-title: Journal of Glaciology and Geocryology – volume: 129 start-page: 175 year: 2005 end-page: 185 ident: bib4 article-title: Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai–Tibetan Plateau publication-title: Agricultural and Forest Meteorology – year: 2001 ident: bib18 article-title: Research on Ecological Environmental Changes in Yangtze and Yellow Rivers Source Regions and their Integrated Protection (in Chinese) – volume: 15 start-page: 163 year: 2004 end-page: 173 ident: bib29 article-title: Land ecological changes and evolutional patterns in the source regions of the Yangtze and Yellow Rivers publication-title: Acta Geographic Sinica – volume: 67 start-page: 1672 year: 2003 end-page: 1686 ident: bib16 article-title: Deep soil water dynamics and depletion by secondary vegetation in the Eastern Amazon publication-title: Soil Science Society of America Journal – year: 2005 ident: bib27 article-title: Integrating research on the ecological environments changes in the source region of Yellow and Yangtze Rivers during recent 50 years (in Chinese) – volume: 13 start-page: 1 year: 2002 end-page: 15 ident: bib15 article-title: Climate and the limits of permafrost: a zonal analysis publication-title: Permafrost and Periglacial Processes – volume: 13 start-page: 301 year: 2002 end-page: 314 ident: bib9 article-title: Environmental variation, vegetation distribution, carbon dynamics, and water/energy exchange in high latitudes publication-title: Journal of Vegetation Science – volume: 111 start-page: D04105 year: 2006 ident: bib10 article-title: Long-term evaluation of the Hydro-Thermo dynamic Soil-Vegetation Scheme's frozen ground/permafrost component using observations at Barrow, Alaska. publication-title: Journal of Geophysical Research – volume: 134 start-page: 77 year: 1998 end-page: 89 ident: bib14 article-title: Soil water dynamics and vegetation patterns in a semiarid grassland publication-title: Vegetation – year: 2000 ident: bib31 article-title: Geocryology in China (in Chinese) – volume: 18 start-page: 30 year: 2003 end-page: 36 ident: bib6 article-title: Distribution characteristic of dried soil layer in Wangdonggou Watershed in gully region of the Loess Plateau publication-title: Journal of Natural Resources – volume: 23 start-page: 1944 year: 2003 end-page: 1950 ident: bib19 article-title: A study on water restoration of dry soil layers in the semi-arid area of Loess Plateau publication-title: Acta Ecological Sinica – year: 1997 ident: 10.1016/j.geoderma.2008.12.008_bib11 – volume: 18 start-page: 7 year: 2007 ident: 10.1016/j.geoderma.2008.12.008_bib25 article-title: Patterns of permafrost fromation and degradation in relation to climate and ecosystems publication-title: Permafrost and Periglacial Processes doi: 10.1002/ppp.582 – volume: 108 D1 start-page: 8148 year: 2003 ident: 10.1016/j.geoderma.2008.12.008_bib28 article-title: Impacts of wildfire on the permafrost in the boreal forests of interior Alaska publication-title: Journal of Geophysical Research – volume: 13 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.geoderma.2008.12.008_bib15 article-title: Climate and the limits of permafrost: a zonal analysis publication-title: Permafrost and Periglacial Processes doi: 10.1002/ppp.410 – volume: 19 start-page: 85 year: 2008 ident: 10.1016/j.geoderma.2008.12.008_bib23 article-title: Relationships between permafrost distribution and surface organic layers near Esso, central Kamchatka, Russian Far East publication-title: Permafrost and Periglacial Processes doi: 10.1002/ppp.606 – volume: 111 start-page: D04105 year: 2006 ident: 10.1016/j.geoderma.2008.12.008_bib10 article-title: Long-term evaluation of the Hydro-Thermo dynamic Soil-Vegetation Scheme's frozen ground/permafrost component using observations at Barrow, Alaska. publication-title: Journal of Geophysical Research doi: 10.1029/2005JD005957 – volume: 13 start-page: 671 year: 2007 ident: 10.1016/j.geoderma.2008.12.008_bib3 article-title: Coupling microscale vegetation–soil water and macroscale vegetation–precipitation feedbacks in semiarid ecosystems publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2007.01327.x – year: 2001 ident: 10.1016/j.geoderma.2008.12.008_bib18 – volume: 28 start-page: 357 issue: 4 year: 1998 ident: 10.1016/j.geoderma.2008.12.008_bib21 article-title: The relationships between land surface aridity and soil water in Loess Plateau publication-title: Science in China (Series D) – volume: 134 start-page: 77 issue: 1 year: 1998 ident: 10.1016/j.geoderma.2008.12.008_bib14 article-title: Soil water dynamics and vegetation patterns in a semiarid grassland publication-title: Vegetation doi: 10.1023/A:1009769620488 – volume: 129 start-page: 175 year: 2005 ident: 10.1016/j.geoderma.2008.12.008_bib4 article-title: Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai–Tibetan Plateau publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2004.12.002 – year: 2000 ident: 10.1016/j.geoderma.2008.12.008_bib31 – volume: 335 start-page: 98 year: 2007 ident: 10.1016/j.geoderma.2008.12.008_bib2 article-title: Soil water regime through contrasting pasture communities in a Sub-mediterranean landscape publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2006.11.007 – volume: 14 start-page: 103 year: 2003 ident: 10.1016/j.geoderma.2008.12.008_bib17 article-title: Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies publication-title: Permafrost and Periglacial Processes doi: 10.1002/ppp.452 – volume: 13 start-page: 301 year: 2002 ident: 10.1016/j.geoderma.2008.12.008_bib9 article-title: Environmental variation, vegetation distribution, carbon dynamics, and water/energy exchange in high latitudes publication-title: Journal of Vegetation Science doi: 10.1111/j.1654-1103.2002.tb02055.x – volume: 22 start-page: 3310 year: 2008 ident: 10.1016/j.geoderma.2008.12.008_bib26 article-title: Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet publication-title: Hydrological Processes doi: 10.1002/hyp.6913 – year: 2001 ident: 10.1016/j.geoderma.2008.12.008_bib22 – year: 1998 ident: 10.1016/j.geoderma.2008.12.008_bib24 – volume: 38 start-page: 85 year: 2004 ident: 10.1016/j.geoderma.2008.12.008_bib20 article-title: Ground temperature monitoring and its recent change in Qinghai–Tibet Plateau publication-title: Cold Regions Science and Technology doi: 10.1016/S0165-232X(03)00064-8 – volume: 29 start-page: 159 issue: 2 year: 2007 ident: 10.1016/j.geoderma.2008.12.008_bib30 article-title: Impacts of alpine ecosystem and climatic changes on surface runoff in the source region of Yangtze River publication-title: Journal of Glaciology and Geocryology – volume: 67 start-page: 1672 year: 2003 ident: 10.1016/j.geoderma.2008.12.008_bib16 article-title: Deep soil water dynamics and depletion by secondary vegetation in the Eastern Amazon publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2003.1672 – volume: 15 start-page: 163 issue: 2 year: 2004 ident: 10.1016/j.geoderma.2008.12.008_bib29 article-title: Land ecological changes and evolutional patterns in the source regions of the Yangtze and Yellow Rivers publication-title: Acta Geographic Sinica – volume: 20 start-page: 209 year: 2004 ident: 10.1016/j.geoderma.2008.12.008_bib13 article-title: Effects of soil water regime and grazing on vegetation diversity and production in a hyperseasonal savanna in the Apure Llanos, Venezuela publication-title: Journal of Tropical Ecology doi: 10.1017/S0266467403001299 – year: 2005 ident: 10.1016/j.geoderma.2008.12.008_bib27 – volume: 24 start-page: 56 issue: 2 year: 2006 ident: 10.1016/j.geoderma.2008.12.008_bib5 article-title: Preliminary study of vegetation carrying capacity of soil water (VCCSW) publication-title: Science & Technology Review – volume: 23 start-page: 1944 issue: 9 year: 2003 ident: 10.1016/j.geoderma.2008.12.008_bib19 article-title: A study on water restoration of dry soil layers in the semi-arid area of Loess Plateau publication-title: Acta Ecological Sinica – volume: 18 start-page: 30 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2008.12.008_bib6 article-title: Distribution characteristic of dried soil layer in Wangdonggou Watershed in gully region of the Loess Plateau publication-title: Journal of Natural Resources – year: 1999 ident: 10.1016/j.geoderma.2008.12.008_bib12 |
SSID | ssj0017020 |
Score | 2.1493344 |
Snippet | Soil moisture and water cycling in a permafrost active layer are affected in a synergistic manner by both the sequence of soil temperature and changes in... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 280 |
SubjectTerms | Agronomy. Soil science and plant productions Alpine frost meadow soil Animal and plant ecology Animal, plant and microbial ecology Available water Biological and medical sciences Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology Permafrost Qinghai–Tibetan Plateau Soil water distribution pattern Soil water dynamics Soils Surficial geology Synecology Terrestrial ecosystems |
Title | Water regime shifts in the active soil layer of the Qinghai–Tibet Plateau permafrost region, under different levels of vegetation |
URI | https://dx.doi.org/10.1016/j.geoderma.2008.12.008 https://www.proquest.com/docview/20425180 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6uIAQKi-1QBcfOBJ27SS2c1xVVAuICqRW9BaNHbtNFZLVJssRIfET-If9JR0nzooKpB44RUo0duyZzHzOvAh5beJCgeMygtS4KJFcRSALHalEy8ykvDC9x_TTiVicJR_O0_MtcjTmwviwyqD7B53ea-twZxp2c7osS5_jy4REc-QxT4yTbJNdHmcCRXt3_v7j4mTjTJCzUJ2RicgT_JEofIVs8j3HhhJEqv8z6DtN_ttGPVhCizvnhpYXf2nv3iQd75GHAUvS-fC6j8iWrR-T-_OLVainYZ-QX18RS66ob7_wzdL2snRdS8uaIuyj0Ks62jZlRStA6E0b1z_4gubsEsrrn79PS207-rnCQWBNl34FzqeJ9AM29RvqU9BWdOyy0tHKxyC1fqDv9iJEMj4lZ8fvTo8WUei7EEGSJF0EWhkoEIuB5I5bm8aGSasz4U9LLs6Qu8heroQuBACIIhX4IStEvgbxk2bxM7JTN7XdJxQU11AwcNLyROlC43HVGAlgXFwIxg5IOu50bkJRct8bo8rH6LOrfOTQ0DGT8RwvB2S6oVsOZTnupMhGRua3BCxH23En7eQW5zdT-vL4M5nhMl6NopDj5-l9LlDbZt3iKKgUmZo9_4_pX5B7gw8rjlj6kux0q7U9RCjU6QnZfvuDTYLA3wADfA46 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQBCiKcolNYHjphd52E7x6pqtUBbgbQVvUVjx25ThWS1yXJElfoT-If8EsaJs6ICqQdOkZJ4HHs8M5_jeRDy1sSFAhdJBqlxLJGRYiALzVSiZWbSqDD9ienxiZidJh_P0rMNsj_Gwni3yqD7B53ea-twZxJmc7IoSx_jy4VEc-QxT4yd3CF3ExRfL53vf6z9PLichtyMXDD_-h9hwpfIJF9xbEhApPr_gr7O5L8t1MMFtDhvbih48Zfu7g3S4WPyKCBJujd87BOyYeun5MHe-TJk07DPyPVXRJJL6osvfLO0vShd19Kypgj6KPSKjrZNWdEKEHjTxvUPvqAxu4Dy19XPealtRz9XSARWdOFH4HyQSE-wqd9RH4C2pGONlY5W3gOp9YS-2_Pgx_icnB4ezPdnLFRdYJAkScdAKwMFIjGQkYusTWPDpdWZ8HslF2fIW2RupIQuBACIIhUoxgpxr0H0pHn8gmzWTW1fEgoq0lBwcNJGidKFxs2qMRLAuLgQnG-RdJzp3ISU5L4yRpWPvmeX-cihoV4mj3K8bJHJut1iSMpxa4tsZGR-Y3nlaDlubbtzg_PrLn1y_KnMcBi741LIUTj9iQvUtlm1SAVVIlfTV__R_S65N5sfH-VHH04-vSb3h9OsmPF0m2x2y5V9g6Co0zv9ov8NQ_UO_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+regime+shifts+in+the+active+soil+layer+of+the+Qinghai%E2%80%93Tibet+Plateau+permafrost+region%2C+under+different+levels+of+vegetation&rft.jtitle=Geoderma&rft.au=Genxu%2C+Wang&rft.au=Shengnan%2C+Li&rft.au=Hongchang%2C+Hu&rft.au=Yuanshou%2C+Li&rft.date=2009-03-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=149&rft.issue=3&rft.spage=280&rft.epage=289&rft_id=info:doi/10.1016%2Fj.geoderma.2008.12.008&rft.externalDocID=S0016706108003728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |