Local Environment of Terbium(III) Ions in Layered Nanocrystalline Zirconium(IV) Phosphonate–Phosphate Ion Exchange Materials
The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, sim...
Saved in:
Published in | Inorganic chemistry Vol. 56; no. 15; pp. 8837 - 8846 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.08.2017
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb3+ ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb3+ ions. |
---|---|
AbstractList | The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb3+ ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb3+ ions. The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb3+ ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb3+ ions.The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb3+ ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb3+ ions. Not provided. The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb ions. |
Author | Shi, Chenyang Terban, Maxwell W Silbernagel, Rita Clearfield, Abraham Billinge, Simon J. L |
AuthorAffiliation | Department of Chemistry Columbia University Condensed Matter Physics and Materials Science Department Department of Applied Physics and Applied Mathematics Texas A&M University Brookhaven National Laboratory |
AuthorAffiliation_xml | – name: Condensed Matter Physics and Materials Science Department – name: Texas A&M University – name: Department of Chemistry – name: Department of Applied Physics and Applied Mathematics – name: Brookhaven National Laboratory – name: Columbia University |
Author_xml | – sequence: 1 givenname: Maxwell W orcidid: 0000-0002-7094-1266 surname: Terban fullname: Terban, Maxwell W organization: Columbia University – sequence: 2 givenname: Chenyang orcidid: 0000-0002-2291-7325 surname: Shi fullname: Shi, Chenyang organization: Columbia University – sequence: 3 givenname: Rita surname: Silbernagel fullname: Silbernagel, Rita organization: Texas A&M University – sequence: 4 givenname: Abraham orcidid: 0000-0001-8318-8122 surname: Clearfield fullname: Clearfield, Abraham organization: Texas A&M University – sequence: 5 givenname: Simon J. L surname: Billinge fullname: Billinge, Simon J. L email: sb2896@columbia.edu organization: Brookhaven National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28704045$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1534539$$D View this record in Osti.gov |
BookMark | eNqFkc9u1DAQxi1URLeFRwBZnNrDLnbiOIk4oWopkZY_h4IQF8t2Jo2rxN7aDmIvFe_AG_IkeMmWA5eeZsbz-2as-U7QkXUWEHpOyYqSjL6SOqyMdf5a9zCuSkUI5_wRWtAiI8uCkq9HaEFIyinn9TE6CeGGEFLnjD9Bx1lVEkZYsUB3G6flgNf2u_HOjmAjdh2-Aq_MNJ41TXOOG2cDNhZv5A48tPiDtE77XYhyGIwF_M147exf_Ms5_tS7sO2dlRF-__w1VynfT8HrH7qX9hrw-_TijRzCU_S4SwGeHeIp-vx2fXXxbrn5eNlcvNksJWMsLmtWM8moBOiIUowDlFzXnCredVoypdo8k5SzqmMFKfOs4FXbMlXVvM0gU0V-il7Oc12IRgRtIug-_dqCjoIWOSvyOkFnM7T17naCEMVogoZhkBbcFAStM16XVUV4Ql8c0EmN0IqtN6P0O3F_2AS8ngHtXQgeOpF2ymicjV6aQVAi9jaKZKP4Z6M42JjUxX_q-wUP6eis27dv3ORtOuoDmj82FrlC |
CitedBy_id | crossref_primary_10_1016_j_molstruc_2020_129063 crossref_primary_10_1039_D0NA00120A crossref_primary_10_1007_s10965_023_03502_2 crossref_primary_10_1080_26889277_2022_2150897 crossref_primary_10_1098_rsta_2018_0413 crossref_primary_10_4236_msa_2023_146022 crossref_primary_10_1038_s42004_020_00439_1 crossref_primary_10_1039_D3EE00987D crossref_primary_10_1016_j_polymer_2020_123154 crossref_primary_10_1021_acs_chemmater_1c01755 crossref_primary_10_1021_acs_inorgchem_9b02442 crossref_primary_10_1080_07366299_2018_1542971 crossref_primary_10_1016_j_jcat_2020_03_002 crossref_primary_10_1021_acs_chemrev_1c00237 crossref_primary_10_1021_acs_iecr_0c04957 crossref_primary_10_1107_S2053273320013066 crossref_primary_10_1021_acs_inorgchem_3c01458 crossref_primary_10_1002_ejic_201900241 crossref_primary_10_1039_C8DT00508G crossref_primary_10_1021_acs_jpclett_0c01173 crossref_primary_10_1021_acs_jpcc_8b08134 crossref_primary_10_1080_14686996_2021_1993728 crossref_primary_10_1021_acs_langmuir_0c02057 crossref_primary_10_1039_D2DT01291J crossref_primary_10_1016_j_jssc_2020_121638 crossref_primary_10_1016_j_matdes_2018_05_041 crossref_primary_10_1107_S2053273320002028 crossref_primary_10_1021_acs_inorgchem_1c00581 crossref_primary_10_1039_D4DT00757C |
Cites_doi | 10.1103/PhysRevLett.112.125501 10.1126/science.1083440 10.1080/13642819908218319 10.1002/anie.199423241 10.1021/ic50073a005 10.1107/S0021889813005190 10.1246/bcsj.55.909 10.1107/S2053273315014473 10.1021/cm960030u 10.1039/b508589f 10.1002/andp.19153510606 10.1038/nature01650 10.1021/ja002048i 10.1021/ic402884g 10.1021/acs.chemmater.6b00199 10.1080/08957959608201408 10.1039/C1CS15276A 10.1039/DT9950000111 10.1107/S0021889810041889 10.1021/ja063166u 10.1126/science.1135080 10.1038/ncomms11859 10.1107/S205327331601487X 10.1107/S0021889803017564 10.1016/j.biomaterials.2010.07.051 10.1524/ract.2012.1929 10.1107/S0108768193006937 10.1103/PhysRevLett.89.075502 10.1039/b607250j 10.1107/S0021889899003532 10.1021/ja503590h 10.1039/C5NH00125K 10.1021/cr2002257 10.1002/anie.200300610 10.1107/S0108767309009714 10.1021/ja026143y 10.1039/b807080f 10.1016/j.micromeso.2017.05.059 10.1021/ja067140e 10.1103/Physics.3.25 10.1016/j.micromeso.2007.02.029 10.1524/zkri.2006.221.3.173 10.1016/j.jcat.2010.10.012 10.1021/ja030226c 10.1021/ez400052r 10.1039/C4NR06486K 10.1002/anie.199313571 10.1016/j.seppur.2014.03.028 10.1038/nmat4661 10.1088/0953-8984/19/33/335219 10.1039/b802426j 10.1021/ja110225n 10.1107/S1600536810010093 10.1021/ja052472p 10.1021/ic00148a036 10.1007/978-1-4899-1406-4_12 10.1039/C4NR01265H 10.1103/PhysRevB.81.144126 10.1021/ja401276f 10.1038/nature04556 10.1039/b807676f 10.1080/08893110410001664882 10.1039/b309577k 10.1021/ja053266k 10.1021/acs.inorgchem.5b02555 10.1021/ja303826a |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
CorporateAuthor | Brookhaven National Lab. (BNL), Upton, NY (United States) Texas A & M Univ., College Station, TX (United States) |
CorporateAuthor_xml | – name: Brookhaven National Lab. (BNL), Upton, NY (United States) – name: Texas A & M Univ., College Station, TX (United States) |
DBID | AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1021/acs.inorgchem.7b00666 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 8846 |
ExternalDocumentID | 1534539 28704045 10_1021_acs_inorgchem_7b00666 d228679365 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -~X 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ~02 NPM YIN 7X8 ABFRP OTOTI |
ID | FETCH-LOGICAL-a444t-9494a41aeef0bb46ee76c961b6ffca4bbd32a1648f450732568dd4b896d2e2b53 |
IEDL.DBID | ACS |
ISSN | 0020-1669 1520-510X |
IngestDate | Fri May 19 02:14:10 EDT 2023 Thu Jul 10 18:40:07 EDT 2025 Wed Feb 19 02:40:15 EST 2025 Tue Jul 01 03:41:20 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Thu Aug 27 13:45:00 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a444t-9494a41aeef0bb46ee76c961b6ffca4bbd32a1648f450732568dd4b896d2e2b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Nuclear Energy (NE) NE0000746; AC02-98CH10886; SC0012704 |
ORCID | 0000-0001-8318-8122 0000-0002-7094-1266 0000-0002-2291-7325 0000000222917325 0000000183188122 0000000270941266 |
PMID | 28704045 |
PQID | 1926978806 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1534539 proquest_miscellaneous_1926978806 pubmed_primary_28704045 crossref_citationtrail_10_1021_acs_inorgchem_7b00666 crossref_primary_10_1021_acs_inorgchem_7b00666 acs_journals_10_1021_acs_inorgchem_7b00666 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-07 |
PublicationDateYYYYMMDD | 2017-08-07 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2017 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 Egami T. (ref28/cit28) 2012 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 Yang X. (ref38/cit38) 2015 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 Xing Y. (ref66/cit66) 1987; 3 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref64/cit64 doi: 10.1103/PhysRevLett.112.125501 – ident: ref1/cit1 doi: 10.1126/science.1083440 – ident: ref59/cit59 doi: 10.1080/13642819908218319 – ident: ref58/cit58 doi: 10.1002/anie.199423241 – ident: ref25/cit25 doi: 10.1021/ic50073a005 – ident: ref37/cit37 doi: 10.1107/S0021889813005190 – ident: ref34/cit34 doi: 10.1246/bcsj.55.909 – ident: ref55/cit55 doi: 10.1107/S2053273315014473 – ident: ref57/cit57 doi: 10.1021/cm960030u – ident: ref11/cit11 doi: 10.1039/b508589f – ident: ref53/cit53 doi: 10.1002/andp.19153510606 – ident: ref2/cit2 doi: 10.1038/nature01650 – ident: ref63/cit63 doi: 10.1021/ja002048i – ident: ref17/cit17 doi: 10.1021/ic402884g – ident: ref19/cit19 doi: 10.1021/acs.chemmater.6b00199 – ident: ref36/cit36 doi: 10.1080/08957959608201408 – year: 2015 ident: ref38/cit38 publication-title: arXiv – ident: ref6/cit6 doi: 10.1039/C1CS15276A – ident: ref56/cit56 doi: 10.1039/DT9950000111 – ident: ref47/cit47 doi: 10.1107/S0021889810041889 – ident: ref48/cit48 doi: 10.1021/ja063166u – ident: ref22/cit22 doi: 10.1126/science.1135080 – ident: ref50/cit50 doi: 10.1038/ncomms11859 – ident: ref52/cit52 doi: 10.1107/S205327331601487X – ident: ref35/cit35 doi: 10.1107/S0021889803017564 – ident: ref46/cit46 doi: 10.1016/j.biomaterials.2010.07.051 – volume-title: Underneath the Bragg peaks: structural analysis of complex materials year: 2012 ident: ref28/cit28 – ident: ref21/cit21 doi: 10.1524/ract.2012.1929 – ident: ref26/cit26 doi: 10.1107/S0108768193006937 – ident: ref29/cit29 doi: 10.1103/PhysRevLett.89.075502 – ident: ref31/cit31 doi: 10.1039/b607250j – ident: ref39/cit39 doi: 10.1107/S0021889899003532 – ident: ref44/cit44 doi: 10.1021/ja503590h – ident: ref62/cit62 doi: 10.1039/C5NH00125K – ident: ref16/cit16 doi: 10.1021/cr2002257 – ident: ref3/cit3 doi: 10.1002/anie.200300610 – ident: ref54/cit54 doi: 10.1107/S0108767309009714 – ident: ref60/cit60 doi: 10.1021/ja026143y – ident: ref5/cit5 doi: 10.1039/b807080f – ident: ref20/cit20 doi: 10.1016/j.micromeso.2017.05.059 – ident: ref32/cit32 doi: 10.1021/ja067140e – ident: ref23/cit23 doi: 10.1103/Physics.3.25 – ident: ref13/cit13 doi: 10.1016/j.micromeso.2007.02.029 – ident: ref68/cit68 doi: 10.1524/zkri.2006.221.3.173 – ident: ref15/cit15 doi: 10.1016/j.jcat.2010.10.012 – ident: ref10/cit10 doi: 10.1021/ja030226c – ident: ref43/cit43 doi: 10.1021/ez400052r – ident: ref33/cit33 doi: 10.1039/C4NR06486K – ident: ref8/cit8 doi: 10.1002/anie.199313571 – ident: ref18/cit18 doi: 10.1016/j.seppur.2014.03.028 – ident: ref51/cit51 doi: 10.1038/nmat4661 – ident: ref40/cit40 doi: 10.1088/0953-8984/19/33/335219 – ident: ref4/cit4 doi: 10.1039/b802426j – ident: ref45/cit45 doi: 10.1021/ja110225n – ident: ref67/cit67 doi: 10.1107/S1600536810010093 – ident: ref12/cit12 doi: 10.1021/ja052472p – ident: ref7/cit7 doi: 10.1021/ic00148a036 – ident: ref9/cit9 doi: 10.1007/978-1-4899-1406-4_12 – ident: ref61/cit61 doi: 10.1039/C4NR01265H – volume: 3 year: 1987 ident: ref66/cit66 publication-title: Acta Phys.-Chim. Sin. – ident: ref69/cit69 doi: 10.1103/PhysRevB.81.144126 – ident: ref41/cit41 doi: 10.1021/ja401276f – ident: ref49/cit49 doi: 10.1038/nature04556 – ident: ref14/cit14 doi: 10.1039/b807676f – ident: ref65/cit65 doi: 10.1080/08893110410001664882 – ident: ref27/cit27 doi: 10.1039/b309577k – ident: ref30/cit30 doi: 10.1021/ja053266k – ident: ref24/cit24 doi: 10.1021/acs.inorgchem.5b02555 – ident: ref42/cit42 doi: 10.1021/ja303826a |
SSID | ssj0009346 |
Score | 2.3849936 |
Snippet | The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution... The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution... Not provided. |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8837 |
SubjectTerms | Chemistry |
Title | Local Environment of Terbium(III) Ions in Layered Nanocrystalline Zirconium(IV) Phosphonate–Phosphate Ion Exchange Materials |
URI | http://dx.doi.org/10.1021/acs.inorgchem.7b00666 https://www.ncbi.nlm.nih.gov/pubmed/28704045 https://www.proquest.com/docview/1926978806 https://www.osti.gov/biblio/1534539 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKcoAL78dSQEbiQJGy3dgTxz5Wq626qEWVaFHFJbIdR6ygCdrNSpQD4j_wD_klzOSxFUKrwi2JYie2Z_x9o3mYsZe5RhCHICIZZB5BGNvIyhSigNCDW2ZiXJPHffRWHZzCm7PkbIvtbvDgi3jX-iVyUHyCgzgfpSQmSl1j14XSKVlbe5N3l1V2ZZuZQzZRrJTpU3Y2dUOQ5Jd_QNKgQtXaTDcb2Nm_zY775J022uTTaFW7kf_2dy3Hfx3RHXaro6B8r5WZu2wrlPfYjUl_8tt99v2QAI5PL3PgeFXwE1yA-er81Ww22-EzFFY-L_mhvaDDPjlu0pVfXCDVpBrfgX-YL9DQbl5_v8OPP1ZLioFHXvvrx8_2Dq-pFz792uYe8yNbt9rwgJ3uT08mB1F3TkNkAaCODBiwENsQirFzoEJIlTcqdqoovAXnciksmmW6AGSfEkmWznNw2qhcBOES-ZANyqoMjxm3KRJC0IDQHUA6qYPy4yIJRWFyZ3Q-ZK9x9rJOz5ZZ40IXcUYP11OadVM6ZNCva-a7iud08Mbnq5qN1s2-tCU_rmqwTUKTIWehwrueIpR8nSGWQCLNkL3oZSnDdSR_jC1DtcKfN0KhEa_H2MOjVsjWHyT_MyDdfvI_A95mNwWxDopoSZ-yQb1YhWfImWr3vNGT3-hTFfY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF5V4VAu_P-E8rNIIFEkh9ierL0HDlVIFdOkQiJFFRd3d70WUVsbxY4gHBDvwDvwKrwHT8KM7SQCqao4VOJmr7zr3Z2ZnW-088PYkyREJQ7Wc3zrJw7YrnKUH4BjUfXgkdmTuorjHu-L4QG8PuwdbrAfy1gYnESBIxXVJf46u4D7gtqmGbbiWk47AXGLEI0z5Z5dfEJTrXgZvUK6PvW83cGkP3SaagKOAoDSkSBBgausTbtag7A2EEYKV4s0NQq0TnxPofEQpoAYyUcoECYJ6FCKxLOepuoQeNRfQgDkkZG303-7Tu7r1wFBZIq5QshlpNBZ0yZNaIo_NGErR4k-G-VW2m73Kvu52qfKyeW4My91x3z5K4Xk_7-R19iVBnDznVpCrrMNm91gm_1lnbub7OuI1DkfrCP-eJ7yCbLbdH76LIqibR6haPJpxkdqQaVNOaqk3MwWCKwpo7nl76czg2cjff5um7_5kBfk8Y8o_te37_UbPtMofPC5jrTmY1XWsn-LHVzI8m-zVpZn9i7jKkD4CyEgULHgaz-0wnTTnk1TmWgZJm32HKkVN6dKEVcOA54bU-OKhHFDwjaDJTvFpsnvTmVGTs7r1ll1-1gnODmvwxbxaowIjdIMG_LHMmWMmhN6vmyzx0sWjpGOdPukMpvPcfLSEzJAdYEj3Kl5e_VDum0HNC7u_cuCH7HN4WQ8ikfR_t4Wu-wR3iJfnuA-a5WzuX2AaLHUDytR5ezooln6N6AleWo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VQQI2vB-hPAYJJIrkENs3Y8-CRZUmqmlaVaJFFRszMx6rUaldxY4gLBD_wF_wK_wFX8K9fqQCqapYdMHOdjLjGd_XuZr7YOxZEqIRB-s5vvUTB2xfOcoPwLFoelBlDqSu8ri3d8TmPrw5GByssB9tLgwuosCZiuoQn6T6JEmbCgPuK3o-zfAX3M9xLyCOEaIJqNyyi0_orhWvow2k7XPPG4_2hptO01HAUQBQOhIkKHCVtWlfaxDWBsJI4WqRpkaB1onvKXQgwhQQJ_kIB8IkAR1KkXjW09QhAtX9JToqJEdvffj2tMCvXycFkTvmCiHbbKGzlk3W0BR_WMNOjlJ9NtKtLN74Ovu5_FZVoMtRb17qnvnyVxnJ_-Nj3mDXGuDN12tJuclWbHaLXRm2_e5us68TMut8dJr5x_OU7yHbTefHL6IoWuMRiiifZnyiFtTilKNpys1sgQCbKptb_n46M6gj6e_v1vjuYV5Q5D-i-V_fvtd3eE2z8NHnOuOab6uy1gF32P6FbP8u62R5Zu8zrgKEwRACAhYLvvZDK0w_Hdg0lYmWYdJlL5FacaNdirgKHPDcmB4uSRg3JOwyaFkqNk2dd2o38vG8Yb3lsJO60Ml5A1aJX2NEalRu2FBcliljtKAw8GWXPW3ZOEY60imUymw-x8VLT8gAzQbOcK_m7-UL6dQd0Ml48C8bfsIu726M40m0s7XKrnoEuyikJ3jIOuVsbh8haCz140paOftw0Rz9G8Yme-0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Environment+of+Terbium%28III%29+Ions+in+Layered+Nanocrystalline+Zirconium%28IV%29+Phosphonate-Phosphate+Ion+Exchange+Materials&rft.jtitle=Inorganic+chemistry&rft.au=Terban%2C+Maxwell+W&rft.au=Shi%2C+Chenyang&rft.au=Silbernagel%2C+Rita&rft.au=Clearfield%2C+Abraham&rft.date=2017-08-07&rft.issn=1520-510X&rft.eissn=1520-510X&rft.volume=56&rft.issue=15&rft.spage=8837&rft_id=info:doi/10.1021%2Facs.inorgchem.7b00666&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |