Molecular Dynamics Simulation of Nanosized Water Droplet Spreading in an Electric Field
Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard–Jones potential is employed to represent the intermolecular interactions. Results show that in response to...
Saved in:
Published in | Langmuir Vol. 29; no. 13; pp. 4266 - 4274 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
02.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard–Jones potential is employed to represent the intermolecular interactions. Results show that in response to the applied field, polar water molecules realign themselves and this microscopic reorientation of molecular dipoles combines with the intermolecular forces to produce a macroscopic deformation of a free spherical water droplet into an ellipsoid. The applied field has a strong effect on the spreading of the water droplet on a solid substrate. For a weaker parallel field, the droplet spreading is asymmetric with the leading contact angle being greater than the trailing contact angle. With an increase in field strength, this asymmetry continues to increase, culminates, and then decreases until it disappears. The symmetric spreading remains with a further increase in the field strength until the saturation point is reached. This transition from the asymmetric to symmetric spreading is a manifestation of the interaction of the electric field with polar water molecules and the intermolecular forces within the droplet and between the water and solid; the interaction also leads to a change in hydrogen bonds along the droplet surface. The dynamics of the droplet spreading is entailed by the electrically induced motion of molecules along the liquid surface toward the solid substrate and is controlled by a competing mechanism among the electric, water–water, and water–solid intermolecular forces. |
---|---|
AbstractList | Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard–Jones potential is employed to represent the intermolecular interactions. Results show that in response to the applied field, polar water molecules realign themselves and this microscopic reorientation of molecular dipoles combines with the intermolecular forces to produce a macroscopic deformation of a free spherical water droplet into an ellipsoid. The applied field has a strong effect on the spreading of the water droplet on a solid substrate. For a weaker parallel field, the droplet spreading is asymmetric with the leading contact angle being greater than the trailing contact angle. With an increase in field strength, this asymmetry continues to increase, culminates, and then decreases until it disappears. The symmetric spreading remains with a further increase in the field strength until the saturation point is reached. This transition from the asymmetric to symmetric spreading is a manifestation of the interaction of the electric field with polar water molecules and the intermolecular forces within the droplet and between the water and solid; the interaction also leads to a change in hydrogen bonds along the droplet surface. The dynamics of the droplet spreading is entailed by the electrically induced motion of molecules along the liquid surface toward the solid substrate and is controlled by a competing mechanism among the electric, water–water, and water–solid intermolecular forces. Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard-Jones potential is employed to represent the intermolecular interactions. Results show that in response to the applied field, polar water molecules realign themselves and this microscopic reorientation of molecular dipoles combines with the intermolecular forces to produce a macroscopic deformation of a free spherical water droplet into an ellipsoid. The applied field has a strong effect on the spreading of the water droplet on a solid substrate. For a weaker parallel field, the droplet spreading is asymmetric with the leading contact angle being greater than the trailing contact angle. With an increase in field strength, this asymmetry continues to increase, culminates, and then decreases until it disappears. The symmetric spreading remains with a further increase in the field strength until the saturation point is reached. This transition from the asymmetric to symmetric spreading is a manifestation of the interaction of the electric field with polar water molecules and the intermolecular forces within the droplet and between the water and solid; the interaction also leads to a change in hydrogen bonds along the droplet surface. The dynamics of the droplet spreading is entailed by the electrically induced motion of molecules along the liquid surface toward the solid substrate and is controlled by a competing mechanism among the electric, water-water, and water-solid intermolecular forces.Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard-Jones potential is employed to represent the intermolecular interactions. Results show that in response to the applied field, polar water molecules realign themselves and this microscopic reorientation of molecular dipoles combines with the intermolecular forces to produce a macroscopic deformation of a free spherical water droplet into an ellipsoid. The applied field has a strong effect on the spreading of the water droplet on a solid substrate. For a weaker parallel field, the droplet spreading is asymmetric with the leading contact angle being greater than the trailing contact angle. With an increase in field strength, this asymmetry continues to increase, culminates, and then decreases until it disappears. The symmetric spreading remains with a further increase in the field strength until the saturation point is reached. This transition from the asymmetric to symmetric spreading is a manifestation of the interaction of the electric field with polar water molecules and the intermolecular forces within the droplet and between the water and solid; the interaction also leads to a change in hydrogen bonds along the droplet surface. The dynamics of the droplet spreading is entailed by the electrically induced motion of molecules along the liquid surface toward the solid substrate and is controlled by a competing mechanism among the electric, water-water, and water-solid intermolecular forces. |
Author | Li, B. Q Liu, C Song, F. H |
AuthorAffiliation | Chongqing University University of Michigan Department of Mechanical Engineering Xi’An Jiaotong University |
AuthorAffiliation_xml | – name: Xi’An Jiaotong University – name: Department of Mechanical Engineering – name: University of Michigan – name: Chongqing University |
Author_xml | – sequence: 1 givenname: F. H surname: Song fullname: Song, F. H – sequence: 2 givenname: B. Q surname: Li fullname: Li, B. Q email: benqli@umich.edu – sequence: 3 givenname: C surname: Liu fullname: Liu, C |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27199753$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23488748$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1LHTEUBuAglnrVLvwDJZtCuxjN10wyS7HaFmxd2OIynMmcKZFMck1mFvrrHetVQYSuAuE5L8l7dsl2TBEJOeDskDPBjwJIpnQjYYuseC1YVRuht8mKaSUrrRq5Q3ZLuWaMtVK178mOkMoYrcyKXP1MAd0cINOvtxFG7wq99ONyMfkUaRroL4ip-Dvs6RVMuLCc1gEnernOCL2Pf6mPFCI9XXKm7B098xj6ffJugFDww-bcI3_OTn-ffK_OL779ODk-r0ApNVVt3_e8Zag6zlwDHTrdsE52igvtBBMD18J0XIGR0DQNys6YvmYdl46jqlHukc-PueucbmYskx19cRgCRExzsWL5dN0IYdR_KZdCCsMUlwv9uKFzN2Jv19mPkG_tU28L-LQBUByEIUN0vrw4zdtW1w9BR4_O5VRKxsE6P_2rdsrgg-XMPmzQPm9wmfjyauIp9C27eQW4Yq_TnONS9RvuHrCHpOU |
CODEN | LANGD5 |
CitedBy_id | crossref_primary_10_1049_mnl_2016_0824 crossref_primary_10_1016_j_molliq_2014_06_003 crossref_primary_10_1021_acs_langmuir_1c01807 crossref_primary_10_1021_acs_langmuir_0c02923 crossref_primary_10_1088_0169_5983_48_6_061426 crossref_primary_10_1021_acs_jpcb_6b01686 crossref_primary_10_1007_s41745_018_0088_y crossref_primary_10_1039_C5RA27284J crossref_primary_10_3390_nano8050340 crossref_primary_10_1080_15567265_2019_1628136 crossref_primary_10_1039_C7CP04433J crossref_primary_10_1002_cphc_202200184 crossref_primary_10_1016_j_snr_2024_100225 crossref_primary_10_1021_acs_langmuir_1c03473 crossref_primary_10_1063_1_5090529 crossref_primary_10_1016_j_apsusc_2022_154805 crossref_primary_10_1021_acsami_4c11079 crossref_primary_10_3390_ma15113925 crossref_primary_10_1021_acs_langmuir_1c03037 crossref_primary_10_3390_nano9010064 crossref_primary_10_1021_acs_langmuir_8b04109 crossref_primary_10_1016_j_molliq_2021_117468 crossref_primary_10_1021_acs_jpcc_1c00632 crossref_primary_10_1016_j_surfin_2024_104981 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104385 crossref_primary_10_1039_C6RA20574G crossref_primary_10_1063_5_0190121 crossref_primary_10_1021_acs_langmuir_0c02114 crossref_primary_10_1063_1_4978497 crossref_primary_10_1080_00268976_2015_1133858 crossref_primary_10_1021_acs_langmuir_4c01655 crossref_primary_10_1063_1_4868641 crossref_primary_10_1021_acs_langmuir_5b03041 crossref_primary_10_1016_j_molliq_2021_116987 crossref_primary_10_3390_coatings11091043 crossref_primary_10_1016_j_molliq_2021_118405 crossref_primary_10_1016_j_molliq_2016_11_045 crossref_primary_10_1063_1_4841815 crossref_primary_10_1088_1361_648X_ad24bc crossref_primary_10_1002_aic_16567 crossref_primary_10_1021_acs_chemrev_9b00830 crossref_primary_10_1021_acsanm_4c03946 crossref_primary_10_1016_j_jcis_2021_01_003 crossref_primary_10_1063_1_5131851 crossref_primary_10_1016_j_cplett_2022_139659 crossref_primary_10_1016_j_molliq_2024_124900 crossref_primary_10_1021_acs_jpcc_7b08092 crossref_primary_10_1115_1_4038480 crossref_primary_10_1016_j_apsusc_2022_153583 crossref_primary_10_1103_PhysRevE_95_053115 crossref_primary_10_1016_j_colsurfa_2021_127513 crossref_primary_10_1016_j_molliq_2023_123253 crossref_primary_10_1063_5_0084169 crossref_primary_10_1140_epje_i2019_11885_8 crossref_primary_10_1021_la4044705 crossref_primary_10_1063_1_4996210 crossref_primary_10_1016_j_jmgm_2023_108513 crossref_primary_10_1021_acs_langmuir_3c00167 crossref_primary_10_1007_s00894_018_3774_9 crossref_primary_10_1021_jp501130m crossref_primary_10_1021_acs_energyfuels_9b02019 crossref_primary_10_1016_j_molliq_2021_116039 crossref_primary_10_1016_j_nanoen_2021_106115 crossref_primary_10_1088_1361_648X_aad838 crossref_primary_10_1021_acs_langmuir_4c03012 crossref_primary_10_1039_C8CP03186J crossref_primary_10_1016_j_ijheatmasstransfer_2015_11_053 crossref_primary_10_1021_jp501776m crossref_primary_10_1016_j_applthermaleng_2017_04_064 crossref_primary_10_1016_j_molliq_2024_126576 crossref_primary_10_1007_s10404_018_2116_7 crossref_primary_10_1063_1_4985875 crossref_primary_10_7498_aps_73_20240698 crossref_primary_10_1063_5_0149066 crossref_primary_10_1063_1_4929784 crossref_primary_10_1021_acs_langmuir_7b00767 crossref_primary_10_1016_j_ces_2020_116143 crossref_primary_10_1016_j_coelec_2022_100980 crossref_primary_10_1021_acs_langmuir_6b04101 crossref_primary_10_1021_acs_macromol_3c00946 crossref_primary_10_1039_D1CP05510K crossref_primary_10_1063_5_0046817 crossref_primary_10_1016_j_molliq_2020_113195 crossref_primary_10_1021_acs_langmuir_9b01831 crossref_primary_10_3390_molecules28073064 crossref_primary_10_7498_aps_70_20210094 crossref_primary_10_1007_s10404_014_1422_y crossref_primary_10_1016_j_jcis_2020_11_047 crossref_primary_10_1021_acs_langmuir_1c01943 crossref_primary_10_1007_s10404_021_02455_6 crossref_primary_10_1016_j_commatsci_2015_04_025 |
Cites_doi | 10.1021/nl0480161 10.1021/la962004g 10.1080/08927022.2011.633257 10.1080/00268979650026406 10.1080/08927022.2010.547855 10.1016/j.jcis.2009.07.048 10.1021/jp900117t 10.1016/j.cplett.2007.07.066 10.1021/jp811257x 10.1016/S0017-9310(00)00004-1 10.1016/S0017-9310(81)80004-X 10.1063/1.1651473 10.1021/jp0676235 10.1021/jp0268112 10.1039/B714994H 10.1038/35002540 10.1088/0256-307X/22/4/002 10.1147/rd.211.0031 10.1080/00268977800100471 10.1063/1.3055600 10.1021/j100308a038 10.1103/PhysRevLett.69.124 10.1007/b99427 10.1016/j.porgcoat.2008.07.020 10.1016/0017-9310(94)E0109-8 10.1039/B809135H 10.1007/128_2011_188 10.1021/jp067395e |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/la304763a |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 4274 |
ExternalDocumentID | 23488748 27199753 10_1021_la304763a b113504718 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK YQT ~02 .HR 186 1WB 6TJ ABHMW ACRPL ADNMO AEYZD AFFNX ANPPW ANTXH IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a444t-9ddd190e4b10c6abec760b3b4127c202f1728b14a83a666e3b88d50b13c1e45e3 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Thu Jul 10 18:39:19 EDT 2025 Fri Jul 11 03:41:38 EDT 2025 Mon Jul 21 05:41:58 EDT 2025 Wed Apr 02 07:13:31 EDT 2025 Tue Jul 01 02:30:15 EDT 2025 Thu Apr 24 22:56:26 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Water Nanometer scale Liquid solid interface Electric field Simulation Spreading Molecular dynamics Droplet |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a444t-9ddd190e4b10c6abec760b3b4127c202f1728b14a83a666e3b88d50b13c1e45e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23488748 |
PQID | 1323280413 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000562284 proquest_miscellaneous_1323280413 pubmed_primary_23488748 pascalfrancis_primary_27199753 crossref_citationtrail_10_1021_la304763a crossref_primary_10_1021_la304763a acs_journals_10_1021_la304763a |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-02 |
PublicationDateYYYYMMDD | 2013-04-02 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Werder T. (ref17/cit17) 2003; 107 Daub C. D. (ref9/cit9) 2012; 307 Park S. (ref15/cit15) 2004; 120 ref18/cit18 Berendsen H. J. C. (ref12/cit12) 1987; 91 Daub C. D. (ref8/cit8) 2007; 111 Allen M. P. (ref14/cit14) 1989 Yen T. (ref21/cit21) 2011; 37 Streett W. B. (ref16/cit16) 1978; 35 Yen T. (ref10/cit10) 2012; 38 Hong S. D. (ref19/cit19) 2009; 339 Hünenberger P. H. (ref20/cit20) 2005; 173 Guo H. K. (ref26/cit26) 2005; 22 Shi B. (ref23/cit23) 2009; 130 Bratko D. (ref30/cit30) 2009; 141 Bologa M. K. (ref2/cit2) 1995; 38 Liang X. G. (ref7/cit7) 2005; 5 Kirby B. J. (ref13/cit13) 2010 Barlettaa M. (ref5/cit5) 2009; 64 Shamai R. (ref11/cit11) 2008; 4 Ku B. K. (ref4/cit4) 2003; 57 Ingebrigtsen T. (ref25/cit25) 2007; 111 Bertrand E. (ref22/cit22) 2009; 21 Twardeck T. G. (ref3/cit3) 1977; 21 Blake T. D. (ref24/cit24) 1997; 13 Schaffer E. (ref6/cit6) 2000; 403 Ohler B. (ref28/cit28) 2009; 113 Shelley J. C. (ref32/cit32) 1996; 88 Nieminen J. A. (ref27/cit27) 1992; 69 Didkovsky A. B. (ref1/cit1) 1981; 24 Suzuki S. (ref29/cit29) 2007; 445 Song S. P. (ref33/cit33) 2000; 43 Fan Y. (ref31/cit31) 2009; 113 |
References_xml | – volume: 5 start-page: 527 issue: 3 year: 2005 ident: ref7/cit7 publication-title: Nano Lett. doi: 10.1021/nl0480161 – volume: 57 start-page: 109 issue: 1 year: 2003 ident: ref4/cit4 publication-title: J. Electrost. – volume-title: Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices year: 2010 ident: ref13/cit13 – volume: 13 start-page: 2164 issue: 07 year: 1997 ident: ref24/cit24 publication-title: Langmuir doi: 10.1021/la962004g – volume: 38 start-page: 509 issue: 6 year: 2012 ident: ref10/cit10 publication-title: Mol. Simul. doi: 10.1080/08927022.2011.633257 – volume: 88 start-page: 385 issue: 2 year: 1996 ident: ref32/cit32 publication-title: Mol. Phys. doi: 10.1080/00268979650026406 – volume: 37 start-page: 766 issue: 9 year: 2011 ident: ref21/cit21 publication-title: Mol. Simul. doi: 10.1080/08927022.2010.547855 – volume: 339 start-page: 187 issue: 1 year: 2009 ident: ref19/cit19 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.07.048 – volume-title: Computer Simulation of Liquids year: 1989 ident: ref14/cit14 – volume: 113 start-page: 11672 year: 2009 ident: ref31/cit31 publication-title: J. Phys. Chem. B. doi: 10.1021/jp900117t – ident: ref18/cit18 – volume: 445 start-page: 37 year: 2007 ident: ref29/cit29 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.07.066 – volume: 113 start-page: 10189 issue: 23 year: 2009 ident: ref28/cit28 publication-title: J. Phys. Chem. C. doi: 10.1021/jp811257x – volume: 43 start-page: 3589 year: 2000 ident: ref33/cit33 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(00)00004-1 – volume: 24 start-page: 811 issue: 05 year: 1981 ident: ref1/cit1 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(81)80004-X – volume: 120 start-page: 1651473 issue: 13 year: 2004 ident: ref15/cit15 publication-title: J. Chem. Phys. doi: 10.1063/1.1651473 – volume: 111 start-page: 8518 issue: 24 year: 2007 ident: ref25/cit25 publication-title: J. Phys. Chem. C. doi: 10.1021/jp0676235 – volume: 107 start-page: 1345 issue: 06 year: 2003 ident: ref17/cit17 publication-title: J. Phys. Chem. B doi: 10.1021/jp0268112 – volume: 4 start-page: 38 year: 2008 ident: ref11/cit11 publication-title: Soft Matter doi: 10.1039/B714994H – volume: 403 start-page: 874 issue: 24 year: 2000 ident: ref6/cit6 publication-title: Letters to Nature doi: 10.1038/35002540 – volume: 22 start-page: 787 issue: 04 year: 2005 ident: ref26/cit26 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/22/4/002 – volume: 21 start-page: 31 issue: 01 year: 1977 ident: ref3/cit3 publication-title: IBM J. Res. Dev. doi: 10.1147/rd.211.0031 – volume: 35 start-page: 639 issue: 03 year: 1978 ident: ref16/cit16 publication-title: Mol. Phys. doi: 10.1080/00268977800100471 – volume: 130 start-page: 034705 year: 2009 ident: ref23/cit23 publication-title: J. Chem. Phys. doi: 10.1063/1.3055600 – volume: 21 start-page: 464124 issue: 46 year: 2009 ident: ref22/cit22 publication-title: J. Phys.: Condens. Matter – volume: 91 start-page: 6269 issue: 24 year: 1987 ident: ref12/cit12 publication-title: J. Phys. Chem. doi: 10.1021/j100308a038 – volume: 69 start-page: 124 issue: 01 year: 1992 ident: ref27/cit27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.124 – volume: 173 start-page: 105 year: 2005 ident: ref20/cit20 publication-title: Adv. Polym. Sci. doi: 10.1007/b99427 – volume: 64 start-page: 339 issue: 4 year: 2009 ident: ref5/cit5 publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2008.07.020 – volume: 38 start-page: 175 issue: 01 year: 1995 ident: ref2/cit2 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(94)E0109-8 – volume: 141 start-page: 55 year: 2009 ident: ref30/cit30 publication-title: Faraday Discuss. doi: 10.1039/B809135H – volume: 307 start-page: 155 year: 2012 ident: ref9/cit9 publication-title: Top Curr. Chem. doi: 10.1007/128_2011_188 – volume: 111 start-page: 505 issue: 2 year: 2007 ident: ref8/cit8 publication-title: J. Phys. Chem. C. doi: 10.1021/jp067395e |
SSID | ssj0009349 |
Score | 2.4107409 |
Snippet | Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4266 |
SubjectTerms | asymmetry Chemistry Colloidal state and disperse state contact angle deformation droplets electric field Electromagnetic Fields Exact sciences and technology General and physical chemistry hydrogen bonding liquids molecular dynamics Molecular Dynamics Simulation Nanostructures - chemistry Particle Size Physical and chemical studies. Granulometry. Electrokinetic phenomena Solid-liquid interface Surface physical chemistry Surface Properties Water - chemistry |
Title | Molecular Dynamics Simulation of Nanosized Water Droplet Spreading in an Electric Field |
URI | http://dx.doi.org/10.1021/la304763a https://www.ncbi.nlm.nih.gov/pubmed/23488748 https://www.proquest.com/docview/1323280413 https://www.proquest.com/docview/2000562284 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1VcAAJsS9lqcxy4BJIbMdJjqhQISS4FAS3yHYcqaKkVZNe-HrGWVoQ232i2J6x51kzfg_gjCaIunUgnFRKiRcU7jrKF6mDsRQqqgVNIvve-f5B3D7xuxf_pQWnv1TwqXc5lLYyJBiCoEUqcPNa_NPtz5l1WYVxLddmwAVr6IM-f2pTj86_pJ6VscxxFdJKvuJ3fFnmmd4aXDevdar2kteLaaEu9Pt38sa_prAOqzXOJFdVYGxAy2SbsNRt5N224Pm-EcYl15UqfU76g7dazYuMUoIH7ygfvJuEPCMgRbOJbTYvSH88qTrvySAjMiM3pZLOQJOe7YbbhqfezWP31qlVFhzJOS-cKEkSRAWGK8_VQqJPA-EqprhHA01dmloFK-VxGTKJdx3DVBgmvqs8pj3DfcN2YCEbZWYPiEIDHkmEAEJxSakK8SQVaaSlyzWLwjZ00A1xvUvyuCyAUy-erU8bzhsPxbrmKLdSGcOfTE9mpuOKmOMno84XN88saWAbbHzWhuPG7zGuvy2WyMyMpjg2hljTkjP9YWOfOSF-xAzfht0qaOZ_YHg0Bjzc_2_OB7BMS4kN7rj0EBaKydQcIdApVKcM9A80f_Tj |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHEBC7EtZikEcuAQS23GSIyqtCrRcCoJbZDuOVFHSqkkv_XrGWVpAbPdJYs9MPM_y-D2EzkkEqFt53IqFELBBYbYlXR5bkEu-JIqTKDD3nbsPvP3E7l7cl5Imx9yFgUGk8KY0P8Sfsws4VwNhDog4BSy0BCCEmGy-bvTmBLu0gLqGctNjnFYsQh8fNRVIpZ8q0OpIpOCMuFCx-Blm5uWmtV7oFuUDzbtMXi8nmbxU0y8cjv-byQZaK1Envi7SZBMt6GQLLTcqsbdt9NytZHLxTaFRn-Je_63U9sLDGMMyPEz7Ux3hZ4CnYDY2recZ7o3GRR8-7idYJLiZ6-r0FW6Z3rgd9NRqPjbaVqm5YAnGWGYFURQBRtBMOrbiAiLscVtSyRziKWKT2OhZSYcJnwrY-WgqfT9ybelQ5WjmarqLFpNhovcRlmDAAgGAgEsmCJE-rKs8DpSwmaKBX0N1cE9Y_jNpmB-HEyec-aeGLqpAhapkLDfCGYPvTM9mpqOCpuM7o_qnaM8siWfabVxaQ6dV-EPwvzk6EYkeTmBsFJCnoWr6xcZcegI0CfW-hvaK3Jl_gcJC6TH_4K85n6Dl9mO3E3ZuH-4P0QrJxTeYZZMjtJiNJ_oYIFAm63nuvwMqv_1E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT-MwEB4hkGAlxLlAObpexAMvgcR2nOQRFSp2WQ6pIHiLbMeRKiCtmvSFX884RznEse-TxBmPPZ814-8D2KMJom4dCCeVUuIBhbuO8kXqYCyFimpBk8jedz6_EKc3_O-df1cfFO1dGBxEjm_KyyK-XdXDJK0ZBrzDB2mLRIIhHpqx5Tob0Ued3gvJLqvgrqXdDLhgDZPQ60dtFtL5myw0P5Q5OiStlCw-h5plyukuwuVksGWnyf3BuFAH-ukdj-P__80SLNTokxxV4bIMUyZbgblOI_q2CrfnjVwuOa606nPS6z_WGl9kkBLcjgd5_8kk5BZhKpqNbAt6QXrDUdWPT_oZkRk5KfV1-pp0bY_cT7jpnlx3Tp1ae8GRnPPCiZIkQaxguPJcLSTOdCBcxRT3aKCpS1Ora6U8LkMm8QRkmArDxHeVx7RnuG_YGkxng8xsAFFowCOJwEAoLilVIe6vIo20dLlmUdiCNroortdOHpdlcerFE_-0YL-ZrFjXzOVWQOPhI9Pdiemwouv4yKj9ZsYnljSwbTc-a8HvJgRi9L8tocjMDMY4NoYI1FI2fWFjLz8hqsS834L1Kn5evsBwwwx4uPndP_-C2avjbvzvz8XZFvygpQYHd1y6DdPFaGx2EAkVql2G_zOAJv_H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Dynamics+Simulation+of+Nanosized+Water+Droplet+Spreading+in+an+Electric+Field&rft.jtitle=Langmuir&rft.au=Song%2C+F.+H&rft.au=Li%2C+B.+Q&rft.au=Liu%2C+C&rft.date=2013-04-02&rft.pub=American+Chemical+Society&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=29&rft.issue=13&rft.spage=4266&rft.epage=4274&rft_id=info:doi/10.1021%2Fla304763a&rft.externalDocID=b113504718 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |