Molecular Dynamics Simulation of Nanosized Water Droplet Spreading in an Electric Field

Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard–Jones potential is employed to represent the intermolecular interactions. Results show that in response to...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 29; no. 13; pp. 4266 - 4274
Main Authors Song, F. H, Li, B. Q, Liu, C
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 02.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard–Jones potential is employed to represent the intermolecular interactions. Results show that in response to the applied field, polar water molecules realign themselves and this microscopic reorientation of molecular dipoles combines with the intermolecular forces to produce a macroscopic deformation of a free spherical water droplet into an ellipsoid. The applied field has a strong effect on the spreading of the water droplet on a solid substrate. For a weaker parallel field, the droplet spreading is asymmetric with the leading contact angle being greater than the trailing contact angle. With an increase in field strength, this asymmetry continues to increase, culminates, and then decreases until it disappears. The symmetric spreading remains with a further increase in the field strength until the saturation point is reached. This transition from the asymmetric to symmetric spreading is a manifestation of the interaction of the electric field with polar water molecules and the intermolecular forces within the droplet and between the water and solid; the interaction also leads to a change in hydrogen bonds along the droplet surface. The dynamics of the droplet spreading is entailed by the electrically induced motion of molecules along the liquid surface toward the solid substrate and is controlled by a competing mechanism among the electric, water–water, and water–solid intermolecular forces.
AbstractList Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard–Jones potential is employed to represent the intermolecular interactions. Results show that in response to the applied field, polar water molecules realign themselves and this microscopic reorientation of molecular dipoles combines with the intermolecular forces to produce a macroscopic deformation of a free spherical water droplet into an ellipsoid. The applied field has a strong effect on the spreading of the water droplet on a solid substrate. For a weaker parallel field, the droplet spreading is asymmetric with the leading contact angle being greater than the trailing contact angle. With an increase in field strength, this asymmetry continues to increase, culminates, and then decreases until it disappears. The symmetric spreading remains with a further increase in the field strength until the saturation point is reached. This transition from the asymmetric to symmetric spreading is a manifestation of the interaction of the electric field with polar water molecules and the intermolecular forces within the droplet and between the water and solid; the interaction also leads to a change in hydrogen bonds along the droplet surface. The dynamics of the droplet spreading is entailed by the electrically induced motion of molecules along the liquid surface toward the solid substrate and is controlled by a competing mechanism among the electric, water–water, and water–solid intermolecular forces.
Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard-Jones potential is employed to represent the intermolecular interactions. Results show that in response to the applied field, polar water molecules realign themselves and this microscopic reorientation of molecular dipoles combines with the intermolecular forces to produce a macroscopic deformation of a free spherical water droplet into an ellipsoid. The applied field has a strong effect on the spreading of the water droplet on a solid substrate. For a weaker parallel field, the droplet spreading is asymmetric with the leading contact angle being greater than the trailing contact angle. With an increase in field strength, this asymmetry continues to increase, culminates, and then decreases until it disappears. The symmetric spreading remains with a further increase in the field strength until the saturation point is reached. This transition from the asymmetric to symmetric spreading is a manifestation of the interaction of the electric field with polar water molecules and the intermolecular forces within the droplet and between the water and solid; the interaction also leads to a change in hydrogen bonds along the droplet surface. The dynamics of the droplet spreading is entailed by the electrically induced motion of molecules along the liquid surface toward the solid substrate and is controlled by a competing mechanism among the electric, water-water, and water-solid intermolecular forces.Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard-Jones potential is employed to represent the intermolecular interactions. Results show that in response to the applied field, polar water molecules realign themselves and this microscopic reorientation of molecular dipoles combines with the intermolecular forces to produce a macroscopic deformation of a free spherical water droplet into an ellipsoid. The applied field has a strong effect on the spreading of the water droplet on a solid substrate. For a weaker parallel field, the droplet spreading is asymmetric with the leading contact angle being greater than the trailing contact angle. With an increase in field strength, this asymmetry continues to increase, culminates, and then decreases until it disappears. The symmetric spreading remains with a further increase in the field strength until the saturation point is reached. This transition from the asymmetric to symmetric spreading is a manifestation of the interaction of the electric field with polar water molecules and the intermolecular forces within the droplet and between the water and solid; the interaction also leads to a change in hydrogen bonds along the droplet surface. The dynamics of the droplet spreading is entailed by the electrically induced motion of molecules along the liquid surface toward the solid substrate and is controlled by a competing mechanism among the electric, water-water, and water-solid intermolecular forces.
Author Li, B. Q
Liu, C
Song, F. H
AuthorAffiliation Chongqing University
University of Michigan
Department of Mechanical Engineering
Xi’An Jiaotong University
AuthorAffiliation_xml – name: Xi’An Jiaotong University
– name: Department of Mechanical Engineering
– name: University of Michigan
– name: Chongqing University
Author_xml – sequence: 1
  givenname: F. H
  surname: Song
  fullname: Song, F. H
– sequence: 2
  givenname: B. Q
  surname: Li
  fullname: Li, B. Q
  email: benqli@umich.edu
– sequence: 3
  givenname: C
  surname: Liu
  fullname: Liu, C
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27199753$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23488748$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1LHTEUBuAglnrVLvwDJZtCuxjN10wyS7HaFmxd2OIynMmcKZFMck1mFvrrHetVQYSuAuE5L8l7dsl2TBEJOeDskDPBjwJIpnQjYYuseC1YVRuht8mKaSUrrRq5Q3ZLuWaMtVK178mOkMoYrcyKXP1MAd0cINOvtxFG7wq99ONyMfkUaRroL4ip-Dvs6RVMuLCc1gEnernOCL2Pf6mPFCI9XXKm7B098xj6ffJugFDww-bcI3_OTn-ffK_OL779ODk-r0ApNVVt3_e8Zag6zlwDHTrdsE52igvtBBMD18J0XIGR0DQNys6YvmYdl46jqlHukc-PueucbmYskx19cRgCRExzsWL5dN0IYdR_KZdCCsMUlwv9uKFzN2Jv19mPkG_tU28L-LQBUByEIUN0vrw4zdtW1w9BR4_O5VRKxsE6P_2rdsrgg-XMPmzQPm9wmfjyauIp9C27eQW4Yq_TnONS9RvuHrCHpOU
CODEN LANGD5
CitedBy_id crossref_primary_10_1049_mnl_2016_0824
crossref_primary_10_1016_j_molliq_2014_06_003
crossref_primary_10_1021_acs_langmuir_1c01807
crossref_primary_10_1021_acs_langmuir_0c02923
crossref_primary_10_1088_0169_5983_48_6_061426
crossref_primary_10_1021_acs_jpcb_6b01686
crossref_primary_10_1007_s41745_018_0088_y
crossref_primary_10_1039_C5RA27284J
crossref_primary_10_3390_nano8050340
crossref_primary_10_1080_15567265_2019_1628136
crossref_primary_10_1039_C7CP04433J
crossref_primary_10_1002_cphc_202200184
crossref_primary_10_1016_j_snr_2024_100225
crossref_primary_10_1021_acs_langmuir_1c03473
crossref_primary_10_1063_1_5090529
crossref_primary_10_1016_j_apsusc_2022_154805
crossref_primary_10_1021_acsami_4c11079
crossref_primary_10_3390_ma15113925
crossref_primary_10_1021_acs_langmuir_1c03037
crossref_primary_10_3390_nano9010064
crossref_primary_10_1021_acs_langmuir_8b04109
crossref_primary_10_1016_j_molliq_2021_117468
crossref_primary_10_1021_acs_jpcc_1c00632
crossref_primary_10_1016_j_surfin_2024_104981
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104385
crossref_primary_10_1039_C6RA20574G
crossref_primary_10_1063_5_0190121
crossref_primary_10_1021_acs_langmuir_0c02114
crossref_primary_10_1063_1_4978497
crossref_primary_10_1080_00268976_2015_1133858
crossref_primary_10_1021_acs_langmuir_4c01655
crossref_primary_10_1063_1_4868641
crossref_primary_10_1021_acs_langmuir_5b03041
crossref_primary_10_1016_j_molliq_2021_116987
crossref_primary_10_3390_coatings11091043
crossref_primary_10_1016_j_molliq_2021_118405
crossref_primary_10_1016_j_molliq_2016_11_045
crossref_primary_10_1063_1_4841815
crossref_primary_10_1088_1361_648X_ad24bc
crossref_primary_10_1002_aic_16567
crossref_primary_10_1021_acs_chemrev_9b00830
crossref_primary_10_1021_acsanm_4c03946
crossref_primary_10_1016_j_jcis_2021_01_003
crossref_primary_10_1063_1_5131851
crossref_primary_10_1016_j_cplett_2022_139659
crossref_primary_10_1016_j_molliq_2024_124900
crossref_primary_10_1021_acs_jpcc_7b08092
crossref_primary_10_1115_1_4038480
crossref_primary_10_1016_j_apsusc_2022_153583
crossref_primary_10_1103_PhysRevE_95_053115
crossref_primary_10_1016_j_colsurfa_2021_127513
crossref_primary_10_1016_j_molliq_2023_123253
crossref_primary_10_1063_5_0084169
crossref_primary_10_1140_epje_i2019_11885_8
crossref_primary_10_1021_la4044705
crossref_primary_10_1063_1_4996210
crossref_primary_10_1016_j_jmgm_2023_108513
crossref_primary_10_1021_acs_langmuir_3c00167
crossref_primary_10_1007_s00894_018_3774_9
crossref_primary_10_1021_jp501130m
crossref_primary_10_1021_acs_energyfuels_9b02019
crossref_primary_10_1016_j_molliq_2021_116039
crossref_primary_10_1016_j_nanoen_2021_106115
crossref_primary_10_1088_1361_648X_aad838
crossref_primary_10_1021_acs_langmuir_4c03012
crossref_primary_10_1039_C8CP03186J
crossref_primary_10_1016_j_ijheatmasstransfer_2015_11_053
crossref_primary_10_1021_jp501776m
crossref_primary_10_1016_j_applthermaleng_2017_04_064
crossref_primary_10_1016_j_molliq_2024_126576
crossref_primary_10_1007_s10404_018_2116_7
crossref_primary_10_1063_1_4985875
crossref_primary_10_7498_aps_73_20240698
crossref_primary_10_1063_5_0149066
crossref_primary_10_1063_1_4929784
crossref_primary_10_1021_acs_langmuir_7b00767
crossref_primary_10_1016_j_ces_2020_116143
crossref_primary_10_1016_j_coelec_2022_100980
crossref_primary_10_1021_acs_langmuir_6b04101
crossref_primary_10_1021_acs_macromol_3c00946
crossref_primary_10_1039_D1CP05510K
crossref_primary_10_1063_5_0046817
crossref_primary_10_1016_j_molliq_2020_113195
crossref_primary_10_1021_acs_langmuir_9b01831
crossref_primary_10_3390_molecules28073064
crossref_primary_10_7498_aps_70_20210094
crossref_primary_10_1007_s10404_014_1422_y
crossref_primary_10_1016_j_jcis_2020_11_047
crossref_primary_10_1021_acs_langmuir_1c01943
crossref_primary_10_1007_s10404_021_02455_6
crossref_primary_10_1016_j_commatsci_2015_04_025
Cites_doi 10.1021/nl0480161
10.1021/la962004g
10.1080/08927022.2011.633257
10.1080/00268979650026406
10.1080/08927022.2010.547855
10.1016/j.jcis.2009.07.048
10.1021/jp900117t
10.1016/j.cplett.2007.07.066
10.1021/jp811257x
10.1016/S0017-9310(00)00004-1
10.1016/S0017-9310(81)80004-X
10.1063/1.1651473
10.1021/jp0676235
10.1021/jp0268112
10.1039/B714994H
10.1038/35002540
10.1088/0256-307X/22/4/002
10.1147/rd.211.0031
10.1080/00268977800100471
10.1063/1.3055600
10.1021/j100308a038
10.1103/PhysRevLett.69.124
10.1007/b99427
10.1016/j.porgcoat.2008.07.020
10.1016/0017-9310(94)E0109-8
10.1039/B809135H
10.1007/128_2011_188
10.1021/jp067395e
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/la304763a
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 4274
ExternalDocumentID 23488748
27199753
10_1021_la304763a
b113504718
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
.HR
186
1WB
6TJ
ABHMW
ACRPL
ADNMO
AEYZD
AFFNX
ANPPW
ANTXH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a444t-9ddd190e4b10c6abec760b3b4127c202f1728b14a83a666e3b88d50b13c1e45e3
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Thu Jul 10 18:39:19 EDT 2025
Fri Jul 11 03:41:38 EDT 2025
Mon Jul 21 05:41:58 EDT 2025
Wed Apr 02 07:13:31 EDT 2025
Tue Jul 01 02:30:15 EDT 2025
Thu Apr 24 22:56:26 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Water
Nanometer scale
Liquid solid interface
Electric field
Simulation
Spreading
Molecular dynamics
Droplet
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a444t-9ddd190e4b10c6abec760b3b4127c202f1728b14a83a666e3b88d50b13c1e45e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23488748
PQID 1323280413
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000562284
proquest_miscellaneous_1323280413
pubmed_primary_23488748
pascalfrancis_primary_27199753
crossref_citationtrail_10_1021_la304763a
crossref_primary_10_1021_la304763a
acs_journals_10_1021_la304763a
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-02
PublicationDateYYYYMMDD 2013-04-02
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-02
  day: 02
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Werder T. (ref17/cit17) 2003; 107
Daub C. D. (ref9/cit9) 2012; 307
Park S. (ref15/cit15) 2004; 120
ref18/cit18
Berendsen H. J. C. (ref12/cit12) 1987; 91
Daub C. D. (ref8/cit8) 2007; 111
Allen M. P. (ref14/cit14) 1989
Yen T. (ref21/cit21) 2011; 37
Streett W. B. (ref16/cit16) 1978; 35
Yen T. (ref10/cit10) 2012; 38
Hong S. D. (ref19/cit19) 2009; 339
Hünenberger P. H. (ref20/cit20) 2005; 173
Guo H. K. (ref26/cit26) 2005; 22
Shi B. (ref23/cit23) 2009; 130
Bratko D. (ref30/cit30) 2009; 141
Bologa M. K. (ref2/cit2) 1995; 38
Liang X. G. (ref7/cit7) 2005; 5
Kirby B. J. (ref13/cit13) 2010
Barlettaa M. (ref5/cit5) 2009; 64
Shamai R. (ref11/cit11) 2008; 4
Ku B. K. (ref4/cit4) 2003; 57
Ingebrigtsen T. (ref25/cit25) 2007; 111
Bertrand E. (ref22/cit22) 2009; 21
Twardeck T. G. (ref3/cit3) 1977; 21
Blake T. D. (ref24/cit24) 1997; 13
Schaffer E. (ref6/cit6) 2000; 403
Ohler B. (ref28/cit28) 2009; 113
Shelley J. C. (ref32/cit32) 1996; 88
Nieminen J. A. (ref27/cit27) 1992; 69
Didkovsky A. B. (ref1/cit1) 1981; 24
Suzuki S. (ref29/cit29) 2007; 445
Song S. P. (ref33/cit33) 2000; 43
Fan Y. (ref31/cit31) 2009; 113
References_xml – volume: 5
  start-page: 527
  issue: 3
  year: 2005
  ident: ref7/cit7
  publication-title: Nano Lett.
  doi: 10.1021/nl0480161
– volume: 57
  start-page: 109
  issue: 1
  year: 2003
  ident: ref4/cit4
  publication-title: J. Electrost.
– volume-title: Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
  year: 2010
  ident: ref13/cit13
– volume: 13
  start-page: 2164
  issue: 07
  year: 1997
  ident: ref24/cit24
  publication-title: Langmuir
  doi: 10.1021/la962004g
– volume: 38
  start-page: 509
  issue: 6
  year: 2012
  ident: ref10/cit10
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2011.633257
– volume: 88
  start-page: 385
  issue: 2
  year: 1996
  ident: ref32/cit32
  publication-title: Mol. Phys.
  doi: 10.1080/00268979650026406
– volume: 37
  start-page: 766
  issue: 9
  year: 2011
  ident: ref21/cit21
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2010.547855
– volume: 339
  start-page: 187
  issue: 1
  year: 2009
  ident: ref19/cit19
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.07.048
– volume-title: Computer Simulation of Liquids
  year: 1989
  ident: ref14/cit14
– volume: 113
  start-page: 11672
  year: 2009
  ident: ref31/cit31
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp900117t
– ident: ref18/cit18
– volume: 445
  start-page: 37
  year: 2007
  ident: ref29/cit29
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.07.066
– volume: 113
  start-page: 10189
  issue: 23
  year: 2009
  ident: ref28/cit28
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp811257x
– volume: 43
  start-page: 3589
  year: 2000
  ident: ref33/cit33
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(00)00004-1
– volume: 24
  start-page: 811
  issue: 05
  year: 1981
  ident: ref1/cit1
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(81)80004-X
– volume: 120
  start-page: 1651473
  issue: 13
  year: 2004
  ident: ref15/cit15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1651473
– volume: 111
  start-page: 8518
  issue: 24
  year: 2007
  ident: ref25/cit25
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp0676235
– volume: 107
  start-page: 1345
  issue: 06
  year: 2003
  ident: ref17/cit17
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0268112
– volume: 4
  start-page: 38
  year: 2008
  ident: ref11/cit11
  publication-title: Soft Matter
  doi: 10.1039/B714994H
– volume: 403
  start-page: 874
  issue: 24
  year: 2000
  ident: ref6/cit6
  publication-title: Letters to Nature
  doi: 10.1038/35002540
– volume: 22
  start-page: 787
  issue: 04
  year: 2005
  ident: ref26/cit26
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/22/4/002
– volume: 21
  start-page: 31
  issue: 01
  year: 1977
  ident: ref3/cit3
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.211.0031
– volume: 35
  start-page: 639
  issue: 03
  year: 1978
  ident: ref16/cit16
  publication-title: Mol. Phys.
  doi: 10.1080/00268977800100471
– volume: 130
  start-page: 034705
  year: 2009
  ident: ref23/cit23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3055600
– volume: 21
  start-page: 464124
  issue: 46
  year: 2009
  ident: ref22/cit22
  publication-title: J. Phys.: Condens. Matter
– volume: 91
  start-page: 6269
  issue: 24
  year: 1987
  ident: ref12/cit12
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100308a038
– volume: 69
  start-page: 124
  issue: 01
  year: 1992
  ident: ref27/cit27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.124
– volume: 173
  start-page: 105
  year: 2005
  ident: ref20/cit20
  publication-title: Adv. Polym. Sci.
  doi: 10.1007/b99427
– volume: 64
  start-page: 339
  issue: 4
  year: 2009
  ident: ref5/cit5
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2008.07.020
– volume: 38
  start-page: 175
  issue: 01
  year: 1995
  ident: ref2/cit2
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(94)E0109-8
– volume: 141
  start-page: 55
  year: 2009
  ident: ref30/cit30
  publication-title: Faraday Discuss.
  doi: 10.1039/B809135H
– volume: 307
  start-page: 155
  year: 2012
  ident: ref9/cit9
  publication-title: Top Curr. Chem.
  doi: 10.1007/128_2011_188
– volume: 111
  start-page: 505
  issue: 2
  year: 2007
  ident: ref8/cit8
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp067395e
SSID ssj0009349
Score 2.4107409
Snippet Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4266
SubjectTerms asymmetry
Chemistry
Colloidal state and disperse state
contact angle
deformation
droplets
electric field
Electromagnetic Fields
Exact sciences and technology
General and physical chemistry
hydrogen bonding
liquids
molecular dynamics
Molecular Dynamics Simulation
Nanostructures - chemistry
Particle Size
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Solid-liquid interface
Surface physical chemistry
Surface Properties
Water - chemistry
Title Molecular Dynamics Simulation of Nanosized Water Droplet Spreading in an Electric Field
URI http://dx.doi.org/10.1021/la304763a
https://www.ncbi.nlm.nih.gov/pubmed/23488748
https://www.proquest.com/docview/1323280413
https://www.proquest.com/docview/2000562284
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1VcAAJsS9lqcxy4BJIbMdJjqhQISS4FAS3yHYcqaKkVZNe-HrGWVoQ232i2J6x51kzfg_gjCaIunUgnFRKiRcU7jrKF6mDsRQqqgVNIvve-f5B3D7xuxf_pQWnv1TwqXc5lLYyJBiCoEUqcPNa_NPtz5l1WYVxLddmwAVr6IM-f2pTj86_pJ6VscxxFdJKvuJ3fFnmmd4aXDevdar2kteLaaEu9Pt38sa_prAOqzXOJFdVYGxAy2SbsNRt5N224Pm-EcYl15UqfU76g7dazYuMUoIH7ygfvJuEPCMgRbOJbTYvSH88qTrvySAjMiM3pZLOQJOe7YbbhqfezWP31qlVFhzJOS-cKEkSRAWGK8_VQqJPA-EqprhHA01dmloFK-VxGTKJdx3DVBgmvqs8pj3DfcN2YCEbZWYPiEIDHkmEAEJxSakK8SQVaaSlyzWLwjZ00A1xvUvyuCyAUy-erU8bzhsPxbrmKLdSGcOfTE9mpuOKmOMno84XN88saWAbbHzWhuPG7zGuvy2WyMyMpjg2hljTkjP9YWOfOSF-xAzfht0qaOZ_YHg0Bjzc_2_OB7BMS4kN7rj0EBaKydQcIdApVKcM9A80f_Tj
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHEBC7EtZikEcuAQS23GSIyqtCrRcCoJbZDuOVFHSqkkv_XrGWVpAbPdJYs9MPM_y-D2EzkkEqFt53IqFELBBYbYlXR5bkEu-JIqTKDD3nbsPvP3E7l7cl5Imx9yFgUGk8KY0P8Sfsws4VwNhDog4BSy0BCCEmGy-bvTmBLu0gLqGctNjnFYsQh8fNRVIpZ8q0OpIpOCMuFCx-Blm5uWmtV7oFuUDzbtMXi8nmbxU0y8cjv-byQZaK1Envi7SZBMt6GQLLTcqsbdt9NytZHLxTaFRn-Je_63U9sLDGMMyPEz7Ux3hZ4CnYDY2recZ7o3GRR8-7idYJLiZ6-r0FW6Z3rgd9NRqPjbaVqm5YAnGWGYFURQBRtBMOrbiAiLscVtSyRziKWKT2OhZSYcJnwrY-WgqfT9ybelQ5WjmarqLFpNhovcRlmDAAgGAgEsmCJE-rKs8DpSwmaKBX0N1cE9Y_jNpmB-HEyec-aeGLqpAhapkLDfCGYPvTM9mpqOCpuM7o_qnaM8siWfabVxaQ6dV-EPwvzk6EYkeTmBsFJCnoWr6xcZcegI0CfW-hvaK3Jl_gcJC6TH_4K85n6Dl9mO3E3ZuH-4P0QrJxTeYZZMjtJiNJ_oYIFAm63nuvwMqv_1E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT-MwEB4hkGAlxLlAObpexAMvgcR2nOQRFSp2WQ6pIHiLbMeRKiCtmvSFX884RznEse-TxBmPPZ814-8D2KMJom4dCCeVUuIBhbuO8kXqYCyFimpBk8jedz6_EKc3_O-df1cfFO1dGBxEjm_KyyK-XdXDJK0ZBrzDB2mLRIIhHpqx5Tob0Ued3gvJLqvgrqXdDLhgDZPQ60dtFtL5myw0P5Q5OiStlCw-h5plyukuwuVksGWnyf3BuFAH-ukdj-P__80SLNTokxxV4bIMUyZbgblOI_q2CrfnjVwuOa606nPS6z_WGl9kkBLcjgd5_8kk5BZhKpqNbAt6QXrDUdWPT_oZkRk5KfV1-pp0bY_cT7jpnlx3Tp1ae8GRnPPCiZIkQaxguPJcLSTOdCBcxRT3aKCpS1Ora6U8LkMm8QRkmArDxHeVx7RnuG_YGkxng8xsAFFowCOJwEAoLilVIe6vIo20dLlmUdiCNroortdOHpdlcerFE_-0YL-ZrFjXzOVWQOPhI9Pdiemwouv4yKj9ZsYnljSwbTc-a8HvJgRi9L8tocjMDMY4NoYI1FI2fWFjLz8hqsS834L1Kn5evsBwwwx4uPndP_-C2avjbvzvz8XZFvygpQYHd1y6DdPFaGx2EAkVql2G_zOAJv_H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Dynamics+Simulation+of+Nanosized+Water+Droplet+Spreading+in+an+Electric+Field&rft.jtitle=Langmuir&rft.au=Song%2C+F.+H&rft.au=Li%2C+B.+Q&rft.au=Liu%2C+C&rft.date=2013-04-02&rft.pub=American+Chemical+Society&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=29&rft.issue=13&rft.spage=4266&rft.epage=4274&rft_id=info:doi/10.1021%2Fla304763a&rft.externalDocID=b113504718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon