Local Environment of Terbium(III) Ions in Layered Nanocrystalline Zirconium(IV) Phosphonate–Phosphate Ion Exchange Materials

The structures of Zr­(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, sim...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 56; no. 15; pp. 8837 - 8846
Main Authors Terban, Maxwell W, Shi, Chenyang, Silbernagel, Rita, Clearfield, Abraham, Billinge, Simon J. L
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.08.2017
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The structures of Zr­(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb3+ ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb3+ ions.
AbstractList The structures of Zr­(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb3+ ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb3+ ions.
The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb3+ ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb3+ ions.The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb3+ ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb3+ ions.
Not provided.
The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb ions.
Author Shi, Chenyang
Terban, Maxwell W
Silbernagel, Rita
Clearfield, Abraham
Billinge, Simon J. L
AuthorAffiliation Department of Chemistry
Columbia University
Condensed Matter Physics and Materials Science Department
Department of Applied Physics and Applied Mathematics
Texas A&M University
Brookhaven National Laboratory
AuthorAffiliation_xml – name: Condensed Matter Physics and Materials Science Department
– name: Texas A&M University
– name: Department of Chemistry
– name: Department of Applied Physics and Applied Mathematics
– name: Brookhaven National Laboratory
– name: Columbia University
Author_xml – sequence: 1
  givenname: Maxwell W
  orcidid: 0000-0002-7094-1266
  surname: Terban
  fullname: Terban, Maxwell W
  organization: Columbia University
– sequence: 2
  givenname: Chenyang
  orcidid: 0000-0002-2291-7325
  surname: Shi
  fullname: Shi, Chenyang
  organization: Columbia University
– sequence: 3
  givenname: Rita
  surname: Silbernagel
  fullname: Silbernagel, Rita
  organization: Texas A&M University
– sequence: 4
  givenname: Abraham
  orcidid: 0000-0001-8318-8122
  surname: Clearfield
  fullname: Clearfield, Abraham
  organization: Texas A&M University
– sequence: 5
  givenname: Simon J. L
  surname: Billinge
  fullname: Billinge, Simon J. L
  email: sb2896@columbia.edu
  organization: Brookhaven National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28704045$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1534539$$D View this record in Osti.gov
BookMark eNqFkc9u1DAQxi1URLeFRwBZnNrDLnbiOIk4oWopkZY_h4IQF8t2Jo2rxN7aDmIvFe_AG_IkeMmWA5eeZsbz-2as-U7QkXUWEHpOyYqSjL6SOqyMdf5a9zCuSkUI5_wRWtAiI8uCkq9HaEFIyinn9TE6CeGGEFLnjD9Bx1lVEkZYsUB3G6flgNf2u_HOjmAjdh2-Aq_MNJ41TXOOG2cDNhZv5A48tPiDtE77XYhyGIwF_M147exf_Ms5_tS7sO2dlRF-__w1VynfT8HrH7qX9hrw-_TijRzCU_S4SwGeHeIp-vx2fXXxbrn5eNlcvNksJWMsLmtWM8moBOiIUowDlFzXnCredVoypdo8k5SzqmMFKfOs4FXbMlXVvM0gU0V-il7Oc12IRgRtIug-_dqCjoIWOSvyOkFnM7T17naCEMVogoZhkBbcFAStM16XVUV4Ql8c0EmN0IqtN6P0O3F_2AS8ngHtXQgeOpF2ymicjV6aQVAi9jaKZKP4Z6M42JjUxX_q-wUP6eis27dv3ORtOuoDmj82FrlC
CitedBy_id crossref_primary_10_1016_j_molstruc_2020_129063
crossref_primary_10_1039_D0NA00120A
crossref_primary_10_1007_s10965_023_03502_2
crossref_primary_10_1080_26889277_2022_2150897
crossref_primary_10_1098_rsta_2018_0413
crossref_primary_10_4236_msa_2023_146022
crossref_primary_10_1038_s42004_020_00439_1
crossref_primary_10_1039_D3EE00987D
crossref_primary_10_1016_j_polymer_2020_123154
crossref_primary_10_1021_acs_chemmater_1c01755
crossref_primary_10_1021_acs_inorgchem_9b02442
crossref_primary_10_1080_07366299_2018_1542971
crossref_primary_10_1016_j_jcat_2020_03_002
crossref_primary_10_1021_acs_chemrev_1c00237
crossref_primary_10_1021_acs_iecr_0c04957
crossref_primary_10_1107_S2053273320013066
crossref_primary_10_1021_acs_inorgchem_3c01458
crossref_primary_10_1002_ejic_201900241
crossref_primary_10_1039_C8DT00508G
crossref_primary_10_1021_acs_jpclett_0c01173
crossref_primary_10_1021_acs_jpcc_8b08134
crossref_primary_10_1080_14686996_2021_1993728
crossref_primary_10_1021_acs_langmuir_0c02057
crossref_primary_10_1039_D2DT01291J
crossref_primary_10_1016_j_jssc_2020_121638
crossref_primary_10_1016_j_matdes_2018_05_041
crossref_primary_10_1107_S2053273320002028
crossref_primary_10_1021_acs_inorgchem_1c00581
crossref_primary_10_1039_D4DT00757C
Cites_doi 10.1103/PhysRevLett.112.125501
10.1126/science.1083440
10.1080/13642819908218319
10.1002/anie.199423241
10.1021/ic50073a005
10.1107/S0021889813005190
10.1246/bcsj.55.909
10.1107/S2053273315014473
10.1021/cm960030u
10.1039/b508589f
10.1002/andp.19153510606
10.1038/nature01650
10.1021/ja002048i
10.1021/ic402884g
10.1021/acs.chemmater.6b00199
10.1080/08957959608201408
10.1039/C1CS15276A
10.1039/DT9950000111
10.1107/S0021889810041889
10.1021/ja063166u
10.1126/science.1135080
10.1038/ncomms11859
10.1107/S205327331601487X
10.1107/S0021889803017564
10.1016/j.biomaterials.2010.07.051
10.1524/ract.2012.1929
10.1107/S0108768193006937
10.1103/PhysRevLett.89.075502
10.1039/b607250j
10.1107/S0021889899003532
10.1021/ja503590h
10.1039/C5NH00125K
10.1021/cr2002257
10.1002/anie.200300610
10.1107/S0108767309009714
10.1021/ja026143y
10.1039/b807080f
10.1016/j.micromeso.2017.05.059
10.1021/ja067140e
10.1103/Physics.3.25
10.1016/j.micromeso.2007.02.029
10.1524/zkri.2006.221.3.173
10.1016/j.jcat.2010.10.012
10.1021/ja030226c
10.1021/ez400052r
10.1039/C4NR06486K
10.1002/anie.199313571
10.1016/j.seppur.2014.03.028
10.1038/nmat4661
10.1088/0953-8984/19/33/335219
10.1039/b802426j
10.1021/ja110225n
10.1107/S1600536810010093
10.1021/ja052472p
10.1021/ic00148a036
10.1007/978-1-4899-1406-4_12
10.1039/C4NR01265H
10.1103/PhysRevB.81.144126
10.1021/ja401276f
10.1038/nature04556
10.1039/b807676f
10.1080/08893110410001664882
10.1039/b309577k
10.1021/ja053266k
10.1021/acs.inorgchem.5b02555
10.1021/ja303826a
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Brookhaven National Lab. (BNL), Upton, NY (United States)
Texas A & M Univ., College Station, TX (United States)
CorporateAuthor_xml – name: Brookhaven National Lab. (BNL), Upton, NY (United States)
– name: Texas A & M Univ., College Station, TX (United States)
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1021/acs.inorgchem.7b00666
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 8846
ExternalDocumentID 1534539
28704045
10_1021_acs_inorgchem_7b00666
d228679365
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
~02
NPM
YIN
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a444t-9494a41aeef0bb46ee76c961b6ffca4bbd32a1648f450732568dd4b896d2e2b53
IEDL.DBID ACS
ISSN 0020-1669
1520-510X
IngestDate Fri May 19 02:14:10 EDT 2023
Thu Jul 10 18:40:07 EDT 2025
Wed Feb 19 02:40:15 EST 2025
Tue Jul 01 03:41:20 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Thu Aug 27 13:45:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a444t-9494a41aeef0bb46ee76c961b6ffca4bbd32a1648f450732568dd4b896d2e2b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Nuclear Energy (NE)
NE0000746; AC02-98CH10886; SC0012704
ORCID 0000-0001-8318-8122
0000-0002-7094-1266
0000-0002-2291-7325
0000000222917325
0000000183188122
0000000270941266
PMID 28704045
PQID 1926978806
PQPubID 23479
PageCount 10
ParticipantIDs osti_scitechconnect_1534539
proquest_miscellaneous_1926978806
pubmed_primary_28704045
crossref_citationtrail_10_1021_acs_inorgchem_7b00666
crossref_primary_10_1021_acs_inorgchem_7b00666
acs_journals_10_1021_acs_inorgchem_7b00666
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-07
PublicationDateYYYYMMDD 2017-08-07
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2017
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
Egami T. (ref28/cit28) 2012
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
Yang X. (ref38/cit38) 2015
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
Xing Y. (ref66/cit66) 1987; 3
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref64/cit64
  doi: 10.1103/PhysRevLett.112.125501
– ident: ref1/cit1
  doi: 10.1126/science.1083440
– ident: ref59/cit59
  doi: 10.1080/13642819908218319
– ident: ref58/cit58
  doi: 10.1002/anie.199423241
– ident: ref25/cit25
  doi: 10.1021/ic50073a005
– ident: ref37/cit37
  doi: 10.1107/S0021889813005190
– ident: ref34/cit34
  doi: 10.1246/bcsj.55.909
– ident: ref55/cit55
  doi: 10.1107/S2053273315014473
– ident: ref57/cit57
  doi: 10.1021/cm960030u
– ident: ref11/cit11
  doi: 10.1039/b508589f
– ident: ref53/cit53
  doi: 10.1002/andp.19153510606
– ident: ref2/cit2
  doi: 10.1038/nature01650
– ident: ref63/cit63
  doi: 10.1021/ja002048i
– ident: ref17/cit17
  doi: 10.1021/ic402884g
– ident: ref19/cit19
  doi: 10.1021/acs.chemmater.6b00199
– ident: ref36/cit36
  doi: 10.1080/08957959608201408
– year: 2015
  ident: ref38/cit38
  publication-title: arXiv
– ident: ref6/cit6
  doi: 10.1039/C1CS15276A
– ident: ref56/cit56
  doi: 10.1039/DT9950000111
– ident: ref47/cit47
  doi: 10.1107/S0021889810041889
– ident: ref48/cit48
  doi: 10.1021/ja063166u
– ident: ref22/cit22
  doi: 10.1126/science.1135080
– ident: ref50/cit50
  doi: 10.1038/ncomms11859
– ident: ref52/cit52
  doi: 10.1107/S205327331601487X
– ident: ref35/cit35
  doi: 10.1107/S0021889803017564
– ident: ref46/cit46
  doi: 10.1016/j.biomaterials.2010.07.051
– volume-title: Underneath the Bragg peaks: structural analysis of complex materials
  year: 2012
  ident: ref28/cit28
– ident: ref21/cit21
  doi: 10.1524/ract.2012.1929
– ident: ref26/cit26
  doi: 10.1107/S0108768193006937
– ident: ref29/cit29
  doi: 10.1103/PhysRevLett.89.075502
– ident: ref31/cit31
  doi: 10.1039/b607250j
– ident: ref39/cit39
  doi: 10.1107/S0021889899003532
– ident: ref44/cit44
  doi: 10.1021/ja503590h
– ident: ref62/cit62
  doi: 10.1039/C5NH00125K
– ident: ref16/cit16
  doi: 10.1021/cr2002257
– ident: ref3/cit3
  doi: 10.1002/anie.200300610
– ident: ref54/cit54
  doi: 10.1107/S0108767309009714
– ident: ref60/cit60
  doi: 10.1021/ja026143y
– ident: ref5/cit5
  doi: 10.1039/b807080f
– ident: ref20/cit20
  doi: 10.1016/j.micromeso.2017.05.059
– ident: ref32/cit32
  doi: 10.1021/ja067140e
– ident: ref23/cit23
  doi: 10.1103/Physics.3.25
– ident: ref13/cit13
  doi: 10.1016/j.micromeso.2007.02.029
– ident: ref68/cit68
  doi: 10.1524/zkri.2006.221.3.173
– ident: ref15/cit15
  doi: 10.1016/j.jcat.2010.10.012
– ident: ref10/cit10
  doi: 10.1021/ja030226c
– ident: ref43/cit43
  doi: 10.1021/ez400052r
– ident: ref33/cit33
  doi: 10.1039/C4NR06486K
– ident: ref8/cit8
  doi: 10.1002/anie.199313571
– ident: ref18/cit18
  doi: 10.1016/j.seppur.2014.03.028
– ident: ref51/cit51
  doi: 10.1038/nmat4661
– ident: ref40/cit40
  doi: 10.1088/0953-8984/19/33/335219
– ident: ref4/cit4
  doi: 10.1039/b802426j
– ident: ref45/cit45
  doi: 10.1021/ja110225n
– ident: ref67/cit67
  doi: 10.1107/S1600536810010093
– ident: ref12/cit12
  doi: 10.1021/ja052472p
– ident: ref7/cit7
  doi: 10.1021/ic00148a036
– ident: ref9/cit9
  doi: 10.1007/978-1-4899-1406-4_12
– ident: ref61/cit61
  doi: 10.1039/C4NR01265H
– volume: 3
  year: 1987
  ident: ref66/cit66
  publication-title: Acta Phys.-Chim. Sin.
– ident: ref69/cit69
  doi: 10.1103/PhysRevB.81.144126
– ident: ref41/cit41
  doi: 10.1021/ja401276f
– ident: ref49/cit49
  doi: 10.1038/nature04556
– ident: ref14/cit14
  doi: 10.1039/b807676f
– ident: ref65/cit65
  doi: 10.1080/08893110410001664882
– ident: ref27/cit27
  doi: 10.1039/b309577k
– ident: ref30/cit30
  doi: 10.1021/ja053266k
– ident: ref24/cit24
  doi: 10.1021/acs.inorgchem.5b02555
– ident: ref42/cit42
  doi: 10.1021/ja303826a
SSID ssj0009346
Score 2.3849936
Snippet The structures of Zr­(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution...
The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution...
Not provided.
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8837
SubjectTerms Chemistry
Title Local Environment of Terbium(III) Ions in Layered Nanocrystalline Zirconium(IV) Phosphonate–Phosphate Ion Exchange Materials
URI http://dx.doi.org/10.1021/acs.inorgchem.7b00666
https://www.ncbi.nlm.nih.gov/pubmed/28704045
https://www.proquest.com/docview/1926978806
https://www.osti.gov/biblio/1534539
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKcoAL78dSQEbiQJGy3dgTxz5Wq626qEWVaFHFJbIdR6ygCdrNSpQD4j_wD_klzOSxFUKrwi2JYie2Z_x9o3mYsZe5RhCHICIZZB5BGNvIyhSigNCDW2ZiXJPHffRWHZzCm7PkbIvtbvDgi3jX-iVyUHyCgzgfpSQmSl1j14XSKVlbe5N3l1V2ZZuZQzZRrJTpU3Y2dUOQ5Jd_QNKgQtXaTDcb2Nm_zY775J022uTTaFW7kf_2dy3Hfx3RHXaro6B8r5WZu2wrlPfYjUl_8tt99v2QAI5PL3PgeFXwE1yA-er81Ww22-EzFFY-L_mhvaDDPjlu0pVfXCDVpBrfgX-YL9DQbl5_v8OPP1ZLioFHXvvrx8_2Dq-pFz792uYe8yNbt9rwgJ3uT08mB1F3TkNkAaCODBiwENsQirFzoEJIlTcqdqoovAXnciksmmW6AGSfEkmWznNw2qhcBOES-ZANyqoMjxm3KRJC0IDQHUA6qYPy4yIJRWFyZ3Q-ZK9x9rJOz5ZZ40IXcUYP11OadVM6ZNCva-a7iud08Mbnq5qN1s2-tCU_rmqwTUKTIWehwrueIpR8nSGWQCLNkL3oZSnDdSR_jC1DtcKfN0KhEa_H2MOjVsjWHyT_MyDdfvI_A95mNwWxDopoSZ-yQb1YhWfImWr3vNGT3-hTFfY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF5V4VAu_P-E8rNIIFEkh9ierL0HDlVIFdOkQiJFFRd3d70WUVsbxY4gHBDvwDvwKrwHT8KM7SQCqao4VOJmr7zr3Z2ZnW-088PYkyREJQ7Wc3zrJw7YrnKUH4BjUfXgkdmTuorjHu-L4QG8PuwdbrAfy1gYnESBIxXVJf46u4D7gtqmGbbiWk47AXGLEI0z5Z5dfEJTrXgZvUK6PvW83cGkP3SaagKOAoDSkSBBgausTbtag7A2EEYKV4s0NQq0TnxPofEQpoAYyUcoECYJ6FCKxLOepuoQeNRfQgDkkZG303-7Tu7r1wFBZIq5QshlpNBZ0yZNaIo_NGErR4k-G-VW2m73Kvu52qfKyeW4My91x3z5K4Xk_7-R19iVBnDznVpCrrMNm91gm_1lnbub7OuI1DkfrCP-eJ7yCbLbdH76LIqibR6haPJpxkdqQaVNOaqk3MwWCKwpo7nl76czg2cjff5um7_5kBfk8Y8o_te37_UbPtMofPC5jrTmY1XWsn-LHVzI8m-zVpZn9i7jKkD4CyEgULHgaz-0wnTTnk1TmWgZJm32HKkVN6dKEVcOA54bU-OKhHFDwjaDJTvFpsnvTmVGTs7r1ll1-1gnODmvwxbxaowIjdIMG_LHMmWMmhN6vmyzx0sWjpGOdPukMpvPcfLSEzJAdYEj3Kl5e_VDum0HNC7u_cuCH7HN4WQ8ikfR_t4Wu-wR3iJfnuA-a5WzuX2AaLHUDytR5ezooln6N6AleWo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VQQI2vB-hPAYJJIrkENs3Y8-CRZUmqmlaVaJFFRszMx6rUaldxY4gLBD_wF_wK_wFX8K9fqQCqapYdMHOdjLjGd_XuZr7YOxZEqIRB-s5vvUTB2xfOcoPwLFoelBlDqSu8ri3d8TmPrw5GByssB9tLgwuosCZiuoQn6T6JEmbCgPuK3o-zfAX3M9xLyCOEaIJqNyyi0_orhWvow2k7XPPG4_2hptO01HAUQBQOhIkKHCVtWlfaxDWBsJI4WqRpkaB1onvKXQgwhQQJ_kIB8IkAR1KkXjW09QhAtX9JToqJEdvffj2tMCvXycFkTvmCiHbbKGzlk3W0BR_WMNOjlJ9NtKtLN74Ovu5_FZVoMtRb17qnvnyVxnJ_-Nj3mDXGuDN12tJuclWbHaLXRm2_e5us68TMut8dJr5x_OU7yHbTefHL6IoWuMRiiifZnyiFtTilKNpys1sgQCbKptb_n46M6gj6e_v1vjuYV5Q5D-i-V_fvtd3eE2z8NHnOuOab6uy1gF32P6FbP8u62R5Zu8zrgKEwRACAhYLvvZDK0w_Hdg0lYmWYdJlL5FacaNdirgKHPDcmB4uSRg3JOwyaFkqNk2dd2o38vG8Yb3lsJO60Ml5A1aJX2NEalRu2FBcliljtKAw8GWXPW3ZOEY60imUymw-x8VLT8gAzQbOcK_m7-UL6dQd0Ml48C8bfsIu726M40m0s7XKrnoEuyikJ3jIOuVsbh8haCz140paOftw0Rz9G8Yme-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Environment+of+Terbium%28III%29+Ions+in+Layered+Nanocrystalline+Zirconium%28IV%29+Phosphonate-Phosphate+Ion+Exchange+Materials&rft.jtitle=Inorganic+chemistry&rft.au=Terban%2C+Maxwell+W&rft.au=Shi%2C+Chenyang&rft.au=Silbernagel%2C+Rita&rft.au=Clearfield%2C+Abraham&rft.date=2017-08-07&rft.issn=1520-510X&rft.eissn=1520-510X&rft.volume=56&rft.issue=15&rft.spage=8837&rft_id=info:doi/10.1021%2Facs.inorgchem.7b00666&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon